



© 2001 Apple Computer, Inc.



QuickTime Streaming Server
Modules



Apple Computer, Inc.
© 1999-2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

3

Contents

Figures, Tables, and Listings vii

Preface

About This Manual

9

What’s New Since Version 2.0 9
Conventions Used in This Manual 12
For More Information 13

Chapter 1

About QuickTime Streaming Server Modules

15

Building a QuickTime Streaming Server Module 16
Compiling a QTSS Module into the Server 16
Building a QTSS Module as a Code Fragment 17

Module Requirements 17
Main Routine 17
Dispatch Routine 18

Overview of QuickTime Streaming Server Operations 19
Server Startup and Shutdown 19
RTSP Request Processing 21

Runtime Environment for QTSS Modules 25
Server Time 26

Naming Conventions 27
Module Roles 27

Register Role 29
Initialize Role 30
Shutdown Role 31
Reread Preferences Role 31
Error Log Role 32
RTSP Roles 33

RTSP Filter Role 33
RTSP Route Role 34
RTSP Preprocessor Role 36
RTSP Request Role 37

4

RTSP Postprocessor Role 38
RTP Roles 39

RTP Send Packets Role 40
Client Session Closing Role 40

RTCP Process Role 41
QTSS Objects 43

Getting Attribute Values 45
Setting Attribute Values 47
Adding Attributes 48

QTSS Streams 50
QTSS Services 52

Built-in Services 54
Using Files 55

Reading Files Using Callback Routines 55
Implementing a QTSS File System Module 57

File System Module Roles 59
Sample Code for the Open File Role 65
Implementing Asynchronous Notifications 67

Using QTSS Web Admin 68
CGIs, Template HTML Files, and Special Tags 68

ECHODATA 69
GETDATA 70
GETVALUE 70
MAKEARRAY 71
HASVALUE 71
IFVALUEEQUALS 72
CONVERTTOLOCALTIME 72
ACTIONONDATA 72
FORMATFLOAT 73
CONVERTMSECTIMETOSTR 74
MODIFYDATA 74
PRINTFILE 75
PRINTHTMLFORMATFILE 75
PROCESSFILE 76
HTMLIZE 76

Monitoring Server Status and Modifying Server Settings 77
Customizing Web Admin 78
Admin Protocol 79

5

Request and Response Methods 79
Session State 79
Supported Request Header Features 79
Server Data Access 79
Request Syntax 80
Query Functionality 80
Data References 81
Query Options 81
Command Options 82
Parameter Options 83
Access Types 83
Data Types 84
Responses 84
Changing Server Settings 90
Special Paths 90

Chapter 2

QuickTime Streaming Server Module Reference

93

QTSS Callback Routines 93
QTSS Utility Callback Routines 93
QTSS Attribute Callback Routines 97
Stream Callback Routines 114
File System Callback Routines 121
Service Callback Routines 123
RTSP Header Callback Routines 125
RTP Callback Routines 129

QTSS Data Types 133
QTSS Objects 133
Other QTSS Data Types 163

Index

173

6

7

Figures, Tables, and Listings

Chapter 1

About QuickTime Streaming Server Modules

15

Figure 1-1

QuickTime Streaming Server startup and shutdown 20

Figure 1-2

Sample RTSP request 21

Figure 1-3

Summary of RTSP request processing 22

Figure 1-4

Summary of the RTSP Preprocessor and RTSP Request roles 25

Table 1-1

Module roles 28

Table 1-2

Streams and appropriate callback routines 52

Listing 1-1

Sample code that calls QTSS_GetValue 46

Listing 1-2

Sample code that calls QTSS_GetValuePtr 46

Listing 1-3

Sample code for getting the value of the

qtssRTPSvrCurConn

attribute 47

Listing 1-4

Sample code for setting the value of the

qtssRTSPReqRootDir

attribute 48

Listing 1-5

Sample code for adding a static attribute 49

Listing 1-6

Sample code for starting a service 54

Listing 1-7

Sample code for reading an entire file 56

Listing 1-8

Sample code for handling the Open File role 65

Chapter 2

QuickTime Streaming Server Module Reference

93

Table 2-1

Role constants 95

Table 2-2

QTSS_SendStandardRTSPResponse

 method responses 128

Table 2-3

Attributes of the object type

QTSS_AttrInfoObject

134

Table 2-4

Attributes of the object

QTSS_ClientSessionObject

135

Table 2-5

Attributes of the object

QTSS_FileObject

138

Table 2-6

Attributes of the

QTSS_ModuleObject

object 140

Table 2-7

Attributes of the object

QTSS_PrefsObject

 141

Table 2-8

Attributes of the object

QTSS_RTPStreamObject

 149

Table 2-9

Attributes of the object

QTSS_RTSPRequestObject

 153

Table 2-10

Attributes of the object

QTSS_RTSPSessionObject

 157

Table 2-11

Attributes of the object

QTSS_ServerObject

 159

9



 Apple Computer, Inc.

P R E F A C E

About This Manual

This manual describes version 3.0 of the programming interface for creating
QuickTime Streaming Server modules. The QTSS programming interface
provides an easy way for developers to add new functionality to the QuickTime
Streaming Server. This version of the programming interface is compatible with
QuickTime Streaming Server version 3.0.

What’s New Since Version 2.0 0

Since version 2.0 of the programming interface for QTSS the following features
have been added:

�

Callbacks allowing third-party developers to write QTSS modules that
manipulate file systems and databases. Modules that read media files should
always use these callbacks for manipulating files. The file system callbacks
isolate QTSS modules from file system specific details, so it is a good practice
in general for third-party QTSS modules to use the file system callbacks even
when working with non-media files.

�

Support for instance attributes. For example, you can add an instance
attribute to a single RTSP session instead of adding that attribute to all RTSP
sessions. Instance attributes can be added to an instance of a particular object
and are present only for that particular instance of the object. In previous
versions of the QTSS programming interface, when a module added an
attribute to an object type, the attribute was present in all instances of the
object type. In QTSS version 3.0, that type of attribute is called a static
attribute. A module can add static attributes to object types only from its
Register role; a module can add and remove instance attributes from any
role. All built-in attributes are static attributes. New callbacks have been
added to the programming interface to support static and instance attributes:

�

QTSS_AddStaticAttribute

, which supersedes

QTSS_AddAttribute

. For
compatibility,

QTSS_AddAttribute

 remains in the programming interface,
but you should call

QTSS_AddStaticAttribute

 instead.

�

QTSS_AddInstanceAttribute

10



 Apple Computer, Inc.

P R E F A C E

�

QTSS_RemoveInstanceAttribute

�

All attributes now have a data type, which gives the server and modules
enough information about an attribute to handle the attribute properly
without having specific knowledge of the attribute. Because each attribute
has an associated data type, the server can format any value as a string and
convert any string to a value. The following callbacks have been added to
support attribute data types:

�

QTSS_GetValueAsString

�

QTSS_TypeStringToType

�

QTSS_TypeToTypeString

�

QTSS_StringToValue

�

QTSS_ValueToString

�

A new object type,

qtssModuleObjectType

, is a collection of attributes that
store information about the module, including

�

qtssModName

, which contains the module’s name.

�

qtssModDesc

, which contains a text description of what the module does

�

qtssModVersion

, which contains the module’s version number

�

qtssModRoles

, which contains a list of all the roles for which the module
has registered.

�

qtssModPrefs

, which contains a

QTSS_ModulePrefsObject

, whose attributes
contain the preferences for this module. All attributes of a

QTSS_ModulePrefsObject

 object are instance attributes. All modifications to
objects of this type are persistent between invocations of the server
because the server writes the contents of these attributes to a configuration
file and reads them when it restarts. The single instance of the

qtssPrefsObjectType

, which formerly stored module preferences, now
only stores core server preferences.

Each module receives its own module object in the module’s Initialize role.
Modules can get information about other loaded modules by accessing the
value of their module object attributes through the new

qtssSvrModuleObjects

 attribute of the server object (

qtssServerObjectType

).

�

A new object type,

qtssAttrInfoObjectType

, which is a collection of attributes
that describes an attribute: the attribute’s name, its attribute ID, its data type,
and its permissions (readable, writable, and whether it is preemptive safe).
There is one attribute information object for each attribute. The following
callbacks have been added to make it easy to get the attribute information
object for static and instance attributes:

11



 Apple Computer, Inc.

P R E F A C E

�

QTSS_GetAttrInfoByName

�

QTSS_GetAttrInfoByID

�

QTSS_GetAttrInfoByIndex

�

New attributes for the

QTSS_ClientSessionObject

 object type:

�

qtssCliSesReqQueryString

, which contains the text following a '?' in the
URL) from the request that created this client session

�

qtssCliSesCurrentBitRate

, which contains the current bit rate in bits per
second of all the streams on this session.

�

qtssCliSesPacketLossPercent

, which is the current percentage of packet
loss.

�

qtssCliSesTimeConnectedInMsec

, which is the time in milliseconds that the
client has been connected.

�

qtssCliSesCounterID

, which is a a unique, nonrepeating ID for this
session.

�

New attribute for the

QTSS_RTPStreamObject

 object type:

�

qtssRTPStrTransportType

, which is the transport that is being used for this
stream.

�

New attributes for the

QTSS_RTSPRequestObject

 object type:

�

qtssRTSPReqContentLen

, which contains the length of the incoming RTSP
request body.

�

qtssRTSPReqSpeed

, which contains the value of the speed header, converted
to a value of type

Float32

.

�

qtssRTSPReqLateTolerance

, which contains the value of the late-tolerance
field of the x-RTP-Options header, or –1 if not present.

�

New attributes for the

QTSS_ServerObject

 object type:

�

qtssSvrModuleObjects

, which consists of a module object containing
information about each module

�

qtssSvrStartupTime

, which contains the time the server started up.

�

qtssSvrGMTOffsetInHrs

, which contains the server time zone (an offset
from GMT in hours).

�

qtssSvrDefaultIPAddrStr

, which contains the “default” IP address of the
server as a string.

�

qtssSvrPreferences

, which is an object representing each the server's
preferences.

12



 Apple Computer, Inc.

P R E F A C E

�

qtssSvrMessages

, which is an object containing the server's error messages.

�

qtssSvrCurrentTimeMilliseconds, which contains the server’s current time;
retrieving this attribute is equivalent to calling QTSS_Milliseconds.

� qtssSvrCPULoadPercent, which contains as a percentage the server’s
current CPU usage.

� The QTSS_TimeVal data type has been added. The server’s internal clock now
counts the milliseconds that have elapsed since midnight on January 1, 1970
instead of since the server was started. Affected callback routines are.

� QTSS_Milliseconds(), which now returns a value of type QTSS_TimeVal
� QTSS_MilliSecsTo1970Secs(), which now takes a parameter of type

QTSS_TimeVal

Attributes that were formerly of type SInt64 are now of type QTSS_TimeVal.
Affected attributes are
� qtssRTPStrTimeFlowControlLifted
� qtssCliSesCreateTimeInMsec
� qtssCliSesFirstPlayTimeInMsec
� qtssCliSesPlayTimeInMsec
� qtssCliSesAdjustedPlayTimeInMsec
� qtssRTSPReqIfModSinceDate

One structure is affected by this change: QTSS_RTPSendPackets_Params.

� The QTSS_RTSPAuthorize_Role is deprecated. Modules that use the
QTSS_RTSPAuthorize_Role that existed in previous versions of the QTSS
programming interface will not work. You should update your source code
and binaries to remove the QTSS_RTSPAuthorize_Role as soon as possible.

� QTSS Web Admin, which allows an administrator to use a browser to
monitor the server’s status, change server settings, and create and manage
playlists, has been added.

� The Admin Protocol, which Web Admin uses to communicate with QTSS.

Conventions Used in This Manual 0

The Courier font is used to indicate text that you type or see displayed. This
manual includes special text elements to highlight important or supplemental
information:

13
 Apple Computer, Inc.

P R E F A C E

Note
Text set off in this manner presents sidelights or interesting
points of information. �

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. �

� W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. �

For More Information 0

The following sources provide additional information that may be of interest to
developers of QuickTime Streaming Server modules:

� RFC 2326, Real Time Streaming Protocol (RTSP), available at
http://www.landfield.com/rfcs/rfc2326.html and other locations on the
Internet

� RFC 1889, RTP: A Transport Protocol for Real-Time Applications, available at
http://www.landfield.com/rfcs/rfc1889.html and other locations on the
Internet

� RFC 2327, SDP: Session Description Protocol, available at
http://www.landfield.com/rfcs/rfc2327.html and other locations on the
Internet

See http://developer.apple.com/techpubs/quicktime for QuickTime developer
documentation.

The source code for the QuickTime Streaming Server is available at
http://www.publicsource.apple.com/projects/streaming.

14

 Apple Computer, Inc.

P R E F A C E

15
  Apple Computer, Inc.

C H A P T E R 1

About QuickTime Streaming
Server Modules 1

Figure 1-0
Listing 1-0
Table 1-0

This document describes Version 3.0 of the programming interface for creating
QuickTime Streaming Server (QTSS) modules. This version of the programming
interface is compatible with QuickTime Streaming Server Version 3.0.

QTSS is an open-source, standards-based streaming server that runs on
Windows NT and Windows 2000 and several UNIX implementations, including
Mac OS X, Linux, FreeBSD, and the Solaris operating system. To use the
programming interface for the QuickTime Streaming Server, you should be
familiar with the following Internet Engineering Task Force (IETF) protocols,
that the server implements:

� Real Time Streaming Protocol (RTSP)

� Real Time Transport Protocol (RTP)

� Real Time Transport Control Protocol (RTCP)

� Session Description Protocol (SDP)

This manual describes how to use the QTSS programming interface to develop
QTSS modules for the QuickTime Streaming Server. Using the programming
interface described in this manual allows your application to take advantage of
the server’s scalability and protocol implementation in a way that will be
compatible with future versions of the QuickTime Streaming Server. Most of the
core features of the QuickTime Streaming Server are implemented as modules,
so support for modules has been designed into the core of the server.

You can use the programming interface to develop QTSS modules that
supplement the features of the QuickTime Streaming server. For example, you
could write a module that

� acts as an RTSP proxy, which would be useful for a streaming clients located
behind a firewall

� supports virtual hosting, allowing a single server to serve multiple domains
from multiple document roots.

C H A P T E R 1

About QuickTime Streaming Server Modules

16 Building a QuickTime Streaming Server Module

  Apple Computer, Inc.

� logs statistical information for particular RTSP and client sessions

� supports additional ways of storing content, such as storing movies in
databases

� configures user’s QuickTime Streaming Server preferences

� monitors and report statistical information in real time

� tracks pay-per-view accounting information

Building a QuickTime Streaming Server Module 1

You can add a QTSS module to the QuickTime Streaming Server by compiling
the code directly into the server itself or by building a module as a separate
code fragment that is loaded when the server starts up.

Whether compiled into the server or built as a separate module, the code for the
module is the same. The only difference is the way in which the code is
compiled.

Compiling a QTSS Module into the Server 1

If you have the source code for the QuickTime Streaming Server, you can
compile your module into the server.

Note
The source code for the server is available at
http://www.publicsource.apple.com/projects/streaming. �

To compile your code into the server, locate the function
QTSServer::LoadCompiledInModules in QTSServer.cpp and add to it the following
lines

QTSSModule* myModule = new QTSSModule("__XYZ__");
(void)myModule->Initialize(&sCallbacks, &__XYZMAIN__);
(void)AddModule(myModule);

where XYZ is the name of your module and XYZMAIN is your module’s main entry
point, as described in the section “Main Routine” (page 17).

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Requirements 17
  Apple Computer, Inc.

Some platforms require that each module use unique function names. To
prevent name conflicts when you compile a module into the server, make your
functions static.

Modules that are compiled into the server are known as static modules.

Building a QTSS Module as a Code Fragment 1

To have the server load at runtime a QTSS module that is a code fragment,
follow these steps:

1. Compile the source for your module as a dynamic shared library for the
platform you are targeting. For Mac OS X, the project type must be loadable
bundle.

2. Link the resulting file against the QTSS API stub library for the platforms
you are targeting.

3. Place the resulting file in the /usr/local/sbin/StreamingServerModules
directory. The server will load your module the next time it restarts.

Some platforms require that each module use unique function names. To
prevent name conflicts when the server loads your module, strip the symbols
from your module before you have the server load it.

Module Requirements 1

Every QTSS module must implement two routines:

� a main routine, which the server calls when it starts up to initialize the QTSS
stub library with your module

� a dispatch routine, which the server uses when it calls the module for a
specific purpose

Main Routine 1

Every QTSS modules must provide a main routine. The server calls the main
routine as the server starts up and uses it to initialize the QTSS stub library so
the server can invoke your module later.

C H A P T E R 1

About QuickTime Streaming Server Modules

18 Module Requirements

  Apple Computer, Inc.

For modules that are compiled into the server, the address of the module's main
routine must be passed to the server's module initialization routine. For
instructions on how to do this, see “Compiling a QTSS Module into the Server”
(page 16).

The body of the main routine must be written like this:

QTSS_Error MyModule_Main(void* inPrivateArgs)
{
 return _stublibrary_main(inPrivateArgs, MyModuleDispatch);
}

where MyModuleDispatch is the name of the module’s dispatch routine, which is
described in the following section, “Dispatch Routine” (page 18).

IMPORTANT

For code fragment modules, the main routine must be
named MyModule_Main where MyModule is the name of the
file that contains the module. �

Dispatch Routine 1

Every QTSS module must provide a dispatch routine. The server calls the
dispatch routine when it invokes a module for a specific task, passing to the
dispatch routine the name of the task and a task-specific parameter block. (The
programming interface uses the term “role” to describe specific tasks. For
information about roles, see “Module Roles” (page 27).)

The dispatch routine must have the following prototype:

void MyModuleDispatch(QTSS_Role inRole, QTSS_RoleParamPtr inParams);

where MyModuleDispatch is the name specified as the name of the dispatch
routine by the module’s main routine, inRole is the name of the role for which
the module is being called, and inParams is a structure containing values of
interest to the module.

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations 19
  Apple Computer, Inc.

Overview of QuickTime Streaming Server Operations 1

The QuickTime Streaming Server works with modules to process requests from
clients by invoking modules in a particular role. Each role is designed to
perform a particular task. This section describes how the server works with
roles when it starts up and shuts down and how the server works with roles
when it processes client requests.

Server Startup and Shutdown 1

Figure 1-1 shows how the server works with the Register, Initialize, and
Shutdown roles when the server starts up and shuts down.

C H A P T E R 1

About QuickTime Streaming Server Modules

20 Overview of QuickTime Streaming Server Operations

  Apple Computer, Inc.

Figure 1-1 QuickTime Streaming Server startup and shutdown

When the server starts up, it first loads modules that are not compiled into the
server (dynamic modules) and then loads modules that are compiled into the
server (static modules). If you are writing a module that replaces existing server
functionality, compile it as a dynamic module so that it is loaded first.

Then the server invokes each QTSS module in the Register role, which is a role
that every module must support. In the Register role, the module calls
QTSS_AddRole (page 94) to specify the other roles that the module supports.

Next, the server invokes the Initialize role for each module that has registered
for that role. The Initialize role performs any initialization tasks that the module
requires, such as allocating memory and initializing global data structures.

At shutdown, the server invokes the Shutdown role for each module that has
registered for that role. When handling the Shutdown role, the module should
perform cleanup tasks and free global data structures.

Server starts up

Server loads dynamic modules

Server loads static modules

Server shuts down

Server calls modules in Shutdown role

Server quits

Server calls modules in Register role

Server calls modules in Initialize role

Server processes RTSP requests

Startup Shutdown

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations 21
  Apple Computer, Inc.

RTSP Request Processing 1

After the server calls each module that has registered for the Initialize role, the
server is ready to receive requests from the client. These requests are known as
RTSP requests. A sample RTSP request is shown in Figure 1-2.

Figure 1-2 Sample RTSP request

When the server receives an RTSP request, it creates an RTSP request object,
which is a collection of attributes that describe the request. At this point, the
qtssRTSPReqFullRequest attribute is the only attribute that has a value and that
value consists of the complete contents of the RTSP request.

Next, the server calls modules in specific roles according to a predetermined
sequence. That sequence is shown in Figure 1-3.

Note
The order in which the server calls any particular module
for any particular role is undetermined. �

DESCRIBE rtsp://streaming.site.com/foo.mov RTSP/1.0
CSeq: 1
Accept: application/sdp
User-agent: QTS/1.0

C H A P T E R 1

About QuickTime Streaming Server Modules

22 Overview of QuickTime Streaming Server Operations

  Apple Computer, Inc.

Figure 1-3 Summary of RTSP request processing

When processing an RTSP request, the first role that the server calls is the RTSP
Filter role. The server calls each module that has registered for the RTSP Filter

Server receives an RTSP request

Done

Server calls modules registered
for RTSP Filter role

Server calls modules registered
for RTSP Route role

Server calls modules registered
for RTSP Preprocessor role

Server calls module registered
for RTSP Request role

Server calls modules registered
for RTSP Postprocessor role

Server parses the request

Yes

No

No
Did a module
respond to the

client?

Yes

Did a module
respond to the

client?

Yes

No

Did a module
respond to the

client?

C H A P T E R 1

About QuickTime Streaming Server Modules

Overview of QuickTime Streaming Server Operations 23
  Apple Computer, Inc.

role and passes to it the RTSP request object. Each module’s RTSP Filter role has
the option of changing the value of the qtssRTSPReqFullRequest attribute. For
example, an RTSP Filter role might change /foo/foo.mov to /bar/bar.mov,
thereby changing the folder that will be used to satisfy this request.

IMPORTANT

Any module handling the RTSP Filter role that responds to
the client causes the server to skip other modules that have
registered for the RTSP Filter role, skip modules that have
registered for other RTSP roles, and immediately calls the
RTSP Postprocessor role of the responding module. A
response to a client is defined as any data the module may
send to the client. �

When all RTSP Filter roles have been invoked, the server parses the request.
Parsing the request consists of filling in the remaining the attributes of the RTSP
object and creating two sessions:

� an RTSP session, which is associated with this particular request and closes
when the client closes its RTSP connection to the server

� a client session, which is associated with the client connection that originated
the request and remains in place until the client’s streaming presentation is
complete

After parsing the request, the server calls the RTSP Route role for each module
that has registered in that role and passes the RTSP object. Each RTSP Route role
has the option of using the values of certain attributes to determine whether to
change the value of the qtssRTSPReqRootDir attribute, thereby changing the
folder that is used to process this request. For example, if the language type is
French, the module could change the qtssRTSPReqRootDir attribute to a folder
that contains the French version of the requested file.

IMPORTANT

Any module handling the RTSP Route role that responds to
the client causes the server to skip other modules that have
registered for the RTSP Route role, skip modules that have
registered for other RTSP roles, and immediately calls the
RTSP Postprocessor role of the responding module. �

After all RTSP Route roles have been called, the server calls the RTSP
Preprocessor role for each module that has registered for that role. The RTSP
Preprocessor role typically uses the qtssRTSPReqAbsoluteURL attribute to

C H A P T E R 1

About QuickTime Streaming Server Modules

24 Overview of QuickTime Streaming Server Operations

  Apple Computer, Inc.

determine whether the request matches the type of request that the module
handles.

If the request matches, the RTSP Preprocessor role responds to the request by
calling QTSS_Write (page 119) or QTSS_WriteV (page 120) to send data to the
client. To send a standard response, the module can call
QTSS_SendStandardRTSPResponse (page 127), or QTSS_AppendRTSPHeader (page 126)
and QTSS_SendRTSPHeaders (page 126).

IMPORTANT

Any module handling the RTSP Preprocessor role that
responds to the client causes the server to skip other
modules that have registered for the RTSP Preprocessor
role, skip modules that have registered for other RTSP
roles, and immediately calls the RTSP Postprocessor role of
the responding module. �

If no RTSP Preprocessor role responds to the RTSP request, the server invokes
the RTSP Request role of the module that successfully registered for this role.
(The first module that registers for the RTSP Request role is the only module
that can register for the RTSP Request role.) The RTSP Request role is
responsible for responding to all RTSP Requests that are not handled by
modules registered for the RTSP Preprocessor role.

After the RTSP Request role processes the request, the server calls modules that
have registered for the RTSP Postprocessor role. The RTSP Postprocessor role
typically performs accounting tasks, such as logging statistical information.

A module handling the RTSP Preprocessor or RTSP Request role may generate
the media data for a particular client session. To generate media data, the
module calls QTSS_Play (page 130), which causes that module to be invoked in
the RTP Send Packets role, as shown in Figure 1-4.

C H A P T E R 1

About QuickTime Streaming Server Modules

Runtime Environment for QTSS Modules 25
  Apple Computer, Inc.

Figure 1-4 Summary of the RTSP Preprocessor and RTSP Request roles

The RTP Send Packets role calls QTSS_Write (page 119) or QTSS_WriteV (page 120)
to send data to the client over the RTP session. When the RTP Send Packets role
has sent some packets, it returns to the server and specifies the time that is to
elapse before the server calls the module’s RTP Send Packets role again. This
cycle repeats until all of the packets for the media have been sent or until the
client requests that the client session be paused or torn down.

Runtime Environment for QTSS Modules 1

QTSS modules can spawn threads, use mutexes, and are completely free to use
any operating system tools.

The QuickTime Streaming Server is fully multi-threaded, so QTSS modules
must be prepared to be preempted. Global data structures and critical sections

Done

Yes

NoAre there
more packets

to send?

Module calls
server’s QTSS_Play routine

Server calls RTP Send
Packets role for the module

that called QTSS_Play

RTP Send Packets role
sends packets to client

Server calls RTP Send
Packets role again

Return to server asking
to be called again

C H A P T E R 1

About QuickTime Streaming Server Modules

26 Runtime Environment for QTSS Modules

  Apple Computer, Inc.

in code should be protected with mutexes. Unless otherwise noted, assume that
preemption can occur at any time.

The server usually runs all activity from very few threads or possibly a single
thread, which requires the server to use asynchronous I/O whenever possible.
(The actual behavior depends on the platform and how the administrator
configures the server.)

QTSS modules should adhere to the following rules:

� Perform tasks and return control to the server as quickly as possible.
Returning quickly allows the server to load balance among a large number of
clients.

� Be prepared for QTSS_WouldBlock errors when performing stream I/O. The
QTSS_Write, QTSS_WriteV, and QTSS_Read callback routines described in the
section “QTSS Callback Routines” (page 93) return QTSS_WouldBlock if the
requested
I/O would block. For more information about streams, see “QTSS Streams”
(page 50).

� Avoid using synchronous I/O wherever possible. An I/O operation that
blocks may affect streaming quality for other clients.

Server Time 1

The QuickTime Streaming Server handles real-time delivery of media, so many
elements of QTSS module programming interface are time values.

The server’s internal clock counts the number of milliseconds that have elapsed
since midnight, January 1st, 1970. The data type QTSS_TimeVal is used to store
the value of the server’s internal clock. To make it easy to work with time
values, every attribute, parameter, and callback routine that deals with time
specifies the time units explicitly. For example, the
qtssRTPStrBufferDelayInSecs attribute specifies the client’s buffer size in
seconds. Unless otherwise noted, all time values are reported in milliseconds
from the server’s internal clock using a QTSS_TimeVal data type.

To get the current value of the server’s clock, call QTSS_Milliseconds (page 97)
or get the value of the qtssSvrCurrentTimeMilliseconds attribute of the server
object (QTSS_ServerObject). To convert a time obtained from the server’s clock to
the current time, call QTSS_MilliSecsTo1970Secs (page 97).

C H A P T E R 1

About QuickTime Streaming Server Modules

Naming Conventions 27
  Apple Computer, Inc.

Naming Conventions 1

The QTSS programming interface uses a naming convention for the data types
that it defines. The convention is to use the size of the data type in the name.
Here are the data types that the QTSS programming interface uses:

� Bool16 — A 16-bit Boolean value

� SInt64 — A signed 64-bit integer value

� SInt32 — A signed 32-bit integer value

� UInt16 — An unsigned 16-bit integer value

� UInt32 — An unsigned 32-bit integer value

Parameters for callback functions defined by the QTSS programming interface
follow these naming conventions:

� Input parameters begin with in.

� Output parameters begin with out.

� Parameters that are used for both input and output begin with io.

Module Roles 1

Roles provide modules with a well-defined state for performing certain types of
processing. A selector of type QTSS_Role defines each role and represents the
internal processing state of the server and the number, accessibility, and validity
of server data. Depending on the role, the server may pass one or more values
of type QTSSObject to the module. In general, the server uses objects to exchange
information with modules. For more information about objects, see “QTSS
Objects” (page 43).

C H A P T E R 1

About QuickTime Streaming Server Modules

28 Module Roles

  Apple Computer, Inc.

Table 1-1 lists the roles that this version of the QuickTime Streaming Server
supports.

Table 1-1 Module roles

Name Constant Task

Register role QTSS_Register_Role Register the roles the module
supports

Initialize role QTSS_Initialize_Role Perform tasks that initialize the
module

Shutdown role QTSS_Shutdown_Role Perform cleanup tasks

Reread Preferences
role

QTSS_RereadPrefs_Role Reread the modules’s preferences

Error Log role QTSS_ErrorLog_Role Log errors

RTSP Filter role QTSS_RTSPFilter_Role Make changes to the contents of
RTSP requests

RTSP Route role QTSS_RTSPRoute_Role Routes requests from the client to
the appropriate folder

RTSP Preprocessor
role

QTSS_RTSPPreProcessor_Role Processes requests from the client
before the server processes them

RTSP Request role QTSS_RTSPRequest_Role Processes a request from the client
if no other role responds the
request

RTSP Postprocessor
role

QTSS_RTSPPostProcessor_Rol
e

Performs tasks, such as logging
statistical information, after a
request has been responded to

RTP Send Packets role QTSS_RTPSendPackets_Role Sends packets

Client Session Closing
role

QTSS_ClientSessionClosing_
Role

Performs tasks when a client
session closes

RTCP Process role QTSS_RTCPProcess_Role Processes RTCP receiver reports

Open File Preprocess
role

QTSS_OpenFilePreProcess_Ro
le

Processes requests to open files

continued

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 29
  Apple Computer, Inc.

For detailed information about the file roles, see “Implementing a QTSS File
System Module” (page 57).

With the exception of the Register, Shutdown, and Reread Preferences roles,
when the server invokes a module for a role, the server passes to the module a
structure specific to that particular role. The structure contains information that
the modules uses in the execution of that role or provides a way for the module
to return information to the server.

The RTSP roles have the option of responding to the client. A response is
defined as any data that a module sends to a client. Modules can send data to
the client in a variety of ways. They can, for example, call QTSS_Write (page 119)
or QTSS_WriteV (page 120).

Note
The order in which modules are called for any particular
role is undetermined. �

Register Role 1

Modules use the Register role to call QTSS_AddRole (page 94) to tell the server the
roles they support.

Open File role QTSS_OpenFile_Role Processes requests to open files
that are not handled by the Open
File Preprocess role

Advise File role QTSS_AdviseFile_Role Responds when a module (or the
server) calls the QTSS_Advise
callback for a file object

Read File role QTSS_ReadFile_Role Reads a file

Request Event File
role

QTSS_RequestEventFile_Role Handles requests for notification
of when a file becomes available
for reading

Close File role QTSS_CloseFile_Role Closes a file that was previously
opened

Table 1-1 Module roles (continued)

Name Constant Task

C H A P T E R 1

About QuickTime Streaming Server Modules

30 Module Roles

  Apple Computer, Inc.

Modules also use the Register role to call QTSS_AddService (page 123) to register
services and to call QTSS_AddStaticAttribute (page 98) to add static attributes to
QTSS object types. (QTSS objects are collections of attributes, each having a
value.)

The server calls a module’s Register role once at startup. The Register role is
always the first role that the server calls.

A module that returns any value other than QTSS_NoErr from its Register role is
not loaded into the server.

Initialize Role 1

The server calls the Initialize role of those modules that have registered for this
role after it calls the Register role for all modules. Modules use the Initialize role
to initialize global and private data structures.

The server passes to each module’s Initialize role objects that can be used to
obtain the server’s global attributes, preferences, and text error messages. The
server also passes the error log stream reference, which can be used to write to
the error log. All of these objects are globals, so they are valid for the duration of
this run of the server and may be accessed at any time.

When called in the Initialize role, the module receives a QTSS_Initialize_Params
structure which is defined as follows:

typedef struct
{

QTSS_ServerObject inServer;
QTSS_PrefsObject inPrefs;
QTSS_TextMessagesObjectinMessages;
QTSS_ErrorLogStream inErrorLogStream;
QTSS_ModuleObject inModule;

} QTSS_Initialize_Params;

Field descriptions
inServer A QTSS_ServerObject object containing the server’s global

attributes and an attribute that contains information about
all of the modules in the running server. For a description

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 31
  Apple Computer, Inc.

of each attribute, see the section “QTSS_ServerObject”
(page 158).

inPrefs A QTSS_PrefsObject object containing the server’s
preferences. For a description of each attribute, see the
section “QTSS_ModuleObject” (page 139).

inMessages A QTSS_TextMessagesObject object that a module can use for
providing localized text strings.

inErrorLogStream A QTSS_ErrorLogStream stream reference that a module can
use to write to the server’s error log. Writing to this stream
causes the module to be invoked in its Error Log role.

inModule A QTSS_ModuleObject object that a module can use to store
information about itself, including its name, version
number, and a description of what the module does.

A module that wants to be called in the Initialize role must in its Register role
call QTSS_AddRole (page 94) and specify QTSS_Initialize_Role as the role.

A module that returns any value other than QTSS_NoErr from its Initialize role is
not loaded into the server.

Shutdown Role 1

The server calls the Shutdown role of those modules that have registered for
this role when the server is getting ready to shut down.

The server calls a module’s Shutdown role without passing any parameters.

The module uses its Shutdown role to delete all data structures it has created
and to perform any other cleanup task

A module that wants to be called in the Shutdown role must in its Register role
call QTSS_AddRole (page 94) and specify QTSS_Shutdown_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

The server guarantees that the Shutdown role is the last time that the module is
called before the server shuts down.

Reread Preferences Role 1

The server calls the Reread Preferences role of those modules that have
registered for this role and rereads its own preferences when the server receives

C H A P T E R 1

About QuickTime Streaming Server Modules

32 Module Roles

  Apple Computer, Inc.

a SIGHUP signal or when a module calls the Reread Preferences service described
in the section “QTSS Services” (page 52).

When called in this role, the module should reread its preferences, which may
be stored in a file or in a QTSS object.

A module that wants to be called in the Reread Preferences role must in its
Register role call QTSS_AddRole (page 94) and specify QTSS_RereadPrefs_Role as
the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Error Log Role 1

The server calls the Error Log role of those modules that have registered for this
role when an error occurs. The module should process the error message by, for
example, writing the message to a log file.

When called in the Error Log role, the module receives a QTSS_ErrorLog_Params
structure, which is defined as follows:

typedef struct
{

QTSS_ErrorVerbosity inVerbosity;
char * inbuffer;

} QTSS_ErrorLog_Params;

Field descriptions
inVerbosity Specifies the verbosity level of this error message. Modules

should use the inflags parameter of QTSS_Write (page 119)
to specify the verbosity level. The following constants are
defined:
qtssFatalVerbosity = 0,
qtssWarningVerbosity = 1,
qtssMessageVerbosity = 2,
qtssAssertVerbosity = 3,
qtssDebugVerbosity = 4,

inbuffer Points to a null-terminated string containing the error
message.

Writing an error message at the level qtssFatalVerbosity causes the server to
shut down immediately.

Writing to the error log cannot result in an QTSS_WouldBlock error.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 33
  Apple Computer, Inc.

A module that wants to be called in the Error Log role must in its Register role
call QTSS_AddRole (page 94) and specify QTSS_ErrorLog_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Roles 1

When the server receives an RTSP request, it goes through a series of steps to
process the request and ensure that a response is sent to the client. The steps
consist of calling certain roles in a predetermined order. This section describes
each role in detail. For an overview of roles and the sequence in which they are
called, see the section “Overview of QuickTime Streaming Server Operations”
(page 19).

Note
All RTSP roles have the option of responding directly to the
client. When any RTSP role responds to a client, the server
immediately skips the RTSP roles that it would normally
call and calls the RTSP Postprocessor role of the module
that responded to the RTSP request. �

RTSP Filter Role 1

The server calls the RTSP Filter role of those modules that have registered for
the RTSP Filter role immediately upon receipt of an RTSP request. Processing
the Filter role, gives the module an opportunity to respond to the request or to
change the RTSP request.

When called in the RTSP Filter role, the module receives a
QTSS_StandardRTSP_Params structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
char** outNewRequest;

} QTSS_StandardRTSP_Params;

C H A P T E R 1

About QuickTime Streaming Server Modules

34 Module Roles

  Apple Computer, Inc.

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 156) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request. When
called in the RTSP Filter role, only the
qtssRTSPReqFullRequest attribute has a value. See the
section “QTSS_RTSPRequestObject” (page 153) for
information about RTSP request object attributes.

outNewRequest A pointer to a location in memory.
The module calls QTSS_GetValuePtr (page 108) to get from the
qtssRTSPReqFullRequest attribute the complete RTSP request that caused the
server to call this role. The qtssRTSPReqFullRequest attribute is a read-only
attribute. To change the RTSP request, the module should call QTSS_New
(page 96) to allocate a buffer, write the modified request into that buffer, and
return a pointer to that buffer in the outNewRequest field of the
QTSS_StandardRTSP_Params structure.

While a module is handling the RTSP Filter role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

If module handling the RTSP Filter role responds directly to the client, the
server next calls the responding module in the RTSP Postprocessor role. For
information about that role, see the section “RTSP Postprocessor Role”
(page 38).

A module that wants to be called in the RTSP Filter role must in its Register role
call QTSS_AddRole (page 94) and specify QTSS_RTSPFilter_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Route Role 1

The server calls the RTSP Route role after the server has called all modules that
have registered for the RTSP Filter role. It is the responsibility of a module
handling this role to set the appropriate root directory for each RTSP request by
changing the qtssRTSPReqRootDir attribute for the request.

When called, an RTSP Route role receives a QTSS_StandardRTSP_Params structure,
which is defined as follows:

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 35
  Apple Computer, Inc.

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 156) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request. In the
Route role and all subsequent RTSP roles, all of the
attributes are filled in. See the section
“QTSS_RTSPRequestObject” (page 153) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 152) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

Before calling modules in the RTSP Route role, the server parses the request.
Parsing the request consists of filling in all of the attributes of the
QTSS_RTSPSessionObject and QTSS_RTSPRequestObject members of the
QTSS_StandardRTSP_Params structure.

A module processing the RTSP Route role has the option changing the
qtssRTSPReqRootDir attribute of QTSS_RTSPRequestObject member of the
QTSS_StandardRTSP_Params structure. Changing the qtssRTSPReqRootDir attribute
changes the root folder for this RTSP request.

While a module is handling the RTSP Route role, the server guarantees that the
module will not be called for any other role referencing the RTSP session
represented by inRTSPSession.

If a module that is processing the RTSP Route role responds directly to the
client, the server immediately skips the processing of any other roles and calls
the responding module’s RTSP Postprocessor role. For information about that
role, see the section “RTSP Postprocessor Role” (page 38).

C H A P T E R 1

About QuickTime Streaming Server Modules

36 Module Roles

  Apple Computer, Inc.

A module that wants to be called in the RTSP Route role must in its Register
role call QTSS_AddRole (page 94) and specify QTSS_RTSPRoute_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Preprocessor Role 1

The server calls the RTSP Preprocessor role after the server has called all
modules that have registered for the RTSP Route role. If the module handles the
type of RTSP request for which the module is called, it is the responsibility of a
module handling this role to send a proper RTSP response to the client.

When called, an RTSP Preprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 156) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 153) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 152) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

The RTSP Preprocessor role typically uses the qtssRTSPReqFilePath attribute of
the inRTSPRequest member of the QTSS_StandardRTSP_Params structure to
determine whether the request matches the type of request that the module
handles. For example, a module may only handle URLs that end in .mov or .sdp.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 37
  Apple Computer, Inc.

If the request matches, the module handling the RTSP Preprocessor role
responds to the request by calling QTSS_SendStandardRTSPResponse (page 127),
QTSS_Write (page 119), or QTSS_WriteV (page 120), or by calling
QTSS_AppendRTSPHeader (page 126) and QTSS_SendRTSPHeaders (page 126). If this
module is also responsible for generating RTP packets for this client session, it
should call QTSS_AddRTPStream (page 129) to add streams to the client session,
and QTSS_Play (page 130), which causes the server to invoke the RTP Send
Packets role of the module whose RTSP Preprocessor role calls QTSS_Play.

While a module is handling the RTSP Preprocessor role, the server guarantees
that the module will not be called for any other role referencing the RTSP
session specified by inRTSPSession or the client session specified by
inClientSession.

A module that wants to be called in the RTSP Preprocessor role must in its
Register role call QTSS_AddRole (page 94) and specify
QTSS_RTSPPreProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Request Role 1

The server calls the RTSP Request role if no RTSP Preprocessor role responds to
an RTSP request. Only one module is called in the RTSP Request role, and that
module that is the first module to register for the RTSP Request role when the
server starts up.

When called, the RTSP Request role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 156) for
information about RTSP session object attributes.

C H A P T E R 1

About QuickTime Streaming Server Modules

38 Module Roles

  Apple Computer, Inc.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 153) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 152) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

Like a module processing the RTSP Preprocessor role, a module that processes
the RTSP Request Role should use an attribute, such as the qtssRTSPReqFilePath
attribute of the inRTSPRequest member of the QTSS_StandardRTSP_Params
structure, to determine whether the request matches the type of request that the
module can handle.

A module handling the RTSP Request role should respond to the request by

� Sending an RTSP response to the client by calling QTSS_AppendRTSPHeader
(page 126) and QTSS_SendRTSPHeaders (page 126), by calling
QTSS_SendStandardRTSPResponse (page 127), or by calling QTSS_Write
(page 119) or QTSS_WriteV (page 120).

� Preparing the QTSS_ClientSessionObject for streaming by using the RTP
callbacks, such as QTSS_AddRTPStream (page 129) and QTSS_Play (page 130). If
QTSS_Play is called, the server will invoke the calling module in the RTP Send
Packets role, at which time the module will be expected to generate RTP
packets to send to the client.

A module that wants to be called in the RTSP Request role must in its Register
role call QTSS_AddRole (page 94) and specify QTSS_RTSPRequest_Role as the role.
The first module that successfully calls QTSS_AddRole and specifies
QTSS_RTSPRequest_Role as the role is the only module that is called in the RTSP
Request role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Postprocessor Role 1

The server calls a module’s RTSP Postprocessor role whenever the module
responds to an RTSP request if that module has registered for this role.

Modules can use the RTSP Postprocessor role to log statistical information.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 39
  Apple Computer, Inc.

When called, the RTSP Postprocessor role receives a QTSS_StandardRTSP_Params
structure, which is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObject inClientSession;

} QTSS_StandardRTSP_Params;

Field descriptions
inRTSPSession The QTSS_RTSPSessionObject for this RTSP session. See the

section “QTSS_RTSPSessionObject” (page 156) for
information about RTSP session object attributes.

inRTSPRequest The QTSS_RTSPRequestObject for this RTSP request with a
value for each attribute. See the section
“QTSS_RTSPRequestObject” (page 153) for information
about RTSP request object attributes.

inRTSPHeaders The QTSS_RTSPHeaderObject for the RTSP headers. See the
section “QTSS_RTSPHeaderObject” (page 152) for
information about RTSP header object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

While a module is handling the RTSP Postprocessor role, the server guarantees
that the module will not be called for any role referencing the RTSP session
specified by inRTSPSession or the client session specified by inClientSession.

A module that wants to be called in the RTSP Postprocessor role must in its
Register role call QTSS_AddRole (page 94) and specify
QTSS_RTSPPostProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTP Roles 1

This section describes RTP roles, which are used to send data to clients and to
handle the closing of client sessions.

C H A P T E R 1

About QuickTime Streaming Server Modules

40 Module Roles

  Apple Computer, Inc.

RTP Send Packets Role 1

The server calls a module’s RTP Send Packets role when the module calls
QTSS_Play (page 130). It is the responsibility of the RTP Send Packets role to
send media data to the client and tell the server when the module’s RTP Send
Packets role should be called again.

When called, the RTP Send Packets role receives a QTSS_RTPSendPackets_Params
structure, which is defined as follows:

typedef struct
{

QTSS_ClientSessionObject inClientSession;
SInt64 inCurrentTime;
QTSS_TimeVal outNextPacketTime;

} QTSS_RTPSendPackets_Params;

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

inCurrentTime The current time in server time units.
outNextPacketTime A time offset in milliseconds. Before returning from this

role, a module should set outNextPacketTime to the amount
of time that the server should allow to elapse before calling
the RTP Send Packets role again for this session.

The RTP Send Packets role is invoked whenever a module calls QTSS_AddRole
(page 94) for that client session. The module calls QTSS_Write (page 119) or
QTSS_WriteV (page 120) to send data to the client.

While a module is handling the RTP Send Packets role, the server guarantees
that the module will not be called for any role referencing the client session
specified by inClientSession.

A module that wants to be called in the RTP Send Packets role must in its
Register role call QTSS_AddRole (page 94) and specify QTSS_RTPSendPackets_Role
as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Client Session Closing Role 1

The server calls a module’s Client Session Closing role to allow the module to
process the closing of client sessions.

C H A P T E R 1

About QuickTime Streaming Server Modules

Module Roles 41
  Apple Computer, Inc.

When called, the Client Session Closing role receives a
QTSS_ClientSessionClosing_Params structure, which is defined as follows:

typedef struct
{

QTSS_ClientClosing inReason;
QTSS_ClientSessionObject inClientSession;

} QTSS_ClientSessionClosing_Params;

Field descriptions
inReason The reason why the session is closing. The session may be

closing because the client sent an RTSP teardown
(qtssCliSesClosClientTeardown), because this session has
timed out (qtssCliSesClosTimeout), or because the client
disconnected without issuing a teardown
(qtssCliSesClosClientDisconnect).

inClientSession The QTSS_ClientSessionObject for the client session that is
closing.

The Client Session Closing role is called whenever the client session specified
by inClientSession is about to be torn down.

While a module is handling the Client Session Closing role, the server
guarantees that the module will not be called for any role referencing the client
session specified by inClientSession.

A module that wants to be called in the Client Session Closing role must in its
Register role call QTSS_AddRole (page 94) and specify
QTSS_ClientSessionClosing_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTCP Process Role 1

The server calls a module’s RTCP Process role whenever it receives an RTCP
receiver report from a client.

RTCP receiver reports contain feedback from the client on the quality of the
stream. The feedback includes the percentage of lost packets, the number of
times the audio has run dry, and frames per second. Many attributes in the
QTSS_RTPStreamObject correlate directly to fields in the receiver report.

C H A P T E R 1

About QuickTime Streaming Server Modules

42 Module Roles

  Apple Computer, Inc.

When called, the RTP Process role receives a QTSS_RTCPProcess_Params structure,
which is defined as follows:

typedef struct
{

QTSS_RTPStreamObject inRTPStream;
QTSS_ClientSessionObject inClientSession;
void* inRTCPPacketData;
UInt32 inRTCPPacketDataLen;

} QTSS_RTCPProcess_Params;

Field descriptions
inRTPStream The QTSS_RTPStreamObject of the RTP stream that this RTCP

packet belongs to. See the section
“QTSS_RTPStreamObject” (page 148) for information about
RTP stream object attributes.

inClientSession The QTSS_ClientSessionObject for the client session. See the
section “QTSS_ClientSessionObject” (page 135) for
information about client session object attributes.

inRTCPPacketData A pointer to a buffer containing the packets that are to be
processed.

inRTCPPacketDataLenThe length of valid data in the buffer pointed to by
inRTCPPacketData.

A module handling the RTCP Process role typically monitors the status of the
connection. It might, for example, track the percentage of packets lost for each
connected client and update its counters.

While a module is handling the RTCP Process role, the server guarantees that
the module will not be called for any role referencing the RTP stream specified
by inRTPStream.

A module that wants to be called in the RTCP Process role must in its Register
role call QTSS_AddRole (page 94) and specify QTSS_RTCPProcess_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 43
  Apple Computer, Inc.

QTSS Objects 1

QTSS objects provide a way for modules and the server to exchange data with
each other. Each piece of data for a QTSS object is stored in an attribute that has
a name, an attribute ID, a data type, and permissions for reading and writing
the attribute’s value. Built-in attributes are attributes that the server always
defines for an object type. For example, the object QTSS_RTSPRequestObject has a
built-in URL attribute that a module can read to obtain the URL associated with
a particular RTSP request.

There are two attribute types:

� static attributes. Static attributes are present in all instances of an object type.
A module can add static attributes to objects from its Register role only. All of
the server’s built-in attributes are static attributes. For information about
adding static attributes to object types, see QTSS_AddStaticAttribute
(page 98).

� instance attributes. Instance attributes are added to a specific instance of any
object type. A module can use any role to add an instance attribute to an
object and can also remove instance attributes that it has added to an object.
For information about adding instance attributes to objects, see
QTSS_AddInstanceAttribute (page 99).

Note
Adding static attributes is more efficient than adding
instance attributes, so adding static attributes instead of
adding instance attributes is strongly recommended. �

The server defines several object types to describe client sessions and streams,
RTSP headers, sessions, and requests, global server information, server
preferences, and error messages:

� qtssAttrInfoObjectType — Consists of attributes whose values describe an
attribute: the attribute’s name, attribute ID, data type, and permissions for
reading and writing the attribute’s value. There is one QTSS_AttrInfoObject
for every attribute.

� qtssModuleObjectType — Consists of attributes whose values describe a
particular QTSS module, such as its name and version number and a
description of what the module does. For each module that it loads, the

C H A P T E R 1

About QuickTime Streaming Server Modules

44 QTSS Objects

  Apple Computer, Inc.

server creates a module object and passes it to the module in its Initialize
role. Modules can get information about other loaded modules by accessing
the qtssSvrModuleObject attribute of the object type qtssServerObjectType. In
addition to the attributes that store the module’s name, version number and
description, the object type qtssModuleObjectType object type has a module
preferences attribute. The module preferences attribute itself is an object
whose attributes store the module’s preferences as instance attributes. All
modifications to the module preferences object are persistent between
invocations of the server because the contents of each module’s module
preferences object are written to the server’s configuration file, which is read
when the server starts up.

� qtssRTPStreamObjectType — Consists of attributes associated with an
individual RTP stream, such as an audio, video, or text stream. An RTP
stream object (QTSS_RTPStreamObject) is an instance of this object type and is
created by calling QTSS_AddRTPStream (page 129). An RTP stream object must
be associated with a single client session object (QTSS_ClientSessionObject).
A client session object may be associated with any number of RTP stream
objects.

� qtssClientSessionObjectType — Consists of attributes associated with a
client session, where a client session is defined as a single client streaming
presentation.

� qtssRTSPSessionObjectType — Consists of attributes associated with an RTSP
client-server connection. An RTSP session object (QTSS_RTSPSessionObject) is
an instance of this object type that exists as long as the RTSP client is
connected to the server.

� qtssRTSPRequestObjectType — Consists of attributes associated with an
individual RTSP request. An RTSP request object (QTSS_RTSPRequestObject) is
an instance of this object type that exists from the time the server receives a
complete RTSP request from a client until the time that the response has been
sent and the server moves on to the next request. An RTSP request object
must be associated with a single RTSP session object
(QTSS_RTSPSessionObject), for a given request made on a single connection.

� qtssRTSPHeaderObjectType — Consists of attributes containing all of the RTSP
request headers associated with an individual RTSP request. The names of
the built-in attributes in this object are the names of RTSP headers and their
values correspond directly to the names of RTSP headers. For example, if a
module wants to read the value of a session header in an RTSP request, it

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 45
  Apple Computer, Inc.

would read the value of the Session attribute in an RTSP header reference
(QTSS_RTSPHeaderObject).

� qtssServerObjectType — Consists of global server attributes, such as server
statistics. There is a single instance of this object type for each QuickTime
Streaming Server.

� qtssPrefsObjectType — Consists of attributes that describe the server’s
internal preference storage system. The attribute values for this object are
stored in the server’s configuration file named streamingserver.xml. There is
a single instance of this object type. In previous versions of QTSS, module
preferences were stored in this object, but with QTSS version 3.0, module
preferences are stored in the module’s module object type
(qtssModuleObjectType).

� qtssTextMessageObjectType — Consists of attributes whose values are
intended for display to the user or are returned to the client. To make
localization easier, the values are text strings.

Getting Attribute Values 1

Modules use attributes stored in objects to exchange information with the
server, so they frequently get and set attribute values. Some attributes are
preemptive safe and their values can be obtained at any time by calling
QTSS_GetValuePtr (page 108), which returns a pointer to the server's internal
copy of the attribute value. Other attributes are not preemptive safe and their
values must be obtained by calling QTSS_GetValue (page 106), which copies the
attribute value into a buffer provided by the module.

Note
A module can obtain the value of any attribute by calling
QTSS_GetValue, but whenever modules get the value of
preemptive safe attributes, they should call
QTSS_GetValuePtr because it is faster than
QTSS_GetValue. �

The sample code in Listing 1-1 calls QTSS_GetValue (page 106) to get the value of
the qtssRTPSvrCurConn attribute, which is not preemptive safe, from the object
QTSS_ServerObject.

C H A P T E R 1

About QuickTime Streaming Server Modules

46 QTSS Objects

  Apple Computer, Inc.

Listing 1-1 Sample code that calls QTSS_GetValue

UInt32 MyGetNumCurrentConnections(QTSS_ServerObject inServerObject)
{

// qtssRTPSvrCurConn is a UInt32, so provide a UInt32 for the result.
UInt32 theNumConnections = 0;

// Pass in the size of the attribute value.
UInt32 theLength = sizeof(theNumConnections);

// Retreive the value.
QTSS_Error theErr = QTSS_GetValue(inServerObject, qtssRTPSvrCurConn, 0,

&theNumConnections, &theLength);

// Check for errors. If the length is not what was expected, return 0.
if ((theErr != QTSS_NoErr) || (theLength != sizeof(theNumConnections))

return 0;

return theNumConnections;
}

The sample code in Listing 1-2 calls QTSS_GetValuePtr (page 108), which is the
preferred way to get the value of preemptive-safe attributes. In this example,
value of the qtssRTSPReqMethod attribute is obtained from the object
QTSS_RTSPRequestObject.

Listing 1-2 Sample code that calls QTSS_GetValuePtr

QTSS_RTSPMethod MyGetRTSPRequestMethod(QTSS_RTSPRequestObject inRTSPRequestObject)
{

QTSS_RTSPMethod* theMethod = NULL;
UInt32 theLen = 0;

QTSS_Error theErr = QTSS_GetValuePtr(inRTSPRequestObject, qtssRTSPReqMethod, 0,
(void**)&theMethod, &theLen);

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 47
  Apple Computer, Inc.

if ((theErr != QTSS_NoErr) || (theLen != sizeof(QTSS_RTSPMethod))
return -1; // Return a -1 if there is an error, which is not a valid

// QTSS_RTSPMethod index
else

return *theMethod;
}

With QTSS version 3.0, you can obtain the value any attribute by calling
QTSS_GetValueAsString (page 107), which gets the attribute’s value as a C string.
Calling QTSS_GetValueAsString is convenient when you don’t know the type of
data the attribute contains. In Listing 1-3, the value of the qtssRTPSvrCurConn
attribute is obtained as a string from the QTSS_ServerObject.

Listing 1-3 Sample code for getting the value of the qtssRTPSvrCurConn attribute

void MyPrintNumCurrentConnections(QTSS_ServerObject inServerObject)
{

// Provide a string pointer for the result
char* theCurConnString = NULL;

// Retrieve the value as a string.
QTSS_Error theErr = QTSS_GetValueAsString(inServerObject, qtssRTPSvrCurConn, 0,

&theCurConnString);

if (theErr != QTSS_NoErr) return;

// Print out the result. Because the value was returned as a string, use %s in the
printf format.

::printf("Number of currently connected clients: %s\n", theCurConnString);

// QTSS_GetValueAsString allocates memory, so reclaim the memory by calling
QTSS_Delete.

QTSS_Delete(theCurConnString);
}

Setting Attribute Values 1

The sample code in Listing 1-4 would be found handling the Route role. It calls
QTSS_GetValuePtr to get the value of the qtssRTSPReqFilePath. If the path

C H A P T E R 1

About QuickTime Streaming Server Modules

48 QTSS Objects

  Apple Computer, Inc.

matches a certain string, the function sets a new request root directory by
setting the qtssRTSPReqRootDir attribute to a new path.

Listing 1-4 Sample code for setting the value of the qtssRTSPReqRootDir attribute

// First get the file path for this request using QTSS_GetValuePtr
char* theFilePath = NULL;
UInt32 theFilePathLen = 0;

QTSS_Error theErr = QTSS_GetValuePtr(inParams->inRTSPRequest, qtssRTSPReqFilePath, 0,
&theFilePath,

&theFilePathLen);

// Check for any errors
if (theErr != QTSS_NoErr) return;

// See if this path is a match. If it is, use QTSS_SetValue to set the root directory
for this request.
if ((theFilePathLen == sStaticFilePathLen) &&

(::strncmp(theFilePath, sStaticFilePath, theFilePathLen) == 0))
{

theErr = QTS_SetValue(inParams->inRTSPRequest, qtssRTSPReqRootDir, 0,
sNewRootDirString,

sNewRootDirStringLen);

if (theErr != QTSS_NoErr) return;
}

Adding Attributes 1

Any module can add an attribute to a QTSS object type by calling the
QTSS_AddStaticAttribute (page 98) callback routine from its Register role.
Modules can also call QTSS_AddInstanceAttribute (page 99) from any role to add
an attribute to an instance of an object.

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Objects 49
  Apple Computer, Inc.

Note
Adding one or more attributes to an object type or to an
instance of an object is the most efficient and the
recommended way for modules to store data that is specific
to a particular session. �

Once added, the new attribute is included in every object of that type that the
server creates and its value can be set and obtained by calling that same
callback routines that set and obtain the value of the server’s built-in attributes:
QTSS_SetValue (page 109), QTSS_GetValue (page 106), and QTSS_GetValuePtr
(page 108).

The sample code in Listing 1-5 calls QTSS_AddStaticAttribute (page 98) to add
an attribute to the object QTSS_ClientSessionObject.

Listing 1-5 Sample code for adding a static attribute

QTSS_Error MyRegisterRoleFunction()
{

// Add the static attribute. The third parameter is always NULL.
QTSS_Error theErr = QTSS_AddStaticAttribute(qtssClientSessionObjectType,

“MySampleAttribute”, NULL, qtssAttrDataTypeUInt32);

// Retrieve the ID for this attribute. This ID can be passed into QTSS_GetValue,
// QTSS_SetValue, and QTSS_GetValuePtr.
QTSS_AttributeID theID;
theErr = QTSS_IDForAttr(qtssClientSessionObjectType, MySampleAttribute", &theID);

// Store the attribute ID in a global for later use. Attribute IDs do not
// change while the server is running.
gMyExampleAttrID = theID;

}

Note
Attribute permissions for an added attribute (static or
instance) are automatically set to read, write, and
preemptive safe. �

C H A P T E R 1

About QuickTime Streaming Server Modules

50 QTSS Streams

  Apple Computer, Inc.

QTSS Streams 1

The QTSS programming interface provides QTSS stream references as a
generalized stream abstraction. Streams can be used for reading and writing
data to many types of I/O sources, including, but not limited to files, the error
log, and sockets and for communicating with the client via RTSP or RTP. In all
RTSP roles, for example, modules receive an object of type
QTSS_RTSPRequestObject that has a qtssRTSPReqStreamRef attribute. The value of
this attribute is of type QTSS_StreamRef, and it can be used for sending RTSP
response data to the client.

Unless otherwise noted, all streams are asynchronous. When using the
asynchronous QTSS file system callbacks, modules should be prepared to
receive the QTSS_WouldBlock result code, subject to the restrictions and rules of
each stream type described in this section. The QTSS_WouldBlock error is
returned from a stream callback when completing the requested operation
would require the current thread to block. For instance, QTSS_Write on a socket
will return QTSS_WouldBlock if the socket is currently subject to flow control. For
information on threading and asynchronous I/O, see the section “Runtime
Environment for QTSS Modules” (page 25).

When a module receives the QTSS_WouldBlock result code, modules should call
the QTSS_RequestEvent callback routine to request a notification from the server
when the specified stream becomes available for I/O. After calling
QTSS_RequestEvent, the module should return control immediately to the server.
The module will be re-invoked in the same role in the exact same state when the
specified stream is available for I/O.

All stream references are of type QTSS_StreamRef. The QTSS programming
interface uses following stream types:

QTSS_ErrorLogStreamUsed for writing binary data to the server’s error log.
There is a single instance of this stream type, which is
passed to each module in the Initialize role. When data is
written to this stream, modules that have registered for the
Error Log role are invoked. For information about this role,
see the section “Error Log Role” (page 32). All operations
on this stream type are synchronous.

QTSS_FileStream Represents a file and is obtained by making the
QTSS_OpenFileStream callback. If the file stream is opened

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Streams 51
  Apple Computer, Inc.

with the qtssFileStreamAsync flag, callers should expect to
receive a result code of QTSS_WouldBlock when they call
QTSS_Read, QTSS_Write, and QTSS_WriteV.

QTSS_RTSPSessionStream
Used for reading data (QTSS_Read) from an RTSP client and
writing data (QTSS_Write or QTSS_WriteV) to an RTSP client.
The server may encounter flow control conditions, so
modules should be prepared to handle QTSS_WouldBlock
result codes when reading from or writing to this stream
type. Calling QTSS_Read means that you are reading the
request body sent by the client to the server. This stream
reference is an attribute of the object
QTSS_RTSPSessionObject.

QTSS_RTSPRequestStream
Used for reading data (QTSS_Read) from an RTSP client and
writing data (QTSS_Write or QTSS_WriteV) to an RTSP client.
This stream is identical to the QTSS_RTSPSessionStream
stream except that data written to streams of this type is
buffered in memory until a full RTSP response is
constructed. Because the data is buffered internally,
modules do not receive QTSS_WouldBlock errors when
writing to streams of this type. Calling QTSS_Read on this
type of stream means that you are reading the request
body sent by the client to the server. Modules that call
QTSS_Read to read this type of stream should be
prepared to handle a result code of QTSS_Wouldblock. This
stream reference is an attribute of the object
QTSS_RTSPRequestObject.

QTSS_RTPStreamStreamUsed for writing data to an RTP client. When writing to a
stream of this type, a single write call corresponds to a
single, complete RTP packet, including headers. Currently,
it is not possible to use the QTSS_RequestEvent callback to
receive events for this stream, so if QTSS_Write or
QTSS_WriteV returns QTSS_WouldBlock, modules must poll
periodically for the blocking condition to be lifted. This
stream reference is an attribute of the object
QTSS_RTPStreamObject.

QTSS_SocketStream Represents a socket. This stream type allows modules to
use the QTSS stream event mechanism (QTSS_RequestEvent)
for raw socket I/O. (In fact, the QTSS_RequestEvent callback

C H A P T E R 1

About QuickTime Streaming Server Modules

52 QTSS Services

  Apple Computer, Inc.

is the only stream callback available for this type of
stream.) Modules should read sockets asynchronously and
should use the operating system’s socket function to read
from and write to sockets. When those routines reach a
blocking condition, the module can call QTSS_RequestEvent
to be notified when the blocking condition has cleared.

Table 1-2 uses an “X” to summarize the I/O-related callback routines that are
appropriate for each type of stream.

QTSS Services 1

QTSS services are services the modules can access. The service may be a built-in
service provided by the server or an added service provided by another
module. An example of a service would be a logging module that allows other
modules to write messages to the error log.

Table 1-2 Streams and appropriate callback routines

Stream
Type Read Seek Flush Advise Write WriteV

Request
Event

Signal
Stream

File
Stream

X X X X X

Error
Log

X

Socket
Stream

X

RTSP
Session
Stream

X X X X X

RTSP
Request
Stream

X X X X X

RTP
Stream

X X X X

C H A P T E R 1

About QuickTime Streaming Server Modules

QTSS Services 53
  Apple Computer, Inc.

Modules use the callback routines described in the section “Service Callback
Routines” (page 123) to register and invoke services. Modules add and find
services in a way that is similar to the way in which they add and find
attributes of an object.

Every service has a name. To invoke a service, the calling module must know
the name of the service and resolve that name into an ID.

Each service has its own specific parameter block format. Modules that export
services should carefully document the services they export. Modules that call
services should fail gracefully if the service isn’t available or returns an error.

A module that implements a service calls QTSS_AddService (page 123) in its
Register role to add the service to the server’s internal database of services, as
shown in the following code:

void MyAddService()
{

QTSS_Error theErr = QTSS_AddService("MyService", &MyServiceFunction);
}

The MyServiceFunction corresponds to the name of a function that must be
implemented in the same module. Here is a stub implementation of the
MyServiceFunction:

QTSS_Error MyServiceFunction(MyServiceArgs* inArgs)
{

// Each service function must take a single void* argument
 // Implement the service here.

// Return a QTSS_Error.
}

To use a service, a module must get the service’s ID by calling
QTSS_IDForService (page 124) and providing the name of the service as a
parameter. With the service’s ID, the module calls QTSS_DoService (page 125) to
cause the service to run, as shown in Listing 1-6.

Listing 1-6 Sample code for starting a service

void MyInvokeService()
{

// Service functions take a single void* parameter that corresponds
// to a parameter block specific to the service.

MyServiceParamBlock theParamBlock;

// Initialize service-specific parameters in the parameter block.
theParamBlock.myArgument = xxx;
QTSS_ServiceID theServiceID = qtssIllegalServiceID;

// Get the service ID by providing the name of the service.
QTSS_Error theErr = QTSS_IDForService(‘MyService’, &theServiceID);

if (theErr != QTSS_NoErr)
return; // The service isn’t available.

// Run the service.
theErr = QTSS_DoService(theServiceID, &theParamBlock);

}

Built-in Services 1

The QuickTime Streaming Server provides built-in services that modules may
invoke using the service routines. In this version of the QTSS programming
interface, there is one built-in service:

#define QTSS_REREAD_PREFS_SERVICE "RereadPreferences"

Invoking the Reread Preferences service causes the server to reread its
preferences and invoke each module in the Reread Preferences role, if they have
registered for that role.

To invoke a built-in service, retrieve the service ID of the service by calling
QTSS_IDForService (page 124). Then call QTSS_DoService (page 125) to run the
service.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 55
  Apple Computer, Inc.

Using Files 1

This version of QTSS supports file system modules so that QTSS can
transparently and easily work with custom file systems. For example, a QTSS
file system module can allow a QTSS module to read a custom networked file
system or a custom database. Support for reading files consists of the following:

� QTSS file system callback routines that any module can use to open, read,
and close files. Calling the file system callback routines is described in the
section “Reading Files Using Callback Routines” (page 55). The QTSS file
system callback routines allow QTSS to easily work with many different file
system types. A QTSS module that uses the file system callbacks for reading
all files can transparently use whatever file system is deployed on a server.

� File system roles for which modules that implement file systems register.
These roles provide a bridge between QTSS and a specific file system. The
file system roles are described in the section “Implementing a QTSS File
System Module” (page 57). You could, for example, write a file system
module that interfaces QTSS to a custom database or a custom networked file
system.

Reading Files Using Callback Routines 1

In QTSS, a file is represented by a QTSS stream, so you can use existing QTSS
stream callback routines to read files. The callback routines that are available for
working with files are:

� QTSS_OpenFileObject, which is called to open a file in the local operating
system. This call is one of two callback routines that is only used when
working with files.

� QTSS_CloseFileObject, which is called to close a file that was opened by a
previous call to QTSS_OpenFileObject. This call is one of two callback routines
that is only used when working with files.

� QTSS_Read, which is called to read data from a file object’s stream that was
created by a previous call to QTSS_OpenFileObject.

� QTSS_Seek, which is called to set the current position of a file object’s stream.

C H A P T E R 1

About QuickTime Streaming Server Modules

56 Using Files

  Apple Computer, Inc.

� QTSS_Advise, which is called to tell a file system module that a specified
section of one of its streams will be read soon.

� QTSS_RequestEvent, which is called to tell a file system module that the calling
module wants to be notified when one of the events in the specified event
mask occurs. The events are when a stream becomes readable and when a
stream becomes writable.

In QTSS, a file is QTSS_Object that has its own object type, QTSS_FileObject, that
allows you to use standard QTSS callbacks (QTSS_GetValue and
QTSS_GetValuePtr) to get meta information about a file, such as its length and
modification date. You can use standard QTSS callbacks to store any amount of
file system meta information with the file object. For example, a module
working with a POSIX file system would want to add an attribute to the file
object that stores the POSIX file system descriptor.

A file object also contains a QTSS stream reference that can be used when
calling QTSS stream routines that work with files, such as QTSS_Read. For
more information, see the section “QTSS Streams” (page 50). For a list of
the attributes of a QTSS file object, see the section QTSS_FileObject
(page 138).

The sample code in Listing 1-7 shows how to open a file, determine the file’s
length, read the entire file, close the file, and return the data it contains.

Listing 1-7 Sample code for reading an entire file

QTSS_Error ReadEntireFile(char* inPath, void** outData, UInt32* outDataLen)
{

QTSS_Object theFileObject = NULL;
QTSS_Error theErr = QTSS_OpenFileObject(inPath, qtssOpenFileNoFlags,

&theFileObject);
if (theErr != QTSS_NoErr)

return theErr; // The file wasn't found or it couldn't be opened.

// The file is open. Find out how long it is.
UInt64* theLength = NULL;
UInt32 theParamLen = 0;
theErr = QTSS_GetValuePtr(theFileObject, qtssFlObjLength, 0, (void**)&theLength,

&theParamLen);

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 57
  Apple Computer, Inc.

if (theErr != QTSS_NoErr)
return theErr;

if (theParamLen != sizeof(UInt64))
return QTSS_RequestFailed;;

// Allocate memory for the file data.
*outData = new char[*theLength + 1];
*outDataLen = *theLength;

// Read the data
UInt32 recvLen = 0;
theErr = QTSS_Read(theFileObject, *outData, *outDataLen, &recvLen);

if ((theErr != QTSS_NoErr) || (recvLen != *outDataLen))
{

delete *outData;
return theErr;

}

// Close the file.
(void)QTSS_CloseFileObject(theFileObject);

}

Implementing a QTSS File System Module 1

A file system module provides a way for QTSS modules to read files in a
specific file system regardless of that file system’s type. Typically, a file system
module handles a subset of paths in a file system, but it may handle all paths on
the system. If a file system module handles only a certain subset of paths, it
usually handles all paths inside a certain root path. For example, a module
handling files stored in a certain database may only respond to paths that begin
with /Local/database_root/.

Implementing a QTSS file system module begins with registering for one of the
following roles:

� Open File Preprocess role, which the server calls in response to a
module (or the server) that calls the QTSS_OpenFileObject callback
routine to open a file. If the module does not handle files of the specified
type, the module immediately returns QTSS_FileNotFound. If the module

C H A P T E R 1

About QuickTime Streaming Server Modules

58 Using Files

  Apple Computer, Inc.

handles the files of the specified type, it opens the file, updates a file object
provided by the server and returns QTSS_NoErr. If an error occurs during this
setup period, the module returns QTSS_RequestFailed. Once the module
returns QTSS_NoErr, it should be prepared to handle the Advise File, Read
File, Request Event File and Close File roles for the opened file. The server
calls each module registered in the Open File Preprocess role until one of the
called modules returns QTSS_NoErr or QTSS_RequestFailed.

� Open File role, which the server calls in response to a module (or the server)
that calls the QTSS_OpenFileObject callback routine for which all modules
handling the Open File Preprocess role return QTSS_FileNotFound. Only one
module can register for the Open File role. Like modules called for the
Open File Preprocess role, the module called for the Open File role must
determine whether it can handle the specified file. It it can, it opens the file,
updates the file object provided by the server and returns QTSS_NoErr. If an
error occurs during the setup process or if the module cannot handle the
specified file, the module returns QTSS_RequestFailed or QTSS_FileNotFound,
respectively.

A file system module should register in the Open File Preprocess role if it
handles a subset of files available on the system. For instance, a file system
module that serves files out of a database may only handle files rooted at a
certain path. All other paths should fall through to other modules that handle
other paths.

A file system module should register in the Open File role if it implements the
default file system on a system. For instance, on a UNIX system the module
handling the Open File Role would probably provide an interface between the
server and the standard POSIX file system.

Once a module returns QTSS_NoErr from either the Open File Role or the Open
File Preprocess role, it is responsible for the newly opened file. It should be
prepared to handle the following roles on behalf of that file:

� Advise File role, which is called in response to a module (or the server)
calling the QTSS_Advise callback for a file object. The QTSS_Advise callback is
made to inform the file system module that a specific region of the file will be
needed soon.

� Read File role, which is called in response to a module (or the server)
calling the QTSS_Read callback for a file object. It is the responsibility of a file
system module handling this role to make a best-effort attempt to fill the
buffer provided by the caller with the appropriate file data.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 59
  Apple Computer, Inc.

� Request Event File role, which is called in response to a module (or the
server) calling the QTSS_RequestEvent callback on a file object.

� Close File role, which is called in response to a module (or the server)
calling the QTSS_Close callback on a file object. The module should clean up
any file-system and module-specific data structures for this file. This role is
always the last role a file system module will be invoked in for a given file
object.

Note
Modules do not need to explicitly register for the Advise
File, Read File, Request Event File or Close File roles in
order to handle them. Instead, returning QTSS_NoErr or
QTSS_RequestFailed from one of the open file roles
constitutes taking ownership for a specific file object, and
therefore means that the module has implicitly registered
for those roles. �

File System Module Roles 1

This section describes the file system module roles. The roles are:

� “Open File Preprocess Role” (page 59) which is called to process requests to
open files.

� “Open File Role” (page 61) which is the default role that is called when none
of the modules registered for the Open File Preprocess role opens the
specified file.

� “Advise File Role” (page 62) which is called to tell a file system module
about the caller’s I/O preferences.

� “Read File Role” (page 62) which is called to read a file.

� “Close File Role” (page 64) which is called to close a file.

� “Request Event File Role” (page 64) which is called to request notification
when a file becomes available for reading or writing.

Open File Preprocess Role 1

The server calls the Open File Preprocess role in response to a module that calls
the QTSS_OpenFileObject callback routine to open a file. It is the responsibility of
a module handling this role to determine whether it handles the type of file

C H A P T E R 1

About QuickTime Streaming Server Modules

60 Using Files

  Apple Computer, Inc.

specified to be opened. If it does and if the file exists, the module opens the file,
updates the file object provided by the server, and returns QTSS_NoErr.

When called, an Open File Preprocess role receives a QTSS_OpenFile_Params
structure, which is defined as follows:

typedef struct
{

char* inPath;
QTSS_OpenFileFlags inFlags;
QTSS_Object inFileObject;

} QTSS_OpenFile_Params;

Field descriptions
inPath A pointer to a null-terminated C string containing the full

path to the file that is to be opened.
inFlags Open flags specifying whether the module that called

QTSS_OpenFileObject can handle asynchronous read
operations (qtssOpenFileAsync) or expects to read the file in
order from beginning to end (qtssOpenFileReadAhead).

inFileObject A QTSS object that the module updates if it can open the
file specified by inPath.

If the file is a file the module handles, the module should do whatever work is
necessary to open and set up the file. It can use inFileObject to store any
module-specific information for that file. In addition, the module should set the
value of the file object’s qtssFlObjLength and qtssFlObjModDate attributes.

If the file is a file the module handles but an error occurs while attempting to set
up the file, the module should return QTSS_RequestFailed.

If every module registered for the Open File Preprocess role returns
QTSS_FileNotFound, the server calls the one module that is registered in the
Open File role.

A module that wants to be called in the Open File Preprocess role must in its
Register role call QTSS_AddRole (page 94) and specify
QTSS_OpenFilePreprocess_Role as the role. Modules that register for this role
must also handle the following roles, but they do not need to explicitly register
for them: Advise File, Read File, Request Event File, and Close File.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 61
  Apple Computer, Inc.

Open File Role 1

The server calls the module registered for the Open File role when all modules
registered for the Open File Preprocess role have been called and have returned
QTSS_FileNotFound. Only one module can be registered for the Open File role,
and that module is the first module that registers for this role when QTSS starts
up.

Like modules called for the Open File Preprocess role, it is the responsibility of
a module handling the Open File role to determine whether it handles the type
of file specified to be opened. If it does and if the file exists, the module opens
the file, updates the file object provided by the server, and returns QTSS_NoErr.

When called, the module receives a QTSS_OpenFile_Params structure, which is
defined as follows:

typedef struct
{

char* inPath;
QTSS_OpenFileFlags inFlags;
QTSS_Object inFileObject;

} QTSS_OpenFile_Params;

Field descriptions
inPath A pointer to a null-terminated C string containing the full

path to the file that is to be opened.
inFlags Open flags specifying whether the module that called

QTSS_OpenFileObject can handle asynchronous read
operations (qtssOpenFileAsync) or expects to read the file in
order from beginning to end (qtssOpenFileReadAhead).

inFileObject A QTSS object that the module updates if it can open the
file specified by inPath.

If the file is a file the module handles, the module should do whatever work is
necessary to open and set up the file. It can use inFileObject to store any
module-specific information for that file. In addition, the module should set the
value of the file object’s qtssFlObjLength and qtssFlObjModDate attributes.

If the file is a file the module handles but an error occurs while attempting to set
up the file, the module should return QTSS_RequestFailed.

A module that wants to be called in the Open File role must in its Register role
call QTSS_AddRole (page 94) and specify QTSS_OpenFile_Role as the role. Modules
that register for this role must also handle the following roles, but they do not

C H A P T E R 1

About QuickTime Streaming Server Modules

62 Using Files

  Apple Computer, Inc.

need to explicitly register for them: Advise File, Read File, Request Event File,
and Close File.

Advise File Role 1

The server calls modules for the Advise File role in response to a module (or the
server) calling the QTSS_Advise callback routine for a file object in order to
inform the file system module that the calling module will soon read the
specified section of the file.

When called, an Advise File role receives a QTSS_AdviseFile_Params structure,
which is defined as follows:

typedef struct
{

QTSS_Object inFileObject;
UInt64 inPosition;
UInt32 inSize;

} QTSS_AdviseFile_Params;

Field descriptions
inFileObject The file object for the opened file. The file system module

uses the file object to determine the file for which the
QTSS_Advise callback routine was called.

inPosition The offset in bytes from the beginning of the file that
represents the beginning of the section that is soon to be
read.

inSize The number of bytes that are soon to be read.
The file system module is not required to do anything while handling this role,
but it may take this opportunity to read the specified section of the file.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Read File Role 1

The server calls modules for the Read File role in response to a module (or the
server) calling the QTSS_Read callback routine for a file object in order to read the
specified file.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 63
  Apple Computer, Inc.

When called, a Read File role receives a QTSS_ReadFile_Params structure, which
is defined as follows:

typedef struct
{ QTSS_Object inFileObject;

UInt64 inFilePosition;
void* ioBuffer;
UInt32 inBufLen;
UInt32* outLenRead;

} QTSS_ReadFile_Params;

Field descriptions
inFileObject The file object for the file that is to be read. The file system

module uses the file object to determine the file for which
the QTSS_Read callback routine was called.

inFilePosition The offset in bytes from the beginning of the file that
represents the beginning of the section that is to be read.
The server maintains the file position as an attribute of the
file object, so the file system module does not have to cache
the file position internally and can obtain the position at
any time.

ioBuffer A pointer to the buffer in which the file system module is to
place the data that is read.

inBufLen The length of the buffer pointed to by ioBuffer.
outLenRead The number of bytes actually read.
The file system module should make a best-effort attempt to fill the buffer
pointed to by ioBuffer with data from the file that is being read starting with
the position specified by inFilePosition.

If the file was opened with the qtssOpenFileAsync flag, the module should
return QTSS_WouldBlock if reading the data will cause the thread to block.
Otherwise, the module should block the thread until all of the data has become
available. When the buffer pointed to by ioBuffer is full or the end of file has
been reached, the file system module should set outLenRead to the number of
bytes read and return QTSS_NoErr.

If the read fails for any reason, the file system module handling this role should
return QTSS_RequestFailed.

File system modules do not need to explicitly register for this role.

C H A P T E R 1

About QuickTime Streaming Server Modules

64 Using Files

  Apple Computer, Inc.

Close File Role 1

The server calls modules for the Close File role in response to a module (or the
server) calling the QTSS_CloseFile callback routine for a file object in order to
close a file that has been opened.

When called, a Close File role receives a QTSS_CloseFile_Params structure, which
is defined as follows:

typedef struct
{

QTSS_Object inFileObject;
} QTSS_CloseFile_Params;

Field descriptions
inFileObject The file object for the file that is to be closed. The file

system module uses the file object to determine the file for
which the QTSS_Close callback routine was called.

A module handling this role should dispose of any data structures that it has
created for the file that is to be closed.

This role is always the last role for which a file system module will be invoked
for any given file object.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Request Event File Role 1

The server calls modules for the Request Event File role in response to a module
(or the server) calling the QTSS_RequestEvent callback routine. If a module or the
server calls the QTSS_OpenFileObject callback routine and specifies the
qtssOpenFileAsync flag, the file system module handling that file object may
return QTSS_WouldBlock from its Read File role. When that occurs, the caller of
QTSS_Read may call QTSS_RequestEvent callback to tell the server that the caller of
QTSS_Read wants to be notified when the data becomes available for reading.

When called, a Request Event File role receives a QTSS_RequestEventFile_Params
structure, which is defined as follows:

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 65
  Apple Computer, Inc.

typedef struct
{

QTSS_Object inFileObject;
QTSS_EventType inEventMask;

} QTSS_RequestEventFile_Params;

Field descriptions
inFileObject The file object for the file for which notifications are

requested. The file system module uses the file object to
determine the file for which the QTSS_RequestEvent callback
routine was called.

inEventMask A mask specifying the type of events for which notification
is requested. Possible values are QTSS_ReadableEvent and
QTSS_WriteableEvent.

If the file system that the file system module is implementing supports
notification, the file system module should do whatever setup is necessary to
receive an event for the file for which the QTSS_RequestEvent callback routine
was called. When the file becomes readable, the file system module should call
the QTSS_SignalStream callback routine and pass the stream reference for this file
object (which can be obtained through the file object’s qtssFLObjStream
attribute). Calling the QTSS_SignalStream callback routine tells the server that
the caller of QTSS_RequestEvent should be notified that the file is now readable.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Sample Code for the Open File Role 1

The sample code in Listing 1-8 handles the Open File role, but it could also be
used to handle the Open File Preprocess role. This code uses the POSIX file
system layer as the file system and does not support asynchronous I/O.

Listing 1-8 Sample code for handling the Open File role

QTSS_Error OpenFile(QTSS_OpenFile_Params* inParams)
{

// Use the POSIX open call to attempt to open the specified file.
// If it doesn't exist, return QTSS_FileNotFound

C H A P T E R 1

About QuickTime Streaming Server Modules

66 Using Files

  Apple Computer, Inc.

int theFile = open(inParams->inPath, O_RDONLY);
if (theFile == -1)

return QTSS_FileNotFound;

// Use the POSIX stat call to get the length and the modification
date

// of the file. This information must be set in the QTSS_FileObject
// by every file system module.

UInt64 theLength = 0;
time_t theModDate = 0;
struct stat theStatStruct;

if (::fstat(fFile, &theStatStruct) >= 0)
{

theLength = buf.st_size;
theModDate = buf.st_mtime;

}
else
{

::close(theFile);
return QTSS_RequestFailed; // Stat failed

}

// Set the file length and the modification date attributes of this
file

// object before returning

(void)QTSS_SetValue(inParams->inFileObject, qtssFlObjLength, 0,
&theLength, sizeof(theLength));

(void)QTSS_SetValue(inParams->inFileObject, qtssFlObjModDate, 0,
&theModDate, sizeof(theModDate));

// Place the file reference in a custom attribute in the
QTSS_FileObject.

// This way, we can easily get the file reference in other role
handlers,

// such as the QTSS_ReadFile_Role and the QTSS_CloseFile_Role.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using Files 67
  Apple Computer, Inc.

QTSS_Error theErr = QTSS_SetValue(inParams->inFileObject,
sFileRefAttr, 0,

&theFile, sizeof(theFileSource));

if (theErr != QTSS_NoErr)
{

::close(theFile);
return QTSS_RequestFailed;

}

return QTSS_NoErr;
}

Implementing Asynchronous Notifications 1

If a module, or the server, calls the QTSS_OpenFileObject and specifies the
qtssOpenFileAsync flag, the file system module handling that file object may
return QTSS_WouldBlock from its QTSS_ReadFile_Role handler. Once that
happens, the caller of QTSS_Read may want to be notified when the requested
data becomes available for reading. This is possible by calling the
QTSS_RequestEvent callback, which tells the server that the caller would like to
be notified when data is available to be read from the file.

Not all file systems support notification mechanisms, and if they do, the
notification mechanisms are particular to each file system architecture.
Therefore, whether a file system module supports notifications is at the
discretion of the developer of the file system module. In general it is better for a
file system module to support asynchronous notifications and not block in
QTSS_Read_File_Role because blocking on one file operation may disrupt service
for many of the server’s clients.

Two facilities allow file system modules to implement notifications:

� QTSS_RequestEventFile_Role, which is called in response to a module (or
the server) calling the QTSS_RequestEvent callback on a file object. Modules do
not need to explicitly register for this role. If a module doesn’t implement
asynchronous notifications, it should return QTSS_RequestFailed from this
role. If a module does implement asynchronous notifications, it should do
whatever setup is necessary to receive an event for this file when the file
becomes readable.

� QTSS_SendEventToStream callback, called by a file system module when a
file does become readable. Calling QTSS_SendEventToStream tells the server

C H A P T E R 1

About QuickTime Streaming Server Modules

68 Using QTSS Web Admin

  Apple Computer, Inc.

that the caller of QTSS_RequestEvent should be notified that the file is now
readable.

Using QTSS Web Admin 1

QTSS Web Admin is a simple web server that uses the Admin Protocol to
communicate with QTSS. QTSS administrators can use a web browser
(Netscape 4.5 or higher or Internet Explorer 4.5 or higher) to connect to the Web
Admin server to see the status of QTSS, to view the server’s access and error
logs, to change server settings, and to manage QTSS playlists.

The Web Admin server provides a library of Perl functions that are used to
communicate with QTSS and to process data received from QTSS into the
required format.

CGIs, Template HTML Files, and Special Tags 1

To display data in a web browser, the Web Admin uses two Common Gateway
Interfaces (CGIs) (parse.cgi and parsewithinput.cgi) and some template
HTML files. The template HTML files contain regular HTML tags as well as
special tags. When one of the CGIs parses a template HTML file, the special tags
direct the CGI to perform special processing for the special tag while the regular
HTML tags are left unchanged. The special tags work like server-side includes.

When the CGI finds a special tag, the CGI performs the function (found in
adminprotocol-lib.pl) that corresponds to the tag and replaces the tag with the
function’s results. Sometimes the special tag tells the CGI to perform an
operation and to save the results in a placeholder for later use. Then a second
special tag can process the saved result if needed and display the result in the
page.

The Perl function ParseFile in adminprotocol-lib.pl processes all tags. If you
know Perl, you can easily add more tags.

All template html files are passed as arguments to the parse.cgi script (or the
parsewithinput.cgi script for tags that have more advanced input values). The
CGIs call the Perl functions from adminprotocol-lib.pl and send the
appropriate CGI headers back. Most of the CGI headers are encapsulated in the
cgi-lib.pl library. This library is easily extensible.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 69
  Apple Computer, Inc.

The QTSS Web Admin server doesn’t do authentication of its own, so the CGIs
pipe the authentication challenge from QTSS to the browser, and the
authorization back from the browser to QTSS. Thus a CGI should send an
HTPP 401 unauthorized header back to the client if QTSS responds to an Admin
Protocol request with an unauthorized header.

The following sections describe some of the tags that Web Admin supports. The
tags are

� “ECHODATA” (page 69)

� “GETDATA” (page 70)

� “GETVALUE” (page 70)

� “MAKEARRAY” (page 71)

� “HASVALUE” (page 71)

� “IFVALUEEQUALS” (page 72)

� “CONVERTTOLOCALTIME” (page 72)

� “ACTIONONDATA” (page 72)

� “FORMATFLOAT” (page 73)

� “CONVERTMSECTIMETOSTR” (page 74)

� “MODIFYDATA” (page 74)

� “PRINTFILE” (page 75)

� “PRINTHTMLFORMATFILE” (page 75)

� “PROCESSFILE” (page 76)

� “HTMLIZE” (page 76)

ECHODATA 1

The function for the ECHODATA special tag uses the Admin Protocol to get the
value of the specified QTSS attribute from QTSS and parses the received
contents to extract the value. The tag is replaced by this value in the resulting
HTML.

Usage: <%%ECHODATA parameter%%>

where parameter is a partial path to the attribute. The string
“/modules/admin/” is prepended to parameter when the tag is processed.

C H A P T E R 1

About QuickTime Streaming Server Modules

70 Using QTSS Web Admin

  Apple Computer, Inc.

Example: <%%ECHODATA /server/qtssSvrDefaultDNSName%%>

This example replaces the ECHODATA tag with the value of the
/modules/admin/server/qtssSvrDefaultDNSName attribute, which might be of the
form “foo.bar.com”.

GETDATA 1

The function for the GETDATA special tag uses the Admin Protocol to get the
value of the specified attribute and stores the value in the specified variable for
later use by another special tag. The tag itself is removed from the resulting
HTML.

Usage: <%% GETDATA variable parameter%%>

where variable is the name of the variable in which the attribute is to be stored
and parameter is a partial path to the attribute. The string “/modules/admin/”
is prepended to parameter when the tag is processed.

Example: <%%GETDATA rtspport /server/qtssSvrPreferences/rtsp_port/*%%>

This example stores the contents of the /modules/admin/server/
qtssSvrPreferences/rtsp_port/* attributes in the rtspport variable without
processing the contents.

GETVALUE 1

The function for the GETVALUE special tag uses the Admin Protocol to get the
value of the specified attribute, processes the value, and stores the result in the
specified variable for later use by another special tag. The tag itself is removed
from the resulting HTML.

Usage: <%% GETVALUE variable parameter%%>

where variable is the name of the variable in which the processed attribute value
is to be stored and parameter is a partial path to the attribute. The string
“/modules/admin/” is prepended to parameter when the tag is processed.

Example: <%%GETVALUE authscheme /server/qtssSvrPreferences/
authentication_scheme%%>

This example gets the value of the /modules/admin/server/qtssSvrPreferences/
authentication_scheme attribute, processes the value, and stores the resulting
value in the authscheme variable.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 71
  Apple Computer, Inc.

MAKEARRAY 1

The function for the MAKEARRAY special tag processes the data that is accessed by
parameter by looking for container and stores the elements in the array specified
by variable. Later, variable can be used to reference the data stored in the array.
The string “/modules/admin/” is prepended to container when the tag is
processed.

Usage: <%% MAKEARRAY variable container parameter%%>

where variable is used to access the array that contains the values parsed out of
the parameter. The container is used to look for the array data in the data
accessed by parameter. Her e parameter is the accessor for data that has already
been retrieved from the server.

Example: <%%MAKEARRAY ports /server/qtssSvrPreferences/rtsp_port/
rtspport%%>

This example gets all of the values of the multivalued attribute
/server/qtssSvrPreferences/rtsp_port/ from data that was previously
retrieved from the server and stored in rtspport. The reference to the resulting
array of values is stored and can be accessed using the ports variable.

HASVALUE 1

The function for the HASVALUE special tag searches for the value in the array
specified the parameter. If the value is found, “1” is stored in the variable
specified by variable; otherwise, “0” is stored.

Usage: <%% HASVALUE variable parameter 'value' [num | alpha]%%>

where variable is used to store the Boolean value that represents the result of
testing whether the array specified by parameter contains the value specified by
value. Single quotes must enclose value. If value is numeric, it must be followed
by num, and if value is a string, it must be followed by alpha.

Example: <%%HASVALUE has80 ports '80' num%%>

This example searches for the numeric value 80 in the ports array, which was
previously obtained from the server through the use of the MAKEARRAY special
tag. If found, has80 is set to 1; otherwise has80 is set to zero.

C H A P T E R 1

About QuickTime Streaming Server Modules

72 Using QTSS Web Admin

  Apple Computer, Inc.

IFVALUEEQUALS 1

The function for the IFVALUEEQUALS special tag compares a value with a string. If
the they are equal, variable is set to true; otherwise, variable is set to false.

Usage: <%% IFVALUEEQUALS variable parameter 'compareStr'%%>

where parameter contains the value that is compared with compareStr. The result
of the operation is stored in variable, which you can use to format an HTML tag
later in the page.

Example: <%%IFVALUEEQUALS isBasic authscheme 'basic'%%>

The value of authscheme may have been retrieved earlier using the GETVALUE tag
as in this example:

<%%GETVALUE authscheme /server/qtssSvrPreferences/
authentication_scheme%%>

If the value of authscheme is basic, IFVALUEEQUALS sets isBasic to true.
Otherwise, it sets isBasic to false.

CONVERTTOLOCALTIME 1

The function for the CONVERTTOLOCALTIME special tag converts an elapsed time
value (such as the server time) to the standard HTTP Date format. The tag is
replaced by the HTTP Date string in the page.

Usage: <%% CONVERTTOLOCALTIME parameter%%>

where parameter contains the elapsed time that is to be converted. The value
stored in parameter must be in milliseconds elapsed from midnight on January 1,
1970. It may haven been obtained by the GETVALUE special tag and may have
been modified.

Example: <%%CONVERTTOLOCALTIME curTime%%>

The parameter curTime contains a time value stored in milliseconds elapsed
from midnight on January 1, 1970. It may have been retrieved using:

<%%GETVALUE curTime /server/qtssSvrCurrentTimeMilliseconds%%>

ACTIONONDATA 1

The function for the ACTIONDATA special tag performs an arithmetic operation on
two values.

Usage: <%% ACTIONONDATA variable parameter1 parameter2 'operation'%%>

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 73
  Apple Computer, Inc.

where parameter1 and parameter2 contain values on which the operation is
performed. The result is stored in variable.

The values stored in parameter1 and parameter2 were retrieved from QTSS using
one of the tags described earlier, and possibly modified. The arithmetic
operation is performed on the two values and the result is stored in variable for
later use. Nothing is displayed in place of the tag.

Example: <%%ACTIONONDATA diffTimeInmSec curTime startTime '-'%%>

The parameters curTime and startTime already have values that may have been
retrieved using the GETVALUE tag as in the following example:

<%%GETVALUE startTime /server/qtssSvrStartupTime%%>
<%%GETVALUE curTime /server/qtssSvrCurrentTimeMilliseconds%%>

This example subtracts startTime from curTime and stores the result in
diffTimeInmSec.

FORMATFLOAT 1

The function for the FORMATFLOAT special tag formats a value as a floating point
number.

Usage: <%% FORMATFLOAT parameter%%>

where parameter contains a floating point number that was retrieved from QTSS.
The result is displayed on the page and replaces the tag.

The value stored in parameter was retrieved from QTSS using one of the special
tags described earlier and may have been modified. The value is formatted as a
3.2f, which results in a minimum total field of three digits, of which the last two
digits hold the decimal part.

Example: <%%FORMATFLOAT loadpercent%%>

The parameter loadpercent is displayed as a floating point number with the
above formatting, and maybe rounded to the nearest decimal if necessary. The
value in loadpercent may have been retrieved using GETVALUE, as in the
following example:

<%%GETVALUE loadpercent /server/qtssSvrCPULoadPercent%%>

C H A P T E R 1

About QuickTime Streaming Server Modules

74 Using QTSS Web Admin

  Apple Computer, Inc.

CONVERTMSECTIMETOSTR 1

The function for the CONVERTMSECTIMETOSTR special tag converts a time value in
milliseconds to a string that displays the time in days, hours, minutes, and
seconds. The value 95780003 would be displayed as ”1 day, 2 hrs, 36 min, 20
sec”.

Usage: <%% CONVERTMSECTIMETOSTR parameter%%>

where parameter contains a elapsed time value in milliseconds that was
retrieved from QTSS using one of the tags described earlier and that may have
been modified.

Example: <%%CONVERTMSECTIMETOSTR diffTimeInmSec%%>

The parameter diffTimeInmSec is displayed as a string formatted into days,
hours, minutes, and seconds.

MODIFYDATA 1

The function for the MODIFYDATA special tag modifies the value of a parameter if
a condition is true.

Usage: <%% MODIFYDATA parameter ‘condition’ ‘operation’%%>

where parameter contains a value that is checked for the condition. If the
condition is true, the operation is performed, otherwise the value is left
unchanged. The resulting value is displayed in place of the tag.

The value stored in parameter was retrieved from QTSS using one of the tags
described earlier and may have been modified.

Example: <%%MODIFYDATA maxThroughput '> 9999' '/ 1024'%%>

The example causes the result of performing the following operation to be
displayed on the page:

If (maxThroughput > 9999) {
Result = maxThroughput / 1024;

}
else {

Result = maxThroughput;
}

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 75
  Apple Computer, Inc.

PRINTFILE 1

The function for the PRINTFILE special tag opens the file specified by parameter2
in the directory specified by parameter1 and displays the contents on the page.

Usage: <%% PRINTFILE parameter1 parameter2 %%>

where parameter1 contains the path to the directory and parameter2 contains the
filename. The tag is replaced by the contents of the file.

Example: <%% PRINTFILE logdirpath logfilename %%>

The contents of the file logfilename in the directory logdirpath are read and
displayed in place of the tag. If the file cannot be read due to some error, the text
“Server is not Running. Cannot display file” replaces the tag.

PRINTHTMLFORMATFILE 1

The function for the PRINTHTMLFORMATFILE special tag processes a QTSS Error
Log file. It appends “.log” to the filename specified by parameter2, opens the file
of that name that resides in the directory specified by parameter1, and displays
the contents on the page.

Usage: <%% PRINTHTMLFORMATFILE parameter1 parameter2 %%>

where parameter1 contains the path to a directory and parameter2 contains the
filename.

Lines that start with a ‘#’ are comments and are displayed in bold text (that is,
enclosed by and HTML tags. Lines that do not start with a ‘#’ are not
displayed with bold text. Each line is followed by a line break (
).

Example: <%%PRINTHTMLFORMATFILE dir file%%>

The contents of the file named file.log in the directory dir are read and
displayed as described above. The two parameters, dir and file, may have
been retrieved from the server using the following GETVALUE tags:

<%%GETVALUE dir /server/qtssSvrPreferences/error_logfile_dir%%>
<%%GETVALUE file /server/qtssSvrPreferences/error_logfile_name%%>

If the file cannot be read due to an error, the tag is replaced by a blank line.

C H A P T E R 1

About QuickTime Streaming Server Modules

76 Using QTSS Web Admin

  Apple Computer, Inc.

PROCESSFILE 1

The function for the PRINTHTMLFORMATFILE special tag processes a QTSS Access
log file.

Usage: <%% PROCESSFILE variable parameter1 parameter2 columnIndex%%>

where parameter1 contains the path to the directory and parameter2 contains the
filename. The function appends “.log” to the filename specified by parameter2,
opens the file of that name that resides in the directory specified by parameter1,
reads the column of data specified by columnIndex. It then counts the number of
occurrences of each value in the column and stores the result in variable as a
hash map with the values as the key and the number of occurrences of each as
the value.

Example: <%%PROCESSFILE accessdata dir file 4%%>

The contents of the file file.log in the directory dir are parsed. The values in
column 4 for each record are counted for the number of occurrences of each
value. The two parameters, dir and file, may have been retrieved from the
server using the GETVALUE tag as in the following example:

<%%GETVALUE dir /server/qtssSvrModuleObjects/QTSSAccessLogModule/qtssModPrefs/
request_logfile_dir%%>
<%%GETVALUE file /server/qtssSvrModuleObjects/QTSSAccessLogModule/qtssModPrefs/
request_logfile_name%%>

HTMLIZE 1

The function for the PRINTHTMLFORMATFILE special tag converts certain characters
to appropriate HTML representation.

Usage: <%% HTMLIZE parameter%%>

where parameter contains the text that has characters that need to be converted
to values that can be displayed in a page.

The text in parameter is parsed and the characters &, <, and > are converted to
&, <, and > respectively.

Example: <%%HTMLIZE version%%>

The text in version is parsed and any &, <, or > characters are converted to
HTML representation. The text may have been retrieved using the GETVALUE tag
as in the following example:

<%%GETVALUE version /server/qtssRTSPSvrServerVersion%%>

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 77
  Apple Computer, Inc.

Monitoring Server Status and Modifying Server Settings 1

QTSS Web Admin makes use of HTML forms to provide a way for the
administrator to monitor the server’s status and modify server settings. When a
form is submitted, a CGI is executed that uses Perl functions to communicate
with QTSS to perform the desired task.

The QTSS Web Admin provides the following HTML forms for monitoring
server status:

� Connected Users, which for each connected user displays the IP address, bit
rate, bytes sent, percentage of packet loss, the length of time for which the
user has been connected, and the media file the user is receiving. This form
also allows the administrator to change the number of connected users that
the form displays, the page’s update interval, and the column by which the
information is sorted.

� Server Snapshot, which displays the following information:

� The time at which QTSS was started
� The elapsed time that QTSS has been running
� The QuickTime Streaming Server’s DNS name
� The QuickTime Streaming Server’s current time
� The QuickTime Streaming Server’s version number and the version

number of its programming interface
� The percentage of the system’s CPU load that is being used by QTSS
� The current number of connections
� The QuickTime Streaming Server’s current throughput
� The total number of bytes QTSS has served
� The total number of connections QTSS has served
� Current server settings for the maximum number of connections,

maximum throughput, movie folder path as well as the server’s RTSP IP
address and whether streaming on port 80 is enabled.

� Current settings for whether access and error logging is enabled as well as
the log file size and interval at which access and log error logs are rolled.

The QTSS Web Admin provides the following HTML forms for monitoring
server logs:

� Access History, which displays the media files that have been requested and
the number of requests for that media file.

C H A P T E R 1

About QuickTime Streaming Server Modules

78 Using QTSS Web Admin

  Apple Computer, Inc.

� Error Log, which displays the contents of the error log.

The QTSS Web Admin provides the following HTML forms for modifying
server settings:

� General Settings, which allows the administrator to change the following
settings:

� Movies directory
� Authentication scheme (basic or digest)
� Streaming on Port 80 (enabled or disabled)
� Maximum number of connections
� Maximum throughput in Mbps
� Whether to start QTSS at system startup
� QTSS administrator password

� Log Settings, which allows the administrator to change the following
settings:

� Whether error logging is enabled or disabled
� How often to roll the error log file
� Whether access logging is enabled or disabled
� How often to roll the access log file

� Playlist Settings, which allows the administrator to create, modify, and delete
playlists and stop, start, and pause playlists.

Customizing Web Admin 1

QTSS Web Admin uses a scalable architecture that can be easily customized by
anyone who has an understanding of HTML, JavaScript, and CGI scripting.
Some knowledge of the Admin Protocol is necessary to add or modify pages
that administer QTSS.

For example, you could add more tabs to the main menu bar (which currently
has tabs for Status, Setting, and Logs) modifying nav.htm. The HTML and
JavaScript is extensible so that more submenus can be added.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 79
  Apple Computer, Inc.

Admin Protocol 1

The Admin Protocol relies on the URI mechanism as defined by RFC 2396 for
specifying a container entity using a path and HTTP 1.0 RFC 1945 for specifying
the request and response mechanisms.

The server’s internal data is mapped to a hierarchical tree of element arrays.
Each element is a named type including a container type for retrieval of
sub-node elements.

The server state machine and database can be accessed through a regular
expression. The Admin Protocol abstracts the QTSS module API to handle data
access and in some cases to provide data access triggers for execution of server
functions.

Four basic functions provide all of the administrative functions used by the
server: add, set, del, and get.

Server streaming threads are blocked while the Admin Protocol accesses the
server’s internal data. To minimize blocking, the Admin Protocol allows scoped
access to the server’s data structures by allowing specific URL paths to any
element.

Request and Response Methods 1

HTTP GET is the current request and response method.

Session State 1

The session is closed at the end of each HTTP request response.

Supported Request Header Features 1

Authorization.

Server Data Access 1

All data on the server is specified using a URI. The following URI example
references the top level of the server’s hierarchical data tree using a simple
HTTP GET request.

GET /modules/admin

C H A P T E R 1

About QuickTime Streaming Server Modules

80 Using QTSS Web Admin

  Apple Computer, Inc.

Request Syntax 1

A valid request is an absolute reference followed by the server URI. An absolute
reference is a path beginning with a forward slash character (/). A path
represents a server’s virtual hierarchical data structure of containers and is
expressed as a URL.

Here the syntax for a request:

[absolute URL]?[parameters="values"]+[command="value"]+["option"="value"]

Here is a example:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

* causes each element in current URL location to be iterated.

path/* is defined as all elements contained in the “path” container.

? indicates that options follow. Options are specified as name="value" pairs
delimited by the plus (+) symbol.

Space and tab characters are stop characters.

Values can be enclosed by double quotation characters (" "). Enclosing double
quotation characters are required for values that contain spaces and tabs.

These symbols are not supported in requests: period (.), two periods (..), and
semicolon (;).

Query Functionality 1

Queries can contain an array iterator, a name lookup, a recursive tree walk, and
a filtered response. All functions can execute in a single URI query.

Here is an example of a query that gets the stream time scale and stream
payload name from every stream in every session:

GET /modules/admin/server/qtssSvrClientSessions/*/
qtssCliSesStreamObjects?
parameters=r+command=get+filter1=qtssRTPStrTimescale+filter2=qtssRTPStrPa
yloadName

where

* iterates the array of sessions

r in parameters=rt specifies a recursive walk and t specifies that data types are
to be included in the result

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 81
  Apple Computer, Inc.

filter1=qtssRTPStrTimescale specifies that the stream time scale is to be
returned

filter2=qtssRTPStrPayloadName specifies that the stream payload is to be
returned

Here is an example of a query that gets all server module names and their
descriptions:

GET/modules/admin/server/qtssSvrModuleObjects?
parameters=r+command=get+filter2=qtssModDesc+filter1=qtssModName

The following example does a full recursive search and gets all server attributes
and their data types:

GET /modules/admin/server/?parameters=rt

Repeated recursive searches should be avoided because they impact server
performance.

The following examples discover server attributes and their paths:

GET /modules/admin/server/*

GET /modules/admin/server/qtssSvrPreferences/*

Data References 1

All elements are arrays. Single element arrays may be referenced in any of the
following ways:

� path/element

� path/element/

� path/element/*

� path/element/1

The references listed above are all evaluated as the same query.

Query Options 1

URIs that do not include a ? designator default to a Get request.

URIs that include a ? designator must have a "command=command-option" query
option, where command-option is GET, SET, ADD, or DEL.

Query options are not case-sensitive. Except for command options, query
option values are case-sensitive.

C H A P T E R 1

About QuickTime Streaming Server Modules

82 Using QTSS Web Admin

  Apple Computer, Inc.

The following query options are ignored:

� unknown query options

� query options that a command does not require

Command Options 1

The following options to the command query option are recognized:

� GET

� SET

� DEL

� ADD

Unknown commands are reported as errors.

The GET Command Option 1

The GET command option gets the data identified by the URI and does not
require other query options.

Example: GET /modules/admin/example_count

The SET command option sets the data identified by the URI. No value checking
is performed. Conversion between the text value and the actual value is type
specific.

Example: GET /modules/admin/example_count?command=SET+value=5

If the type option is included in the command, type checking of the server
element type and the set type is performed. If the types do not match, an error
is returned and the command fails.

Example: GET /modules/admin/maxcount?command=SET+value=5+type=SInt32

The DEL Command Option 1

The DEL command deletes the element referenced by the URL and any data it
contains. Here is an example:

GET /modules/admin/maxcount?command=DEL

The ADD Command Option 1

The ADD command adds the data specified by the URI to the specified element.

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 83
  Apple Computer, Inc.

If the element at the end of the URL is an element, the ADD command performs
an add to the array of elements referenced by the element name. In this case, the
following query options are required:

� value

� type

Here is an example:

GET /modules/admin/example_count?command=ADD+value=6+type=SInt16

If the element at the end of the URL is a QTSS_Object container, the ADD
command option adds the element to the container. In this case, the following
query options are required:

� value

� type

� name

Here is an example:

GET /modules/admin/?command=ADD+value=5+name=maxcount+type=SInt16

Parameter Options 1

Parameter options are single characters without delimiters and follow the URL.

The following parameter options are recognized:

� r (for recurse). Walks downward in the hierarchy starting at end of the URL.
Recursion should be avoided if “*” iterators or direct URL access to elements
can be used.

� v (for “verbose”) — returns the full path in name.

� a (for “access”) — returns the access type.

� t (for “type”) — returns the data type of value.

� d (for “debug”) — returns debugging information if an error occurs.

� c (for “count” — returns the count of elements in the path.

Here is an example:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

Access Types 1

The following access types are supported:

C H A P T E R 1

About QuickTime Streaming Server Modules

84 Using QTSS Web Admin

  Apple Computer, Inc.

� r (for “read”)

� w (for “write”)

� p (for “pre-emptive safe”)

Data Types 1

Data types can be any server-allowed text value. New data types can be defined
and returned by the server, so data types are not limited to the basic set listed
here:

Values of type QTSS_Object, pointers, and unknown data types always
converted to a host-ordered string of hexadecimal values. Here is an example of
a hexadecimal value result:

unknown_pointer=halogen; type=void_pointer

Responses 1

This section describes the data that is returned in response to a request. The
information on response data is organized in

� “Unauthorized Response” (page 84)

� “OK Response” (page 85)

� “Response Data” (page 85)

� “Array Values” (page 86)

� “Root Value” (page 87)

� “Errors in Responses” (page 87)

Unauthorized Response 1

Here is an example of an unauthorized response:

UInt8 SInt16 UInt64 Float64 CharArray

SInt8 UInt32 SInt64 Bool8 QTSS_Object

UInt16 SInt32 Float32 Bool16 void_pointer

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 85
  Apple Computer, Inc.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="QTSS/modules/admin"
Server: QTSS
Connection: Close
Content-Type: text/plain

OK Response 1

Here is an example of a “OK” response:

HTTP/1.0 200 OK
Server: QTSS/3.0 [v252]-Linux
Connection: Close
Content-Type: text/plain

Container="/"
admin/
error:(0)

All OK response end with error:(0).

Response Data 1

In response data, all entity references follow this form:

[NAME=VALUE];[attribute="value"],[attribute="value"]

where brackets ([]) indicate that the enclosed response data is optional.
Therefore, the response data may take the following forms:

NAME=VALUE

NAME=VALUE;attribute="value"

NAME=VALUE;attribute="value",attribute="value"

All container references follow this form:

[NAME/]; [attribute="value"],[attribute="value"]

where brackets ([]) indicate that the enclosed response data is optional.
Therefore, the response data may take the following forms:

NAME/

NAME/;attribute="value"

C H A P T E R 1

About QuickTime Streaming Server Modules

86 Using QTSS Web Admin

  Apple Computer, Inc.

NAME;attribute="value",attribute="value"

The order of appearance of container references and the container’s entity
references is important. This is especially true when the response is a recursive
walk of a container hierarchy.

Each new level in the hierarchy must begin with Container="reference". Each
Container list of elements must be a complete list of the contained elements and
any containers. The appearance of Container="reference" indicates the end of a
previous container’s contents and the beginning of a new container.

This example shows how each new container is identified with a unique path:

Container="/level1/"
field1="value"
field2="value"
level2a/
level2b/
Container="/level1/level2a/"
field1="value"
level3a/
level3b/
Container="/level1/level2a/level3a"
field1="value"
Container="/level1/level2a/level3b"
Container="/level1/level2b/"
field1="value"
level3a/
Container="/level1/level2b/level3a/"
field1="value"

Array Values 1

For arrays of elements, a numerical value represents the index. Arrays are
containers. Here is an example:

Container="/level1/"
field1="value"
field2="value"
array1/
Container="/level1/array1/"
1=value
2=value

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 87
  Apple Computer, Inc.

Array elements may be containers, as shown in this example:

Container="/level1/array1/"
1/
2/
3/

Container="/level1/array1/1/"
field1="value"
field2="value"
Container="/level1/array1/2/"
Container="/level1/array1/3/"
field1="value"

Root Value 1

The root for responses is /admin.

Errors in Responses 1

For each response, the error state for the request is reported at the end of the
data. Here are some examples:

Error:(0) indicates that no error occurred

Error:(404) indicates that no data was found

The number enclosed by parentheses is an HTTP error code followed by an
error string when debugging is turned on using the "parameters=d" query
option. Here is an example:

error:(404);reason="No data found"

Request and Response Examples 1

An easy way to make requests is to use a web browser and this type of URL:

http://IP-address:554/modules/admin/?parameters=a+command=get

The following example uses basic authentication and shows the HTTP response
headers.

Request: GET /modules/admin?parameters=a+command=get
Authorization: Basic QWXtaW5pT3RXYXRvcjXkZWZhdWx0
Response:

C H A P T E R 1

About QuickTime Streaming Server Modules

88 Using QTSS Web Admin

  Apple Computer, Inc.

HTTP/1.0 200 OK
Server: QTSS/3.0 [v252]-Linux
Connection: Close
Content-Type: text/plain

Container="/"
admin/;a=r
error:(0)

The following recursive request gets all values:

GET /modules/admin?command=get+parameters=r

The following recursive request returns the access and data type for each value:

GET /modules/admin?command=get+parameters=rat

The following request gets the elements in /modules/admin. Note that the
command option is not required because query options are not present.

GET /modules/admin/*

A request like the following can be used to monitor the session list:

Request: GET /modules/admin/server/qtssSvrClientSessions/*
Response:
Container="/admin/server/qtssSvrClientSessions/"
12/
2/
4/
8/
error:(0)

The response is a list of unique qtssSvrClientSessions session IDs.

The following request gets the indexes for qtssCliSesStreamObjects, which are
an indexed array of streams:

Request: GET /modules/admin/server/qtssSvrClientSessions/*/
qtssCliSesStreamObjects/*
Response:
Container="/admin/server/qtssSvrClientSessions/3/qtssCliSesStreamObjects/
"
0/
1/
error:(0)

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 89
  Apple Computer, Inc.

Request: GET /modules/admin/server/qtssSvrClientSessions/3/
qtssCliSesStreamObjects/0/*
Response:
qtssRTPStrTrackID="4"
qtssRTPStrSSRC="683618521"
qtssRTPStrPayloadName="X-QT/600"
qtssRTPStrPayloadType="1"
qtssRTPStrFirstSeqNumber="-7111"
qtssRTPStrFirstTimestamp="433634204"
qtssRTPStrTimescale="600"
qtssRTPStrQualityLevel="0"
qtssRTPStrNumQualityLevels="3"
qtssRTPStrBufferDelayInSecs="3.000000"
qtssRTPStrFractionLostPackets="0"
qtssRTPStrTotalLostPackets="52"
qtssRTPStrJitter="0"
qtssRTPStrRecvBitRate="1526072"
qtssRTPStrAvgLateMilliseconds="501"
qtssRTPStrPercentPacketsLost="0"
qtssRTPStrAvgBufDelayInMsec="30"
qtssRTPStrGettingBetter="0"
qtssRTPStrGettingWorse="0"
qtssRTPStrNumEyes="0"
qtssRTPStrNumEyesActive="0"
qtssRTPStrNumEyesPaused="0"
qtssRTPStrTotPacketsRecv="6763"
qtssRTPStrTotPacketsDropped="0"
qtssRTPStrTotPacketsLost="0"
qtssRTPStrClientBufFill="0"
qtssRTPStrFrameRate="0"
qtssRTPStrExpFrameRate="3903"
qtssRTPStrAudioDryCount="0"
qtssRTPStrIsTCP="false"
qtssRTPStrStreamRef="18861508"
qtssRTPStrCurrentPacketDelay="-2"
qtssRTPStrTransportType="0"
qtssRTPStrStalePacketsDropped="0"
qtssRTPStrTimeFlowControlLifted="974373815109"
qtssRTPStrCurrentAckTimeout="0"
qtssRTPStrCurPacketsLostInRTCPInterval="52"
qtssRTPStrPacketCountInRTCPInterval="689"

C H A P T E R 1

About QuickTime Streaming Server Modules

90 Using QTSS Web Admin

  Apple Computer, Inc.

QTSSReflectorModuleStreamCookie=(null)
qtssNextSeqNum=(null)
qtssSeqNumOffset=(null)
QTSSSplitterModuleStreamCookie=(null)
QTSSFlowControlModuleLossAboveTol="0"
QTSSFlowControlModuleLossBelowTol="3"
QTSSFlowControlModuleGettingWorses="0"
error:(0)

Here is an example that returns the IP addresses of connected clients:

Request: /modules/admin/server/qtssSvrClientSessions/*/
qtssCliRTSPSessRemoteAddrStr
Response:

Container="/admin/server/qtssSvrClientSessions/5/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.1
Container="/admin/server/qtssSvrClientSessions/6/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.2
Container="/admin/server/qtssSvrClientSessions/8/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.3
Container="/admin/server/qtssSvrClientSessions/14/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.4
error:(0)

Changing Server Settings 1

To change a server setting, the entity name and the value to be set are specified
in the request body. If a match is made on the URL base and entity name at the
current container level, and if the setting is writable, the value is set.

base = /base/container
name = value
/base/container/name="value"

Special Paths 1

The special paths described in this section are useful for getting and setting
preferences and for getting and setting the server’s state. The paths are
described in

� “Preferences Paths” (page 91)

C H A P T E R 1

About QuickTime Streaming Server Modules

Using QTSS Web Admin 91
  Apple Computer, Inc.

� “Server State Path” (page 91)

Preferences Paths 1

Setting a server or module preference causes the preference’s new value to be
flushed to the server’s XML preference file. The new value takes effect
immediately.

Server preferences are stored in /modules/admin/server/qtssSvrPreferences.
Module preferences are stored in /modules/admin/server/
qtssSvrModuleObjects/*/qtssModPrefs/.

The elements defined in qtssSvrPreferences can only be modified — they
cannot be deleted.

The elements defined in qtssModPrefs can be added to, deleted, and modified.

A module or the server can automatically restore some deleted elements if the
elements are needed by a module or the server. When applied to a qtssModPrefs
element, the ADD, DEL, and SET commands cause the streaming server’s .xml file
to be rewritten.

Server State Path 1

The qtssSvrState attribute controls the server’s state. The path is
/modules/admin/server/qtssSvrState. It can be modified as a UInt32 with the
following values.

qtssStartingUpState = 0,
qtssRunningState = 1,
qtssRefusingConnectionsState = 2,
qtssFatalErrorState = 3,
qtssShuttingDownState = 4,
qtssIdleState = 5

C H A P T E R 1

About QuickTime Streaming Server Modules

92 Using QTSS Web Admin

  Apple Computer, Inc.

QTSS Callback Routines 93
  Apple Computer, Inc.

C H A P T E R 2

QuickTime Streaming Server
Module Reference 2

Figure 2-0
Listing 2-0
Table 2-0

This chapter describes the callback routines and data types that modules use to
call the QuickTime Streaming Server.

QTSS Callback Routines 2

This section describes the QTSS callback routines that modules call to obtain
information from the server, to allocate and deallocate memory, to get and set
attribute values, and to manage client and RTSP sessions.

The QTSS callback routines are described in these sections:

� “QTSS Utility Callback Routines” (page 93)

� “QTSS Attribute Callback Routines” (page 97)

� “Stream Callback Routines” (page 114)

� “Service Callback Routines” (page 123)

� “RTSP Header Callback Routines” (page 125)

� “RTP Callback Routines” (page 129)

QTSS Utility Callback Routines 2

Modules call the following callback routines to register for roles, allocate and
deallocate memory, get the value of the server’s internal timer, and to convert a
value from the internal timer to the current time:

� QTSS_AddRole (page 94) to tell the server that the module wants to be called
for a specific role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

94 QTSS Callback Routines

  Apple Computer, Inc.

� QTSS_Milliseconds (page 97) to get the current value of the server’s internal
timer.

� QTSS_MilliSecsTo1970Secs (page 97) to convert a value returned by
QTSS_Milliseconds to the current time.

� QTSS_New (page 96) to allocate memory.

� QTSS_Delete (page 96) to dispose of memory allocated by QTSS_New.

QTSS_AddRole 2

Adds a role.

QTSS_Error QTSS_AddRole(QTSS_Role inRole);

inRole On input, a value of type QTSS_Role (page 167) that specifies the
role that is to be added.

result A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddRole is called from a role other than the Register role,
QTSS_RequestFailed if the module is registering for the RTSP
Request role and a module is already registered for that role,
and QTSS_BadArgument if the specified role does not exist.

DISCUSSION

The QTSS_AddRole callback routine tells the server that your module can be
called for the role specified by inRole.

The QTSS_AddRole callback can only be called from a module’s Register role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 95
  Apple Computer, Inc.

For this version of the server, you can add the roles listed in Table 2-1:

Table 2-1 Role constants

Role Constant Description

QTSS_ErrorLog_Role Called when an error occurs

QTSS_Initialize_Role Called at server startup after the Register
role to initialize the module

QTSS_RTSPFilter_Role Called to filter RTSP requests before the
server parses them

QTSS_RTSPRoute_Role Called to change the root folder for
handling an RTSP request

QTSS_RTSPPreProcessor_Role Called to process RTSP requests.
Modules can respond to the request by
sending packets to the client

QTSS_RTSPRequest_Role Called to process an RTSP request and
send a response to the client if no
module responds to the client in the
RTSP Preprocessor role

QTSS_RTSPPostProcessor_Role Called to post-process RTSP requests

QTSS_RTPSendPackets_Role Called to send RTP packets to the client

QTSS_ClientSessionClosing_Role Called to inform the module that a client
session is closing

QTSS_RTCPProcess_Role Called to process all RTCP packets sent
to the server by the client

QTSS_Shutdown_Role Called when the server shuts down

QTSS_OpenFilePreprocess_Role Called to process requests to open files.

QTSS_OpenFile_Role Called to open a file when all modules
that have registered for the
QTSS_OpenFilePreprocess_Role have
returned QTSS_FileNotFound

C H A P T E R 2

QuickTime Streaming Server Module Reference

96 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_New 2

Allocates memory.

void* QTSS_New(
FourCharCode inMemoryIdentifier,
UInt32 inSize);

inMemoryIdentifier
On input, a value of type FourCharCode that will be associated
with this memory allocation. The server can track the allocated
memory to make debugging memory leaks easier.

inSize On input, a value of type UInt32 that specifies in bytes the
amount of memory to be allocated.

result None.

DISCUSSION

The QTSS_New callback routine allocates memory. QTSS modules should call
QTSS_New whenever it needs to allocate memory dynamically.

To delete the memory that QTSS_New allocates, call QTSS_Delete (page 96).

QTSS_Delete 2

Deletes memory.

void* QTSS_Delete(void* inMemory);

inMemory On input, a pointer to an arbitrary value that specifies in bytes
the amount of memory to be deleted.

result None.

DISCUSSION

The QTSS_Delete callback routine deletes memory that was previously allocated
by QTSS_New (page 96).

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 97
  Apple Computer, Inc.

QTSS_Milliseconds 2

Gets the current value of the server’s internal clock.

QTSS_TimeVal QTSS_Milliseconds();

result The value of the server’s internal clock in milliseconds since
midnight January 1, 1970.

DISCUSSION

The QTSS_Milliseconds callback routine gets the current value of the server’s
internal clock since midnight January 1, 1970. Unless otherwise noted, all
millisecond values that the server provides in attributes are obtained from this
clock.

QTSS_MilliSecsTo1970Secs 2

Converts a value obtained from the server’s interal clock to the current time.

time_t QTSS_MilliSecsTo1970Secs(QTSS_TimeVal inQTSS_Milliseconds);

inQTSS_Milliseconds
On input, a value of type QTSS_TimeVal obtained by calling
QTSS_Milliseconds().

result A value of type time_t containing the current time.

DISCUSSION

The QTSS_MilliSecsto1970Secs callback routine converts a value obtained by
calling QTSS_Milliseconds (page 97) to the current time.

QTSS Attribute Callback Routines 2

Modules call the following routines to work with attributes:

� QTSS_AddStaticAttribute (page 98) to add an attribute to an object type.

C H A P T E R 2

QuickTime Streaming Server Module Reference

98 QTSS Callback Routines

  Apple Computer, Inc.

� QTSS_AddStaticAttribute (page 98) to add a static attribute to an object type.

� QTSS_AddInstanceAttribute (page 99) to add an instance attribute to an object.

� QTSS_RemoveInstanceAttribute (page 101) to remove an instance attribute
from an object.

� QTSS_IDForAttr (page 105) to get the ID of an attribute.

� QTSS_GetValue (page 106) to get the value of an attribute.

� QTSS_GetValuePtr (page 108) to get a pointer to an attribute value.

� QTSS_SetValue (page 109) to set the value of an attribute.

QTSS_AddStaticAttribute 2

Adds a static attribute to an object type.

QTSS_Error QTSS_AddStaticAttribute(
QTSS_ObjectType inObjectType,
const char* inAttributeName,
void* inUnused,
QTSS_AttrDataType inAttrDataType);

inType On input, a value of type QTSS_ObjectType that specifies the type
of object to which the attribute is to be added. For possible
values, see the section “QTSS Objects” (page 43).

inAttributeNameOn input, a pointer to a byte array that specifies the name of
the attribute that is to be added.

inUnused Always NULL.

QTSS_AttrDataType
On input, a value of type QTSS_AttrDataType (page 164) that
specifies the data type of the attribute that is being added.

result A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddStaticAttribute is called from a role other than the
Register role, QTSS_BadArgument if the specified object type does
not exist, the attribute name is too long, or a parameter is not
specified, and QTSS_AttrNameExists if an attribute of the
specified name already exists.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 99
  Apple Computer, Inc.

DISCUSSION

The QTSS_AddStaticAttribute callback routine adds the specified attribute to all
objects of the type specified by the inType parameter. The values of all added
static attributes are implicitly readable, writable, and preemptive safe, so their
values can be obtained by callingQTSS_GetValuePtr (page 108), QTSS_GetValue
(page 106) or QTSS_GetValueAsString (page 107).

Note
Calling QTSS_GetValuePtr is the most efficient and
recommended way to get the value of an attribute. Calling
QTSS_GetValueAsString is even less efficient than calling
QTSS_GetValue. �

The QTSS_AddStaticAttribute callback can only be called from the Register role.
Call QTSS_SetValue (page 109) to set the value of an added attribute and
QTSS_RemoveValue (page 113) to remove the value of an added attribute.

Once added, static attributes cannot be removed while the server is running.

Note
Adding static attributes is more efficient than adding
instance attributes, so adding static attributes instead of
adding instance attributes is strongly recommended. �

QTSS_AddInstanceAttribute 2

Adds an instance attribute to the instance of an object.

QTSS_Error QTSS_AddInstanceAttribute(
QTSS_Object inObject,
char* inAttrName,
void* inUnused,
QTSS_AttrDataType inAttrDataType);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object to which the instance attribute is to be added.

inAttrName On input, a pointer to a byte array that specifies the name of the
attribute that is to be added.

C H A P T E R 2

QuickTime Streaming Server Module Reference

100 QTSS Callback Routines

  Apple Computer, Inc.

inUnused Always NULL.

QTSS_AttrDataType
On input, a value of type QTSS_AttrDataType (page 164) that
specifies the data type of the attribute that is being added.

result A result code. Possible values are QTSS_NoErr, QTSS_OutOfState if
QTSS_AddStaticAttribute is called from a role other than the
Register role, QTSS_BadArgument if the specified object type does
not exist, the attribute name is too long, or a parameter is not
specified, and QTSS_AttrNameExists if an attribute of the
specified name already exists.

DISCUSSION

The QTSS_AddInstanceAttribute callback routine adds an attribute to the
instance of an object as specified by the inObject parameter. All added instance
attributes have values that are implicitly readable, writable, and preemptive
safe, so their values can be obtained by calling QTSS_GetValueAsString
(page 107) and QTSS_GetValuePtr (page 108). You can also call QTSS_GetValue
(page 106) to get the value of an added static attribute, but doing so is less
efficient.

The QTSS_AddInstanceAttribute callback can be called from any role. Typically, a
module adds an instance attribute and sets its value by calling QTSS_SetValue
(page 109) when it is first installed to add its default preferences to its module
preferences object. On subsequent runs of the server, the preferences will
already exist in the module’s module preferences object, so the module only
needs to call QTSS_GetValue (page 106), QTSS_GetValueAsString (page 107), or
QTSS_GetValuePtr (page 108) to get the value.

Note
Calling QTSS_GetValuePtr is the most efficient and
recommended way to get the value of an attribute. Calling
QTSS_GetValueAsString is even less efficient than calling
QTSS_GetValue. �

Call QTSS_RemoveValue (page 113) to remove the value of an added attribute.

Unlike static attributes, instance attributes can be removed. To remove an
instance attribute from the instance of an object, call
QTSS_RemoveInstanceAttribute (page 101).

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 101
  Apple Computer, Inc.

Note
Adding static attributes is more efficient than adding
instance attributes, so adding static attributes instead of
adding instance attributes is strongly recommended. �

QTSS_RemoveInstanceAttribute 2

Remove an instance attribute from the instance of an object.

QTSS_Error QTSS_RemoveInstanceAttribute(
QTSS_Object inObject,
QTSS_AttributeID inID);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object from which the instance attribute is to be removed.

inID On input, a value of type QTSS_AttributeID (page 165) that
specifies the ID of the attribute that is to be removed.

result A result code. Possible values are QTSS_NoErr, QTSS_BadArgument
if the specified object instance does not exist, and
QTSS_AttrDoesntExist if the attribute doesn’t exist.

DISCUSSION

The QTSS_RemoveInstanceAttribute callback routine removes the attribute
specified by the inID parameter from the instance of an object specified by the
inObject parameter.

The QTSS_RemoveInstanceAttribute callback can be called from any role.

C H A P T E R 2

QuickTime Streaming Server Module Reference

102 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_GetAttrInfoByID 2

Uses an attribute ID to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByID(
QTSS_Object inObject,
QTSS_AttributeID inAttrID,
QTSS_AttrInfoObject* outAttrInfoObject);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object having the attribute for which information is to be
obtained.

inAttrID On input, a value of type QTSS_AttributeID (page 165) that
specifies the attribute for which information is to be obtained.

ourAttrInfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject
(page 134) that can be used to get information about the
attribute specified by inAttrID.

result A result code. Possible values are QTSS_NoErr, QTSS_BadArgument
if the specified object does not exist, and QTSS_AttrDoesntExist if
the attribute doesn’t exist.

DISCUSSION

The QTSS_GetAttrInfoByID callback routine uses an attribute ID to get an
QTSS_AttrInfoObject (page 134) that can be used to get the attribute’s name, its
data type, permissions for reading and writing the attribute’s value, and
whether getting the attribute’s value is preemptive safe.

QTSS_GetAttrInfoByName 2

Uses an attribute’s name to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByName(
QTSS_Object inObject,
char* inAttrName,
QTSS_AttrInfoObject* outAttrInfoObject);

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 103
  Apple Computer, Inc.

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object having the attribute for which information is to be
obtained.

inAttrName On input, a pointer to a C string containing the name of the
attribute for which information is to be obtained.

outAttrInfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject
(page 134) that can be used to get information about the
attribute specified by inAttrName.

result A result code. Possible values are QTSS_NoErr, QTSS_BadArgument
if the specified object does not exist, and QTSS_AttrDoesntExist if
the attribute doesn’t exist.

DISCUSSION

The QTSS_GetAttrInfoByName callback routine uses an attribute ID to get an
QTSS_AttrInfoObject (page 134) that can be used to get the attribute’s ID, its
data type, and permissions for reading and writing the attribute’s value, and
whether getting the attribute’s value is preemptive safe.

The QTSS_GetAttrInfoByName callback routine returns a QTSS_AttrInfoObject for
both static and instance attributes.

QTSS_GetAttrInfoByIndex 2

Gets information about all of an object’s attributes by iteration.

QTSS_Error QTSS_GetAttrInfoByIndex(
QTSS_Object inObject,
UInt32 inIndex,
QTSS_AttrInfoObject* outAttrInfoObject);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object having the attribute for which information is to be
obtained.

C H A P T E R 2

QuickTime Streaming Server Module Reference

104 QTSS Callback Routines

  Apple Computer, Inc.

inIndex On input, a value of type UInt32 that specifies the index of the
attribute for which information is to be obtained. Start by setting
inIndex to zero. For the next call to QTSS_GetAttrInfoByIndex,
increment inIndex by one to get information for the next
attribute. Call QTSS_GetNumAttributes (page 104) to get the
number of attributes that inObject has.

ourAttrInfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject
(page 134) that can be used to get information about the
attribute specified by inAttrName.

result A result code. Possible values are QTSS_NoErr, QTSS_BadArgument
if the specified object does not exist, and QTSS_AttrDoesntExist if
the attribute doesn’t exist.

DISCUSSION

The QTSS_GetAttrInfoByIndex callback routine uses an attribute ID to get an
QTSS_AttrInfoObject (page 134) that can be used to get the attribute’s name and
ID, its data type and permissions for reading and write the attribute’s value.

The QTSS_GetAttrInfoByIndex callback routine returns a QTSS_AttrInfoObject
for both static and instance attributes.

QTSS_GetNumAttributes 2

Gets a count of an object’s attributes.

QTSS_Error QTSS_GetNumAttributes(
QTSS_Object inObject,
UInt32* outNumAttributes);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object whose attributes are to be counted.

outNumAttributesOn output, a pointer to a value of type UInt32 that contains
the count of the object’s attributes. (Reviewer’s: starting at zero
or one?).

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 105
  Apple Computer, Inc.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if the specified object does not exist.

DISCUSSION

The QTSS_GetNumAttributes callback routine gets the number of attributes for
the object specified by inObject. Having the number of attributes lets you know
how often to call QTSS_GetAttrInfoByIndex (page 103) when getting information
about each of an object’s attributes.

QTSS_IDForAttr 2

Gets the ID of a static attribute.

QTSS_Error QTSS_IDForAttr(
QTSS_ObjectType inType,
const char* inAttributeName,
QTSS_AttributeID* outID);

inType On input, a value of type QTSS_ObjectType that specifies the type
of object for which the ID is to be obtained. For possible values,
see the section “QTSS Objects” (page 43).

inAttributeName
On input, a pointer to a byte array that specifies the name of the
attribute whose ID is to be obtained.

outID On input, a pointer to a value of type QTSS_AttributeID
(page 165). On output, outID contains the ID of the attribute
specified by inAttributeName.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_IDForAttr callback routine obtains the attribute ID for the specified
static attribute in the specified object type. You can use the ID to obtain the
value of the attribute by calling QTSS_GetValue (page 106) or QTSS_GetValuePtr
(page 108).

C H A P T E R 2

QuickTime Streaming Server Module Reference

106 QTSS Callback Routines

  Apple Computer, Inc.

To get the ID of an instance attribute, call the QTSS_GetAttrInfoByName (page 102)
or the QTSS_GetAttrInfoByIndex (page 103) callback.

QTSS_GetValue 2

Copies the value of an attribute into a buffer.

QTSS_Error QTSS_GetValue (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
void* ioBuffer,
UInt32* ioLen);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object that contains the attribute whose value is to be
obtained.

inID On input, a value of type QTSS_AttributeID (page 165) that
specifies the ID of the attribute whose value is to be obtained.

inIndex On input, a value of type UInt32 that specifies which attribute
value to get (if the attribute can have multiple values) or zero for
single-value attributes.

ioBuffer On input, a pointer to a buffer. On output, ioBuffer contains the
value of the attribute specified by inID. If the buffer is too small
to contain the value, ioBuffer is empty.

ioLen On input, a pointer to a value of type UInt32 that specifies the
length of ioBuffer. On output, ioLen contains the length of the
valid data in ioBuffer.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, QTSS_BadIndex of the
index specified by inIndex does not exist, QTSS_NotEnoughSpace
if the attribute value is longer than the value specified by ioLen,
and QTSS_AttrDoesntExist if the attribute doesn’t exist.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 107
  Apple Computer, Inc.

DISCUSSION

The QTSS_GetValue callback routine copies the value of the specified attribute
into the provided buffer.

You must call QTSS_GetValue to get the value of any attribute that is not
preemptive safe. When getting the value of a preemptive safe attribute, you
should always call QTSS_GetValuePtr (page 108) because QTSS_GetValuePtr is the
most efficient function and less likely to encounter an error condition.

QTSS_GetValueAsString 2

Gets the value of an attribute as a C string.

QTSS_Error QTSS_GetValueAsString (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
char** outString);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object that contains the attribute whose value is to be
obtained.

inID On input, a value of type QTSS_AttributeID (page 165) that
specifies the ID of the attribute whose value is to be obtained.

inIndex On input, a value of type UInt32 that specifies which attribute
value to get (if the attribute can have multiple values) or zero for
single-value attributes.

outString On input, a pointer to an address in memory. On output,
outString points to the value of the attribute specified by inID
in string format.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, and QTSS_BadIndex of
the index specified by inIndex does not exist.

C H A P T E R 2

QuickTime Streaming Server Module Reference

108 QTSS Callback Routines

  Apple Computer, Inc.

DISCUSSION

The QTSS_GetValueAsString callback routine gets the value of the specified
attribute converts it to C string format and stores it at the location in memory
pointed to by the outString parameter.

When you no longer need outString, call QTSS_Delete to free the memory that
has been allocated for it.

The QTSS_GetValueAsString callback routine can be called to get the value of any
attribute regardless of whether the getting the attribute’s value is preemptive
safe.

Note
Calling QTSS_GetValueAsString is less efficient than calling
QTSS_GetValue (page 106), which is less efficient than calling
QTSS_GetValuePtr (page 108). Calling QTSS_GetValue is the
recommended way to get the value of an attribute that is
not preemptive safe and calling QTSS_GetValuePtr is the
recommended way to get the value of an attribute that is
preemptive safe. �

QTSS_GetValuePtr 2

Gets a pointer to an attribute value.

QTSS_Error QTSS_GetValuePtr (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
void** outBuffer,
UInt32* outLen);

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object containing the attribute whose value is to be obtained.

inID On input, a value of type QTSS_AttributeID (page 165) that
specifies the ID of an attribute.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 109
  Apple Computer, Inc.

inIndex On input, a value of type UInt32 that specifies which attribute
value to get (if the attribute can have multiple values) or zero for
single-value attributes.

outBuffer On input, a pointer to an address in memory. On output,
outBuffer points to the value of the attribute specified by inID.

outLen On output, a pointer to a value of type UInt32 that contains the
number of valid bytes pointed to by outBuffer.

result A result code. Possible values include QTSS_NoErr,
QTSS_NotPreemptiveSafe if inID is an attribute that is not
preemptive safe, QTSS_BadArgument if a parameter is invalid,
QTSS_BadIndex if the index specified by inIndex does not exist,
and QTSS_AttrDoesntExist if the attribute doesn’t exist.

DISCUSSION

The QTSS_GetValuePtr callback routine gets a pointer to an attribute value.
When getting the value of an attribute that is preemptive safe, you should
always call QTSS_GetValuePtr because it is faster, more efficient, and less likely
to generate an error.

Note
This QTSS_GetValuePtr callback cannot be used to get the
value of an attribute that is not preemptive safe. To get the
value of an attribute that is not preemptive safe, call
QTSS_GetValue (page 106) or QTSS_GetValueAsString
(page 107). �

QTSS_SetValue 2

Sets the value of an attribute.

QTSS_Error QTSS_SetValue (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex,
const void* inBuffer,
UInt32 inLen);

C H A P T E R 2

QuickTime Streaming Server Module Reference

110 QTSS Callback Routines

  Apple Computer, Inc.

inObject On input, a value of type QTSS_Object (page 167) that specifies
the object containing the attribute whose value is to be set.

inID On input, a value of type QTSS_AttributeID (page 165) that
specifies the ID of the attribute whose value is to be set.

inIndex On input, a value of type UInt32 that specifies which attribute
value to set (if the attribute can have multiple values) or zero for
single-value attributes.

inBuffer On input, a pointer to a buffer containing the value that is to be
set. When QTSS_SetValue returns, you can dispose of inBuffer.

inLen On input, a pointer to a value of type UInt32 that specifies the
length of valid data in inBuffer.

result A result code. Possible values are QTSS_NoErr, QTSS_BadIndex if
the index specified by inIndex does not exist, QTSS_BadArgument
if a parameter is invalid, QTSS_ReadOnly if the attribute is
read-only, and QTSS_AttrDoesntExist if the attribute doesn’t
exist.

DISCUSSION

The QTSS_SetValue callback routine sets the value of the specified attribute.

QTSS_TypeStringToType 2

Gets the attribute data type of a data type string that is in C string format.

QTSS_Error QTSS_TypeStringToType(
const char* inTypeString,
QTSS_AttrDataType* outType);

inTypeString On input, a pointer to a character array containing the attribute
data type in C string format.

outType On output, a pointer to a value of type QTSS_AttrDataType
(page 164) containing the attribute data type.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 111
  Apple Computer, Inc.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if inTypeString does not contain a value for
which an attribute data type can be returned.

DISCUSSION

The QTSS_TypeStringToType callback routine gets the attribute data type of a
data type string that is in C string format.

QTSS_TypeToTypeString 2

Gets the name in C string format of an attribute data type.

QTSS_Error QTSS_TypeToTypeString(
const QTSS_AttrDataType inType,
char** outTypeString);

inType On input, a pointer to a value of type QTSS_AttrDataType
(page 164) containing the attribute data type that is to be
returned in C string format.

outType On input, a pointer to an address in memory. On output,
outType points to a C string containing the attribute data type.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if inType does not contain a valid attribute
data type.

DISCUSSION

The QTSS_TypeToTypeString callback routine gets the name in C string format of
a value that is in QTSS_AttrDataType format.

C H A P T E R 2

QuickTime Streaming Server Module Reference

112 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_StringToValue 2

Converts an attribute data type in C string format to a value in
QTSS_AttrDataType format.

QTSS_Error QTSS_StringToValue(
const char* inValueAsString,
const QTSS_AttrDataType inType,
void* ioBuffer,
UInt32* ioBufSize);

inValueAsStringOn input, a pointer to a character array containing the value
that is to be converted.

inType On input, a value of type QTSS_AttrDataType (page 164) that
specifies the attribute data type to which the value pointed to by
inValueAsString is to be converted.

ioBuffer On input, a pointer to a buffer. On output, the buffer contains
the attribute data type to which inValueAsString has been
converted. The calling module must allocate ioBuffer before
calling QTSS_StringToValue.

ioBufSize On input, a pointer to a value of type UInt32 that specifies the
length of the buffer pointed to by ioBuffer. On output,
ioBufSize points to the length of data in ioBuffer.

result A result code. Possible values are QTSS_NoErr, QTSS_BadArgument
if inValueAsString or inType do not contain valid values, and
QTSS_NotEnoughSpace if the buffer pointed to by ioBuffer is too
small to contain the converted value.

DISCUSSION

The QTSS_StringToValue callback routine converts an attribute data type that is
in C string format to a value that is in QTSS_AttrDataType format.

When the memory allocated for the buffer pointed to by ioBuffer is no longer
needed, you should deallocate the memory.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 113
  Apple Computer, Inc.

QTSS_ValueToString 2

Converts an attribute data type in QTSS_AttrDataType format to a value in C
string format.

QTSS_Error QTSS_ValueToString(
const void* inValue,
const UInt32 inValueLen,
const QTSS_AttrDataType inType,
char** outString);

inValue On input, a pointer to a buffer containing the value that is to be
converted from QTSS_AttrDataType format.

inValueLen On input, a value of type UInt32 that specifies the length of the
value pointed to by inValue.

inType On input, a value of type QTSS_AttrDataType (page 164) that
specifies the attribute data type of the value pointed by inValue.

outString On output, a pointer to a location in memory containing the
attribute data type in C string format.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if inValue, inValueLen, or inType do not
contain valid values.

DISCUSSION

The QTSS_ValueToString callback routine converts an attribute data type in
QTSS_AttrDataType format to a value in C string format.

QTSS_RemoveValue 2

Removes the specified value from an attribute.

QTSS_Error QTSS_RemoveValue (
QTSS_Object inObject,
QTSS_AttributeID inID,
UInt32 inIndex);

C H A P T E R 2

QuickTime Streaming Server Module Reference

114 QTSS Callback Routines

  Apple Computer, Inc.

inObject On input, a value of type QTSS_Object having an atttribute
whose value is to be removed.

inValueLen On input, a value of type QTSS_AttributeID containing the
atttribute ID of the attribute whose value is to be removed.

inIndex On input, a value of type UInt32 that specifies the attribute value
that is to be removed. Attribute value indexes are numbered
starting from zero.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if InObject, inVID, or inIndex do not contain
valid values, QTSS_ReadOnly if the attribute is read-only, and
QTSS_BadIndex if the specified index does not exist.

DISCUSSION

The QTSS_RemoveValue callback routine removes the value of the specified
attribute. After the value is removed, the attribute values are renumbered.

Stream Callback Routines 2

This section describes the callback routines that modules call to perform I/O on
streams. The routine are

� QTSS_Advise (page 115) to advise that the specified section of a stream will
soon be read.

� QTSS_Read (page 115) to read data from a stream.

� QTSS_Seek (page 116) to set the position of a stream.

� QTSS_RequestEvent (page 117) to request to notification of when a stream
becomes readable or writable.

� QTSS_Write (page 119) to write data to a stream.

� QTSS_WriteV (page 120) to write data to a stream using an iovec structure.

� QTSS_Flush (page 121) to write data that may have been buffered.

Internally, the server performs I/O asynchronously, so QTSS stream callback
routines do not block and, unless otherwise noted, return the error
QTSS_WouldBlock if data cannot be written.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 115
  Apple Computer, Inc.

QTSS_Advise 2

Advises that the specified section of the stream will soon be read.

QTSS_Error QTSS_Advise(QTSS_StreamRef inRef,
UInt64 inPosition,
UInt32 inAdviseSize);

inRef On input, a value of type QTSS_StreamRef obtained by calling
QTSS_OpenFileObject that specifies the stream.

inPosition On input, the offset in bytes from the beginning of the stream
that marks the beginning of the advise section.

inAdviseSize On input, the size in bytes of the advise section.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed.

DISCUSSION

The QTSS_Advise callback routine tells a file system module that the specified
section of a stream will be read soon. The file system module may read ahead in
order to respond more quickly to future calls to QTSS_Read for the specified
stream.

QTSS_Read 2

Reads data from a stream.

QTSS_Error QTSS_Read(QTSS_StreamRef inRef,
void* ioBuffer,
UInt32 inBufLen,
UInt32* outLengthRead);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream from which data is to be read. Call QTSS_OpenFileObject
to obtain a stream reference for the file you want to read.

C H A P T E R 2

QuickTime Streaming Server Module Reference

116 QTSS Callback Routines

  Apple Computer, Inc.

ioBuffer On input, a pointer to a buffer in which data that is read is to be
placed.

inBufLen On input, a value of type UInt32 that specifies the length of the
buffer pointed to by ioBuffer.

outLenRead On output, a pointer to a value of type UInt32 that contains the
number of bytes that were read.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, QTSS_WouldBlock if
the read operation would block, or QTSS_RequestFailed if the
read operation failed.

DISCUSSION

The QTSS_Read callback routine reads a buffer of data from a stream.

QTSS_Seek 2

Sets the position of a stream.

QTSS_Error QTSS_Seek(QTSS_StreamRef inRef,
UInt64 inNewPosition);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream whose position is to be set. Call QTSS_OpenFileObject to
obtain stream reference.

inNewPosition On input, the offset in bytes from the start of the stream to
which the position is to be set.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed if the seek operation failed.

DISCUSSION

The QTSS_Seek callback routine sets the stream position to the value specified by
inNewPosition.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 117
  Apple Computer, Inc.

QTSS_RequestEvent 2

Requests notification of specified events.

QTSS_Error QTSS_RequestEvent(QTSS_StreamRef inStream,
QTSS_EventType inEventMask);

inStream On input, a value of type QTSS_StreamRef that specifies the
stream for which event notifications are requested.

inEventMask On input, a mask that represents the events for which
notifications are requested. For possible values, see the
Discussion section.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed if the call failed.

DISCUSSION

The QTSS_RequestEvent callback requests that the caller be notified when the
specified events occur on the specified stream. After calling QTSS_RequestEvent,
the calling module should return as soon as possible from its current module
role. The server preserves the calling module’s current state and, when the
event occurs, calls the module in the role the module was in when it called
QTSS_RequestEvent.

The following enumeration defines values for the inEventMask parameter:

enum
{

QTSS_ReadableEvent = 1,
QTSS_WriteableEvent = 2

};
typedef UInt32 QTSS_EventType;

C H A P T E R 2

QuickTime Streaming Server Module Reference

118 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_SignalStream 2

Tells the server that a stream has become available for I/O.

QTSS_Error QTSS_RequestEvent(QTSS_StreamRef inStream,
QTSS_EventType inEventMask);

inStream On input, a value of type QTSS_StreamRef that specifies the
stream that has become available for I/O.

inEventMask On input, a mask that represents whether the stream has
become available for reading (QTSS_ReadableEvent) or writing
(QTSS_WriteableEvent).

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, QTSS_OutOfState if
this callback is made from a role that does not allow
asynchronous events, and QTSS_RequestFailed if the call failed.

DISCUSSION

The QTSS_SignalStream callback routine tells the server that the stream
represented by inStream has become available for I/O. Currently only file
system modules have reason to call QTSS_SignalStream.

The following enumeration defines constants for the inEventMask parameter:

enum
{

QTSS_ReadableEvent= 1,
QTSS_WriteableEvent= 2

};
typedef UInt32 QTSS_EventType;

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 119
  Apple Computer, Inc.

QTSS_Write 2

Writes data to a stream.

QTSS_Error QTSS_Write(
QTSS_StreamRef inRef,
void* inBuffer,
UInt32 inLen,
UInt32* outLenWritten,
UInt32 inFlags);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream to which data is to be written.

inBuffer On input, a pointer to a buffer containing the data that is to be
written.

inLen On input, a value of type UInt32 that specifies the length of the
data in the buffer pointed to by ioBuffer.

outLenWritten On output, a pointer to a value of type UInt32 that contains the
number of bytes that were written.

inFlags On input, a value of type UInt32. See the Discussion section for
possible values.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, QTSS_NotConnected if
the stream receiver is no longer connected, and QTSS_WouldBlock
if the stream cannot be completely flushed at this time.

DISCUSSION

The QTSS_Write callback routine writes a buffer of data to a stream.

The following enumeration defines constants for the inFlags parameter:

enum
{

qtssWriteFlagsIsRTP = 0x00000001,
qtssWriteFlagsIsRTCP= 0x00000002

};

C H A P T E R 2

QuickTime Streaming Server Module Reference

120 QTSS Callback Routines

  Apple Computer, Inc.

These flags are relevant when writing to an RTP stream reference and tell the
server whether the data written should be sent over the RTP channel
(qtssWriteFlagsIsRTP) or the RTCP channel of the specified RTP stream
(qtssWriteFlagsIsRTCP).

QTSS_WriteV 2

Writes data to a stream using an iovec structure.

QTSS_Error QTSS_WriteV(
QTSS_StreamRef inRef,
iovec* inVec,
UInt32 inNumVectors,
UInt32 inTotalLength,
UInt32* outLenWritten);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream to which data is to be written.

inVec On input, a pointer to an iovec structure. The first member of
the iovec structure must be empty.

inNumVectors On input, a value of type UInt32 that specifies the number of
vectors.

inTotalLength On input, a value of type UInt32 specifying the total length of
inVec.

outLenWritten On output, a pointer to a value of type UInt32 containing the
number of bytes that were written.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is NULL, and QTSS_WouldBlock if
the write operation would block.

DISCUSSION

The QTSS_WriteV callback routine writes a data to a stream using an iovec
structure in a way that is similar to the POSIX writev call.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 121
  Apple Computer, Inc.

QTSS_Flush 2

Forces an immediate write operation.

QTSS_Error QTSS_Flush(QTSS_StreamRef inRef);

inRef On input, a value of type QTSS_StreamRef that specifies the
stream for which buffered data is to be written.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is NULL, and QTSS_WouldBlock if
the stream cannot be flushed completely at this time.

DISCUSSION

The QTSS_Flush callback routine forces the stream to immediately write any data
that has been buffered. Some QTSS stream references, such as QTSSRequestRef,
buffer data before sending it.

File System Callback Routines 2

Modules use the callback routines described in this section to open and close a
file object. The files system callback routines are:

� QTSS_OpenFileObject (page 121)

� QTSS_CloseFileObject (page 123)

QTSS_OpenFileObject 2

Opens a file.

QTSS_Error QTSS_OpenFileObject(
char* inPath,
QTSS_OpenFileFlags inFlags,
QTSS_Object* outFileObject);

C H A P T E R 2

QuickTime Streaming Server Module Reference

122 QTSS Callback Routines

  Apple Computer, Inc.

inPath On input, a pointer to a null-terminated C string containing the
full path to the file in the local file system that is to be opened.

inFlags On input, a value of type QTSS_OpenFileFlags specifying flags
that describe how the file is to be opened. For possible values,
see the Discussion section below.

outFileObject On output, a pointer to a value of type QTSS_Object (page 167) in
which the file object for the opened file is to be placed.

result A result code. Possible values include QTSS_NoErr,
QTSS_BadArgument if a parameter is invalid, and
QTSS_FileNotFound if the specified file does not exist.

DISCUSSION

The QTSS_OpenFileObject callback routine opens the specified file and returns a
file object for it. One of the attributes of the file object is a stream reference that
is passed to QTSS stream callback routines to read and write data to the file and
to perform other file operations.

The following enumeration defines constants for the inFlags parameter:

enum
{

qtssOpenFileNoFlags = 0,
qtssOpenFileAsync= 1,
qtssOpenFileReadAhead= 2

};
typedef UInt32 QTSS_OpenFileFlags;

Constant descriptions

qtssOpenFileNoFlagsNo flags are specified.
qtssOpenFileAsync The file stream will be read asynchronously. Reads may

return QTSS_WouldBlock. Modules that open files with
qtssOpenFileAsync should call QTSS_RequestEvent to be
notified when data is available for reading.

qtssOpenFileReadAheadThe file stream will be read in order from beginning to
end.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 123
  Apple Computer, Inc.

QTSS_CloseFileObject 2

Closes a file.

QTSS_Error QTSS_CloseFileObject(QTSS_Object inFileObject);

inFileObject On input, a value of type QTSS_Object (page 167) that represents
the file that is to be closed.

result A result code. Possible values include QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_CloseFileObject callback routine closes the specified file.

Service Callback Routines 2

Modules use the callback routines described in this section to register and
invoke services. The service callback routines are:

� QTSS_AddService (page 123) to add a service that other modules can call.

� QTSS_IDForService (page 124) to get the ID of a service.

� QTSS_DoService (page 125) to call a service provided by another module or by
the server.

QTSS_AddService 2

Adds a service.

QTSS_Error QTSS_AddService(
const char* inServiceName,
QTSS_ServiceFunctionPtr inFunctionPtr);

inServiceName On input, a pointer to a string containing the name of the service
that is being added.

C H A P T E R 2

QuickTime Streaming Server Module Reference

124 QTSS Callback Routines

  Apple Computer, Inc.

inFunctionPtr On input, a pointer to the module that provides the service that
is being added.

result A result code. Possible values include QTSS_NoErr,
QTSS_OutOfState if QTSS_AddService is not called from the
Register role, and QTSS_BadArgument if inServiceName is too long
or if a parameter is NULL.

DISCUSSION

The QTSS_AddService callback routine makes the specified service available for
other modules to call.

Note
The QTSS_AddService callback can only be called from the
Register role. �

QTSS_IDForService 2

Resolves a service name to a service ID.

QTSS_Error QTSS_IDForService(
const char* inTag,
QTSS_ServiceID* outID);

inTag On input, a pointer to a string containing the name of the service
that is to be resolved.

outID On input, a pointer to a value of type QTSS_ServiceID. On
output, QTSS_ServiceID contains the ID of the service specified
by inTag.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_IDForService callback routine returns in the outID parameter the
service ID of the service specified by the inTag parameter. You can use the

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 125
  Apple Computer, Inc.

service ID to call QTSS_DoService (page 125) to invoke the service that serviceID
represents.

QTSS_DoService 2

Invokes a service.

QTSS_Error QTSS_DoService(
QTSS_ServiceID inID,
QTSS_ServiceFunctionArgsPtr inArgs);

inID On input, a value of type QTSS_ServiceID that specifies the
service that is to be invoked. Call QTSS_IDForAttr (page 105) to
get the service ID of the service you want to invoke.

inArgs On input, a value of type QTSS_ServiceFunctionArgsPtr that
points to the arguments that are to be passed to the service.

result A result code returned by the service or QTSS_IllegalService if
inID is invalid.

DISCUSSION

The QTSS_DoService callback routine invokes the service specified by inID.

RTSP Header Callback Routines 2

As a convenience to modules that want to send RTSP responses, the server
provides the utilities described in this section for formatting RTSP responses
properly. The routines are

� QTSS_AppendRTSPHeader (page 126) to append information to an RTSP header.

� QTSS_AppendRTSPHeader (page 126) to send an RTSP header

� QTSS_SendStandardRTSPResponse (page 127) to send an RTSP response to a
client.

C H A P T E R 2

QuickTime Streaming Server Module Reference

126 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_AppendRTSPHeader 2

Appends information to an RTSP header.

QTSS_Error QTSS_AppendRTSPHeader(
QTSS_RTSPRequestObject inRef,
QTSS_RTSPHeader inHeader,
const char* inValue,
UInt32 inValueLen);

inRef On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

inHeader On input, a value of type QTSS_RTSPHeader.

inValue On input, a pointer to a byte array containing the header that is
to be appended.

inValueLen On input, a value of type UInt32 containing the length of valid
data pointed to by inValue.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_AppendRTSPHeader callback routine appends headers to an RTSP
header. After you call QTSS_AppendRTSPHeader, call QTSS_SendRTSPHeaders
(page 126) to send the entire header.

QTSS_SendRTSPHeaders 2

Sends an RTSP header.

QTSS_Error QTSS_SendRTSPHeaders(QTSS_RTSPRequestOjbect inRef);

inRef On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 127
  Apple Computer, Inc.

DISCUSSION

The QTSS_SendRTSPHeaders callback routine sends an RTSP header. When a
module calls QTSS_SendRTSPHeaders, the server sends a proper RTSP status line,
using the request’s current status code. The server also sends the proper CSeq
header, session ID header, and connection header.

QTSS_SendStandardRTSPResponse 2

Sends an RTSP response to a client.

QTSS_Error QTSS_SendStandardRTSPResponse(
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_Object inRTPInfo,
UInt32 inFlags);

inRTSPRequest On input, a value of type QTSS_RTSPRequestObject for the RTSP
stream.

inRTPInfo On input, a value of type QQTSS_Object (page 167) that identifies
the QTSS object type.

inFlags On input, a value of type UInt32. Set inFlags to
qtssPlayRespWriteTrackInfo if you want the server to append
the seq number, a timestamp, and SSRC information to an
RTP-Info header.

result A result code. Possible values include QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_SendStandardRTSPResponse callback routine writes a standard
response to the stream specified by the inRTSPRequest parameter. The actual
response that is written depends on the method.

The following enumeration defines a constant for the inFlags parameter:

C H A P T E R 2

QuickTime Streaming Server Module Reference

128 QTSS Callback Routines

  Apple Computer, Inc.

enum
{

qtssPlayRespWriteTrackInfo = 0x00000001
};

Table 2-2 describes the data returned by each method that the
QTSS_SendStandardRTSPResponse callback supports.

Table 2-2 QTSS_SendStandardRTSPResponse method responses

Method Response Object

DESCRIBE Writes status line, CSeq, SessionID, and
connection headers as determined by the
request.QTSS_ClientSessionObject (page 135)

Writes a content-base header with the provided
URL as the content base. Writes application/sdp
as the content-type header.

QTSS_ClientSessionObje
ct (page 135)

ANNOUNCE Writes status line, Cseq, and connection headers as
determined by the request

QTSS_ClientSessionObje
ct (page 135)

SETUP Writes status line, CSeq, SessionID, and
connection headers as determined by the request.

Writes a Transport header. If the connection is over
UDP, the Transport header includes client and
server ports.

QTSS_ClientSessionObje
ct (page 135)

PLAY Writes status line, CSeq, SessionID, and
connection headers as determined by the request.

Set inFlags to qtssPlayRespWriteTrackInfo if you
want the server to append the seq number, a
timestamp, and SSRC information into an
RTP-Info header.

QTSS_ClientSessionObje
ct (page 135)

PAUSE Writes status line, CSeq, and connection headers
as determined by the request.

QTSS_ClientSessionObje
ct (page 135)

TEARDOWN Writes status line, CSeq, SessionID, and
connection headers as determined by the request.

QTSS_ClientSessionObje
ct (page 135)

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 129
  Apple Computer, Inc.

RTP Callback Routines 2

QTSS modules can generate and send RTP packets in response to an RTSP
request. Typically RTP packets are sent in response to a SETUP request from the
client. Currently, only one module can generate packets for a particular session.

The RTP callback routines are

� QTSS_AddRTPStream (page 129), which is called by a module to enable the
sending of RTP packets to a client. Only one module can call
QTSS_AddRTPStream for any particular session.

� QTSS_Play (page 130), which is called by a module to start the playing of
streams for a client session.

� QTSS_Pause (page 132), which is called by a module pause the playing of
streams for a client session

� QTSS_Teardown (page 132), which is called by a module to close a client
session.

QTSS_AddRTPStream 2

Enables a module to send RTP packets to a client.

QTSS_Error QTSS_AddRTPStream(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_RTPStreamObject* outStream,
QTSS_AddStreamFlags inFlags);

inClientRequest
On input, a value of type QTSS_ClientSessionObject that
identifies the client session for which the sending of RTP packets
is to be enabled.

inRTSPRequest On input, a value of type QTSS_RTSPRequestObject.

outStream On output, a pointer to a value of type QTSS_RTPStreamObject,
containing the newly created stream.

inFlags On input, a value of type QTSS_AddStreamFlags that specifies
stream options. See the Discussion section for possible values.

C H A P T E R 2

QuickTime Streaming Server Module Reference

130 QTSS Callback Routines

  Apple Computer, Inc.

result A result code. Possible values are QTSS_NoErr,
QTSS_RequestFailed if the QTSS_RTPStreamObject couldn’t be
created, and QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_AddRTSPStream callback routine enables a module to send RTP packets
to a client in response to an RTSP request. Call QTSS_AddRTSPStream multiple
times in order to add more than one stream to the session.

The following enumeration defines possible values for the inFlags parameter:

enum
{

qtssASFlagsAllowDestination = 0x00000001,
qtssASFlagsForceInterleave = 0x00000002

};
typedef UInt32 QTSS_AddStreamFlags;

To start playing a stream, call QTSS_Play (page 130).

QTSS_Play 2

Starts playing streams associated with a client session.

QTSS_Error QTSS_Play(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_PlayFlags inPlayFlags);

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session for which the sending of RTP packets
was enabled by previously calling QTSS_AddRTPStream (page 129).

inRTSPRequest On input, a value of type QTSS_RequestObject.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Callback Routines 131
  Apple Computer, Inc.

inPlayFlags On input, a value of type QTSS_PlayFlags. Set inPlayFlags to the
constant qtssPlaySendRTCP to cause the server to generate RTCP
sender reports automatically while playing. Otherwise, the
module is responsible for generating sender reports that specify
play characteristics.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed if no streams have been added to the
session.

DISCUSSION

The QTSS_Play callback routine starts playing streams associated with the
specified client session. After calling QTSS_Play, the module is invoked in the
RTP Send Packets role.

Before calling QTSS_Play, the module should set the following attributes of the
object QTSS_RTPStreamObject for this RTP stream:

� The qtssRTPStrFirstSeqNumber attribute, which should be set to the sequence
number of the first packet after the last PLAY request was issued. The server
uses the sequence number to generate a proper RTSP PLAY response.

� The qtssRTPStrFirstTimestamp attribute, which should be set to the
timestamp of the first RTP packet generated for this stream after the last
PLAY request was issued. The server uses the timestamp to generate a
proper RTSP PLAY response.

� The qtssRTPStrTimescale attribute, which should be set to the timescale for
the track.

Call QTSS_Pause (page 132) to pause playing or call QTSS_Teardown (page 132) to
close the client session.

Note
The module that called QTSS_AddRTPStream (page 129) is the
only module that can call QTSS_Play. �

C H A P T E R 2

QuickTime Streaming Server Module Reference

132 QTSS Callback Routines

  Apple Computer, Inc.

QTSS_Pause 2

Pauses a stream that is playing.

QTSS_Error QTSS_Pause(QTSS_ClientSessionObject inClientSession);

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session that is to be paused.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_Pause callback routine pauses playing for a stream.

Note
The module that called QTSS_AddRTPStream (page 129) is the
only module that can call QTSS_Pause. �

QTSS_Teardown 2

Closes a client session.

QTSS_Error QTSS_Teardown(QTSS_ClientSessionObject inClientSession);

inClientSession
On input, a value of type QTSS_ClientSessionObject that
identifies the client session that is to be closed.

result A result code. Possible values are QTSS_NoErr and
QTSS_BadArgument if a parameter is invalid.

DISCUSSION

The QTSS_Teardown callback routine closes a client session. Calling
QTSS_Teardown causes the calling module to be invoked in the Client Session
Closing role for the session identified by the inClientSession parameter.

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 133
  Apple Computer, Inc.

Note
The module that called QTSS_AddRTPStream (page 129) is the
only module that can call QTSS_Teardown. �

QTSS Data Types 2

This section describes QTSS data types. The data types are organized into the
following sections:

� “QTSS Objects” (page 133)

� “Other QTSS Data Types” (page 163)

QTSS Objects 2

This section describes QTSS objects and their attributes. The objects are

� QTSS_AttrInfoObject (page 134), which consists of attributes that describe an
attribute, such as the attributes name and attribute ID

� QTSS_ClientSessionObject (page 135), which consists of attributes that
describe a client session

� QTSS_FileObject (page 138), which consists of attributes that describe a file
that a module has opened

� QTSS_ModuleObject (page 139), which consists of atttributes that describe a
loaded QTSS module, such as its name and version number, a description of
what it does, and a list of the roles for which the module is registered

� QTSS_ModulePrefsObject (page 140), which consists of attributes containing a
module’s preferences

� QTSS_PrefsObject (page 141), which consists of attributes that contain server
preferences

� QTSS_RTPStreamObject (page 148), which consists of attributes that describe a
particular RTP stream

� QTSS_RTSPHeaderObject (page 152), which consists of attributes that contain
all of the header information sent by the client in an RSTP request

C H A P T E R 2

QuickTime Streaming Server Module Reference

134 QTSS Data Types

  Apple Computer, Inc.

� QTSS_RTSPRequestObject (page 153), which consists of attributes that describe
an RTSP request

� QTSS_RTSPSessionObject (page 156), which consists of attributes that describe
an RTSP session

� QTSS_ServerObject (page 158), which consists of attributes that describe a
particular QuickTime Streaming Server.

QTSS_AttrInfoObject 2

A QTSS_AttrInfoObject consists of attributes that describe an attribute. Table 2-3
lists the attributes for the object type QTSS_ClientSessionObject.

Note
All QTSS_AttrInfoObject attributes are preemptive safe, so
they can be read by calling QTSS_GetValue (page 106) or
QTSS_GetValuePtr (page 108). �

Table 2-3 Attributes of the object type QTSS_AttrInfoObject

Attribute Name and Content Read/write Data Type

qtssAttrName

The attribute’s name.
Read char array

qtssAttrID

The attribute’s identifier.
Read QTSS_AttributeID

(page 165)

qtssAttrDataType

The attribute’s data type.
Read QTSS_AttrDataType

(page 164)

qtssAttrPermissions

Permissions for reading and writing the attribute’s
value, and whether getting the attribute’s value is
preemptive safe.

Read QTSS_AttrPermission
(page 166)

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 135
  Apple Computer, Inc.

QTSS_ClientSessionObject 2

A QTSS_ClientSessionObject is the collection of attributes that describe client
sessions.Table 2-4 lists the attributes for the object QTSS_ClientSessionObject.
These attributes are valid for all roles that receive a value of type
QTSS_ClientSessionObject in the structure the server passes to them.

Note
All of the attributes for the object QTSS_ClientSessionObject
are preemptive safe, so they can be read by calling
QTSS_GetValue (page 106) or QTSS_GetValuePtr (page 108). �

Table 2-4 Attributes of the object QTSS_ClientSessionObject

Attribute Name and Content Read/Write Data Type

qtssCliSesStreamObjects

Iterated attribute containing all RTP stream
references (QTSS_RTPStreamObject) belonging to
this session.

Read QTSS_RTPStreamObject
(page 148)

qtssCliSesCreateTimeInMsec

The time in milliseconds that the session was
created.

Read QTSS_TimeVal
(page 170)

qtssCliSesFirstPlayTimeInMsec

The time in milliseconds at which QTSS_Play was
first called.

Read QTSS_TimeVal
(page 170)

qtssCliSesPlayTimeInMsec

The time in milliseconds at which QTSS_Play was
most recently called.

Read QTSS_TimeVal
(page 170)

qtssCliSesAdjustedPlayTimeInMsec

The time in milliseconds at which the most recent
play was issued, adjusted forward to delay
sending packets until the play response is issued.

Read QTSS_TimeVal
(page 170)

qtssCliSesRTPBytesSent

The number of RTP bytes sent for this session.
Read SInt32

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

136 QTSS Data Types

  Apple Computer, Inc.

qtssCliSesRTPPacketsSent

The number of RTP packets sent for this session.
Read SInt32

qtssCliSesState

The state of this session. Possible values are
qtssPausedState and qtssPlayingState.

Read QTSS_RTPSessionState

qtssCliSesPresentationURL

The presentation URL for this session. This URL
is the “base” URL for the session. RTSP requests
to the presentation URL are assumed to affect all
streams of the session.

Read char array

qtssCliSesMovieDurationInSecs

Duration of the movie for this session in seconds.
The value is zero unless set by a module.

Read/write Float64

qtssCliSesMovieSizeInBytes

Movie size in bytes. The value is zero unless set
by a module.

Read/write UInt64

qtssCliSesMovieAverageBitRate

The average bits per second based on total RTP
bits/movie duration. The value is zero unless set
by a module.

Read/write UInt32

qtssCliSesFullURL

The full presentation URL for this session. Same
as the qtssCliSesPresentationURL attribute but
includes
rtsp://domain_name prefix.

Read char array

qtssCliSesHostName

The host name for this session. The domain_name
portion of the qtssCliSesFullURL attribute.

Read char array

qtssCliRTSPSessRemoteAddrStr

The IP address of client in dotted decimal format.
Read char array

continued

Table 2-4 Attributes of the object QTSS_ClientSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 137
  Apple Computer, Inc.

qtssCliRTSPSessLocalDNS

The DNS name of local IP address for this RTSP
connection.

Read char array

qtssCliRTSPSessLocalAddrStr

The local IP address for this RTSP connection in
dotted decimal format.

Read char array

qtssCliRTSPSesUserName

The name of the user from the most recent
request.

Read char array

qtssCliRTSPSesURLRealm

The realm from the most recent request.
Read char array

qtssCliRTSPReqRealStatusCode

The status from the most recent request. (Same as
the qtssRTSPReqRTSPReqRealStatusCode attribute.)

Read UInt32

qtssCliTeardownReason

The teardown reason. If not requested by the
client, the reason for the disconnection must be
set by the module that calls QTSS_Teardown.

Read/write QTSS_CliSesTeardownRe
ason (page 166)

qtssCliSesReqQueryString

The query string from the request that created
this client session.

Read char array

qtssCliRTSPReqRespMsg

The error message sent to the client for the most
recent request if the response was an error.

Read char array

qtssCliSesCurrentBitRate

The movie bit rate.
Read UInt32

continued

Table 2-4 Attributes of the object QTSS_ClientSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

138 QTSS Data Types

  Apple Computer, Inc.

QTSS_FileObject 2

A QTSS_FileObject is the collection of attributes that describe a file that has been
opened. Table 2-5 lists the attributes for the object QTSS_FileObject. These
attributes are valid for all roles that receive a value of type QTSS_FileObject in
the structure the server passes to them.

Note
All of the attributes for the object QTSS_FileObject are
preemptive safe, so they can be read by calling
QTSS_GetValue (page 106) or QTSS_GetValuePtr (page 108). �

qtssCliSesPacketLossPercent

Percentage of packets lost;.5 = 50%
Read Float32

qtssCliSesTimeConnectedinMsec

Time in milliseconds that the client session has
been connected.

Read SInt64

qtssCliSesCounterID

A counter-based unique ID for the session.
Read UInt32

Table 2-5 Attributes of the object QTSS_FileObject

Attribute Name and Content Read/Write Data Type

qtssFlObjStream

The stream reference for this file object.
Read QTSS_StreamRef

qtssFlObjFileSysModuleName

The name of the file system module that handles
this file object

Read char array

continued

Table 2-4 Attributes of the object QTSS_ClientSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 139
  Apple Computer, Inc.

QTSS_ModuleObject 2

A QTSS_ModuleObject is the collection of attributes that describe a module,
including its name, version number, a description of what the module does, its
preferences, and what roles the module is registered for.

Table 2-6 lists the attributes for the QTSS_ModuleObject object. These attributes
are valid for all roles that receive a value of type QTSS_ModuleObject in the
structure the server passes to them.

qtssFlObjLength

The length of the file in bytes.
Read/write UInt64

qtssFlObjPosition

The current position in bytes of the file’s file
pointer from the beginning of the file (byte zero).

Read UInt64

qtssFlObjModDate

The date and time of the last time the file was
modified.

Read/write QTSS_TimeVal
(page 170)

Table 2-5 Attributes of the object QTSS_FileObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

140 QTSS Data Types

  Apple Computer, Inc.

Note
With the exception of qtssModDesc and qtssModVersion,
QTSS_ModuleObject attributes are preemptive safe and can
be read by calling QTSS_GetValue (page 106) or
QTSS_GetValuePtr (page 108). �

QTSS_ModulePrefsObject 2

The module preferences object type QTSS_ModulePrefsObject is the collection of
attributes that contain a module’s preferences.

Each module is responsible for adding attributes to its module preferences
object type and setting their values. The values of the attributes in the module
preferences object are persistent between invocations of the server because the

Table 2-6 Attributes of the QTSS_ModuleObject object

Attribute Name and Content Read/Write Data Type

qtssModName

The module’s name.
Read char array

qtssModDesc

Description of what the module does.
Read/write char array

qtssModVersion

The module’s version number in the format
0xMM.m.v.bbbb, where M = major version,
m = minor version, v = very minor version, and
b = build number.

Read/write UInt32

qtssModRoles

List of all the roles for which this module is
registered.

Read QTSS_Role (page 167)

qtssModPrefs

An object whose attributes store the preferences
for this module.

Read QTSS_ModulePrefsObje
ct (page 140)

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 141
  Apple Computer, Inc.

server writes the module preferences object for each module to a configuration
file that the server reads when it is started.

QTSS_PrefsObject 2

A QTSS_PrefsObject is the collection of attributes that contain server
preferences. Table 2-7 lists the attributes of the object QTSS_PrefsObject. These
attributes are valid in all methods.

Note
None of the attributes for the object QTSS_PrefsObject are
preemptive safe, so they can only be read by calling
QTSS_GetValue (page 106). �

Table 2-7 Attributes of the object QTSS_PrefsObject

Attribute Name and Content Read/Write Data Type

qtssPrefsRTSPTimeout

Amount of time in seconds the server tells clients
it will wait before disconnecting idle RTSP clients.

Read/write UInt32

qtssPrefsRealRTSPTimeout

The amount of time in seconds the server actually
waits before disconnecting idle RTSP clients. This
timer is reset each time the server receives a new
RTSP request from the client. A value of zero
means that there is no timeout.

Read/write UInt32

qtssPrefsRTPTimeout

The amount of time in seconds the server will wait
before disconnecting idle RTP clients. This timer is
reset each time the server receives an RTCP status
packet from a client. A value of zero means there
is no timeout.

Read/write UInt32

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

142 QTSS Data Types

  Apple Computer, Inc.

qtssPrefsMaximumConnections

The maximum number of concurrent RTP
connections the server allows. A value of –1 means
that an unlimited number of connections are
allowed.

Read/write SInt32

qtssPrefsMaximumBandwidth

The maximum amount of bandwidth the server is
allowed to serve in K bits. If the server exceeds
this value, it responds to new client requests for
additional streams with RTSP error 453, “Not
Enough Bandwidth”. A value of –1 means the
amount bandwidth the server is allowed to serve
is unlimited.

Read/write SInt32

qtssPrefsMovieFolder

The path to the root movie folder.
Read/write char array

qtssPrefsRTSPIPAddr

Specifies the IP address in dotted-decimal format
the server should accept RTSP client connections
on. A value of 0 means the server should accept
connections on all IP addresses that are currently
enabled on the system.

Read/write char array

qtssPrefsBreakOnAssert

If true, the server will stop and enter the debugger
when an assert fails

Read/write Bool16

qtssPrefsAutoRestart

If true, the server automatically restarts itself if it
crashes.

Read/write Bool16

qtssPrefsTotalBytesUpdate

The interval in seconds between updates of the
server’s total bytes and current bandwidth
statistics.

Read/write UInt32

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 143
  Apple Computer, Inc.

qtssPrefsAvgBandwidthUpdate

The interval in seconds between computations of
the server’s average bandwidth.

Read/write UInt32

qtssPrefsSafePlayDuration

If the server finds it is serving more than its
allowed maximum bandwidth (using the average
bandwidth computation), it will attempt to
disconnect the most recently connected clients
until the average bandwidth drops to acceptable
levels. However, it will not disconnect clients if
they’ve been connected for longer than the time in
seconds specified by this attribute. If this value is
set to zero, the server does not disconnect clients.

Read/write UInt32

qtssPrefsModuleFolder

The path to the folder containing dynamic
loadable server modules. The configuration file
sets this attribute to
“/usr/local/sbin/StreamingServerModules”.

Read/write char array

The built-in error log module that loads before all other modules uses the following seven
attributes:

qtssPrefsErrorLogName

Sets the name of the error log file. The
configuration file sets this value to “Error”.

Read/write char array

qtssPrefsErrorLogDir

Sets the path to the directory containing the error
log file. The configuration file sets this value to
“/Library/QuickTimeStreaming/Logs”.

Read/write char array

qtssPrefsErrorRollInterval

The interval in days between rolling the error log
file. A value of zero means that there is no
interval.

Read/write UInt32

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

144 QTSS Data Types

  Apple Computer, Inc.

qtssPrefsMaxErrorLogSize

The maximum size in bytes of the error log. A
value of zero means that the server does not
impose a limit.

Read/write UInt32

qtssPrefsErrorLogVerbosity

Sets the verbosity level of messages the error
logger logs. The following values are meaningful:

0 = log fatal errors
1 = log fatal errors and warnings
2 = log fatal errors, warnings, asserts
3 = log fatal errors, warnings, asserts, and debug
messages

Read/write UInt32

qtssPrefsScreenLogging

Set to true to true to write error log messages to
the terminal window. Note that in order to see the
messages, the server must be launched from the
command line in foreground mode (triggered by
the use of the -d flag).

Read/write Bool16

qtssPrefsErrorLogEnabled

Set to true to enable error logging.
Read/write Bool16

qtssPrefsTCPMinThinDelayToleranceInMSec

If a packet is late by less than this number of
milliseconds, the server stops thinning. (Thinning
is reducing the bitrate of the stream when there is
not enough bandwidth between the client and the
server to transmit the full stream.) This attribute
applies to all stream transports, not just TCP. This
is a default time that can be overridden by the
late-tolerance field of x-RTP-Options.

Read/write SInt32

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 145
  Apple Computer, Inc.

qtssPrefsTCPMaxThinDelayToleranceInMSec

If a packet is late by this number of milliseconds,
the server reduces the bit rate of the stream (called
“thinning”). This attribute applies to all stream
transports, not just TCP. This is a default time that
can be overridden by the late-tolerance field of
x-RTP-Options.

Read/write SInt32

qtssPrefsTCPVideoDelayToleranceInMSec

If a video packet is late by this number of
milliseconds, the server drops it. This applies to all
stream transports, not just TCP. This is a default
time that can be overridden by the late-tolerance
field of x-RTP-Options.

Read/write SInt32

qtssPrefsTCPAudioDelayToleranceInMSec

If an audio packet is late by this number of
milliseconds, the server drops it. This applies to all
stream transports, not just TCP. This is a default
time that can be overridden by the late-tolerance
field of x-RTP-Options.

Read/write SInt32

qtssPrefsMinTCPBufferSizeInBytes

When streaming over TCP, sets the minimum size
in bytes of the TCP send buffer.

Read/write UInt32

qtssPrefsMaxTCPBufferSizeInBytes

When streaming over TCP, sets the maximum size
in bytes of the TCP send buffer.

Read/write UInt32

qtssPrefsTCPSecondsToBuffer

When streaming over TCP, uses the movie’s bit
rate to scale the size of the TCP send buffer to fit
the specified number of seconds.

Read/write Float32

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

146 QTSS Data Types

  Apple Computer, Inc.

qtssPrefsDoReportHTTPConnectionAddress

When behind a round-robin DNS, the client needs
to be told the IP address of the machine that is
handling its request. This attribute tells the server
to report its IP address in the reply to the HTTP
GET request when tunneling RTSP through HTTP.

Read/write Bool16

qtssPrefsRunUserName

Run under the specified user name.
Read/write char array

qtssPrefsRunGroupName

Run under the specified group name.
Read/write char array

qtssPrefsSrcAddrInTransport

If set to true, the server will add its source address
to its transport. headers. This is necessary on
certain networks where the source address is not
necessarily known.

Read/write Bool16

qtssPrefsRTSPPorts

Ports for accepting RTSP client connections. BY
default, ports 554 and 7070 are set. Add port 80 to
the list if you are streaming across the Internet and
want clients behind firewalls to be able to connect
to the server.

Read/write UInt16

qtssPrefsMaxRetransDelayInMsec

For reliable UPD, the maximum interval between
when a retransmit is supposed to be sent and
when it actually is sent. Lower values means
smoother flow but slower server performance.

Read/write UInt32

qtssPrefsDefaultWindowSizeInK

The default window size in K bytes, used when
the client doesn’t specify its initial window size.

Read/write UInt32

qtssPrefsAckLoggingEnabled

Enables detailed logging of UDP
acknowledgments and retransmits, used for
debugging only.

Read/write Bool16

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 147
  Apple Computer, Inc.

qtssPrefsRTCPPollIntervalInMsec

For reliable UDP, the time in milliseconds between
server checks for incoming RTCP packets. A
longer interval means better server performance
but grosser mis-estimates of packet round-trip
times.

Read/write UInt32

qtssPrefsRTCPSockRcvBufSizeInK

For reliable UDP, the size in K bytes for the RTCP
UDP socket receive buffers. In general, this buffer
needs to be big enough to absorb bursts of RTCP
acknowledgements. A low value may cause
acknowledgements to be dumped by the kernel.

Read/write UInt32

qtssPrefsOverbufferBucketInterval

The duration in milliseconds for buckets in the
overbuffer. This is also the minimum time the
server will wait between sending packet data to a
client.

Read/write UInt32

qtssPrefsTCPThickIntervalInSec

Time in seconds server must wait before
attempting to increase the bit rate of the client
even if conditions clear up. (Increasing the bit rate
is known as “thickening”.)

Read/write UInt32

qtssPrefsAltTransportIPAddr

The server appends its own IP address to the
Transport header If you want an alternate address
placed there, use this attribute to specify the
address.

Read/write char

qtssPrefsMaxAdvanceSendTimeInSec

The farthest in advance the server will send a
packet to a client that supports overbuffering.

Read/write UInt32

continued

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

148 QTSS Data Types

  Apple Computer, Inc.

QTSS_RTPStreamObject 2

A QTSS_RTPStreamObject is the collection of attributes that describe a particular
RTP stream. Table 2-8 lists the attributes for the object QTSS_RTPStreamObject.
These attributes are valid for all roles that receive a value of type
QTSS_RTPStreamObject in the structure the server passes to them.

qtssPrefsReliableUDPSlowStart

Set to true if reliable UDP slow start is enabled.
Disabling UDP slow start may lead to an initial
burst of packet loss due to mis-estimate of the
client's available bandwidth. Enabling UDP slow
start may lead to premature reduction of the bit
rate (known as “thinning”).

Read/write Bool16

qtssPrefsAutoDeleteSDPFiles

Set to true if automatic delete of SDP files is
enabled. SDP files in the Movies directory tree are
deleted after the SDP end time or when a
broadcaster’s RTSP-controlled SDP session ends.
SDPs controlled by an RTSP session contain
“a=x-broadcastcontrol:RTSP”. Changes take affect
at the end of the current interval.

Read/write Bool16

qtssPrefsAuthenticationScheme

Set this to be the authentication scheme you want
the server to use. The currently supported values
are “basic”, “digest”, and “none”.

Read/write char

qtssPrefsDeleteSDPFilesInterval

The interval in seconds at which the server checks
for and deletes SDP files whose “t= value” has
timed out. The internal default value is ten
seconds. The minimum internal value is one
second. Changes take affect at the end of the
current interval.

Read/write UInt32

Table 2-7 Attributes of the object QTSS_PrefsObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 149
  Apple Computer, Inc.

Note
All of the attributes for the object QTSS_RTPStreamObject are
preemptive safe, so they can be read by calling
QTSS_GetValue (page 106) or QTSS_GetValuePtr (page 108). �

Table 2-8 Attributes of the object QTSS_RTPStreamObject

Attribute Name and Content Read/Write Data Type

qtssRTPStrTrackID

Unique ID that identifies each RTP stream.
Read/write UInt32

qtssRTPStrSSRC

Synchronization source (SSRC) generated by the
server. The SSRC is guaranteed to be unique
among all streams in the session. The server
includes the SSRC in all RTCP Sender Reports that
the server generates.

Read UInt32

qtssRTPStrPayloadName

Name of the media for this stream. This attribute
is empty unless a module explicitly sets it.

Read/write char array

qtssRTPStrPayloadType

Payload type of the media for this stream. The
value of this attribute is qtssUnknownPayloadType
unless a module sets it qtssVideoPayloadType or
qtssAudioPayloadType.

Read/write QTSS_RTPPayloadType
(page 167)

qtssRTPStrFirstSeqNumber

Sequence number of the first packet after the last
PLAY request was issued. If known, this attribute
must be set by a module before calling QTSS_Play
(page 130). The server uses this attribute to
generate a proper RTSP PLAY response.

Read/write SInt16

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

150 QTSS Data Types

  Apple Computer, Inc.

qtssRTPStrFirstTimestamp

RTP timestamp of the first RTP packet generated
for this stream after the last PLAY request was
issued. If known, this attribute must be set by a
module before calling QTSS_Play (page 130). The
server uses this attribute to generate a proper
RTSP PLAY response.

Read/write SInt32

qtssRTPStrTimescale

Timescale for the track. If known, this must be set
before calling QTSS_Play (page 130).

Read/write SInt32

qtssRTPStrBufferDelayInSecs

Size of the client’s buffer. The server sets this
attribute to three seconds, but the module is
responsible for determining the buffer size and
setting this attribute accordingly.

Read Float32

The values of the following attributes come from the most recent RTCP packet received on a
stream. If a field in the most recent RTCP packet is blank, the server sets the value of the
corresponding attribute to zero.

qtssRTPStrFractionLostPackets

The fraction of packets that have been lost for this
stream.

Read UInt32

qtssRTPStrTotalLostPackets

The total number of packets that have been lost for
this stream.

Read UInt32

qtssRTPStrJitter

Cumulative jitter for this stream.
Read UInt32

qtssRTPStrRecvBitRate

Average bit rate received by the client in bits per
second.

Read UInt32

qtssRTPStrAvgLateMilliseconds

Average in milliseconds of packets that the client
received late.

Read UInt16

continued

Table 2-8 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 151
  Apple Computer, Inc.

qtssRTPStrPercentPacketsLost

Fixed percentage of lost packets for this stream.
Read UInt16

qtssRTPStrAvgBufDelayInMsec

Average buffer delay in milliseconds.
Read UInt16

qtssRTPStrGettingBetter

A non-zero value if the client reports that the
stream is getting better.

Read UInt16

qtssRTPStrGettingWorse

A non-zero value if the client reports that the
stream is getting worse.

Read UInt16

qtssRTPStrNumEyes

Number of clients connected to this stream.
Read UInt32

qtssRTPStrNumEyesActive

Number of clients playing this stream.
Read UInt32

qtssRTPStrNumEyesPaused

Number of clients connected but currently paused.
Read UInt32

qtssRTPStrTotPacketsRecv

Total packets received by the client.
Read UInt32

qtssRTPStrTotPacketsDropped

Total packets dropped by the client.
Read UInt16

qtssRTPStrTotPacketsLost

Total packets lost.
Read UInt16

qtssRTPStrClientBufFill

How full the client buffer is in tenths of a second.
Read UInt16

qtssRTPStrFrameRate

The current frame rate in frames per second.
Read UInt16

qtssRTPStrExpFrameRate

The expected frame rate in frames per second.
Read UInt16

continued

Table 2-8 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

152 QTSS Data Types

  Apple Computer, Inc.

QTSS_RTSPHeaderObject 2

A QTSS_RTSPHeaderObject is the collection of attributes that contain all of the
header information sent by the client in an RSTP request. For example, the
following RTSP request has a Session header and a User-agent header:

DESCRIBE /foo.mov RTSP/1.0
Session: 20fj02ijf
User-agent: QTS/4.0.3

In this case, the value of the Session attribute is “20fj02ijf” and the value of the
User-agent attribute is “QTS/4.0.3”. Modules can get the value of a given
header by calling QTSS_GetValue (page 106) or QTSS_GetValuePtr (page 108).

qtssRTPStrAudioDryCount

Number of times the audio has run dry.
Read UInt16

qtssRTPStrIsTCP

If this RTP stream is being sent over TCP, this
attribute is true. If this RTP stream is being sent
over UDP, this attribute is false.

Read Bool16

qtssRTPStrStreamRef

A QTSS_StreamRef used for sending RTP or RTCP
packets to the client. Use QTSS_WriteFlags to
specify whether each packet is an RTP or RTCP
packet.

Read QTSS_StreamRef

qtssRTPStrTransportType

The transport type.
Read QTSS_RTPTransportTyp

e (page 168)

Table 2-8 Attributes of the object QTSS_RTPStreamObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 153
  Apple Computer, Inc.

QTSS_RTSPRequestObject 2

A QTSS_RTSPRequestObject is the collection of attributes that describe a
particular RTSP request. Table 2-9 lists the attributes of the object
QTSS_RTSPRequestObject.

With the exception of the RTSP Filter role, the value of each attribute is available
in all roles that receive an object of type QTSS_RTSPRequestObject. When the
RTSP Filter role receives an object of type QTSS_RTSPRequestObject, the only
attribute that has a value is the qtssRTSPReqFullRequest attribute.

Each text name is identical to its enumerated type name.

Note
All of the attributes for the object QTSS_RTSPRequestObject
are preemptive safe, so they can be read by calling
QTSS_GetValue (page 106) or QTSS_GetValuePtr (page 108). �

Table 2-9 Attributes of the object QTSS_RTSPRequestObject

Attribute Name and Content Read/Write Data Type

qtssRTSPReqFullRequest

The complete RTSP request as sent by the client.
This attribute is available in every role that
receives an object of type QTSS_RTSPRequestObject.

Read char array

qtssRTSPReqMethodStr

The RTSP method of this request.
Read char array

qtssRTSPReqFilePath

URI for this request, converted to a local file
system path.

Read char array

qtssRTSPReqURI

URI for this request.
Read char array

qtssRTSPReqFilePathTrunc

Same as qtssRTSPReqFilePath, but without the last
element of the path.

Read char array

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

154 QTSS Data Types

  Apple Computer, Inc.

qtssRTSPReqFileName

All characters after the last path separator in the
file system path.

Read char array

qtssRTSPReqFileDigit

If the URI ends with one or more digits, this
attribute points to those digits.

Read char array

qtssRTSPReqAbsoluteURL

The full URL starting with “rtsp://”.
Read char array

qtssRTSPReqTruncAbsoluteURL

The URL without last element of the path.
Read char array

qtssRTSPReqMethod

The RTSP method as a value of type
QTSS_RTSPMethod.

Read QTSS_RTSPMethod

qtssRTSPReqStatusCode

The current status code for the request as
QTSS_RTSPStatusCode. By default, the value is
qtssSuccessOK. If a module sets this attribute and
calls QTSS_SendRTSPHeaders, the status code in the
header that the server generates contains the value
of this attribute.

Read/write QTSS_RTSPStatusCode

qtssRTSPReqStartTime

The start time specified in the Range header of the
PLAY request.

Read Float64

qtssRTSPReqStopTime

The stop time specified in the Range header of the
PLAY request.

Read Float64

qtssRTSPReqRespKeepAlive

Set this attribute to true if you want the server to
keep the connection open after completion of the
request. Otherwise, set this attribute to false if
you want the server to terminate the connection
upon completion of the request.

Read/write Bool16

Table 2-9 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 155
  Apple Computer, Inc.

continued

qtssRTSPReqRootDir

The root directory for this request. The default
value for this attribute is the server's media folder
path. Modules can set this attribute from the RTSP
Route role.

Read/write char array

qtssRTSPReqRealStatusCode

Same as the qtssRTSPReqStatusCode attribute but
translated from a QTSS_RTSPStatusCode to an actual
RTSP status code.

Read UInt32

qtssRTSPReqStreamRef

A value of type QTSS_StreamRef for sending data to
the RTSP client. This stream reference, unlike the
one provided as an attribute in the
QTSS_RTSPSessionObject, never returns
QTSS_WouldBlock in response to a QTSS_Write or a
QTSS_WriteV call.

Read QTSS_StreamRef

qtssRTSPReqUserName

The decoded user name, if provided by the RTSP
request.

Read char array

qtssRTSPReqURLRealm

The authorization entity for the client to display in
the following string: “Please enter password for
realm at server-name. The default value of this
attribute is “Streaming Server”.

Read/write char array

qtssRTSPReqIfModSinceDate

If the RTSP request contains an If-Modified-Since
header, this attribute is the if-modified date
converted to a value of type QTSS_TimeVal.

Read QTSS_TimeVal
(page 170)

continued

Table 2-9 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

156 QTSS Data Types

  Apple Computer, Inc.

QTSS_RTSPSessionObject 2

A QTSS_RTSPSessionObject is the collection of attributes that describe a
particular RTSP session.

qtssRTSPReqRespMsg

The error message that is sent back to the client if
the response was an error. A module sending an
RTSP error to the client should set this attribute to
be a text message that describes why the error
occurred. It is also useful to write this message to a
log file. Once the RTSP response has been sent,
this attribute contains the response message.

Read/write char array

qtssRTSPReqContentLen

Content length of incoming RTSP request body.
Read UInt32

qtssRTSPReqSpeed

Value of the speed header.
Read Float32

qtssRTSPReqLateTolerance

Value of the late-tolerance field in the
x-RTP-Options header, or –1 if not present..

Read Float32

Table 2-9 Attributes of the object QTSS_RTSPRequestObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 157
  Apple Computer, Inc.

Table 2-10 lists the attributes for the object QTSS_RTSPSessionObject. These
attributes are valid for all roles that receive a value of type
QTSS_RTSPSessionObject in the structure the server passes to them.

Table 2-10 Attributes of the object QTSS_RTSPSessionObject

Attribute Name and Content Read/Write Data Type

qtssRTSPSesID

An ID that uniquely identifies each RTSP session
since the server started up.

Read UInt32

qtssRTSPSesLocalAddr

Local IP address for this RTSP session.
Read UInt32

qtssRTSPSesLocalAddrStr

Local IP address for the RTSP session in
dotted-decimal format.

Read char array

qtssRTSPSesLocalDNS

DNS name that corresponds to the local IP address
for this RTSP session.

Read char array

qtssRTSPSesRemoteAddr

The IP address of the client.
Read UInt32

qtssRTSPSesRemoteAddrStr

The IP address of the client in dotted-decimal
format.

Read char array

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

158 QTSS Data Types

  Apple Computer, Inc.

QTSS_ServerObject 2

A QTSS_ServerObject is the collection of attributes that describe a particular
QuickTime Streaming Server. Table 2-11 lists the attributes of the object
QTSS_ServerObject. These attributes are valid for all roles that receive a value of
type QTSS_ServerObject in the structure the server passes to them.

qtssRTSPSesEventCntxt

An event context for the RTCP connection to the
client. This attribute should primarily be used to
wait for flow-controlled EV_WR event when
responding to a client.

Read QTSS_EventContextRef

qtssRTSPSesType

The RTSP session type. Possible values are
qtssRTSPSession, qtssRTSPHTTPSession (an HTTP
tunnelled RTSP session), and
qtssRTSPHTTPInputSession. Sessions of type
qtssRTSPHTTPInputSession are usually very short
lived.

Read QTSS_RTSPSessionType
(page 169)

qtssRTSPSesStreamRef

A QTSS_StreamRef used for sending data to the
RTSP client.

Read QTSS_RTSPSessionStre
am (page 169)

Table 2-10 Attributes of the object QTSS_RTSPSessionObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 159
  Apple Computer, Inc.

Some of these attributes are not preemptive safe, as noted in Table 2-11.

Table 2-11 Attributes of the object QTSS_ServerObject

Attribute Name and Content Read/Write Data Type

The following attributes are preemptive safe and can be read by QTSS_GetValue or
QTSS_GetValuePtr:

qtssServerAPIVersion

The API version supported by this server. The
format of this value is 0xMMMMmmmm, where M
is the major version number and m is the minor
version number.

Read UInt32

qtssSvrDefaultDNSName

The “default” DNS name of the server.

Read char array

qtssSvrDefaultIPAddr

The “default” IP address of the server.
Read UInt32

qtssSvrServerName

The name of the server.

Read char array

qtssSvrServerVersion

The version of the server.

Read char array

qtssSvrServerBuildDate

Date that the server was built.
Read char array

qtssSvrRTSPServerHeader

The Server header that the server uses when
responding to RTSP clients.

Read char array

continued

C H A P T E R 2

QuickTime Streaming Server Module Reference

160 QTSS Data Types

  Apple Computer, Inc.

The following attributes are not preemptive safe and cannot be read by QTSS_GetValuePtr:
qtssSvrState

The current state of the server. Possible values are
qtssStartingUpState
qtssRunningState
qtssRefusingConnectionsState
qtssFatalErrorState
qtssShuttingDownState
qtssIdleState

Modules can set the server state. If a module sets
the server state, the server responds accordingly.

Setting the server state to
qtssRefusingConnectionsState causes the server to
refuse new connections.

Setting the server state to qtssFatalErrorState or
to qtssShuttingDownState causes the server to quit.

The qtssFatalErrorState state indicates that a fatal
error has occurred but the server is not shutting
down yet.

Read/write QTSS_ServerState
(page 170)

qtssSvrRTSPPorts

An indexed attribute containing all the ports the
server is listening on.

Read char array

qtssSvrIsOutOfDescriptors

If the server has run out of file descriptors, this
attribute is true; otherwise, this attribute is false.

Read Bool16

qtssRTSPCurrentSessionCount

The number of clients that are currently connected
over standard RTSP.

Read UInt32

qtssRTSPHTTPCurrentSessionCount

The number of clients that are currently connected
over RTSP/HTTP.

Read UInt32

continued

Table 2-11 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 161
  Apple Computer, Inc.

The following attributes are not preemptive safe and cannot be read by QTSS_GetValuePtr:
qtssRTPSvrNumUDPSockets

Number of UDP sockets currently being used by
the server.

Read UInt32

qtssRTPSvrCurConn

The number of clients currently connected to the
server.

Read UInt32

qtssRTPSvrTotalConn

Total number of clients that have connected to the
server since the server started up.

Read UInt32

qtssRTPSvrCurBandwidth

Current bandwidth being output by the server in
bits per second.

Read UInt32

qtssRTPSvrTotalBytes

Total number of bytes output since the server
started up.

Read UInt64

qtssRTPSvrAvgBandwidth

Average bandwidth output by the server in bits
per second.

Read UInt32

qtssRTPSvrCurPackets

Current packets per second being output by the
server.

Read UInt32

qtssRTPSvrTotalPackets

Total number of bytes output since the server
started up.

Read UInt64

qtssSvrHandledMethods

The methods that the server supports. Modules
should append the methods they support to this
attribute in their QTSS_Initialize_Role.

Read/write QTSS_RTSPMethod
(page 169)

continued

Table 2-11 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

162 QTSS Data Types

  Apple Computer, Inc.

The following attributes are not preemptive safe and cannot be read by QTSS_GetValuePtr:
qtssSvrCurrentTimeMilliseconds

The server’s current time in milliseconds. Getting
the value of this attribute is equivalent to calling
QTSS_Milliseconds (page 97).

Read QTSS_TimeVal
(page 170)

qtssSvrCPULoadPercent

The percentage of CPU time the server is currently
using.

Read Float32

Table 2-11 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 163
  Apple Computer, Inc.

Other QTSS Data Types 2

This section describes other QTSS data types. The data types are

� QTSS_AttrDataType (page 164)

� QTSS_AttributeID (page 165)

� QTSS_AttrPermission (page 166)

� QTSS_CliSesTeardownReason (page 166)

� QTSS_Object (page 167)

� QTSS_Role (page 167)

� QTSS_RTPPayloadType (page 167)

� QTSS_RTPSessionState (page 168)

� QTSS_RTPTransportType (page 168)

� QTSS_RTSPMethod (page 169)

The following attributes are preemptive safe and can be read by QTSS_GetValuePtr:
qtssSvrModuleObjects

A module object representing each module.
Read QTSS_ModuleObject

(page 139)

qtssSvrStartupTime

The time at which the server started up.
Read QTSS_TimeVal

(page 170)

qtssSvrGMTOffsetInHrs

The time zone in which the server is running
(offset from GMT in hours).

Read SInt32

qtssSvrDefaultIPAddrStr

The default IP address of the server as a string.
Read char array

qtssSvrPreferences

An object representing each the server's
preferences.

Read QTSS_PrefsObject
(page 141)

qtssSvrMessages

An object containing the server's error messages.
Read QTSS_Object

(page 167)

Table 2-11 Attributes of the object QTSS_ServerObject (continued)

Attribute Name and Content Read/Write Data Type

C H A P T E R 2

QuickTime Streaming Server Module Reference

164 QTSS Data Types

  Apple Computer, Inc.

� QTSS_RTSPSessionStream (page 169)

� QTSS_RTSPSessionType (page 169)

� QTSS_RTSPStatusCode (page 169)

� QTSS_StreamRef (page 170)

� QTSS_TimeVal (page 170)

� QTSS_ServerState (page 170)

QTSS_AttrDataType 2

Each QTSS attribute has an associated data type. The QTSS_AttrDataType
enumeration defines values that describe attribute data types. Having an
attribute’s data type helps the server and modules handle an attribute value
without having specific knowledge about the attribute.

The QTSS_AttrDataType is defined as:

enum
{

qtssAttrDataTypeUnknown = 0,
qtssAttrDataTypeCharArray = 1,
qtssAttrDataTypeBool16 = 2,
qtssAttrDataTypeSInt16 = 3,
qtssAttrDataTypeUInt16 = 4,
qtssAttrDataTypeSInt32 = 5,
qtssAttrDataTypeUInt32 = 6,
qtssAttrDataTypeSInt64 = 7,
qtssAttrDataTypeUInt64 = 8,
qtssAttrDataTypeQTSS_Object = 9,
qtssAttrDataTypeQTSS_StreamRef= 10,
qtssAttrDataTypeFloat32 = 11,
qtssAttrDataTypeFloat64 = 12,
qtssAttrDataTypeVoidPointer = 13,
qtssAttrDataTypeTimeVal = 14,
qtssAttrDataTypeNumTypes = 15

};
typedef UInt32 QTSS_AttrDataType;

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 165
  Apple Computer, Inc.

Constant descriptions

qtssAttrDataTypeUnknown
The data type is unknown.

qtssAttrDataTypeCharArray
The data type is a character array.

qtssAttrDataTypeBool16
The data type is a 16-bit Boolean value.

qtssAttrDataTypeSInt16
The data type is a signed 16-bit integer.

qtssAttrDataTypeUInt16
The data type is an unsigned 16-bit integer.

qtssAttrDataTypeSInt32
The data type is a signed 32-bit integer.

qtssAttrDataTypeUInt32
The data type is an unsigned 32-bit integer.

qtssAttrDataTypeSInt64
The data type is a signed 64-bit integer.

qtssAttrDataTypeQTSS_Object
The data type is a QTSS_Object (page 167).

qtssAttrDataTypeQTSS_StreamRef
The data type is a QTSS_StreamRef (page 170).

qtssAttrDataTypeFloat32
The data type is a Float32.

qtssAttrDataTypeFloat64
The data type is a Float64.

qtssAttrDataTypeVoidPointer
The data type is a pointer to a void.

qtssAttrDataTypeTimeVal
The data type is a QTSS_TimeVal (page 170).

qtssAttrDataTypeNumTypes
The data type is a value that describes the number of types.

QTSS_AttributeID 2

A QTSS_AttributeID is a signed 32-bit integer that uniquely identifies an
attribute. It is defined as

typedef SInt32 QTSS_AttributeID;

C H A P T E R 2

QuickTime Streaming Server Module Reference

166 QTSS Data Types

  Apple Computer, Inc.

QTSS_AttrPermission 2

The QTSS_AttrPermission data type is an enumeration that describes whether an
attribute is readable, writable, and preemptive safe. The data type of the
qtssAttrPermissions attribute of the QTSS_AttrInfoObject object type is of type
QTSS_AttrPermission.

The QTSS_AttrPermission enumeration is defined as:

enum
{

qtssAttrModeRead = 1,
qtssAttrModeWrite = 2,
qtssAttrModePreempSafe= 4

};
typedef UInt32 QTSS_AttrPermission;

Once set, attribute permissions cannot be changed.

QTSS_CliSesTeardownReason 2

The QTSS_CliSesTeardownReason enumeration defines values that identify why a
session is closing. The QTSS_RTPSessionState enumeration is defined as

enum
{

qtssCliSesTearDownClientRequest= 0,
qtssCliSesTearDownUnsupportedMedia = 1,
qtssCliSesTearDownServerShutdown = 2,
qtssCliSesTearDownServerInternalErr = 3

};
typedef UInt32 QTSS_CliSesTeardownReason;

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 167
  Apple Computer, Inc.

QTSS_Object 2

A QTSS_Object is a pointer to a value that identifies a particular object. The
QTSS_Object is defined as

typedef void* QTSS_Object;

The QTSS_Object is used to define other objects:

typedef QTSS_Object QTSS_RTPStreamObject;
typedef QTSS_Object QTSS_RTSPSessionObject;
typedef QTSS_Object QTSS_RTSPRequestObject;
typedef QTSS_Object QTSS_RTSPHeaderObject;
typedef QTSS_Object QTSS_ClientSessionObject;
typedef QTSS_Object QTSS_ServerObject;
typedef QTSS_Object QTSS_PrefsObject;
typedef QTSS_Object QTSS_TextMessagesObject;
typedef QTSS_Object QTSS_FileObject;
typedef QTSS_Object QTSS_ModuleObject;
typedef QTSS_Object QTSS_ModulePrefsObject;
typedef QTSS_Object QTSS_AttrInfoObject;

QTSS_Role 2

A QTSS_Role is an unsigned 32-bit integer that defines values that correspond to
module roles. It is defined as

typedef UInt32 QTSS_Role;

QTSS_RTPPayloadType 2

The QTSS_RTPPayloadType enumeration defines values that a module uses to
specify the stream’s payload type when it adds an RTP stream to a client
session. The enumeration is defined as

C H A P T E R 2

QuickTime Streaming Server Module Reference

168 QTSS Data Types

  Apple Computer, Inc.

enum
{

qtssUnknownPayloadType = 0,
qtssVideoPayloadType = 1,
qtssAudioPayloadType = 2

};
typedef UInt32 QTSS_RTPPayloadType;

QTSS_RTPSessionState 2

The QTSS_RTPSessionState enumeration defines values that identify the state of
an RTP session. The QTSS_RTPSessionState enumeration is defined as

enum
{

qtssPausedState = 0,
qtssPlayingState = 1

};
typedef UInt32 QTSS_RTPSessionState;

QTSS_RTPTransportType 2

The QTSS_RTPTransportType enumeration defines values for RTP transports. The
enumeration is defined as

enum
{

qtssRTPTransportTypeUDP = 0,
qtssRTPTransportTypeReliableUDP= 1,
qtssRTPTransportTypeTCP = 2

};
typedef UInt32 QTSS_RTPTransportType;

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 169
  Apple Computer, Inc.

QTSS_RTSPMethod 2

The QTSS_RTSPMethod enumeration defines values for each method in the RTSP
protocol. This enumeration is fully defined in QTSS_RTSPProtocol.h.

QTSS_RTSPSessionStream 2

A QTSS_RTSPSessionStream is a value of type QTSS_StreamRef used for sending
data to the RTSP client.

QTSS_RTSPSessionType 2

The QTSS_RTSPSessionType enumeration defines values that describe various
RTSP session types. The enumeration is defined as

enum
{

qtssRTSPSession = 0,
qtssRTSPHTTPSession = 1,
qtssRTSPHTTPInputSession= 2

};
typedef UInt32 QTSS_RTSPSessionType;

A qtssRTSPHTTPInputSession is the input half of an RTSPHTTP session. These
session types are usually very short lived.

QTSS_RTSPStatusCode 2

The QTSS_RTSPStatusCode enumeration defines values for each RTSP response
status code that the RTSP protocol defines. This enumeration is fully defined in
QTSSRTSPProtocol.h.

C H A P T E R 2

QuickTime Streaming Server Module Reference

170 QTSS Data Types

  Apple Computer, Inc.

QTSS_StreamRef 2

A QTSS_StreamRef is a pointer to a value that identifies a particular stream. The
QTSS_StreamRef is defined as

typedef void* QTSS_StreamRef;

The QTSS_StreamRef is used to define other stream references:

typedef QTSS_StreamRefQTSS_ErrorLogStream;
typedef QTSS_StreamRefQTSS_FileStream;
typedef QTSS_StreamRefQTSS_RTSPSessionStream;
typedef QTSS_StreamRefQTSS_RTSPRequestStream;
typedef QTSS_StreamRefQTSS_RTPStreamStream;
typedef QTSS_StreamRefQTSS_SocketStream;

QTSS_TimeVal 2

A QTSS_TimeVal is a signed 64-bit integer used to store time values. It is defined
as

typedef SInt64 QTSS_TimeVal;

QTSS_ServerState 2

The QTSS_ServerState enumeration defines values that describe the server’s
state. Modules can set the server’s state by setting the value of the qtssSvrState
attribute in the QTSS_ServerObject object. The enumeration is defined as

enum
{

qtssStartingUpState = 0,
qtssRunningState = 1,
qtssRefusingConnectionsState = 2,
qtssFatalErrorState = 3,
qtssShuttingDownState = 4,

C H A P T E R 2

QuickTime Streaming Server Module Reference

QTSS Data Types 171
  Apple Computer, Inc.

qtssIdleState = 5
};
typedef UInt32 QTSS_ServerState;

Constant descriptions

qtssStartingUpStateThe server is starting up.
qtssRunningState The server is running.
qtssRefusingConnectionsState

Setting the server to this state causes the server to refuse
new connections.

qtssFatalErrorStateSetting the server to this state causes the server to quit.
qtssShuttingDownStateSetting the server to this state causes the server to quit.
qtssIdleState Setting the server to this state causes the server to refuse

new connections and disconnect existing connections.

C H A P T E R 2

QuickTime Streaming Server Module Reference

172 QTSS Data Types

  Apple Computer, Inc.

173
  Apple Computer, Inc.

Index

A

ACTIONDATA special tag 72
ADDcommand option 82
adding

attributes 30, 48–49, 98, 99
roles 94
services 53, 123

Admin Protocol
access types 83
ADD command option 82
authorization 79
changing server settings 90
command options 82
data

access 79
references 81
types 84

DEL command option 82
GET command option 82
methods 79
parameter options 83
query

functionality 80
options 81

request
header 79
method 79
syntax 80

response method 79
responses

array values 86
errors 87
examples of 87
ok response 85
response data 85
root value 87
unauthorized response 84

session state 79

special paths 90
adminprotocol-lib.pl 68
Advise File role 62
allocating memory 96
ANNOUNCE response 128
attribute data types

converting
QTSS_StringToValue 112
QTSS_TypeStringToType 110
QTSS_TypeToTypeString 111
QTSS_ValueToString 113

attributes
adding 30, 48–49, 98, 99
callback routines 97–113
IDs 105
information, getting 102, 103, 104
qtssRTPStrBufferDelayInSecs 26
qtssRTSPReqAbsoluteURL 23
qtssRTSPReqFullRequest 23
qtssRTSPReqRootDir 23
qtssRTSPReqStreamRef 50
removing 101
values of

getting 45–47, 106, 107, 108
removing 113
setting 47–48, 109–110

authentication 69

B

blocking I/O 26
building modules

code fragment 17
compiled in server 16

built-in services 54

I N D E X

174
  Apple Computer, Inc.

C

CGIs 68
changing root folder 95
Client Session Closing role 28, 40–41
client session objects 44
Close File role 64
compiling modules 16
conventions, naming 27
converting time 97
CONVERTMSECTIMETOSTR special tag 74
CONVERTTOLOCALTIME special tag 72
customizing Web Admin 78

D

data types
Admin Protocol 84
naming conventions 27
QTSS_AttrDataType 164
QTSS_AttributeID 165
QTSS_AttrInfoObject 134
QTSS_AttrPermission 166
QTSS_ClientSessionObject 135–137
QTSS_CliSesTeardownReason 166
QTSS_FileObject 138–139
QTSS_ModuleObject 139–140
QTSS_ModulePrefsObject 140–141
QTSS_Object 167
QTSS_PrefsObject 141–148
QTSS_Role 167
QTSS_RTPPayloadType 167
QTSS_RTPSessionState 168
QTSS_RTPStreamObject 148–152
QTSS_RTPTransportType 168
QTSS_RTSPHeaderObject 152
QTSS_RTSPMethod 169
QTSS_RTSPRequestObject 153–156
QTSS_RTSPSessionObject 156–158
QTSS_RTSPSessionStream 169
QTSS_RTSPSessionType 169
QTSS_RTSPStatusCode 169
QTSS_ServerObject 158–163

QTSS_ServerState 170
QTSS_StreamRef 170
QTSS_TimeVal 170

DELcommand option 82
deleting memory 96
DESCRIBE response 128
dispatch routine 18
dynamic modules 20

E

ECHODATA special tag 69
Error Log

role 28, 32–33
error messages 32

F

file system callback routines 121–123
file systems

Advise File role 62
Close File role 64
Open File Preprocess role 59–60
Open File role 61–62
Read File role 62–63
Request Event File role 64–65

Filter role 22, 28, 33–34
flushing data 121
FORMATFLOAT special tag 73
functions
LoadCompiledInModules 16
QTSS_AddAttribute 30
QTSS_AddInstanceAttribute 99
QTSS_AddRole 29, 94
QTSS_AddService 53, 123
QTSS_AddStaticAttribute 98
QTSS_AppendRTSPHeader 24, 126
QTSS_Delete 96
QTSS_DoService 125
QTSS_Flush 121
QTSS_GetAttrInfoByID 102

I N D E X

175
  Apple Computer, Inc.

QTSS_GetAttrInfoByName 102, 103, 104
QTSS_GetValue 106
QTSS_GetValueAsString 107
QTSS_GetValuePtr 108
QTSS_IDForAttr 105
QTSS_IDForService 124
QTSS_Milliseconds 97
QTSS_MilliSecsTo1970Secs 26, 97
QTSS_New 34, 96
QTSS_Play 24
QTSS_RemoveInstanceAttribute 101
QTSS_RemoveValue 113
QTSS_SendRTSPHeaders 24, 126
QTSS_SendStandardRTSPResponse 24, 127
QTSS_SetValue 109–110
QTSS_SStringToValue 112
QTSS_TypeStringToType 110
QTSS_TypeToTypeString 111
QTSS_ValueToString 113
QTSS_Write 24, 119
QTSS_WriteV 24, 120

G

GETcommand option 82
GETDATA special tag 70
getting

attribute IDs 105
attribute values 45–47
server time 97

GETVALUE special tag 70

H

HASVALUE special tag 71
headers

appending to 126
sending 126

HTMLIZE special tag 76

I

IDs, attribute 105
Initialize role 20, 28, 30
instance attributes

adding 99
removing 101

I/O, blocking 26

L

language types 23
loadable bundle project type 17
LoadCompiledInModules function 16
log files 32

M

main routine 17–18
MAKEARRAY special tag 71
memory

allocating 96
deleting 96

MODIFYDATA special tag 74
modules

call order 29
compiling 16
roles 27–42
static 17

monitoring server status 77–78
mutexes 25

N

name conflicts, preventing 17
naming conventions 27

I N D E X

176
  Apple Computer, Inc.

O

objects
client session 44
RTSP request 21, 23

object types
qtssClientSessionObjectType 44
qtssPrefsObjectType 45
qtssRTPStreamObjectType 44
qtssRTSPHeaderObjectType 44
qtssRTSPRequestObjectType 44
qtssRTSPServerObjectType 45
qtssRTSPSessionObjectType 44
qtssTextMessageObjectType 45

Open File Preprocess role 59–60
Open File role 61–62

P

parse.cgi CGI script 68
parsewithinput.cgi CGI script 68
parsing RTSP requests 23
PLAY response 128
Postprocessor role 24, 28, 38–39
preference file 91
Preprocessor role 23, 28, 36–37
preventing name conflicts 17
PRINTFILE special tag 75
PRINTHTMLFORMATFILE special tag 75
PROCESSFILE special tag 76
Process role 28
project type, loadable bundle 17

Q

QTSS
services 52–54
streams 50–52

QTSS_AddAttribute function 30
QTSS_AddInstanceAttribute function 99
QTSS_AddRole function 29, 94

QTSS_AddService function 53, 123
QTSS_AddStaticAttribute function 98
QTSS_AdviseFile_Params structure 62
QTSS_AppendRTSPHeader function 24, 126
QTSS_AttrDataType data type 164
QTSS_AttributeID data type 165
QTSS_AttrInfoObject data type 134
QTSS_AttrPermission data type 166
QTSS_ClientSessionClosing_Params

structure 41
QTSS_ClientSessionObject data type 135–137
QTSS_CliSesTeardownReason data type 166
QTSS_Delete function 96
QTSS_DoService function 125
QTSS_ErrorLog_Params structure 32
QTSS_FileObject data type 138–139
QTSS_Flush function 121
QTSS_GetAttrInfoByID function 102
QTSS_GetAttrInfoByName function 102, 103, 104
QTSS_GetValueAsString function 107
QTSS_GetValue function 106
QTSS_GetValuePtr function 108
QTSS_IDForAttr function 105
QTSS_IDForService function 124
QTSS_Initialize_Params structure 30
QTSS_Milliseconds function 97
QTSS_MilliSecsTo1970Secs function 26, 97
QTSS_ModuleObject data type 139–140
QTSS_ModulePrefsObject data type 140–141
QTSS_New function 34, 96
QTSS_Object data type 167
QTSS_OpenFile_Params structure 60, 61, 64
QTSS_Play function 24
QTSS_PrefsObject data type 141–148
QTSS_ReadFile_Params structure 63
QTSS_RemoveInstanceAttribute function 101
QTSS_RemoveValue function 113
QTSS_RequestEventFile_Params structure 64
QTSS_Role data type 167
QTSS_RTCPProcess_Params structure 42
QTSS_RTPPayloadType data type 167
QTSS_RTPSendPackets_Params structure 40
QTSS_RTPSessionState data type 168
QTSS_RTPStreamObject data type 148–152
QTSS_RTPTransportType data type 168

I N D E X

177
  Apple Computer, Inc.

QTSS_RTSPHeaderObject data type 152
QTSS_RTSPMethod data type 169
QTSS_RTSPRequestObject data type 153–156
QTSS_RTSPSessionObject data type 156–158
QTSS_RTSPSessionStream data type 169
QTSS_RTSPSessionType data type 169
QTSS_RTSPStatusCode data type 169
QTSS_SendRTSPHeaders function 24, 126
QTSS_SendStandardRTSPResponse function 24,

127
QTSS_ServerObject data type 158–163
QTSS_ServerState data type 170
QTSS_SetValue function 109–110
QTSS_StandardRTSP_Params structure 33, 34
QTSS_StreamRef data type 170
QTSS_StringToValue function 112
QTSS_TimeVal data type 170
QTSS_TypeStringToType function 110
QTSS_TypeToTypeString function 111
QTSS_ValueToStribg function 113
QTSS_Write function 24, 119
QTSS_WriteV function 24, 120
qtssClientSessionObjectType object type 44
qtssPrefsObjectType object type 45
qtssRTPStrBufferDelayInSecs attribute 26
qtssRTPStreamObjectType object type 44
qtssRTSPHeaderObjectType object type 44
qtssRTSPReqAbsoluteURL attribute 23
qtssRTSPReqFullRequestattribute 23
qtssRTSPReqRootDir attribute 23
qtssRTSPReqStreamRef attribute 50
qtssRTSPRequestObjectType object type 44
qtssRTSPSessionObjectType object type 44
qtssServerObjectObjectType object type 45
qtssTextMessageObjectType object type 45

R

Read File role 62–63
Real Time Streaming Protocol

See RTSP
Real Time Transport Protocol

See RTP

Register role 20, 28, 29
removing instance attributes 101
Request Event File role 64–65
Request for Comments

See RFCs
request object, RTSP 21, 23
Request role 28, 37–38
Reread Preferences

role 28, 31
service 54

responding to RTSP requests 24
RFCs

1945 79
2396 79

roles
Advise File 62
Client Session Closing 28, 40–41
Close File 64
Error Log 28, 32–33
Initialize 20, 28, 30
Open File 61–62
Open File Preprocess 59–60
Read File 62–63
Register 20, 28, 29
Request Event File 64–65
Reread Preferences 28, 31
RTCP Process 28, 41–42
RTP Send Packets 24, 28, 40
RTSP Filter 22, 28, 33–34
RTSP Postprocessor 24, 28, 38–39
RTSP Preprocessor 23, 28, 36–37
RTSP Request 28, 37–38
RTSP Route 23, 28, 34–36
Shutdown 20, 28, 31

root folder, changing 95
Route role 23, 28, 34–36
routines

attribute callback 97–113
dispatch 18
file system callback 121–123
RTP callback 129–133
RTSP header callback 125–128
service callback 123–125
stream callback 114–121
utility callback 93–97

I N D E X

178
  Apple Computer, Inc.

RTCP Process role 28, 41–42
RTP

callback routines 129–133
Send Packets role 24, 28, 40
sessions 25

RTSP
Filter role 22, 28, 33–34
header callback routines 125–128
Postprocessor role 24, 28, 38–39
Preprocessor role 23, 28, 36–37
request objects 21, 23, 44
Request role 28, 37–38
requests

parsing 23
responding to 24

responses, sending 29, 127
Route role 23, 28, 34–36
sessions 23

runtime environment 25

S

sending
RTSP headers 126
RTSP responses 29, 127

Send Packets role 24, 28, 40
server

settings, modifying 77–78, 90
status, monitoring 77–78
time 26

service
callback routines 123–125
IDs, getting 124

services
adding 53, 123
built-in 54
QTSS 52–54
Reread Preferences 54
using 53, 125

sessions
client 23, 24, 40
header 44
RTP 25

RTSP 23
setting attribute values 47–48
settings, modifying 77–78
SETUP response 128
shutdown, server 19
Shutdown role 20, 28, 31
source code, server 16
special tags
ACTIONDATA 72
CONVERTMSECTIMETOSTR 74
CONVERTTOLOCALTIME 72
ECHODATA 69
FORMATFLOAT 73
GETDATA 70
GETVALUE 70
HASVALUE 71
HTMLIZE 76
MAKEARRAY 71
MODIFYDATA 74
PRINTFILE 75
PRINTHTMLFORMATFILE 75
PROCESSFILE 76
VALUEEQUALS 72

startup, server 19
static attributes

adding 98
static modules 17, 20
status, monitoring 77–78
stream callback routines 114–121
streams, QTSS 50–52
structures
QTSS_AdviseFile_Params 62
QTSS_ClientSessionClosing_Params 41
QTSS_ErrorLog_Params 32
QTSS_Initialize_Params 30
QTSS_OpenFile_Params 60, 61, 64
QTSS_ReadFile_Params 63
QTSS_RequestEventFile_Params 64
QTSS_RTCPProcess_Params 42
QTSS_RTPSendPackets_Params 40
QTSS_StandardRTSP_Params 33, 34

symbols, preventing name conflicts 17
synchronous I/O 26

I N D E X

179
  Apple Computer, Inc.

T

TEARDOWN response 128
threads 25
time

converting 97
getting 97
server 26

U

using
services 125

using services 53
utility callback routines 93–97

V

VALUEEQUALS special tag 72
verbosity level 32

W

Web Admin
customizing 78
using 68–78

writing
data to client 119, 120
log files 32

	QuickTime Streaming Server Modules
	Contents
	Figures, Tables, and Listings
	About This Manual
	What’s New Since Version 2.0
	Conventions Used in This Manual
	For More Information

	About QuickTime Streaming Server Modules
	Building a QuickTime Streaming Server Module
	Compiling a QTSS Module into the Server
	Building a QTSS Module as a Code Fragment

	Module Requirements
	Main Routine
	Dispatch Routine

	Overview of QuickTime Streaming Server Operations
	Server Startup and Shutdown
	RTSP Request Processing

	Runtime Environment for QTSS Modules
	Server Time

	Naming Conventions
	Module Roles
	Register Role
	Initialize Role
	Shutdown Role
	Reread Preferences Role
	Error Log Role
	RTSP Roles
	RTSP Filter Role
	RTSP Route Role
	RTSP Preprocessor Role
	RTSP Request Role
	RTSP Postprocessor Role

	RTP Roles
	RTP Send Packets Role
	Client Session Closing Role

	RTCP Process Role

	QTSS Objects
	Getting Attribute Values
	Setting Attribute Values
	Adding Attributes

	QTSS Streams
	QTSS Services
	Built-in Services

	Using Files
	Reading Files Using Callback Routines
	Implementing a QTSS File System Module
	File System Module Roles
	Sample Code for the Open File Role
	Implementing Asynchronous Notifications

	Using QTSS Web Admin
	CGIs, Template HTML Files, and Special Tags
	ECHODATA
	GETDATA
	GETVALUE
	MAKEARRAY
	HASVALUE
	IFVALUEEQUALS
	CONVERTTOLOCALTIME
	ACTIONONDATA
	FORMATFLOAT
	CONVERTMSECTIMETOSTR
	MODIFYDATA
	PRINTFILE
	PRINTHTMLFORMATFILE
	PROCESSFILE
	HTMLIZE

	Monitoring Server Status and Modifying Server Settings
	Customizing Web Admin
	Admin Protocol
	Request and Response Methods
	Session State
	Supported Request Header Features
	Server Data Access
	Request Syntax
	Query Functionality
	Data References
	Query Options
	Command Options
	Parameter Options
	Access Types
	Data Types
	Responses
	Changing Server Settings
	Special Paths

	QuickTime Streaming Server Module Reference
	QTSS Callback Routines
	QTSS Utility Callback Routines
	QTSS Attribute Callback Routines
	Stream Callback Routines
	File System Callback Routines
	Service Callback Routines
	RTSP Header Callback Routines
	RTP Callback Routines

	QTSS Data Types
	QTSS Objects
	Other QTSS Data Types

	Index

