initng: Trying to tame the daemon world

David A. Zarzycki

December 11, 2003

Apple Computer Inc.

1 Infinite Loop

Cupertino, CA 95014

zarzycki@apple.com

Abstract:

This paper will attempt to demonstrate the overlapping feature sets and goals of several traditional daemons in the system. We will then try to rationalize the merger and feature set extension of those super daemons to reduce code duplication and support more complex daemons that wish to launch on demand. The list of super daemons we will frequently refer to includes init(8), mach_init(8), inetd(8), cron(8) and atd(8).

Introduction:

Daemons have existed for decades. They all fundamentally do one thing: that is, wait for some class of events to take place, and then take action. Like the rest of our Unix brethren, we are increasingly finding ourselves swamped with new daemons being written to handle seemingly random and unknown tasks. The cumulative cost of these running daemons on the system is easily felt through both memory contention and the additional startup cost incurred at boot up and login as daemons is started.

Apple would like to try and tame the daemon world once and for all. We cannot stop the desire or need to write daemons, but we want to try and manage their existence better, and most importantly, make writing well behaving daemons easier.

Background:

If you take a look at appendix B, you’ll see that we’ve attempted to do a thorough audit of all of the daemons in Mac OS X. The first observation to make is what the fundamental sources of events are used by those daemons to take action from. That list includes:

· Unix sockets

· Mach IPC

· Timers

· File system events

For the purpose of this document, when we say “socket” we really are including all forms of sockets, not just the frequently used IP based sockets.

Additionally, we will acknowledge that some daemons use event sources built on top of the above list, but that fact is opaque to them, and thus will somewhat complicate implementing a helper daemon to launch them on demand.

History:

The problem space we wish to address with initng isn’t new. The Unix community felt overwhelmed once before by daemons when the Internet was hitting its first stride. The observation was made that all of the Internet daemons at the time did more or less the same recipe of code to accept connections and spawn child processes to handle the connections. The Unix forefathers at the time decided that writing one process with the knowledge of how to do this work on behalf of Internet daemons would save resources both at boot and run-time, and thus inetd(8) was born in 4.3BSD.

Given hindsight, inetd(8) had limitations. First, it only supports internet protocol based sockets. It is disappointing that such a daemon wasn’t designed to support any arbitrary Unix socket type, with the local domain sockets being the obvious omission. Second, it only supported one listener per daemon. If a daemon wanted to listen on both TCP and UDP for example, the use of inetd(8) was not an option. Such daemons came to exist and were in fact common with Sun-RPC based daemons.

The Mach community found they had inetd(8) style needs during their development process. The desire was to have Mach IPC based daemons be launched on demand much like inetd(8), and thus mach_init(8) was born. But like inetd(8), the scope of functionality is limited to only Mach as an IPC based mechanism. This creates problems for launching daemons on demand that need to support multiple IPC mechanisms.

Unix has coalesced timer based daemons/jobs multiple ways throughout its development. Cron(8) is the classic way of implementing daemons that only need to do work at specific calendar based time intervals. The related atd(8) daemon can schedule jobs to run once, but the important functionality it has that cron doesn’t is the ability to defer the scheduling of the job based on system load.

Today:

Given another year or two, Apple would most likely write an inetd(8) style daemon to handle launching daemons on demand when certain classes of devices are attached to the system. The current releases of Mac OS X launch such daemons on demand via ad-hoc mechanisms, the post popular being the creation of a configd plug-in.

But if we ignore the slow proliferation of super daemons being created to launch specific styles of daemons on demand, we have a larger growing problem of daemons that span multiple worlds or have grown beyond the simple limitations of their launch on-demand parent super daemon.

On Mac OS X, the clearest and easiest example of this is the daemon responsible for handling Rendezvous registrations and advertisements. It listens on both a Mach port and a TCP/IP port, which prevent it from being launched on demand by either inetd(8) or mach_init(8), since it would leave the other “port” unserviced.

A clear Unix style example is just about any e-mail daemon these days. It wants to listen on multiple TCP/IP ports, maybe a Unix domain socket or two, and finally, the ability to monitor a directory or directories used as queues for e-mail to be sent.

There are more examples to choose from, and sadly, today’s launch on demand super daemons can’t handle such mildly complex needs.

The Future:

The high level goals include:

· Merge the super daemons

· Extend functionality

· Support new kinds of daemons

First, if we’re talking about supporting launching daemons on demand that span multiple super daemons today, we need to merge the super daemons just to maintain sanity over tracking the state of the subordinate daemon (noticing it dies, relaunching it, handing off IPC communication channels, etc).

Second, there are numerous simple and reasonable feature requests being made that would result in code duplication if the daemons were not merged. Power management and mobility awareness are great examples.

Third, there are completely new kinds of daemons that need supporting. It would be better to add awareness to an existing super daemon on how to watch for the new kinds of events, than write a new daemon that will likely have some of the same problems we’ve outlined (too narrowly focused, for example).

Design:

Risk is the biggest concern I’ve seen over this project. I’d like to make an effort to address risk related concerns first.

Correctness:

This will be a very simple daemon that revolves its entire state engine around a few system calls. All non critical-path code such as parsing configuration files will live in a short lived process outside of the daemon and communication will be made via IPC to the daemon. A best effort will be made to document the state engine, and more importantly, catch and appropriately deal with all possible error conditions returned from APIs. Calling abort() or exit() is simply not an option for this daemon.

Reliability:

While we can read as much documentation as possible and attempt to deal with all possible error conditions, we still might not be able to avoid bugs in the kernel, libc or the daemon itself. We will attempt to deal with unforeseen error returns gracefully as we can and by all means, never drop a job on the floor because something unexpected or unlikely happened.

Also, a single threaded daemon with a documented state engine will make debugging easier, should the need arise, thus improving the reliability of the project in the long run.

Security:

Luckily our correctness and reliability goals will knock most of the trivial security bugs out of the daemon up front. The trivial security bugs include bounds checking problems, use of blocking APIs as a potential denial-of-service, etc. What remains is the need to carefully track who submitted the daemon/job to the super daemon, and make sure that when the daemon is launched on demand, it is as that user, and not root.

Performance:
One cannot write a daemon as critical as this one without performance in mind. But given past research into web server design, we know that a single threaded daemon like is the fastest design one can make if you wish to accept events from the kernel and handle them. Many locks can be avoided since other threads aren’t running, and processor cache utilization is much better. If we do our job right, the bulk of the time spent under peak load will be in system calls.

IPC library design details:

The library code will mask as much of the communication details as possible. All of the APIs will be synchronous. I can’t find any reasonable justification at this point in time for asynchronous APIs, but nothing is stopping us from adding them later. Communication with the initng daemon will be initiated lazily. All messages will be represented as opaque objects with get and set functions. The current list of messages an application might send include job submission/cancellation, job enable/disable, request for a list of jobs, and enable/disable batch job scheduling. If we ignore the IPC calls and related serializing/deserializing of data, this library is just stub functions. The real work is in the initng daemon.

Command line and GUI configuration/introspection tools:

There will be both command line and GUI tools written to demonstrate the IPC libraries facilities. It would not surprise me if we ultimately ship the GUI tool as a way of helping system administrators introspect their systems for sick daemons. It will be the responsibility of applications like these to parse configuration files and call the IPC library. Apple will supply and use a simple CoreFoundation based tool for parsing and submitting jobs via the IPC library.

Daemon Design details:

At the start of main()

1) Initialize internal data structures.

2) Initialize IPC code.

3) Run the previously mentioned config file parsing tool to load our initial state.

4) Enter the run-loop.

Inside the run loop, after kevent() returns:

1) Find all the returned events where children have exited and clean up.

2) Find all the IPC requests and service them

3) Job event demux

Inside the IPC request event loop:

1) New connection? Setup state, accept, and add to the run loop.

2) Dead connection? Clean up and close.

3) Existing connection?

a. If there data on the queue that still needs to be flushed? Do so.

b. If we try to write and only get a partial success, put the remaining data back on the queue, and we’ll let kqueue() tell us when to try again. Don’t read any new messages from this connection until the queue is drained.

c. If we have nothing to write, read messages from the client.

d. Demux the message and handle the query/request.

e. Again, if the write() fails, put the remaining data on the internal queue until kqueue() reports that we can write again.

Inside the IPC demux:

1) Job submission? Deserialize the message add the job to the internal data structures.

2) Job cancellation? Kill the job and clean up.

3) Job enable/disable? Enable and disable the scheduling of the job respectively.

4) Enable/disable batch scheduling? Flip the global for the internal job scheduler.

5) Job listing request? Run through the job queue and send a message back for each job.

Inside the job event demux:

1) Find the job and stop listening for events on all channels (file descriptors, mach ports, etc.)

2) Call the job launch function to deal with the fork()/execve() etc.

If that fails, re-enable the job’s listening channels.

So, to rewrite the above lists of actions with words, one single threaded non-blocking state engine is the name of the game. After the daemon starts up and initialized its internal run loop, it will run a external process to parse configuration files and speak IPC back to the daemon to register jobs/daemons. An example of our long term configuration file format can be found in appendix A.

The daemon can be thought of in layers. At the core will be the run-loop. It will take events returned from the kqueue() API and demultiplex them.

First, we will check to see if the event is on our list of internal events we are waiting for, with IPC being the number one example. Otherwise, we can take the kevent cookie and jump straight to the job handling code.

If it is an IPC request to initngd itself, we’ll lookup the per client IPC connection state information. If the connection is closed, we’ll clean up, if we have buffers that still need to be written, we will attempt to drain those before reading any new messages from the client. Finally, if we have nothing to write, we’ll read the IPC requests and attempt to answer them.

If the kevent is tied to one of the jobs/daemons we are servicing, we will look up the job and resolve what to do next. If the job died, we add the listening file descriptors and Mach ports back to our run-loop. If the job needs to run, we will begin the procedures needed to hand off the various handles and the reason the job became runable to the child process, and remove the handles from the initngd event loop and return back to the initngd run-loop to process more events.

The implementation agenda:

Stage one, launching daemons on demand that are based on fundamental kernel APIs, where fundamental includes sockets, mach ports, timers, and file system activity. In other words, conceptionally merge init, mach_init, inetd, cron and at to the point where those daemons no longer need to run. We will not limit ourselves to just TCP/IP sockets too. Considering that we wish to minimize risk exposure, we must then look long and hard at sockets, which require a non-trivial amount of setup work. DNS is the best example for internet based sockets. Unix domain sockets may need an entity in the file system name space unlinked before. Given complex setup problems like this, and associated risk of such APIs, I’d like to design the initng daemon in such a way that the external tools not only parse the configuration files and IPC over the results, but those external tools do as much setup work as possible. Create file descriptors, do the various resolver lookups, set listening, binding, and socket options, and then finally use the file descriptor passing facilities of the kernel to hand off the file descriptors to initngd. An added benefit of such a design model is that non root users can hand off sockets to initngd, and initng can do far less security checks, because many of the checks were already done as a part of the socket setup procedures running in the context of the user. We hope to use the division of labor for sockets as a model for other event sources as much as possible. Finally, under stage one, we wish not to spend to much time on creating a feature rich way of specifying timers to launch jobs. We can always add that later, but at this point in time anything beyond cron(8) and at(8) style functionality isn’t as important as stage two and three.

Stage two will tackle daemons on demand, which are using facilities built on top of the previously mentioned fundamental kernel APIs. At this point in time, the only demand for this is launching daemons on demand after certain devices are attached to the system. This means dragging several frameworks, including IOKit and CoreFoundation. CoreFoundation is scary, because they assume inputs to functions have been prequalified, and thus will crash if the input is bogus. We will attempt to handle this situation as carefully as possible with code review and audits.

But once we are involved with IOKit, we can then monitor power management events and delay or cause the launch of daemons. Frequent requests include not running certain periodic [cron] jobs while on battery, but we could also delay jobs until the hard drive spins back up again.

Stage three will attempt to bring this functionality to mere mortal users on the system. This is already possible today if you just need Mach ports, but we really should bring this functionality to the Unix world to support launching daemons like the ssh agent and screen on demand too.

Stage four will focus on band-aid solutions. Problems that have better or more correct solutions elsewhere, but for the time being people are requesting workarounds in this project. The favorite example of many is the Final Cut Pro problem space. What they really need is real-time disk I/O guarantees from the kernel, but until that work is started and completed, it has been requested that Final Cut Pro be given an API to quiesce the system as much as possible by turning off “optional” daemons or jobs. The problem with this is how to determine what is optional. Personally speaking, I think daemons should declare themselves as optional to participate in this band-aid that FCP wants.

Above all else, we would like to avoid setting policy. For example, telling daemons when to shutdown other than at shutdown time. Daemons know when they are truly idle, and thus when they can and should exit. The same could be said for power management events and how best to respond to them. In short, initng just wants to focus on launching daemons on demand, and no more.

APIs and the Configuration file:

The APIs for communicating with initngd will initially be private and internal to initng daemon and the tools written to submit jobs/daemons to it. We don’t think we’ll need much in the beginning. The only job/daemon submission, removal and iteration.

When it comes to submitting jobs, the primary way this will be done is via a single tool that parses the configuration file outlined in Appendix A, reduces the configuration data, and then writes the details over a socket to initngd. The reduction process is primarily for file descriptors, where activities like DNS lookups and the bind() will happen in the tool, all that is needed afterwards is to hand off the file descriptor to initngd with the job request, plus a little cookie (a environment variable, for example) so that the daemon, when launched on demand, will be able to resolve what file descriptor is what. When adding a job/daemon to initng, a job number will be returned, which can be used to remove the job later. That same job number can be found later by asking for a list of the jobs/daemons registered with initngd to be returned.

For completeness, I have considered creating a control protocol API between initngd and subordinate daemons, and can imagine uses for it, but I don’t feel the design is flushed out, or even justifiable for that matter, so I won’t spend any time on it in this document. If we don’t have a clear and present need, we shouldn’t waste any time on this feature, only to increase our risk exposure.

Design implications:

The implications of this proposed super daemon on the Mac OS X boot up procedure will dramatic. Already in Panther we have made excellent progress towards our goals with simple Mach or TCP/IP based daemons.

The eventual goal is that we must switch from a boot-up model where loginwindow launches "as soon as everybody should be able to login" to where loginwindow launches "as soon as anybody can login." Ideally, this is as soon as the boot volume becomes mounted read/write. This requires changes between loginwindow and it's dependencies.

 1.
loginwindow needs to register for a call back for when "directory" infrastructure changes, comes or goes. This will partially decouple loginwindow from needing "the network" to be up before launching. See 3101359.

 2.
The other half will involve cooperation from the file system team and loginwindow. Before logging in a user, loginwindow will need to verify that the user's home directory is mounted/mountable, and if not, let the user know that they cannot finish logging in until a disk is done being fscked or an NFS server/export comes online.

So the user-land boot-up model that we should be moving towards looks something like this:

 1.
Run initngd

 2.
get the disk fscked and mounted read/write

 3.
Register all services (lazy or not) with the initngd

 4.
Launch the WindowServer and loginwindow

5. Launch non servicy startup-items and other "at boot" items (if any) in the background

Conclusion:

The list of super daemons we have is growing. Code overlap and functionality holes exist. We believe the situation can be remedied through the merger and extension of the super daemons.

Appendix A: The XML plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>Program</key>

 <string></string>

 <key>ProgramArguments</key>

 <array/>

 <key>EnvironmentVariables</key>

 <dict/>

 <key>ServiceDescription</key>

 <string></string>

 <key>Disabled</key>

 <false/>

 <key>OnDemand</key>

 <true/>

 <key>LaunchOnce</key>

 <false/>

 <key>ServiceIPC</key>

 <false/>

 <key>UserName</key>

 <string></string>

 <key>GroupName</key>

 <string></string>

 <key>HardwareDevices</key>

 <dict/>

 <key>MachServiceNames</key>

 <array/>

 <key>WatchPaths</key>

 <array/>

 <key>Sockets</key>

 <array>

 <dict>

 <key>addrinfo_canonname</key>

 <false/>

 <key>addrinfo_family</key>

 <string></string>

 <key>addrinfo_nodename</key>

 <string></string>

 <key>addrinfo_numerichost</key>

 <false/>

 <key>addrinfo_passive</key>

 <false/>

 <key>addrinfo_protocol</key>

 <string></string>

 <key>addrinfo_servname</key>

 <string></string>

 <key>addrinfo_socktype</key>

 <string></string>

 <key>listen_depth</key>

 <integer>5</integer>

 </dict>

 </array>

 <key>SpecificTimeval</key>

 <integer>0</integer>

 <key>PeriodicSeconds</key>

 <integer>0</integer>

 <key>Cron</key>

 <dict>

 <key>DayOfTheMonth</key>

 <string></string>

 <key>DayOfTheWeek</key>

 <string></string>

 <key>Hour</key>

 <string></string>

 <key>Minute</key>

 <string></string>

 <key>Month</key>

 <string></string>

 </dict>

 <key>Limits</key>

 <dict>

 <key>CPUTime</key>

 <integer>0</integer>

 <key>CoreFileSize</key>

 <integer>0</integer>

 <key>DataSegSize</key>

 <integer>0</integer>

 <key>FileSize</key>

 <integer>0</integer>

 <key>MaxLockedMemory</key>

 <integer>0</integer>

 <key>MaxMemorySize</key>

 <integer>0</integer>

 <key>MaxUserProcesses</key>

 <integer>0</integer>

 <key>OpenFiles</key>

 <integer>0</integer>

 <key>PipeSize</key>

 <integer>0</integer>

 <key>StackSize</key>

 <integer>0</integer>

 <key>VirtualMemory</key>

 <integer>0</integer>

 </dict>

</dict>

</plist>

So what do all these variables do?

Program

The path to the daemon/service/command.

ProgramArguments

An array of strings to pass as arguments to the program.

EnvironmentVariables

An array of extra environmental variables to pass to the program.

ServiceDescription

A description of what this service does.

Disabled

Is this service disabled?

OnDemand

Is this service capable of running on demand?

LaunchOnce

Does this service need to be launched once (for whatever reason).

ServiceIPC

Does this service participate in the Service API? (Can we query it, ask it to shutdown, etc).

UserName

Who should this service run as?

GroupName

Which group should this service run as?

MachServiceNames

An array of services to publish into the mach namespace that this program is expected to service.

HardwareDevices

A dictionary of keys and values to watch for in the IOKit namespace, should they show up, launch this service (for blued, the USB printer team, etc).

WatchPaths

An array of strings that are file system paths to watch for change and then launch this job.

Sockets

An array of dictionaries that correspond to the addrinfo structure (see getaddrinfo(3)).

SpecificTimeval

Meant for any service that needs to be launched at a specific time (see at(1) and batch(1)).

PeriodicSeconds

Meant for any true periodic job.

Cron

Support for crontab(5) style time specification.

Limits

Finally, since this is being launched by pid 1, people want an easy way to specify limits.

Appendix B: The list of daemons in Mac OS X

System Wide Services

Daemon

Short summary

The big picture summary

ATSServer

The font server (xfs for Unix heads)

This could be launched lazily via mach_init.

DirectoryService

lookupd rewritten

This could be launched lazily via mach_init.

SecurityServer

Trusted half of the security framework

This could be launched lazily via mach_init, but currently today, they manage /dev/random entropy, which is a layering violation.

AppleFileServer

AFP server

This could be launched lazily via xinetd, some changes to xinetd would be needed, but nothing major.

SharedIP

kext to share an IP with Classic

This is loaded at boot today. The kernel should request this get loaded on demand when somebody (Classic) requests an PF_NDRV socket.

IPFirewall

ipfw support code

If we're always going to load it, why not compile it in? (it was more work to take it out of the kernel...)

OpenAFS

AFS Servers

This needs more investigation, but in the short to mid term, this is probably best left as a startup item. There is little to be gained by making this launch lazily.

OpenLDAP

LDAP servers

This could run out of xinetd.

SystemStarter

runs startup items

SystemStarter does too much today. Once loginwindow gets mobility aware, SystemStarter can get out of the GUI business. Once more services launch themselves lazily via various mechanisms like mach_init or xinetd, SystemStarter will slowly get off the critical path for boot-up. This kind of functionality should be merged in to initngd.

amd

am-utils automounter

This needs more investigation, but in the short to mid term, this is probably best left as a startup item. There is little to be gained by making this launch lazily.

atd

batch job scheduler

This should be merged with cron, init, mach_init and friends into initng.

cron

periodic job scheduler

This should be merged with atd, init, mach_init and friends into initng.

init

reaps processes and launches ttys

This should be merged with cron, atd, mach_init and friends into initng.

mach_init

mananges the Mach bootstrap namespace

In addition to managing the Mach bootstrap name space, it launches mach based services lazily like [x]inetd. This should be merged with cron, atd, init and friends into initng.

autodiskmount

Finds, fscks and mounts disks

This could be launched via mach_init (not lazily until we have a device based trigger mechanism that should evolve in the initngd).

automount

Apple's NFS automounter

This needs more investigation, but in the short to mid term, this is probably best left as a startup item. There is little to be gained by making this launch lazily.

configd

All things config

Historically called ipconfigd, these days it manages other configuration details than just networking. This is arguably one of the more modern daemons in the system, and the closest thing we have to the "initngd" in the system. But I believe it is fair to say that configd wasn't designed with becoming the initngd goal in mind.

blued

Bluetooth

The bluetooth daemon wants is just the start of various to come that want to be launched on demand when hardware shows up. Today, blued launches on demand, but never exits after the hardware goes away. Anecdotal evidence suggests that the daemon is automatically launched after a reboot if a bluetooth device was ever attached.

bootparamd

boot paramater server

This should run out of xinetd.

bootpd

bootpd

This should run out of xinetd.

coreservicesd

Remote AppleEvent server

Launches via xinetd in Panther.

coreservicesd

Shared Carbon app state

This will launch lazily via mach_init in Panther.

cupsd

The CUPS Printing daemon

This could run out of xinetd, but some extra work to cupsd needs to run, and some extra support needs to be added to xinetd so that individual printers can advertised via Rendezvous rather than just the CUPS daemon. This problem is much like the Apache (httpd) problem.

fix_prebinding

Prebinding fix-ups

Listens to dyld requests for prebinding fix-ups. This will/should be switching to launching lazily via mach_init in Panther.

distnoted

Carbon/AppKit notification server

This will launch lazily via mach_init in Panther.

dhcpd

DHCP server

Launches lazily via xinetd today.

fingerd

finger server

Launches lazily via xinetd today.

ftpd

FTP server

Launches lazily via xinetd today.

httpd

HTTP server

The Apache web server. This is probably the complicated daemon to make launch via [x]inetd. It is complicated by the fact that many of the Apache developers do not want to support running out of an inetd. This problem is much like the cupsd problem.

dynamic_pager

manages swap files

this could be merged in to initng, but after talking with some of the Mach kernel engineers, it would add some restrictions to the initng design.

crashreporterd

listens for mach exceptions and logs crashes

This could be merged with initng. Processing mach exceptions can be thought of like init(8) reaping processes via the wait family of system calls.

getty

login tty helper

launched via init(8) today, it isn't worth being launched lazily.

identd

ident server

Launches lazily via xinetd today.

imapd

IMAP server

Launches lazily via xinetd today.

kadmind

Kerberos admin server

This could launch lazily via xinetd.

kdcd

Kerberos Domain Controller server

kpropd

Kerberos ??? server

This could probably launch lazily via xinetd.

kextd

Kernel extension daemon

This should be launched via mach_init, but since it cares about device event, it cannot be launched lazily at this time.

lookupd

Pre DirectoryService lookup cache server

This should launch lazily via mach_init.

lsregister -load

LaunchServices db helper

This should ideally be done lazily at login time and with the help of modern software package management, at install time.

irpd (bind)

lookupd by the people who brought you DNS

Not much to say here, we don't have any interest in this at the moment.

lwresd (bind)

lookupd for DNS by the people you brought you DNS

This could be handled by a xinetd/mach_init equivlent for AF_UNIX domain sockets.

mDNSResponder

Rendezvous support

This could be launched lazily via initng, but it would require work, and given that it would need to run almost all the time, there would be little value in lazily launching it.

named

DNS server

This could be launched lazily via xinetd.

hwmond

hardware monitoring daemon

More investigation is needed, but one would hope that initng's trigger hooks would be flexible enough to launch this on demand.

hlfsd

am-utils home-link file system daemon

This needs more investigation, but in the short to mid term, this is probably best left as a startup item. We don't know of anybody who uses this daemon.

loginwindow

GUI login daemon

loginwindow in theory is fine. It launches on demand from init(8). The only problem is that random groups at Apple have used loginwindow as a home for random hunks of code that have nothing to do with logging users in.

natd

BSD NAT daemon

"...it comes into play when a user turns on the Internet Sharing feature in the Sharing pref pane. Clicking "Start" launches a process called InternetSharing (built by the InternetSharingSupport project in cvs) and this is the policy program that starts natd, enables ip forwarding, starts the dhcp server, etc etc. The InternetSharing process actually continues to run as long as Internet Sharing is enabled so that it may listen for config change notifications from configd and take action if necessary." -- Matt Scopp

netinfod -s local

The local NetInfo domain

This could be launched on demand via xinetd.

notifyd

Notification router

This is a very simple daemon that simple routes between event types (mach, unix file descriptors, signals, etc.)

mountd, nfsd, nfsiod, rpc.lockd, rpc.statd

NFS servers

These are conditionally launched today if we export NFS volumes, but it would be nice if the NFS startup-item code was unified with some existing or new lazy launch mechanism.

portmap

Sun RPC name to port mapper

This, like mDNSResponder maps names to addresses/ports. xinetd can also map names to ports via the historic tcpmux port. It would be nice to unify these.

nibindd

The portmap for netinfod

NetInfo is going away. I'm not sure how much we care about this in the long run.

nmbd (samba)

Rendezvous/DynDNS for NetBIOS

This, like mDNSResponder maps names to addresses/ports. This is owned by the samba world. Not likely that we can make it launch lazily or be merged with some other daemon.

smbd (samba)

SMB file server

This should switch to launching lazily via xinetd.

ntpd

NTP client/server

This needs to be running all of the time to detect and fix clock drift in the machine that you're on. If we just care about fixing the time and we don't care about fixing drift, we can run the ntpdate command out of cron.

panicdump

Records a panic dump to disk

This is not really a daemon, but something launched at boot. This information wants to be extracted as soon as possible and logged, but I'm not sure where a good home for it is.

pcscd

PC/SC Smartcard daemon

This could be launched lazily, but it needs an AF_UNIX equivlent for xinetd or mach_init.

pop3d

POP3 server

This launches lazily via xinetd today.

pppd

PPP client/server

This launches lazily today via a variety of mechanisms.

routed

RIP routing daemon

This should probably be launched lazily via configd given the right networking configuration.

rpc.yppasswdd, ypbind, ypserv

NIS daemons

I'm not sure what to do about these and I'm not sure how much we care. NIS is dead. Long live LDAP. The servers can be launched out of xinetd. We'd need to figure out a way to trigger the client daemon to launch lazily.

rsyncd

rsync daemon

This can launch lazily via xinetd today.

rtadvd

Router advertisement daemon

This could be launched lazily via xinetd.

rtsold

Router solicitation daemon

This should probably be a configd plug-in or launched lazily via configd.

saslauthd

SASL daemon ("password server")

This could be launched lazily, but it needs an AF_UNIX equivlent for xinetd or mach_init.

sendmail

Apple's MTA for today

Launching this lazily will require some work due to the mail queue on disk might need flushing at boot.

syslogd

syslog server

Launching this lazily will require some small amount of work do the the kernel's syslog interface.

sshd

ssh server

Launched lazily via xinetd today.

talk

talk server

Launched lazily via xinetd today.

tftpd

tftp server

Launched lazily via xinetd today.

tim

legacy cleartext password server

This could be launched lazily via xinetd.

timed

time server daemon

already runs via xinetd today

update

while (1) {sync(); sleep(30);}

This should just be absorbed in to initngd. Ideally, it would just disappear as an internal kernel thread like it has under all other modern Unix systems.

vsdbutil

Manages db of known disks

Conditionally run at startup. It would be nice to find a better home for this.

watchdog

Mac OS X Server SysV style init(8)

This functionality should be merged with initng.

xfs

X11 font server

This could be launched lazily via initng (needs both TCP and AF_UNIX domain for lazily launching).

xinetd

Internet super server

This is our laziness enabling daemon for network servers.

servermgrd

Mac OS X Server Manager daemon

This could probably be launched lazily. More investigation is needed.

serversettingsd

Mac OS X Server ??? daemon

This could probably be launched lazily. More investigation is needed.

sambadmind

Mac OS X Server Samba admin daemon

This could probably be launched lazily. More investigation is needed.

Per User Services

CCacheServer

The Kerberos Credentials Cache Server.

This could be launched lazily via mach_init (since the Kerberos team decided to use mach for the implementation), but it is currently launched lazily today when somebody first calls in to the Kerberos library

Dock

half-daemon/half-app

It is worth considering launching it via a standardized FBE management daemon.

InternetReminder.app

from Setup Assistant.app

This really wants to be launched on demand from the per user form of initng.

SecurityAgent

trusted per-user program of the Security framework

Could probably be lazily launched via mach_init. 3190357 will probably help.

SystemUIServer

another misc daemon as far as I can tell

This daemon is responsible for the menu plugins (volume, AirPort, clock) and launching iTunes, DVD Player, etc when discs are inserted (for example).

Xquartz

X11 server

This could be launched lazily in a per user context.

fetchmail

Unix e-mail download agent

This should be launched lazily/managed via initng in a per user context.

gnuserv

emacs agent

Could be launched lazily via initng in a per user context.

hdi_agent

hard disk image agent

This is launched on demand today when somebody requests that a disk image is to be mounted.

iChatAgent.app

iChat agent

This should be launched lazily at login. 3190357 should help.

pbs

Paste Board server

Could probably be lazily launched via mach_init. 3190357 will probably help.

ssh-agent

ssh "key chain"

Listens on a AF_UNIX domain socket. Could be lazily launched.

screen

tty mux and session manager

Listens on a AF_UNIX domain socket. Could be lazily launched.

quartswm

Quartz X11 window manager

Could be launched via initng in a per user context. It needs to be relaunched if it dies.

LoginWindow plug-ins

BezelServices

F1-F5 keys

This probably shouldn't live in loginwindow. More research needs to be done.

BootCache

Final BootCache code

This tells the BootCache to stop recording disk block access and lets the BootCache begin to clean up. This code really shouldn't live in loginwindow. With the right rules/triggers this could be run from initng.

DisplayServices

Similar to BezelServices. This probably shouldn't live in loginwindow. More research needs to be done. (talk to Chester Devine?)

KextHelper

This probably shouldn't live in loginwindow. More research needs to be done. (talk to nik gervae probably)

MCX

This for managed servers. If so it writes out certain prefercences. This probably shouldn't live in loginwindow. More research needs to be done. (talk to Rob Neville)

SystemSoundServer

Like the window server but for simple sound clients. This probably shouldn't live in loginwindow. More research needs to be done.

URLMountUIProxy

This exists only so that it can get registered in the per-user mach sub bootstrap port. This shouldn't live in loginwindow. See 3190356.

configd plug-ins

ATconfig

AppleTalk config mgmt

AppleTalk config mgmt (appropriate use of configd)

Apple80211Monitor

AirPort support

AirPort config mgmt (appropriate use of configd)

Bluetooth

Bluetooth support

starts blued once a bluetooth dongle is attached and keep it alive forever (inappropriate use of configd)

DynamicPowerStep

CPU clock down support

This will probably move to the kernel in the future from what I hear.

IPConfiguration

DHCP and IP config mgmt

appropriate use of configd

IPv6Configuration

DHCPv6 and IPv6 config mgmt

appropriate use of configd

IPMonitor

companion to IPConfiguration

manages default route and resolver configuration, proxies etc. (appropriate use of configd)

InterfaceNamer

maps Unix to IOKit devices

This maps the Unix device names to IOKit devices (appropriate use of configd)

EAPOL

802.1x support

Authenticantion at the Ethernet layer (appropriate use of configd)

KernelEventMonitor

Watches NKE event socket

(appropriate use of configd)

KernelNotifications

KUNC support

Kernel User Notification Center (half should move to kextd, half should move to SystemUIServer)

Kicker

configd helper

Helper for kicking components who are not SystemConfiguration aware.

LinkConfiguration

network device configuration

Manages "layer 2" device configuration (appropriate use of configd)

PPPController

PPP

Manages running pppd with the right parameters (appropriate use of configd)

PowerManagement

Some Power Management code

This code could really live in about any daemon.

PreferencesMonitor

watches for pref file changes

This brings networking config files in to effect (appropriate use of configd)

PrinterNotifications

USB printer support

Like blued (inappropriate use of configd)

USBUPSSupport

Watches for USB UPS devices

Like blued (inappropriate use of configd)

