libmx Notes

libmx Notes

libmx Notes
Author:
Eric Postpischil
Version:
Draft 1.2
Date:
October 31, 2005
libmx is presenting some frustrating problems. This document presents discussion and questions about the issues involved.

	Version
	Date
	Changes

	1.0
	2005-10-26
	First draft.

	1.1
	2005-10-27
	Incorporate responses from Geoff Keating and other edits.

	1.2
	2005-10-31
	Incorporate results of October 27 meeting. Numbering of items in document changed.

	1.3
	2005-11-14
	Decided to use libmx.A.dylib as install name for libmx.dylib.

1 Results of October 27, 2005, Meeting

Minor results of the meeting have been incorporated into this document elsewhere.

(0) We are going to try putting into the 10.4u SDK (and the current system) a libmx.dylib:

(a) The ppc architecture will be a copy of the 10.3.9 SDK libmx.A.dylib (which is a stub, that is, it has been stripped of code). Its installed name will be libmx.A.dylib.

(b) The i386 architecture will be as empty as possible. Its installed name will be libSystem.B.dylib.

(i) The i386 architecture must be present so that when libmx.dylib is passed to the linker and linking is being performance for i386, the linker will not issue a warning that no i386 architecture is present in the passed library.

(ii) The installed name must be that of a library that exists in the execution environment and has the i386 architecture. However, I have not recorded the reason we chose libSystem.B.dylib rather than libmx.A.dylib.

(1) Ian asked about using a $UNIX2003 suffix with object names, and Geoff Keating suggested following the method used to apply $LDBL64 or $LDBL128 to long double routines. For more information, see sys/cdefs.h.

(2) Geoff Keating drew a chart showing the levels of support for combinations of target and SDK versions. This is general information about the build environment not particular to libmx, but I have preserved it in a separate file named SupportMatrix.html.

(3) Subsequent to the meeting, it was determined libmx.dylib could not use an install name of libSystem.B.dylib because this would result in two libraries having the same install name, to which the linker objected. I will use libmx.A.dylib as the install name for libmx.dylib.

2 Nomenclature

(4) A is the set of symbols {acoshl, acosh, acosl, acos, asinhl, asinh, asinl, asin, atan2l, atan2, atanhl, atanh, atanl, atan, cabsl, cabs, cacoshl, cacosh, cacosl, cacos, cargl, carg, casinhl, casinh, casinl, casin, catanhl, catanh, catanl, catan, cbrtl, cbrt, ccoshl, ccosh, ccosl, ccos, ceill, ceil, cexpl, cexp, cimagl, cimag, clogl, clog, conjl, conj, copysignl, copysign, coshl, cosh, cosl, cos, cpowl, cpow, cprojl, cproj, creall, creal, csinhl, csinh, csinl, csin, csqrtl, csqrt, ctanhl, ctanh, ctanl, ctan, erfcl, erfc, erfl, erf, exp2l, exp2, expl, exp, expm1l, expm1, fabsl, fabs, fdiml, fdim, floorl, floor, fmal, fma, fmaxl, fmax, fminl, fmin, fmodl, fmod, frexpl, frexp, hypotl, hypot, ilogbl, ilogb, ldexpl, ldexp, lgammal, lgamma, llrintl, llrint, llroundl, llround, log10l, log10, log1pl, log1p, log2l, log2, logbl, logb, logl, log, lrintl, lrint, lroundl, lround, modfl, modf, nanl, nan, nearbyintl, nearbyint, nextafterl, nextafter, nexttoward, nexttowardf, nexttowardl, nexttoward, powl, pow, remainderl, remainder, remquol, remquo, rintl, rint, rinttoll, roundl, round, scalblnl, scalbln, scalbnl, scalbn, sinhl, sinh, sinl, sin, sqrtl, sqrt, tanhl, tanh, tanl, tan, tgammal, tgamma, truncl, trunc}. (For the PowerPC architecture, A includes $LDBL64 and $LDBL128 variants of the long double routines.)

(5) B is the set of symbols {cimag, cimagf, conj, conjf, creal, crealf}.

(6) C is the set of symbols {cacos, cacosf, cacosh, cacoshf, carg, cargf, casin, casinf, casinh, casinhf, catan, catanf, catanh, catanhf, ccos, ccosf, ccosh, ccoshf, cexp, cexpf, clog, clogf, cpow, cpowf, cproj, cprojf, csin, csinf, csinh, csinhf, csqrt, csqrtf, ctan, ctanf, ctanh, ctanhf}.

(7) D is the set of symbols {acosf, acoshf, asinf, asinhf, atan2f, atanf, atanhf, cabsf, cbrtf, cosf, coshf, erfcf, erff, exp2f, expf, expm1f, hypotf, lgammaf, log10f, log1pf, log2f, logf, powf, sinf, sinhf, sqrtf, tanf, tanhf, tgammaf}.

3 Problems Linking for 10.3.9

3.1 Statements

(8) The PowerPC architecture of libmx.A.dylib and libSystem.B.dylib contains:

	
	libmx.A.dylib
	libSystem.B.dylib

	10.2
	Did not exist
	

	10.3
	C+D
	

	10.3.9
	C+D
	A+B+C+D

	10.4
	A+B+C+D
	A+B+C+D

(9) Programs linked with the 10.4 libmx.A.dylib will resolve A and B symbols from libmx.A.dylib.

(10) To run on 10.3.9, a program must resolve A and B symbols from libSystem.B.dylib and not from libmx.A.dylib.

(11) Previously, the normal way to build programs on one release for execution on earlier releases was to link with the SDK of the earliest target release.

(12) We want to support building programs that will run on Intel systems with Chardonnay and on PowerPC systems with 10.3.9.

(13) A program linked with the 10.3.9 SDK cannot run on an Intel system because the 10.3.9 libraries do not contain an Intel architecture, so linking would not be able to resolve any library symbols for the Intel architecture.

(14) To achieve (2), programs described in (4) must be linked with a library with an installed name of libmx.A.dylib that does not contain symbols of A or B.

(15) Because of (5) and (6), we must provide a library with an installed name of libmx.A.dylib that contains only C+D.

(16) Some Apple-external programs have been linked with the 10.4 libmx.A.dylib and resolve A and B symbols from libmx.A.dylib.

(17) For binary compatibility for the programs in (8), the installed libmx.A.dylib must contain A+B+C+D.

(18) Given (7) and (9), the library used for linking, which has the installed name of libmx.A.dylib, must be distinct from the installed libmx.A.dylib.

(19) The “-lmx” switch tells the linker to look for libmx.dylib. Linked programs point to the installed name, libmx.A.dylib. This difference gives us an opportunity to satisfy (10).

(20) One proposal is to change libmx.dylib from its current symbolic link to libmx.dylib into a stub library.

(21) Radar 4012464 reports that B&I’s prebinding breaks when a stub dylib is used.

(a) At the time, libmx.A.dylib was a symbolic link to libSystem.dylib.

(22) A search for “prebinding” in the title did not reveal a Radar indicating that the prebinding problem of (13) is fixed.

3.2 Questions

(23) Is the problem that caused prebinding to break when libmx.dylib was a stub library fixed?

(a) October 27, 2005: We think it likely libmx.dylib can be a stub if libmx.A.dylib is not a symbolic link. We will try it in a side build. If that does not work, we will investigate fixing prebinding.

(24) What reasons are there for and against making libmx.dylib a stub library rather than a full library?

(a) Geoff Keating: A stub reduces disk space and avoids confusion.

(25) In what releases was libmx.A.dylib a symbolic link to libSystem.B.dylib?

(a) October 27, 2005: libmx.A.dylib was never released as a symbolic link. References to such in Radars must refer to internal builds, which need not be supported.

(26) Geoff Keating indicated that a stub library had to have the same “structure” as the full library.

(a) October 27, 2005: We believe a stub libmx.dylib does not need to have an identical structure. Inside an object module, references are associated with a pointer to the library that resolves them, not the library and the module. As long as a library provides the symbols a module requires it to provide, symbol resolution should be fine.

(27) Do we still need or want to support building programs to run on 10.2? (We are still handling Radars for this.)

(a) Geoff Keating: Yes.

(28) What is the behavior of other (released) versions of GCC with regard to “-lmx”?

(a) Especially, are the various references in Radars to GCC applying “-lSystem -lmx” all references to unreleased versions of GCC, and were no products linked with such versions ever released externally?

(i) Geoff Keating: “No, I think, but it does not matter, because there is almost certainly at least one existing program linked with '-lsystem -lmx' explicitly, and there are plenty of existing programs linked with -lsystem and no -lmx.”

(29) With GCC 3.3 and 10.3, how did people link with libmx.dylib? Did they use “-lmx” explicitly, or did Xcode apply it?

(a) Geoff Keating: “The answer does not matter. The effect on the build is the same whether Xcode added -lmx or whether the user added it.”

(30) When does Xcode use the SDK libraries?

(a) Geoff Keating: “When the user asks it to.”

(b) Does it matter?

(i) Geoff Keating: No.

4 Multiple Definitions

4.1 Statements

This section is moot; the problem was fixed in or before cctools-590.15.obj~16, which was installed with Chardonnay8F1106.

(31) Radar 4070264 demonstrates a program that refers to vvcosf in Accelerate (specifically libvMisc.dylib) and to cosf and that gets multiple definition warnings when linked.

(32) The linker loads libmx.dylib(single module) to resolve cosf.

(33) libmx.dylib(single module) defines asinf and sqrtf.

(34) The linker loads libvMisc.dylib(single module) to resolve vvcosf.

(35) libvMisc.dylib(single module) refers to sqrtf.

(36) The linker loads libSystem.dylib(floating.o) to resolve sqrtf.

(37) libSystem.dylib(floating.o) defines asinf.

4.2 Questions

(38) Why did the linker load libSystem.dylib(floating.o) to resolve sqrtf when sqrtf was already defined by libmx.dylib(single module)?

(a) October 27, 2005: We believe this was caused by the linker allowing symbols defined by secondary modules to conflict with those of primary modules, where primary modules are those of files listed by the user (such as object modules and libraries listed on the command line) and secondary modules are others (such as modules found because dynamic libraries refer to other dynamic libraries). This behavior has been changed, and the problem is gone in cctools-590.15.obj~16.

(39) Why is libmx.dylib built as a single module?

5 Can libmx.A.dylib be made a symbolic link to libSystem.B.dylib?

This idea is not being pursued.

(40) Binary compatibility: The contents of libmx.A.dylib are a subset of libSystem.B.dylib, so any program that resolves symbols from libmx.A.dylib will find them?

(41) Building programs for prior versions: libmx.dylib will be used and will result in programs that resolve from libmx.A.dylib only symbols in libmx.A.dylib in 10.3.9. Such programs will work (barring unrelated factors) on 10.3.9, 10.4, and later?

(42) What was the problem in 7 (1) , would it apply to this, and has it been fixed?

6 Reference

(43) Recent unreleased versions of GCC:

· Apply “-lmx -lSystem” when linking for PowerPC if MACOSX_DEPLOYMENT_TARGET is “10.3”.

· Apply “-lSystem” otherwise.

(44) Some released versions of GCC applied “-lmx -lSystem” in other circumstances, including when building targets for 10.2. (This is based on Radars such as 4156528.)

(45) Adobe is using SDK 10.4a and is targeting 10.3.9.

(46) libmx.A.dylib and libSystem.B.dylib contain:

	
	PowerPC
	IA-32

	
	libmx.A.dylib
	libSystem.B.dylib
	libmx.A.dylib
	libSystem.B.dylib

	10.3
	C+D
	
	
	

	10.3.9
	C+D
	A+B+C+D
	
	

	10.4
	A+B+C+D
	A+B+C+D
	
	

	Chardonnay8F1103
	A+B+C+D
	A+B+C+D
	
	A+B+C+D except rinttoll

(I have presumed but not checked that the released versions of the libraries in 10.3 through 10.4 contain no IA-32 architecture. B, C, and D appear in various combinations in the internal versions.)

In the PowerPC 64-bit architecture, the 10.4 libmx.A.dylib and libSystem.B.dylib each contain A+B+C+D. The previous libraries contain none of these symbols.

7 Miscellaneous

(47) libmx.A.dylib was originally a kludge intended to be temporary, created to deal with some linking issues. In Tiger, the original reason for libmx.A.dylib was eliminated, and the content of libmx.A.dylib is duplicated in libSystem.B.dylib.

(48) libmx.dylib was at one time (apparently only in internal builds, not released versions) a symbolic link to libSystem.dylib (according to Radar 3975428). This was a problem for reasons not clear to me, perhaps because the executable that resulted from linking with this symbolic link tried to resolve references to symbols in libSystem.B.dylib that are not in 10.3’s or 10.3.9’s libSystem.B.dylib.

(49) libmx.dylib and libSystem.dylib are symbolic links that are created only if you install the development tools.

(50) The MACOSX_DEPLOYMENT_TARGET environment variable is deprecated and is replaced by the command-line switch -mmacosx-version-min=version. The switch may allow 10.3.9 distinct from 10.3, and the behavior of GCC with regard to the switch and application of “-lmx” is unknown.

(51) October 27, 2005: Developers can be instructed to make programs that execute on 10.2 and on 10.4 Intel by building separately for each architecture and using lipo. (To do this with Xcode, use an aggregate target to do the lipo.)

(52) October 27, 2005: The ppc and i386 SDKs can be different.

8 Questions

(53) What is necessary for libmx.A.dylib to be emptied of all content or removed in future versions?

(a) Geoff Keating: “When we abandon backwards binary compatibility with any program intended to run on Panther. We’ve never abandoned backwards compatibility with any GMed release and do not plan to do so in the foreseeable future. Developers are still creating programs which run on 10.1 and higher.”

(54) What is necessary for libmx.dylib to be emptied of all content or removed in future versions?

(a) Geoff Keating: “When our developers no longer consider it necessary to build programs to run on Panther. This might happen in the foreseeable future, but it would take probably 5 years, and when it does happen we would probably have no incentive to remove the feature since it will have been working fine for 5 years. We currently support back to 10.1, and that's the default for PowerPC C and Objective-C programs even in gcc-4.0. We are seriously considering changing the default to 10.2, but it’s not a high priority, and doing so would not prevent people targeting 10.1 explicitly, it would just not be the default.”

9 Radars

3872339 8A303: Tiger is mostly unprebound due to Libmx

libmx builds 3-way FAT regardless of its instructions from B&I. This results in a verification error, which causes libmx not to be prebound, which causes libSystem and most of Tiger not to be prebound. Changing libmx to honor B&I is difficult, due to “old and crufty use of RC_* flags.” Suggested workaround was set B&I to request libmx to build 3-way FAT. Closed due to prebinding being better in 8A305, reason not recorded.

3897620 Move libstdc++-used math functions to libSystem

Per Geoff Keating and some C++ changes, libmx contents were moved to libSystem. Otherwise, in combination with some change to how libstdc++ is built, some C++ programs would require linking with -lmx where they did not before.

libmx.dylib was made a symbolic link to libSystem.dylib.

3932087 header changes for long double & backwards executable compatibility

3975428 Tiger /usr/lib/libmx.dylib must have real content

Backward binary compatibility was broken. Symbols resolved from libSystem.dylib on Tiger do not work for binaries run on Panther. Resolution is to create libmx.dylib with stubs for all symbols that were in Panther libmx.dylib.

4012464 B&I’s prebinding system breaks when stub dylib is used

vImage links against libmx.dylib and gets the install name (libmx.A.dylib) and timestamp from that binary (libmx.dylib?) stored in one of its load commands. When redo_prebinding is run on something that depends on preimage, it loads the library (libmx.A.dylib?) which is really (a symbolic link to?) libSystem. redo_prebinding compares the saved timestamp with that of libSystem’s LC_ID_DYLIB command. They do not match, so prebinding fails.

libmx.A.dylib was changed to be a real library rather than a link. (But Source Changes field is empty.)

4029335 A simple binary built on Tiger with Libm-90 will not run on Panther

Compiler was applying "-lSystem -lmx", resulting in binaries resolving some symbols from libSystem that are not in libSystem on Panther (but are in both on Tiger). Resolution: Change "-lSystem -lmx" to "-lmx -lSystem".

4032754 Tiger /usr/lib/libmx.dylib must not simply be stubs

libmx.dylib restored as actual library, not stub.

4070264 numerics -- duplicate float symbols

libmx.dylib(single module) is loaded to resolve _cosf.

libmx.dylib(single module) also defines _asinf.

libvMisc.dylib(single module) is loaded to resolve _vvcosf.

libSystem.dylib(floating.o) is loaded to resolve _sqrtf, referenced from libvMisc.

But sqrtf is already defined in libmx.dylib(single module)!

libSystem.dylib(floating.o) also defines _asinf.

Now _asinf is multiply defined.

4126016 Using -m64 on gcc build crashes on libmx.A.dylib.

Unresolved. Not reproducible, corrupt file?

4311269 Are there libraries linking against libmx in Tiger/Chard/Panther?

Ian wonders if system frameworks can cause duplicate symbol warnings in well-behaved applications that are not passing -lmx because the frameworks do include -lmx.

4274553 ADOBE Code using the long double version of floor does not run on 10.3.9

4111685, 4156528, 4253216

These are all requests from developers for builds on 10.4 targeting 10.2 to work. They did not because GCC was using -lmx, which is being corrected. This shows a demand to support old releases for a while.

8

Draft 1.2, November 1, 2005
Draft 1.2, November 1, 2005

9

