
HeaderDoc Unfettered

May 27, 2004

Apple Computer, Inc.
© 1999, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, FireWire,
Geneva, Mac, Mac OS, Macintosh, and Sand
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Velocity Engine and Xcode are trademarks
of Apple Computer, Inc.

Objective-C is a trademark of NeXT
Software, Inc.

CDB is a trademark of Third Eye Software,
Inc.

Helvetica is a trademark of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Chapter 1 Introduction to HeaderDoc: API Documentation From Header Files 7

What is HeaderDoc? 7
Organization of this Document 7

Chapter 2 HeaderDoc Tags 9

Introduction to HeaderDoc Comments and Tags 9
HMBalloonRect 11

Multiword Names 11
Automatic Tagging 12
Tags for Frameworks 12
Tags for All Headers 13
Tags Common to All API Types 17
Tags for All Languages 17

Availability Macro Tags 17
Constant Tags 18
#define Tags 18
Enum Tags 19
Function Tags 19
Function Group Tags 20
Struct and Union Tags 21
Typedef Tags 21
Variable tags 23

C Pseudoclass Tags 23
Class Tags 23
Interface Tags 24
Superclass Tags 24

Tags for C++ Headers 25
Conventions 26
Additional Tags for C++ Class Declarations 26

Tags for Objective-C Headers 29
Tags for Objective-C Headers 29

Chapter 3 Using HeaderDoc 33

Running headerDoc2HTML.pl 33
HeaderDoc Command-line Switches 33

3
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

Running the Scripts Using MacPerl 34
Cocoa Front End 35

Chapter 4 Using gatherHeaderDoc 37

Running gatherHeaderDoc.pl 37
Creating a TOC Template File 38
Using Multiple Landing Page Templates 40
Example gatherHeaderDoc Template 41

Chapter 5 Using the MPGL Suite 43

Man Page Generation Language (MPGL) Dialect 43
A Simple Function Example 45
A Simple Command Example 47
A Multi-Command Example 49

Chapter 6 Configuring HeaderDoc 51

Configuration File Example 53

Appendix A Symbol Markers for HTML-Based Documentation 55

The Marker String 55
Symbol Types for All Languages 56
Symbol Types for Languages With Classes 57
C++ (cpp) Symbol Types 57
Java (java) Symbol Types 57
Objective-C (occ) Method Name Format 57
C++/Java (cpp/java) Method Name Format 58

Appendix B HeaderDoc Class Hierarchy 59

Chapter 7 HeaderDoc Release Notes 61

Languages Supported 61
Major Features 62
New Tags 63
Additional Notes 64

4
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Tables and Listings

Chapter 2 HeaderDoc Tags 9

Listing 2-1 Example of multiword names using @discussion 11
Listing 2-2 Example of multiword names using multiple lines 12
Listing 2-3 Example of @header tag 16
Listing 2-4 Example of @availabilitymacro tag 17
Listing 2-5 Example of @const tag 18
Listing 2-6 Example of @defined tag 18
Listing 2-7 Example of @enum tag 19
Listing 2-8 Example of @function tag 20
Listing 2-9 Example of @functiongroup tag 20
Listing 2-10 Example of @struct tag 21
Listing 2-11 Typedef for a simple struct 21
Listing 2-12 Typedef for an enumeration 22
Listing 2-13 Typedef for a simple function pointer 22
Listing 2-14 Typedef for a struct containing function pointers 22
Listing 2-15 Example of @var tag 23
Listing 2-16 Example of @class tag 23
Listing 2-17 Example of @interface tag 24
Listing 2-18 Example of @superclass tag 25
Listing 2-19 Example of documentation with @abstract and @discussion tags 26
Listing 2-20 Example of documentation as a single block of text 27
Listing 2-21 Example of @templatefield tag 28
Listing 2-22 Documentation tagged as abstract and discussion 30
Listing 2-23 Documentation included as single block of text 30
Listing 2-24 Example of @method tag 31

Chapter 5 Using the MPGL Suite 43

Listing 5-1 A simple MPGL example for a function 46
Listing 5-2 A simple MPGL example for a command 47
Listing 5-3 An MPGL example for multiple commands 49
Table 5-1 MPGL block tags 44
Table 5-2 XHTML tags supported by MPGL 45
Table 5-3 Additional MPGL-specific inline tags 45

5
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

Chapter 6 Configuring HeaderDoc 51

Listing 6-1 Sample HeaderDoc configuration file 53

Appendix A Symbol Markers for HTML-Based Documentation 55

Table A-1 HeaderDoc API reference language types 56
Table A-2 Symbol types for all languages 56

Chapter 7 HeaderDoc Release Notes 61

Table 7-1 HeaderDoc 8 Language Support 62

6
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

T A B L E S A N D L I S T I N G S

This document describes how to use the HeaderDoc tool. It also explains how to insert HeaderDoc
comments into your headers and other files.

What is HeaderDoc?

HeaderDoc is a set of tools for embedding structured comments in source code and header files
written in various languages and subsequently producing rich HTML and XML output from
those comments. HeaderDoc comments are similar in appearance to JavaDoc comments in a Java
source file, but traditional HeaderDoc comments provide a slightly more formal tag set to allow
greater control over HeaderDoc behavior.

In addition to traditional HeaderDoc markup, HeaderDoc 8 supports JavaDoc markup. HeaderDoc
8 also supports a number of languages: Bourne shell (and Korn and Bourne Again), C Headers,
C source code, C shell, C++ headers, Java, JavaScript, Mach MIG definitions, Objective C/C++
headers, Pascal, Perl, and PHP. Most of these languages (besides C/C++/ObjC/Pascal) support
documenting only functions or subroutines.

Also included with the main script (headerDoc2HTML) is gatherHeaderDoc, a utility script that
creates a master table of contents for all documentation generated by headerDoc2HTML.
Information on running gatherHeaderDoc is provided in “Using gatherHeaderDoc” (page 37).

Both scripts are typically installed in /usr/bin, as headerdoc2html and gatherheaderdoc.

Finally, HeaderDoc comes with a series of tools for man page generation, xml2man and
hdxml2manxml. The first tool , xml2man, converts an mdoc-like XML dialect into mdoc-style man
pages. The second tool, hdxml2manxml, converts HeaderDoc XML (generated with the -X flag)
into a series of .mxml files suitable for use with xml2man.

Organization of this Document

This document is divided into several chapters describing various aspects of the tool suite..

■ “HeaderDoc Tags” (page 9) explains how to add HeaderDoc markup to header (and source
code) files.

What is HeaderDoc? 7
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Introduction to HeaderDoc: API
Documentation From Header Files

■ “Using HeaderDoc” (page 33) explains the syntax for the HeaderDoc command-line tool
itself.

■ “Using gatherHeaderDoc” (page 37) explains how to use gatherHeaderDoc to produce
landing pages and cross-linked trees of related documentation.

■ “Using the MPGL Suite” (page 43) exmplains how to use the Manual Page Generation
Language (MPGL) tool suite.

■ “Configuring HeaderDoc” (page 51) explains the HeaderDoc configuration file.

■ “Symbol Markers for HTML-Based Documentation” (page 55) describes the symbol markers
used by HeaderDoc and various other utilities to provide linking functionality.

■ “HeaderDoc Class Hierarchy” (page 59) describes the class hierarchy of the HeaderDoc tool
itself.

8 Organization of this Document
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Introduction to HeaderDoc: API Documentation From Header Files

Tags, depending on type, generally require either one field of information or two:

■ @function [FunctionName]

■ @param [parameterName] [Some descriptive text...]

In the tables below, the “Fields” column indicates the number of textual fields each type of tag
takes.

Introduction to HeaderDoc Comments and Tags

HeaderDoc comments are of the form:

/*!
 This is a comment about FunctionName.
*/
char *FunctionName(int k);

In their simplest form (as above) they differ from standard C comments only by the addition of
the ! character next to the opening asterisk.

Historically, HeaderDoc tags also required the addition of a tag that announces the type of API
being commented (@function, below). Beginning in HeaderDoc 8, this tag became optional.

/*!
 @function FunctionName
 This is a comment about FunctionName.
*/
char *FunctionName(int k);

However, providing these tags can, in some cases, be used to cause HeaderDoc to document
something in a different way. One example of this is the use of the @class tag to modify the
markup of a typedef, as described in “C Pseudoclass Tags” (page 23).

/*!
 @class ClassName
 This is a comment about ClassName.
*/

Introduction to HeaderDoc Comments and Tags 9
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

typedef struct foo {...};

You can also use additional JavaDoc-like tags within the HeaderDoc comment to identify specific
fields of information. These tags will make the comments more amenable to conversion to HTML.
For example, a more complete comment might look like this:

 /*!
 @function HMBalloonRect
 @abstract Reports size and location of help balloon.
 @discussion Use HMBalloonRect to get information about the size of a help
 balloon
 before the Help Manager displays it.
 @param inMessage The help message for the help balloon.
 @param outRect The coordinates of the rectangle that encloses the help
message.
 The upper-left corner of the rectangle has the coordinates (0,0).
 */

Tags are indicated by the @ character, which must generally appear as the first non-whitespace
character on a line (with a few notable exceptions). If you need to include an at sign in the output
(to put your email address in a class discussion, for example), you can do this by prefixing it with
a backslash, that is, \@.

The first tag in a comment announces the API type of the declaration (function, struct, enum,
and so on). This tag is optional. If you leave it out, HeaderDoc will pick up this information from
the declaration immediately following the comment.

The next two lines (tagged @abstract and @discussion) provide documentation about the API
element as a whole. The abstract can be used in summary lists, and the discussion can be used
in the detailed documentation about the API element.

The abstract and discussion tags are optional, but encouraged. Their use enables various
improvements in the HTML output, such as summary pages. However, if there is untagged text
following the API type tag and name (@function HMBalloonRect, above) it is assumed to be a
discussion. With such untagged text, HeaderDoc assumes that the discussion extends from the
end of the API-type comment to the next HeaderDoc tag or to the end of the HeaderDoc comment,
whichever occurs first.

HeaderDoc understands some variants in commenting style. In particular, you can have a one-line
comment like this:

 /*! @var settle_timeLatency before next read. */

You can also use leading asterisks on each line of a multiline comment:

 /*!
 * @function HMBalloonRect
 * @abstract Reports size and location of help ballon.
 * @discussion Use HMBalloonRect to get information about the size of a
help balloon
 * before the Help Manager displays it.
 * @param inMessage The help message for the help balloon.

10 Introduction to HeaderDoc Comments and Tags
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

 * @param outRect The coordinates of the rectangle that encloses the help
 message.
 * The upper-left corner of the rectangle has the coordinates (0,0).
 */

If you want to specify a line break in the HTML version of a comment, use two carriage returns
between lines rather than one. For example, the text of the discussion in this comment:

 /*!
 * @function HMBalloonRect
 * @discussion Use HMBalloonRect to get information about the size of a
help balloon
 * before the Help Manager displays it.
 *
 * Always check the help balloon size before display.
 */

will be formatted as two paragraphs in the HTML output:

HMBalloonRect

OSErr HMBalloonRect (const HMMessageRecord *inMessage, Rect *outRect);

Use HMBalloonRect to get information about the size of a help balloon before the Help Manager
displays it.

Always check the help balloon size before display.

Multiword Names

Top-level HeaderDoc tags, such as @header and @function can take multiword names. This is
particularly useful for documenting anonymous types for enumerations, for example. However,
HeaderDoc normally has no way to know whether a line containing multiple words is a multiword
name or a name followed by a discussion.

There are two ways to get a multiword name. One way is to add a discussion tag, like this:

Listing 2-1 Example of multiword names using @discussion

 /*!
 * @enum example enum
 * @discussion This is a test, this is only a test.
 *
 * Because we included an \@discussion tag, the name of the enum is
 * “example enum”.
 */

Multiword Names 11
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

The other way is to simply add a line break after the name.

Listing 2-2 Example of multiword names using multiple lines

 /*!
 * @enum example enum
 * This is a test, this is only a test.
 *
 * Because the discussion contains multiple lines, the name of the enum
is
 * “example enum”.
 */

Automatic Tagging

Beginning in HeaderDoc 8, certain tags are often not needed. These include:

Numbered lists

It is no longer necessary to mark up numbered lists with . HeaderDoc will
automatically detect numbered lists.

Declaration types

Declaration type tags such as @function, @class, and @typedef are no longer required
unless you are trying to override HeaderDoc’s normal behavior (such as using @class or
@interface to change the display of a typedef struct.

Availability macros

It is no longer necessary to ignore availability macros with @ignore. The file
Availability.list in the HeaderDoc modules directory contains a mapping of availability
macros to strings. When any macros described in this file appear in a declaration, the
corresponding text will automatically be added to its documentation as an availability
attribute.

You can add your own availability macros by adding them to the Availability.list
file or by adding an @availabilitymacro block in your headers.

Tags for Frameworks

Framework documentation should be inserted into a file ending in .hdoc. Running HeaderDoc
on this file generates a documentation tree with special hidden markup that gatherHeaderDoc
will insert into the appropriate place within your TOC template (or at the top of the built-in
template).

12 Automatic Tagging
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

FieldsIdentifiesExampleTag

1The name of the
framework.

@framework Kernel
Framework

@framework

1A short string that briefly
describes a framework.
This should not contain
multiple lines (at least for
the default template) for
aesthetic reasons. Save the
detailed descriptions for
the @discussion tag.

@abstract In-kernel
device driver
framework

@abstract

1A detailed description of
the framework. This may
contain multiple
paragraphs, and can
contain HTML markup.

@discussion The
kernel framework
contains functions
useful to in-kernel
device drivers.

@discussion

Tags for All Headers

Often, you'll want to add a comment for the header as a whole in addition to comments for
individual API elements. For example, if the header declares API for a specific manager (in Mac
OS terminology), you may want to provide introductory information about the manager or
discuss issues that apply to many of the functions within the manager's API. Likewise, if the
header declares a C++ class, you could discuss the class in relation to its superclass or subclasses.

The value you give for the @header tag serves as the title for the HTML pages generated by
headerDoc2HTML. The text you associate with the @header tag is used for the introductory page
of the HTML website the script produces.

In general, however, you will not specify a filename in the @header tag, and will simply let
HeaderDoc substitute the filename. Note that you must follow @header by a line break; otherwise,
the first line of your documentation will be treated as if it were the name of the header.

The tags in the table below (with the exception of @header, which must be at the start of a comment
block) can be used in any comment for any data type, function, header, or class.

Note: Some tags are marked as inline-compatible. This means that they can be used in the middle
of a text container such as @discussion or @abstract, and that their contents will appear within
the existing text flow.Non–inline-compatible tags terminate the existing text container and create
a new one.

Tags for All Headers 13
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

FieldsIdentifiesExampleTag

1A short string that briefly describes a
function, data type, and so on. This
should not contain multiple lines
(because it will look odd in the
mini-TOCs). Save the detailed
descriptions for the discussion tag.

@abstract write the
track to disk

@abstract

1A string that describes the availability
of a function, class, and so on.

@availability 10.3
and later

@availability

1Copyright info to be added to each
page. This overrides the config file
value and may not span multiple lines.

@copyright Apple@copyright

1String telling when the function, data
type, etc. was deprecated.

@deprecated in
version 10.4

@deprecated

blockA block of text that describes a
function, class, header, or data type in
detail. This may contain multiple
paragraphs. @discussion may be
omitted, as described above.

@discussion This is
what this function
does. @some_other_tag

@discussion

@discussion must be present if you
have a multiword name for a data type,
function, class, or header.
An @discussion block ends only when
another block begins, such as an
@param tag.

0/1The name under which the API is
categorized. Leave the name blank to
just use the header filename.

@header Repast
Manager

@header

The following subtags are available:

14 Tags for All Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

FieldsIdentifiesExampleTag

@CFBundleIdentifier

STRING which
kernel
subcomponent or
loadable extension
contains this header

@compilerflag

TERM/DEFINITION
compiler flag that
should be set.

@flag

TERM/DEFINITION
same as
@compilerflag.

@ignore

token to ignore.

@preprocinfo

BLOCK: description
of behavior when
#define DEBUG is
set, and so on.

@related

TERM/DEFINITION
indicates another
header that is
related to this one.
You may use
multiple @related
tags.

Explanation of types:

■ STRING: single string, like @abstract

■ TERM/DEFINITION: <name>
<description>, like @enum

■ BLOCK: block of text like @discussion

Tags for All Headers 15
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

FieldsIdentifiesExampleTag

1Allows you to insert a link request for
an API ref. If the link target is part of
the same .h file, you can do this by
using only the name of the function or
data type. If it is in a separate file (or
if there are multiple matches for a
given name), you must explicitly
specify which API ref to use.

@link
apple_ref//c/func/function_name
link text goes here
@/link
or
@link function_name
link text goes here
@/link

@link

Because the headerDoc2HTML script
does not know the actual target for
these links, it inserts comments into
the output. You must then run
gatherHeaderDoc to actually turn
those comments into working links.
This tag is an inline-compatible tag.

1Meta tag info to be added to each page.
This can be either in the form @meta
<name> <content> or @meta
<complete tag contents>, and may
not span multiple lines.

@meta robots
index,nofollow
or
@meta
http-equiv=”refresh”
content=”0;http://www.apple.com”

@meta

1String describing the namespace in
which the function, data type, etc.
exists.

@namespace BSD Kernel@namespace

blockTreat everything until the trailing
@/textblock as raw text, preserving
initial spaces and line breaks, and
converting “<” and “>” to “<” and
“>”.

@textblock My text
goes here @/textblock

@textblock

Note that this tag does not automatically
insert <pre> or <tt>. You may wrap it
with whatever formatting you choose.
This tag is an inline-compatible tag.

1The date at which the header was last
updated.

@updated 2003-03-14@updated

1the version number to which this
documentation applies.

@version 2.3.1@version

Listing 2-3 Example of @header tag

/*!
 @header Repast Manager

16 Tags for All Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

 The Repast Manager provides a functional interface to the repast driver.

 Use the functions declared here to generate, distribute, and consume
meals.
 @copyright Dave's Burger Palace
 @updated 2003-03-14
 @meta http-equiv=”refresh” content=”0;http://www.apple.com”
*/

Tags Common to All API Types

The @abstract, @updated, and @discussion tags can be used within any of the type-specific
tags below. For example:

/*!
 @enum Beverage Categories
 @abstract Constants to group beverage types.
 @discussion These constants (such as kSoda, kBeer, etc.) can be used...
 @updated 2003-04-15
*/

They are not required within any HeaderDoc comment, but can improve the formatting of the
HTML output, and can help automate the importation of comments into the Inside Mac
documentation database.

Tags for All Languages

Availability Macro Tags

FieldsIdentifiesTag

2The name of the availability macro and a string
describing it. If the macro name appears in the
declaration of any later function, class, method,
or data type, the string will be added to its
documentation as an availability attribute. See
“Automatic Tagging” (page 12) for more
information.

@availabilitymacro

Listing 2-4 Example of @availabilitymacro tag

/*!
 @availabilitymacro AVAILABLE_IN_MYAPP_1_0_AND_LATER This function is
available in version 1.0 and later of MYAPP.
*/

Tags Common to All API Types 17
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

This is usually followed by a #define or similar, but that is not necessary. This HeaderDoc comment
is a standalone comment—that is, it does not cause the code after it to be processed in any way.
If you want to mark a #define as being an availability macro, you should follow this tag with a
second HeaderDoc comment for the #define itself.

Constant Tags

FieldsIdentifiesTag

1Name of the constant.@const or @constant

Listing 2-5 Example of @const tag

 /*!
 @const kCFTypeArrayCallBacks
 @discussion Predefined CFArrayCallBacks structure containing a set of
callbacks appropriate...
 */
 const CFArrayCallBacks kCFTypeArrayCallBacks;

#define Tags

FieldsIdentifiesTag

1Name of the macro.@defined

Note: Function-like defines with curly braces may also use @function. This option is included
for legacy compatibility and has no effect on the resulting output.

Listing 2-6 Example of @defined tag

 /*!
 @defined TRUE
 @discussion Defines the boolean true value.
 */
 #define TRUE 1

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc
distribution.

18 Tags for All Languages
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Enum Tags

FieldsIdentifiesTag

1The name of the enumeration. This is the
enum's tag, if it has one. Otherwise, supply
a name you want to have the constants
grouped under in the documentation.

@enum

2A constant within the enumeration.@constant

Listing 2-7 Example of @enum tag

/*!
 @enum Beverage Categories
 @discussion Categorizes beverages into groups of similar types.
 @constant kSoda Sweet, carbonated, non-alcoholic beverages.
 @constant kBeer Light, grain-based, alcoholic beverages.
 @constant kMilk Dairy beverages.
 @constant kWater Unflavored, non-sweet, non-caloric, non-alcoholic
beverages.
*/
enum {
 kSoda = (1 << 6),
 kBeer = (1 << 7),
 kMilk = (1 << 8),
 kWater = (1 << 9)
}

Function Tags

FieldsIdentifiesTag

1The name of the function or macro.@function

2Each of the function's parameters.@param

1The return value of the function. Don't
include if the return value is void or OSERR

@result

1Include one @throws tag for each exception
thrown by this function (in languages that
support exceptions).

@throws

2Each of the function’s template fields (C++).@templatefield

Tags for All Languages 19
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Listing 2-8 Example of @function tag

/*!
 @function ConstructBLT
 @discussion Creates a Sandwich structure from the supplied arguments.
 @param b Top ingredient, typically protein-rich.
 @param l Middle ingredient.
 @param t Bottom ingredient, controls tartness.
 @param mayo A flag controlling addition of condiment. Use YES for
condiment,
 HOLDTHE otherwise.
 @throws peanuts
 @templatefield K The type of BLT to be generated (I want a BLT float)
 @result A pointer to a Sandwich structure. Caller is responsible for
 disposing of this structure.
*/
Sandwich *ConstructBLT<K>(Ingredient b, Ingredient l, Ingredient t, Boolean
 mayo);

Function Group Tags

FieldsIdentifiesTag

1The name of the function group.@functiongroup

Listing 2-9 Example of @functiongroup tag

/*!
 @functiongroup Core Functions
*/

Function groups are not required, but they allow you to organize a large number of functions
into near groupings. The @functiongroup tag remains in effect until the next @functiongroup
tag.

If you need to put functions in different parts of the header into the same group, simply give
them the same name (with the same capitalization, punctuation, spacing, etc.), and it will merge
the two function groups into one.

Note that functions encountered before the first @functiongroup are considered part of the
“empty” group. These functions will be listed before any grouped functions.

20 Tags for All Languages
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Struct and Union Tags

FieldsIdentifiesTag

1The name of the structure or union. (Also
known as the struct or union's tag.)

@struct / @union

2A field in the structure.@field

Listing 2-10 Example of @struct tag

/*!
 @struct TableOrigin
 @discussion Locates lower-left corner of table in screen coordinates.
 @field x Point on horizontal axis.
 @field y Point on vertical axis
*/
struct TableOrigin {
 int x;
 int y;
}

Typedef Tags

FieldsIdentifiesTag

1The name of the defined type.@typedef

The tags that can appear after a “@typedef” tag depend
on the definition of the new type.

various

@field for typedef’d structs
@constant for typedef'd enumerations
@param for simple typedef'd function pointers
@callback,
@param,
@result for typedef'd structs containing function pointers

Listing 2-11 Typedef for a simple struct

/*!
 @typedef TypedefdSimpleStruct
 @abstract Abstract for this API.
 @discussion Discussion that applies to the entire typedef'd simple struct.
 @field firstField Description of first field
 @field secondField Description of second field
*/

Tags for All Languages 21
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

typedef struct _structTag {
 short firstField;
 unsigned long secondField
} TypedefdSimpleStruct;

Listing 2-12 Typedef for an enumeration

/*!
 @typedef TypedefdEnum
 @abstract Abstract for this API.
 @discussion Discussion that applies to the entire typedef'd enum.
 @constant kCFCompareLessThan Description of first constant.
 @constant kCFCompareEqualTo Description of second constant.
 @constant kCFCompareGreaterThan Description of third constant.
*/
typedef enum {
 kCFCompareLessThan = -1,
 kCFCompareEqualTo = 0,
 kCFCompareGreaterThan = 1
} TypedefdEnum;

Listing 2-13 Typedef for a simple function pointer

/*!
 @typedef simpleCallback
 @abstract Abstract for this API.
 @discussion Discussion that applies to the entire callback.
 @param inFirstParameter Description of the callback's first parameter.
 @param outSecondParameter Description of the callback's second parameter.
 @result Returns what it can when it is possible to do so.
*/
typedef long (*simpleCallback)(short inFirstParameter, unsigned long long
 *outSecondParameter);

Listing 2-14 Typedef for a struct containing function pointers

/*! @typedef TypedefdStructWithCallbacks
 @abstract Abstract for this API.
 @discussion Defines the basic interface for Command DescriptorBlock (CDB)
 commands.

 @field firstField Description of first field.

 @callback setPointers Specifies the location of the data buffer. The
setPointers function has the following parameters:
 @param cmd A pointer to the CDB command interface.
 @param sgList A pointer to a scatter/gather list.
 @result An IOReturn structure which returns the return value in the
structure returned.

 @field lastField Description of the struct's last field.

22 Tags for All Languages
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

*/
typedef struct _someTag {
 short firstField;
 IOReturn (*setPointers)(void *cmd, IOVirtualRange *sgList);
 unsigned long lastField
} TypedefdStructWithCallbacks;

Variable tags

The @var tag should be used when marking up global variables, class variables, and instance
variables (as opposed to actual declaration of new data types).

FieldsIdentifiesTag

2The name of the data member followed by the description.@var

Listing 2-15 Example of @var tag

/*! @var we_are_root TRUE if this device is the root power domain */

 boolwe_are_root;

C Pseudoclass Tags

There are three tags provided for C pseudoclasses, such as COM interfaces. The @class tag is
used for generic pseudoclasses. The @interface tag is used for COM interfaces. The @superclass
tag can be added to an @class or @interface declaration to modify its behavior.

Class Tags

FieldsIdentifiesTag

1The name of the class.@class

Listing 2-16 Example of @class tag

/*!
 @class IOFireWireDeviceInterface_t
*/
 typedef struct IOFireWireDeviceInterface_t
{
 IUNKNOWN_C_GUTS;
.

C Pseudoclass Tags 23
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

.

.
}

The @class tag causes the typedef struct that follows the HeaderDoc comment to be treated
as a class. This is a frequently-used technique in kernel programming. A slight variation of this
tag, @interface, is provided for COM interfaces so that they can be identified as such in the
TOC.

You should mark up any C pseudoclasses in the same way you would mark up a C++ class.
Apart from the unusual form of function declarations (in the form of function pointers), the
resulting output should be similar to that of a C++ class.

Interface Tags

FieldsIdentifiesTag

1The name of a COM interface.@interface

Listing 2-17 Example of @interface tag

/*!
 @interface IOFireWireDeviceInterface_t
*/
 typedef struct IOFireWireDeviceInterface_t
{
 IUNKNOWN_C_GUTS;
.
.
.
}

The @class tag causes the typedef struct that follows the headerdoc comment to be treated
as a COM interface (which is essentially a C pseudoclass with a different name).

You should mark up any C pseudoclasses in the same way you would mark up a C++ class.
Apart from the unusual form of function declarations (in the form of function pointers), the
resulting output should be similar to that of a C++ class.

Superclass Tags

FieldsIdentifiesTag

1The name of the superclass.@superclass

24 C Pseudoclass Tags
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Listing 2-18 Example of @superclass tag

/*!
 @class IOFireWireDeviceInterface_t
 @superclass IOFireWireDevice
*/
 typedef struct IOFireWireDeviceInterface_t
{
 IUNKNOWN_C_GUTS;
.
.
.
}

The @superclass tag can be used when you have a superclass-like relationship between two C
pseudoclasses or COM interfaces. Using this tag will cause the documentation for the specified
pseudo-superclass to be injected into the documentation for the current pseudoclass.

The primary purpose for this feature is to reduce the amount of bloat in headers, allowing you
to document function pointers in the top level pseudoclass and then only document the additional
function pointers in pseudoclasses that expand upon them.

Note that in order for this feature to work, both pseudoclasses must be processed at the same
time.

Tags for C++ Headers

HeaderDoc processes a C++ header in much the same way that it does a C header. In fact, until
HeaderDoc encounters a class declaration in a C++ header, the processing is identical. This means
you can use any of the tags defined for C headers within a C++ header. See “Tags for All
Languages” (page 17).

For example, in a header that declares two classes, you may want to use the @header tag to
provide a discussion explaining why these classes are grouped, and use the @class tags to provide
discussions for each of the classes.

Once HeaderDoc encounters an @class tag (with accompanying class declaration) in a C++
header, it treats all comments and declarations that follow (until the end of the class declaration)
as belonging to that class, rather than to the header as a whole. When HeaderDoc generates the
HTML documentation for a C++ header, it creates one frameset for the header as a whole, and
separate framesets for each class declared within the header.

HeaderDoc records the access control level (public, protected, or private) of API elements declared
within a C++ class. This information is used to group the API elements in the resulting
documentation.

Within a C++ class declaration, HeaderDoc allows some additional tags, as describe below.

Tags for C++ Headers 25
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Conventions

Tags, depending on type, can introduce either one or two fields of information:

■ @function [FunctionName]

■ @param [parameterName] [Some descriptive text...]

In the tables below, the “Fields” column indicates the number of textual fields each type of tag
takes.

Additional Tags for C++ Class Declarations

Within a C++ class declaration, HeaderDoc understands all the tags for C headers, along with
some new ones which are listed in the following sections.

Class Tags

FieldsIdentifiesTag

1The name of the class.@class

Following the @class tag, you typically provide introductory information about the purpose of
the class. You can divide this material into a summary sentence and in-depth discussion (using
the @abstract and @discussion tags), or you can provided the material as an untagged block
of text, as the examples below illustrate. You can also add @throws tags to indicate that the class
throws exceptions or add an @namespace tag to indicate the namespace in which the class resides.

Listing 2-19 Example of documentation with @abstract and @discussion tags

/*!
 @class IOCommandGate
 @abstract Single-threaded work-loop client request mechanism.
 @discussion An IOCommandGate instance is an extremely light weight
mechanism that
 executes an action on the driver's work-loop...
 @throws foo_exception
 @throws bar_exception
 @namespace I/O Kit (this is just a string)
 @updated 2003-03-15
*/
class IOCommandGate: public IOEventSource
{
...
}

26 Tags for C++ Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

Listing 2-20 Example of documentation as a single block of text

/*!
 @class IOCommandGate
 A class that defines a single-threaded work-loop client request mechanism.
 An IOCommandGate
 instance is an extremely light weight mechanism that executes an action
 on the driver's work-loop...
 @throws foo_exception
 @throws bar_exception
 @updated 2003-03-15
*/
class IOCommandGate: public IOEventSource
{
...
}

Classes have many special tags associated with them for convenience. These include:

DispositionTag

BLOCK: description of any common design
considerations that apply to this class, such
as consistent ways of handling locking or
threading

@classdesign

TERM/DEFINITION: class with which this
class was designed to work

@coclass

STRING: external resource that this class
depends on (such as a class or file)

@dependency

TERM/DEFINITION: helper classes used by
this class

@helper or @helperclass

STRING: if this is a helper class, short
description of classes that this class was
designed to help

@helps

STRING: the size of each instance of the class@instancesize

BLOCK: description of ownership model to
which this class conforms, e.g. MyClass
objects are owned by the MyCreatorClass
object that created them

@ownership

BLOCK: description of this class's special
performance characteristics, e.g. this class is
optimized for the Velocity Engine, or this
class is strongly discouraged in
high-performance contexts

@performance

Tags for C++ Headers 27
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

DispositionTag

BLOCK: security considerations associated
with the use of this class

@security

STRING: override superclass name---see note
below.

@superclass

Explanation of types:

■ STRING: single string, like @abstract

■ TERM/DEFINITION: <name> <description>, like @enum

■ BLOCK: block of text like @discussion

Note: The @superclass tag is not generally required for superclass information to be included.
The @superclass tag has two purposes:

■ To add "superclass" info to a C pseudo-classes such as a COM interface (a typedef struct
containing function pointers).

■ To enable inclusion of superclass functions, types, etc. in the subclass docs. The superclass
MUST be processed before the subclass (earlier on the command line or higher up in the same
file), or this may not work correctly.

Function Tags

For member functions, use the @function tag (described in “Function Tags” (page 19)) or the
@method tag (which behaves identically for C++ methods).

Template Tags

For C++ template classes, if you want to document the template type parameters, you should
use the @templatefield tag. You should also be sure to define the class using @template instead
of @class.

The @templatefield tag can also be used to document template parameters for C++ template
functions.

FieldsIdentifiesTag

2The name of the parameter followed by the
description.

@templatefield

Listing 2-21 Example of @templatefield tag

/*! @templatemystackclass
 @templatefieldTthe data type stored in this stack */

28 Tags for C++ Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

 template <T> class mystackclass

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc
distribution.

Tags for Objective-C Headers

Tags for Objective-C Headers

Introduction

HeaderDoc processes a Objective-C header in much the same way that it does a C header. In fact,
until HeaderDoc encounters a class declaration in an Objective-C header, the processing is
identical. This means you can use any of the tags defined for C headers within an Objective-C
header. See “Tags Common to All API Types” (page 17).

For example, in a header that declares two classes, you may want to use the @header tag to
provide a discussion explaining why these classes are grouped, and use the @class tags to provide
discussions for each of the classes. Within the class declarations, you can use the @method tag to
document each method. Since Objective-C is a superset of C, the header might also declare types,
functions, or other API outside of any class declaration. You would use @typedef, @function,
and other C tags to document these declarations.

Processing Objective-C Classes

Once HeaderDoc encounters an @class tag (with accompanying declaration) in an Objective-C
header, it treats all comments and declarations that follow—until the end of the class
declaration—as belonging to that class, rather than to the header as a whole. When HeaderDoc
generates the HTML documentation for an Objective-C header, it creates one frameset for the
header as a whole, and separate framesets for each class declared within the header.

Processing Objective-C Protocols

HeaderDoc processes Objective-C protocol declarations similarly to class declarations. The
documentation for the protocol and the methods it declares are grouped in their own frameset,
which is accessed from the documentation for the header that contains the protocol.

Processing Objective-C Categories

An Objective-C category lets you add methods to an existing class. When HeaderDoc processes
a batch of headers and finds comments for methods declared in a category, it searches for the
associated class documentation and adds those methods and their documentation to the class
documentation. If the class is not present in the current batch, HeaderDoc will create a separate
frameset of documentation for the category.

Within a Objective-C class, protocol, or category declaration, HeaderDoc allows the @method tag,
as describe below.

Tags for Objective-C Headers 29
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

The @class, @protocol, and @category Tags

In Objective-C, class and protocol declarations are quite similar, and consequently HeaderDoc's
@class and @protocol tags are parallel in their usage.

Class and Protocol Tags

FieldsIdentifiesTag

1The name of the class.@class

1The full name of the category, as declared in
the header. For example,
“MyClass(MyCategory)”. HeaderDoc uses
the “MyClass” portion of the name to
identify the associated class.

@category

1The name of the protocol.@protocol

Following these tags, you typically provide introductory information about the purpose of the
class, protocol, or category. You can divide this material into a summary sentence and in-depth
discussion (using the @abstract and @discussion tags), or you can provided the material as an
untagged block of text, as the examples below illustrate.

Listing 2-22 Documentation tagged as abstract and discussion

/*!
 @class NSPrinter
 @abstract An NSPrinter object describes a printer's capabilities.
 @discussion An NSPrinter object describes a printer's capabilities, such
 as whether the printer can print in color and whether it provides a
particular font. An NSPrinter object represents...
*/
@interface NSPrinter: NSObject <NSCopying, NSCoding>
...
@end

Listing 2-23 Documentation included as single block of text

/*!
 @class NSPrinter
 An NSPrinter object describes a printer's capabilities, such as whether
 the printer can print in color and whether it provides a particular font.
 An NSPrinter object represents...
*/
@interface NSPrinter: NSObject <NSCopying, NSCoding$gt;
...
@end

30 Tags for Objective-C Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

The @method Tag

For methods declared in an Objective-C class, protocol, or category, use the @method tag.

FieldsIdentifiesTag

2The method name followed by the description.@method

2The parameter name followed by the description.@param

1The return value of the method.@result

Listing 2-24 Example of @method tag

/*!
 @method dateWithString:calendarFormat:
 @abstract Creates and returns a calendar date initialized with the date

 specified in the string description.
 @discussion [An extended description of the method...]
 @param description A string specifying the date.
 @param format Conversion specifiers similar to those used in strftime().
 @result Returns the newly initialized date object or nil on error.
*/
+ (id)dateWithString:(NSString *)description calendarFormat:(NSString
*)format;

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc
distribution.

Tags for Objective-C Headers 31
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

32 Tags for Objective-C Headers
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

HeaderDoc Tags

HeaderDoc includes two scripts, headerDoc2HTML.pl, which generates documentation for each
header it encounters, and gatherHeaderDoc.pl, which finds these islands of documentation
and assembles a master table of contents linking them together.

This chapter describes headerDoc2HTML.pl. For information on gatherHeaderDoc, see “Using
gatherHeaderDoc” (page 37).

Running headerDoc2HTML.pl

Once you have a header containing HeaderDoc comments, you can run the headerDoc2HTML.pl
script to generate HTML output like this:

 > headerdoc2html MyHeader.h

This will process MyHeader.h and create an output directory called MyHeader in the same directory
as the input file. To view the results in your web browser, open the file index.html that you
find inside the output directory.

Instead of specifying a single input file (as above), you can specify an input directory if you wish.
HeaderDoc will process every .h file in the input directory (and all of its subdirectories),
generating an output directory of HTML files for each header that contains HeaderDoc comments.

HeaderDoc Command-line Switches

HeaderDoc has a number of useful command-line switches that alter its behavior.

The -C switch causes HeaderDoc to output class contents as a composite page instead of breaking
it up into separate pages for functions, data types, and so on.

The -H switch turns on inclusion of the htmlHeader line, as specified in the config file.

The -O switch enables “outer name only” type parsing, in which tag names for typedefs are not
documented (for example, foo in typedef struct foo {...} tdname;).

The -X switch causes HeaderDoc to output XML content instead of HTML.

Running headerDoc2HTML.pl 33
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Using HeaderDoc

The -S switch causes HeaderDoc to include functions and data types from the superclass in the
documentation of child classes (if they are processed at once).

The -b switch puts HeaderDoc into “basic” mode. In this mode, numbered lists are not
automatically recognized, and embedded headerdoc comments are not removed from declarations.

The -d switch turns on extra debugging output.

The -h switch causes HeaderDoc to output an XML file containing metadata about the HeaderDoc
output.

The -i switch tells HeaderDoc to output the body of macro declarations.

The -l switch tells HeaderDoc not to generate link requests in declarations.

The -m switch tells HeaderDoc to generate a man page for each function found in lieu of generating
XML or HTML output.

The -o switch allows you to specify another directory for the output. For example:

 > headerdoc2html -o /tmp MyHeader.h

The -q switch makes HeaderDoc operate silently:

The -s switch causes HeaderDoc to enter a comment stripping mode, in which it outputs a copy
of your header file in the output directory from which all headerdoc comments have been removed.

The -t switch enables strict tagging mode, in which any function parameters not described with
an @param tag result in a warning.

The -u switch disables sorting of functions, data types, and so on in the table of contents.

Most of these switches can be used in combination with each other. The obvious exceptions are
-X and -m (XML vs. man page output). If you need both XML and man page output, you should
specify the -X flag (XML output), then run the scripts hdxml2manxml and xml2man to convert the
XML output to a man page yourself.

Running the Scripts Using MacPerl

Most of HeaderDoc runs on Mac OS 9 and earlier if MacPerl is installed. (You can get MacPerl
from the CPAN ports page.) To run HeaderDoc using MacPerl:

■ Change the line endings in the scripts and modules (*.pm files) from UNIX to Macintosh.
Many text editors (BBEdit, for example) let you easily change line ending types.

■ Run MacPerl, open headerDoc2HTML.pl and gatherHeaderDoc.pl and save them as droplets.
You might save them with a different names (say, the script names minus the .pl extensions)
to preserve the original versions.

■ Now, you can drag a header file or folder of header files on each droplet in turn, and the files
will be processed in place.

34 Running the Scripts Using MacPerl
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Using HeaderDoc

http://www.perl.com/CPAN-local/ports/index.html

Note: Some advanced features, including automatic linking, man page output, and XML output
will not work in Mac OS 9 because these require libxml2, which is only available for UNIX-based
and UNIX-like systems.

Cocoa Front End

Kyle Hammond has made a Cocoa front end available for HeaderDoc. Mac OS X users can
download this from their website at http://www.isd.net/dsl03002/CocoaProgramming.html.

Cocoa Front End 35
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Using HeaderDoc

http://www.isd.net/dsl03002/CocoaProgramming.html

36 Cocoa Front End
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Using HeaderDoc

GatherHeaderDoc is a postprocessing script for HeaderDoc. Its primary purpose is to take a
directory containing output from HeaderDoc and create a table of contents with links.

GatherHeaderDoc is highly configurable. You can configure it to insert custom breadcrumb links,
use a custom TOC template, and even automatically insert “framework” information into the
TOC template, if desired.

Running gatherHeaderDoc.pl

The gatherHeaderDoc.pl script scans an input directory (recursively) for any documentation
generated by headerDoc2HTML. It creates a master table of contents (named masterTOC.html
by default—the name can be changed by setting a new name in the configuration file or by
specifying a second argument). It also adds a “top” link to all the documentation sets it visits to
make it easier to navigate back to the master table of contents.

Here's an example of how to create documentation for a number of headers (the sample ones
provided with the scripts) and then generate a master table of contents:

 > headerdoc2html -o OutputDir ExampleHeaders
 > gatherheaderdoc OutputDir

You can now open the file OutputDir/masterTOC.html in your browser to see the interlinked
sets of documentation.

You can also add a second argument to change the output file name. For example:

 > headerdoc2html -o OutputDir ExampleHeaders
 > gatherheaderdoc OutputDir MYTOCNAME.html

This time, gatherHeaderDoc created the file OutputDir/MYTOCNAME.html instead of
OutputDir/masterTOC.html.

For more information on configuring gatherHeaderDoc, see “Configuring HeaderDoc” (page
51).

Running gatherHeaderDoc.pl 37
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

Creating a TOC Template File

TOC template files are basically ordinary HTML files. They can contain any HTML content. In
addition to HTML content, they can also contain conditional HTML content—that is, content
that is only included if certain conditions are met. Finally, they can include various lists.

The template support is particularly powerful when combined with support for frameworks
(which, for HeaderDoc purposes, is essentially a loose grouping of related documentation stored
in the same output directory).

Here are the special tags that indicate conditional or list content:

$$title@@

Inserts “Foo Documentation” where Foo is the framework name.

$$tocname@@

Inserts the name of the main TOC file. Useful when used with multiple landing page
templates, as described in “Using Multiple Landing Page Templates” (page 40).

$$framework@@

Inserts the framework name.

$$frameworkdir@@

Inserts the framework directory name (the name of the “.hdoc” file without the extension).
This is useful when used with multiple landing page templates, as described in “Using
Multiple Landing Page Templates” (page 40).

$$frameworkdiscussion@@

Inserts the framework discussion.

$$frameworkabstract@@

Inserts the framework abstract.

$$headersection@@

Start of conditional block for headers. If there are no headers listed, content between this
tag and the closing conditional block tag will not appear.

$$/headersection@@

End of conditional block for headers.

$$headerlist@@

A list of all headers in the output directory.

$$classsection@@

Start of conditional block for classes. If there are no classes listed, content between this
tag and the closing conditional block tag will not appear.

38 Creating a TOC Template File
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

$$/classsection@@

End of conditional block for classes.

$$classlist@@

A list of all classes in the output directory.

$$categorysection@@

Start of conditional block for categories. If there are no categories listed, content between
this tag and the closing conditional block tag will not appear.

$$/categorysection@@

End of conditional block for categories.

$$categorylist@@

A list of all categories in the output directory.

$$protocolsection@@

Start of conditional block for protocols. If there are no protocols listed, content between
this tag and the closing conditional block tag will not appear.

$$/protocolsection@@

End of conditional block for protocols.

$$protocollist@@

A list of all protocols in the output directory.

$$datasection@@

Start of conditional block for data (globals and constants). If there are no data elements
listed, content between this tag and the closing conditional block tag will not appear.

$$/datasection@@

End of conditional block for data (globals and constants).

$$datalist@@

A list of all data elements in the output directory.

$$typesection@@

Start of conditional block for types. If there are no types listed, content between this tag
and the closing conditional block tag will not appear.

$$/typesection@@

End of conditional block for types.

$$typelist@@

A list of all types in the output directory.

Creating a TOC Template File 39
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

$$functionsection@@

Start of conditional block for functions or methods. If there are no functions or methods
listed, content between this tag and the closing conditional block tag will not appear.

$$/functionsection@@

End of conditional block for functions or methods.

$$functionlist@@

A list of all functions/methods in the output directory.

List tags default to a raw list (single column) with no border. However, you can change the
number of columns, the table width, and border quite easily. For example:

 $$functionlist cols=3 order=down atts=border=”0” cellpadding=”1”
cellspacing=”0” width=”420”@@

specifies that the table will be three columns, listed down the first column, then down the next
column, and so on. It also specifies that the additional attributes border, cellpadding,
cellspacing, and width will be inserted into the table tag automatically. Note that the atts
parameter must be the last parameter listed.

Using Multiple Landing Page Templates

HeaderDoc 8 is not limited to a single landing page template. You can generate multiple landing
pages with different content if desired. To do this, you might add a line in your config file like
this:

TOCTemplateFile => toctemplate.html functions.tmpl

Next, create a pair of template files called toctemplate.html and functions.tmpl. In the file
toctemplate.html, you can link to the functions index like this:

Functions Index<p>

In the functions template, you can link to the main TOC like this:

Headers Index<p>

When you run gatherHeaderDoc, you will now get two HTML landing pages, one for each
template.

The first template file, toctemplate.html, is treated as the “main” template page. Its contents
are output in the location specified by the masterTOCName variable in the config file
(masterTOC.html by default).

The second template file, functions.tmpl, results in a second HTML landing page whose name
is derived from the directory name of the framework, followed by a dash, followed by the template
filename (without any “.html” or “.tmpl” extensions), followed by “.html”.

40 Using Multiple Landing Page Templates
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

Example gatherHeaderDoc Template

The following is an example template for gatherHeaderDoc:

<html>
 <head>
 <title>API Reference: Device Drivers (Kernel/IOKit)</title>
 <style type="text/css"><!--#pagehead {
 FONT-WEIGHT: bold; FONT-SIZE: 32px; COLOR: #000000;
 FONT-FAMILY: lucida grande, geneva, helvetica, arial, sans-serif; }
 td { font-size: 10px; } a:link {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #0000ff;} a:visited {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #0000ff;} a:visited:hover {text-decoration: underline;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #ff6600;} a:active {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #ff6600;} a:hover {text-decoration: underline;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #ff6600;} h4 {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 font-size: tiny; font-weight: bold;} body {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 font-size: 10pt;} -->
 </style>
 </head>
 <Meta name="ROBOTS" content="NOINDEX">

<body bgcolor="#ffffff">
<center>

<!-- start of header -->
<!--#include virtual="/path/to/header.html"-->
<!-- end of header -->

<table border="0" cellpadding="0" cellspacing="0" width="600">

 <tr height="5">
 <td width="600" height="5">

 </td>
 </tr>
 <tr>
 <td width="600">
 <div id="pagehead">$$framework@@</div>
 </td>
 </tr>
 <tr height="10">
 <td width="600" height="10">

 </td>
 </tr>
 <tr>
 <td valign="top" width="600"><font face="Geneva,Helvetica,Arial"
 size="2"> $$frameworkdiscussion@@

 </td>

Example gatherHeaderDoc Template 41
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

 </tr>
 <tr height="10">
 <td height="10" width="600"></td>
 </tr>
 <tr height="5">
 <td height="5" width="600">
 <hr alt="">

 </td>
 </tr>
 <tr>
 <td width="600" align="center" valign="top">
 <H2>Headers</H2>

 $$headerlist cols=3 order=down atts=border="0"
 cellpadding="1" cellspacing="0" width="420"@@
 <H2>Functions</H2>
 $$functionlist cols=3 order=down atts=border="0"
 cellpadding="1" cellspacing="0" width="420"@@
 </td>
 </tr>
</table>
</center>
</body>
</html>

42 Example gatherHeaderDoc Template
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Using gatherHeaderDoc

In addition to the main headerDoc2HTML and gatherHeaderDoc scripts, the HeaderDoc suite
contains additional utilities for generating manual pages (using the mdoc macro set).

The Man Page Generation Language (MPGL) suite contains two utilities: xml2man and
hdxml2manxml. The xml2man utility converts an mdoc-like XML dialect, the Man Page Generation
Language (MPGL) into manual pages. The hdxml2manxml utility converts HeaderDoc XML
output into a series of files that can then be processed using xml2man.

Both commands have a very simple syntax. Neither takes any arguments.

hdxml2manxml filename1 filename2 ... filenameN
xml2man inputfile.mxml [outputfile.1]

In the case of xml2man, the output filename is generally left blank.

The remainder of this chapter describes the XML dialect used by these utilities.

Man Page Generation Language (MPGL) Dialect

This section describes the basic syntax of the Man Page Generation Language (MPGL). Portions
of the syntax are abridged due to complexity. For information on these details, see the examples
later in this chapter.

Note: Many versions of man are exceptionally picky about blank lines. While the xml2man translator
attempts to remove most of these, you should still avoid leaving blank lines in the input files.

The MPGL syntax includes a subset of mdoc. All text is unjustified, and some redundancy was
reduced. In particular, the usage section in an MPGL file provides the source information for
both the Synopsis and Description sections of a traditional man page. Beyond those changes, if
you are familiar with the mdoc macro set, you should feel right at home.

At the top level (within the outer <manpage> tag), an MPGL page consists of some or all of the
following large blocks:

Man Page Generation Language (MPGL) Dialect 43
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

Table 5-1 MPGL block tags

DescriptionBlock tag

the last modified date of the manual page<docdate>

the title of the manual page<doctitle>

the operating system for which the manual
page was written

<os>

the man section in which the manual pages
should appear

<section>

names and descriptions of functions or tools
described in this manual page (see example
for syntax)

<names>

command-line usage or function parameters
(see example for syntax)

<usage>

function return value (text description)<returnvalues>

interaction with environment variables<environment>

files used by a command-line tool<files>

usage examples<examples>

troubleshooting information<diagnostics>

function error values (generally restricted to
those returned via the errno global variable)

<errors>

cross-references to other manual pages (see
example)

<seealso>

standards to which a tool or function
conforms.

<conformingto>

historical information<history>

known bugs in a tool or function<bugs>

Any field can contain either a block of raw text or the following subset of XHTML:

44 Man Page Generation Language (MPGL) Dialect
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

Table 5-2 XHTML tags supported by MPGL

DescriptionXHTML tag

paragraph<p>

indented block<blockquote>

indented literal text or code<tt>

unordered (bullet) list

ordered (numbered) list

list item (within a list)

literal text<code>

term and definition list<dl>

term (within a term and definition list)<dt>

definition (within a term and definition list)<dd>

Any field can also contain any of the following MPGL-specific inline tags:

Table 5-3 Additional MPGL-specific inline tags

DescriptionTag

path name<path>

function name<function>

command name<command>

man page cross-reference (see example)<manpage>

A Simple Function Example

Listing 1-1 (page 46) is an example of how to write an MPGL manual page for a function.

A Simple Function Example 45
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

Listing 5-1 A simple MPGL example for a function

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Mac OS X</os>
<section>3</section>
<names>
 <name>foo<desc>This is foo's description</desc></name>
 <name>bar<desc>This is bar's description</desc></name>
</names>

<usage>
 <func><type>int</type><name>foo</name>
 <arg>int k<desc>This is a k.</desc></arg>
 <arg>char *b<desc>This is a b.</desc></arg>
 </func>
</usage>

<returnvalues>
 <p>Returns kIONotANumber if you can't count.</p>
 <p>Returns kIOMoron this if you REALLY can't count.</p>
</returnvalues>

<environment>
 TEXT
</environment>

<files>
 <file>/path/to/filename<desc>This is a waste of time</desc></file>
 <file>/path/to/another/filename<desc>This is also a waste of
time</desc></file>
</files>

<examples>
 TEXT
</examples>

<diagnostics>
 TEXT
</diagnostics>

<errors>
 TEXT
</errors>

<seealso>
 <p>This is a text container, really, but generally contains
 lines like this:</p>
 <manpage>foo<section>1</section>, </manpage>
 <manpage>bar<section>3</section></manpage>
</seealso>

<conformingto>
 <p>Here's a list of conformance:</p>

 Single UNIX Specification

46 A Simple Function Example
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

 POSIX

</conformingto>

<history>
 TEXT
</history>

<bugs>
 <p>Here are some bugs:</p>
 <p>

 Bug one....
 Bug two....
 Bug three....

 </p>
 <p>I think that pretty much covers it.</p>
</bugs>
</manpage>

A Simple Command Example

Listing 1-2 (page 47) is an example of how to write an MPGL manual page for a single command
or a series of commands with the same syntax.

Listing 5-2 A simple MPGL example for a command

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Darwin</os>
<section>1</section>
<names>
 <name>foo<desc>this is a description</desc></name>
 <name>bar<desc>this is also a description</desc></name>
</names>

<usage>
 <flag optional="1">a<arg>attributes</arg><desc>This is the atts
flag</desc></flag>
 <flag>d<arg>date</arg><desc>This is the date flag</desc></flag>
 <flag>x<desc>This is the -x flag</desc></flag>
 <arg>filename<desc>This is the filename</desc></arg>
</usage>

<returnvalues>
 <p>Returns kIONotANumber if you can't count.</p>
 <p>Returns kIOMoron if you REALLY can't count.</p>
</returnvalues>

<environment>

A Simple Command Example 47
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

 TEXT
</environment>

<files>
 <file>/path/to/filename<desc>This is a waste of time</desc></file>
 <file>/path/to/another/filename<desc>This is also a waste of
time</desc></file>
</files>

<examples>
 TEXT
</examples>

<diagnostics>
 TEXT
</diagnostics>

<errors>
 TEXT
</errors>

<seealso>
 <p>This is a text container, really, but generally contains
 lines like this:</p>
 <manpage>foo<section>1</section>, </manpage>
 <manpage>bar<section>3</section></manpage>
</seealso>

<conformingto>
 <p>Here's a list of conformance:</p>

 Single UNIX Specification
 POSIX

 <p>Here's a definition list:</p>
 <dl>
 <dd>foo_aaa</dd>
 <dt>This is foo</dt>
 <dd>bar</dd>
 <dt>This is bar</dt>
 </dl>

</conformingto>

<history>
 This program should be history....
</history>

<bugs>
 <p>Here are some bugs:</p>
 <p>

 Bug one....
 Bug two....
 Bug three....

 </p>

48 A Simple Command Example
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

 <p>I think that pretty much covers it.</p>
</bugs>
</manpage>

A Multi-Command Example

Listing 1-3 (page 49) is an example of how to write an MPGL manual page for multiple commands
in a single page.

Listing 5-3 An MPGL example for multiple commands

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Darwin</os>
<section>1</section>
<names>
 <name>hdxml2manxml<desc>HeaderDoc XML to MPGL
translator</desc></name>
 <name>xml2man<desc>MPGL to mdoc (man page) translator</desc></name>
 <name>examplemc<desc>MPGL to mdoc (man page)
translator</desc></name>
</names>

<usage>
 <command name="hdxml2manxml">
 <arg>filename [filename ...]<desc>the filename(s) to be
 processed</desc></arg>
 </command>
 <command name="xml2man">
 <arg>filename<desc>This is the filename</desc></arg>
 <arg optional="1">output_filename<desc>This is the
filename</desc></arg>
 </command>
 <command name="example">
 <arg>filename<desc>This is the filename</desc></arg>
 <arg optional="1">output_filename<desc>This is the
filename</desc></arg>
 </command>
 <command name="example">
 <arg>filename [filename ...]<desc>the filename(s) to be
 processed</desc></arg>
 <flag optional="1">c<arg>time_to</arg><arg
optional="1">crash</arg><desc>Seems like a useful flag</desc></flag>
 </command>
</usage>

<environment>
 <p>The <name>xml2man</name> program was designed to convert Man
Page
 Generation Language (MPGL) XML files into mdoc-based manual pages.
 The MPGL is a fairly direct translation of mdoc to XML.</p>

A Multi-Command Example 49
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

 <p>The <name>hdxml2manxml</name> tool was designed to translate
 from headerdoc's XML output to an mxml file for use with
xml2man.</p>
</environment>

<seealso>
 <p>For more information on xml2man, see</p>
 <manpage>xml2man<section>1</section>, </manpage>
 <manpage>hdxml2manxml<section>1</section>, </manpage>
</seealso>

</manpage>

50 A Multi-Command Example
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Using the MPGL Suite

You can set values for some commonly altered variables. Currently, the configuration file lets
you set these things:

copyrightOwner

The copyright notice that appears at the bottom of the HTML pages. Unless you specify
a value, no copyright will appear.

defaultFrameName

The name of the file containing the frameset instructions (by default, index.html).

compositePageName

The name of the file containing the printable HTML page (by default,
CompositePage.html).

masterTOCName

The name of the file containing the master table of contents for a series of headers (by
default, masterTOC.html). (This variable is used by the gatherHeaderDoc script, and can
be overridden on the command line.)

apiUIDPrefix

The prefix for named anchors (by default, apple_ref). In the output, HeaderDoc adds a
self-describing named anchor near each API declaration—for example . These can be useful for index
generation and other purposes. See “Symbol Markers for HTML-Based
Documentation” (page 55) for more information.

ignorePrefixes

A list of tokens to leave out of the final output if they occur at the start of a line (before
any other non-whitespace characters).

htmlHeader

A string (generally a server-side include directive) that HeaderDoc will insert into the top
of each right-side and composite HTML page if you specify the -H flag on the command
line. For longer headers, use htmlHeaderFile.

51
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Configuring HeaderDoc

htmlHeaderFile

A file containing longer HTML headers. The contents of this file will be added to each
content page if you specify the -H flag on the command line.

dateFormat

A string specifying the date format to be used by HeaderDoc. A few valid examples include
Y/M/D, M-D-Y, M/Y, Y.

ignorePrefixes

Specifies a list of tokens to remove from HeaderDoc markup. Generally used to remove
debug macros.

HeaderDoc Styles:

These contain CSS formatting for various parts of declarations. For example:
funcNameStyle => background:#ffffff; color:#000000;

commentStyle

style for comments

preprocessorStyle

style for preprocessor directives

funcNameStyle

style for function names

stringStyle

style for strings

charStyle

style for characters ('a')

numberStyle

style for numbers

keywordStyle

style for keywords

typeStyle

style for data types

paramStyle

style for function parameters

varStyle

style for variable names

52
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Configuring HeaderDoc

useBreadCrumbs

Controls whether HeaderDoc will insert breadcrumb links into content pages instead of
adding [Top] in the TOC. Valid Values are 0 or 1.

The path leading up to the current framework must be included manually in the
htmlHeader or htmlHeaderFile directive. The breadcrumb is inserted wherever

<!-- begin breadcrumb --><!-- end breadcrumb -->

appears in the htmlHeader or htmlHeaderFile content.

TOCTemplateFile

Specifies a TOC template file to use instead of the built-in TOC template. For more
information, see “Creating a TOC Template File” (page 38).

HeaderDoc looks in three places for values for these variables, in this order:

1. In the script itself (see the declaration of the %config hash near the top of headerDoc2HTML).

2. In the home directory of the user, in
Library/Preferences/com.apple.headerDoc2HTML.config

3. In a file named headerDoc2HTML.config in the same folder as the script.

A variable can be assigned a value in any of these places, but only the last value read for a given
variable will affect the output of a run of the script. If you are happy with the default values for
these variables (as described above), you don't need to provide a configuration file. If you want
to change just one or more values, provide a configuration file that declares just those values.

The format of the configuration file is this:

 key1 => value1
 key2 => value2

Configuration File Example

Listing 1-1 (page 53) is an example of a very basic HeaderDoc configuration file. Several additional
examples are included as part of the HeaderDoc distribution.

Listing 6-1 Sample HeaderDoc configuration file

copyrightOwner => My Great Software Company
defaultFrameName => default.html
compositePageName => PrintablePage.html
masterTOCName => TOCCentral.html
apiUIDPrefix => greatSoftware
ignorePrefixes=> CF_EXTERN|CG_EXTERN
htmlHeader=>
dateFormat=> m/d/y

Configuration File Example 53
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Configuring HeaderDoc

54 Configuration File Example
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Configuring HeaderDoc

As HeaderDoc generates documentation for a set of header files, it injects named anchors () into the HTML to mark the location of the documentation for each API
symbol. This document describes the composition of these markers.

As you will see, each marker is self describing and can answer questions such as:

■ What is the name of this symbol?

■ What type of symbol is this (for example function, typedef, or method)?

■ Which class does this method belong to?

■ What is the language environment: C, C++, Java, Objective-C?

With this embedded information, the HTML documentation can be scanned to produce API lists
for various purposes. For example, such a list could be used to verify that all declared API has
corresponding documentation. Or, the documentation could be scanned to produce indexes of
various sorts. The scanning script could as well create hyperlinks from the indexes to the source
documentation. In short, these anchors retain at least some of the semantic information that is
commonly lost when converting material to HTML format.

The Marker String

A marker string is defined as:

marker := prefix '/' lang-type '/' sym-type '/' sym-value

A marker is a string composed of two or more values separated by a forwars slash (/). The
forward-slash character is used because it is not a legal character in the symbol names for any of
the languages currently under consideration.

The prefix defines this marker as conforming to our conventions and helps identify these markers
to scanners. The language type defines the language of the symbol. The symbol type defines
some semantic information about the symbol, such as whether it is a class name or function name.
The symbol value is a string representing the symbol.

The Marker String 55
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Symbol Markers for HTML-Based
Documentation

Because the string must be encoded as part of a URL, it must obey a very strict set of rules.
Specifically, any characters other than letters and numbers must be encoded as a URL entity. For
example, the operator + in C++ would be encoded as %2b.

By default, the prefix is //apple_ref. However, the prefix string can be changed using
HeaderDoc's configuration file.

The currently-defined language types are described in Table A-1 (page 56).

Table A-1 HeaderDoc API reference language types

Cc

Objective-Cocc

Javajava

JavaScriptjavascript

C++cpp

PHPphp

Pascalpascal

perl scriptperl

Bourne, Korn, Bourne Again, or C shell scriptshell

The language type defines the language binding of the symbol. Some logical symbols may be
available in more than one language. The c language defines symbols which can be called from
the C family of languages (C, Objective-C, and C++).

Symbol Types for All Languages

The symbol types common to all languages are described in Table A-2 (page 56).

Table A-2 Symbol types for all languages

struct, union, or enum tagtag

an enumerated constant—that is, a symbol
defined inside an enum

econst

typedef name (or Pascal type)tdef

macro name (without '()')macro

56 The Marker String
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Symbol Markers for HTML-Based Documentation

global or file-static datadata

function name (without '()')func

Symbol Types for Languages With Classes

cl

class name

intf

interface or protocol name

cat

category name, just for Objective-C

intfm

method defined in an interface (or protocol)

instm

an instance method 'clm' a class (or static [in java or c++]) method

C++ (cpp) Symbol Types

tmplt

C++ class template

ftmplt

C++ function template

func

C++ scoped function (i.e. not extern 'C'); includes return type and signature.

Java (java) Symbol Types

clconst

Java constant values defined inside a class

Note: The symbol value for method names includes the class name.

Objective-C (occ) Method Name Format

The format for method names for Objective-C is:

The Marker String 57
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Symbol Markers for HTML-Based Documentation

class_name '/' method_name
e.g.: //apple_ref/occ/instm/NSString/stringWithCString:

For methods in Objective-C categories, the category name is not included in the method name
marker. The class named used is the class the category is defined on. For example, for the
windowDidMove: delegate method on in NSWindow, the marker would be:

e.g.: //apple_ref/occ/intfm/NSObject/windowDidMove:

C++/Java (cpp/java) Method Name Format

The format for method names for Java and C++ is:

 class_name '/' method_name '/' return_type '/' '(' signature ')' e.g.:
 //apple_ref/java/instm/NSString/stringWithCString/NSString/(char*)

For Java and C++, signatures are part of the method name; signatures are enclosed in parentheses.
The algorithm for encoding a signature is:

1. Remove the parameter name ; for example, change (Foo *bar, int i) to (Foo *, int).

2. Remove spaces ; for example, change (Foo *, int) to (Foo*,int).

58 The Marker String
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Symbol Markers for HTML-Based Documentation

HeaderElement (Root Class--any header entity that's significant)
 | (to HeaderDoc is a HeaderElement)
 |
 |
 |-----------APIOwner (Object that owns declared API)
 | |
 | |-------Header (Owner for header-wide API)
 | |
 | |-------CPPClass (Container for all non-Objective-C classes and
 | | C pseudoclass/COM Interface APIs).
 | |
 | |-------ObjCContainer
 | |
 | |-------ObjCClass (Owner for Objective-C class API)
 | |
 | |-------ObjCCategory (Owner for Objective-C category API)
 | |
 | |-------ObjCProtocol (Owner for Objective-C protocol API)
 |
 |
 |-----------Method (an Objective-C method)
 |
 |-----------Constant
 |
 |-----------Enum
 |
 |-----------Function (any non-objective-C function or method)
 |
 |-----------MinorAPIElement (parameter, members of structs)
 |
 |-----------PDefine
 |
 |-----------Struct (for both structs and unions)
 | |
 | |-------Var (subclass of Struct so that it can contain fields)
 |
 |-----------Typedef

DocReference (Another root class. Used by gatherHeaderDoc to store
 information about documentation framesets within an
 input folder. The script uses this information to

59
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

HeaderDoc Class Hierarchy

 construct a top-level table of contents with links
 to each frameset.)

ParseTree (Token tree instantiated from BlockParse.pm.)

In addition to the classes shown above, the headerDoc2HTML script also uses the
non–object-oriented modules Utilities.pm, ClassArray.pm, and BlockParse.pm. Most class
instances are instantiated from headerDoc2HTML.pl based on the results of a call to blockParse.

The ParseTree class is instantiated in the block parser itself. It contains a token tree and a set of
operations on that tree (print the tree, return a text or html representation of the tree, walk the
parse tree for parameters, walk the parse tree for embedded headerdoc markup, etc.

Finally, gatherHeaderDoc uses an external program, resolveLinks, to convert special “link
request” comments into links to other files in the directory being processed. This tool (written
in C) resides in the bin directory within the HeaderDoc modules directory.

60
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X B

HeaderDoc Class Hierarchy

HeaderDoc 8 is the latest incarnation of the HeaderDoc tool. It consists of a series of Perl scripts
and several small C helper applications that allows conversion of documentation embedded in
header files in many languages into HTML and other output formats.

HeaderDoc 8 is nearly a rewrite of HeaderDoc from the ground up. It incorporates all of the
functionality of previous versions but also provides a number of new features, such as declaration
syntax coloring/highlighting and an easier-to-use comment syntax. These features are described
in “Major Features” (page 62).

HeaderDoc 8 also adds a number of additional languages with various levels of support. These
are described in “Languages Supported” (page 61).

Finally, HeaderDoc 8 adds a number of new (optional) tags for convenience. These are described
in “New Tags” (page 63).

For additional information, see the documentation that is packaged with HeaderDoc.

Languages Supported

HeaderDoc 8 supports many more languages than HeaderDoc 7. This table shows the various
languages and the level of support.

Table 7-1 HeaderDoc 8 Language Support

HeaderDoc 8
support

HeaderDoc 7
support

Language

yesyesC headers

yesyesC++

yesyesObjective C

yesnoC source code

Languages Supported 61
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

HeaderDoc 8
support

HeaderDoc 7
support

Language

yesnoK&R C sources

yes *noJava

yes *noJavaScript

yesnoPascal

yes **sort-ofPHP

yes **noPerl

yes **noShell Scripts

yes **noMach IPC
Interface Defs

Note: * Java and JavaScript support only functions and classes.** Scripting languages support
only functions and subroutines.

Major Features

HeaderDoc 8 has a number of new features.

■ Function/data type groupings

■ Declaration syntax coloring

■ New tagless syntax
/*! This is a comment about what comes next */

■ Support for HeaderDoc tags embedded in declarations

■ Sopport for //! markup style for embedded HeaderDoc declarations

■ Automatic linking of data types in declarations

■ Improved C++ support (namespace/template/access)

■ GatherHeaderdoc is now template based

■ PHP support (and a bunch of other languages) now included without patching

■ Support for linking to other methods and data types within the same file

■ Comment stripper

■ Support for exceptions

■ Now warns if tagged parameters don’t match declaration

62 Major Features
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

■ Optional warning if parameters are not tagged

■ Improved warnings for other invalid content

■ Man page output path (via XML)

■ DTD for output validation

■ Translation of HTML to XHTML using xmllint when using XML output

■ Nested class handling

■ Customizable date format

■ C pseudoclass support (typedef struct)

■ Better nested class support

■ C++ constructors/destructors now sorted first in the list of class methods.

■ The @ignore tag—allows you to remove matching tokens from declarations

■ “Unsorted” flag

■ Summary function and method lists (a mini-TOC)

■ Automated detection of numbered lists

■ Automatic handling of availability macros

■ Improved overall appearance

■ Beginnings of a regression test suite

New Tags

This section attempts to list all of the new tags added in HeaderDoc 8 (some of which were
actually available, but undocumented, in HeaderDoc 7).

@classdesign

Text block describing the overall design of a class

@coclass

String describing a class that this class was designed to work with

@dependency

String describing a class upon which this class depends heavily

@exception

String describing an exception thrown by a function/method/class

@functiongroup

Tag for grouping functions and methods; this takes priority over the @group tag with
respect to functions and methods

New Tags 63
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

@group

Tag for grouping data, functions, and so on

(Note: the @functiongroup tag takes priority over the @group tag for functions.)

@helper

String telling what helper classes this class uses

@helps

For helper classes, string telling what sort of classes this class was designed to help

@instancesize

Text block containing the size of an instance of this class

@methodgroup

See @functiongroup.

@ownership

String describing what class instantiates the current class (for example, I/O Kit nubs)

@performance

Text block to describe performance characteristics of a class (for example, “This class is
not appropriate for use in high-performance environments”)

@security

Text block to describe security considerations when using this class

@superclass

Adds superclass info to a C pseudoclass; also can be used to cause members of the
superclass to be merged into the subclass

@throws

See @exception.

Additional Notes

This section lists known issues in HeaderDoc 8. We hope to improve in these areas in future
versions. If you find issues not listed here, please file bugs.

■ HeaderDoc 8 is somewhat slower than previous versions. This is because the entire parser
has been rewritten from the ground up and now does a token-based parse of the input file.
While this approach should significantly improve the correctness of output (colorizer bugs
notwithstanding), it is doing a lot more work than before, and thus takes longer.

■ The default color scheme generated by HeaderDoc matches Xcode coloring. There are a
number of files supplied as alternative color schemes, ranging from pleasant to utterly hideous
and blinking (used mainly for testing). Swap out your headerDoc2HTML.config file as desired.

64 Additional Notes
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

■ The GatherHeaderDoc default template is built-in. The format for this template is described
in “Using gatherHeaderDoc” (page 37). Also see “Example gatherHeaderDoc
Template” (page 41) for an example of the template format.

Additional Notes 65
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

66 Additional Notes
May 27, 2004 | © 1999, 2004 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

HeaderDoc Release Notes

	Contents
	Tables and Listings
	Introduction to HeaderDoc: API Documentation From Header Files
	What is HeaderDoc?
	Organization of this Document

	HeaderDoc Tags
	Introduction to HeaderDoc Comments and Tags
	HMBalloonRect

	Multiword Names
	Automatic Tagging
	Tags for Frameworks
	Tags for All Headers
	Tags Common to All API Types
	Tags for All Languages
	Availability Macro Tags
	Constant Tags
	#define Tags
	Enum Tags
	Function Tags
	Function Group Tags
	Struct and Union Tags
	Typedef Tags
	Variable tags

	C Pseudoclass Tags
	Class Tags
	Interface Tags
	Superclass Tags

	Tags for C++ Headers
	Conventions
	Additional Tags for C++ Class Declarations
	Class Tags
	Function Tags
	Template Tags

	Tags for Objective-C Headers
	Tags for Objective-C Headers
	Introduction
	The @class, @protocol, and @category Tags

	Using HeaderDoc
	Running headerDoc2HTML.pl
	HeaderDoc Command-line Switches

	Running the Scripts Using MacPerl
	Cocoa Front End

	Using gatherHeaderDoc
	Running gatherHeaderDoc.pl
	Creating a TOC Template File
	Using Multiple Landing Page Templates
	Example gatherHeaderDoc Template

	Using the MPGL Suite
	Man Page Generation Language (MPGL) Dialect
	A Simple Function Example
	A Simple Command Example
	A Multi-Command Example

	Configuring HeaderDoc
	Configuration File Example

	Symbol Markers for HTML-Based Documentation
	The Marker String
	Symbol Types for All Languages
	Symbol Types for Languages With Classes
	C++ (cpp) Symbol Types
	Java (java) Symbol Types
	Objective-C (occ) Method Name Format
	C++/Java (cpp/java) Method Name Format

	HeaderDoc Class Hierarchy
	HeaderDoc Release Notes
	Languages Supported
	Major Features
	New Tags
	Additional Notes

