/* * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved. * * The contents of this file constitute Original Code as defined in and are * subject to the Apple Public Source License Version 1.2 (the 'License'). * You may not use this file except in compliance with the License. Please obtain * a copy of the License at http://www.apple.com/publicsource and read it before * using this file. * * This Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the * specific language governing rights and limitations under the License. */ /* * rijndaelGladman.c - Gladman AES/Rijndael implementation. * Based on rijndael.c written by Dr. Brian Gladman. */ /* This is an independent implementation of the encryption algorithm: */ /* */ /* RIJNDAEL by Joan Daemen and Vincent Rijmen */ /* */ /* which is a candidate algorithm in the Advanced Encryption Standard */ /* programme of the US National Institute of Standards and Technology. */ /* */ /* Copyright in this implementation is held by Dr B R Gladman but I */ /* hereby give permission for its free direct or derivative use subject */ /* to acknowledgment of its origin and compliance with any conditions */ /* that the originators of the algorithm place on its exploitation. */ /* */ /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ #include "rijndaelGladman.h" /* enable of block/word/byte swapping macros */ #define USE_SWAP_MACROS 1 #if old_way /* original static declarations */ u1byte pow_tab[256]; u1byte log_tab[256]; u1byte sbx_tab[256]; u1byte isb_tab[256]; u4byte rco_tab[ 10]; u4byte ft_tab[4][256]; u4byte it_tab[4][256]; #ifdef LARGE_TABLES u4byte fl_tab[4][256]; u4byte il_tab[4][256]; #endif #else /* new_way */ u1byte *pow_tab; /* [POW_TAB_SIZE] */ u1byte *log_tab; /* [LOG_TAB_SIZE] */; u1byte *sbx_tab; /* [SBX_TAB_SIZE] */ u1byte *isb_tab; /* [ISB_TAB_SIZE] */ u4byte *rco_tab; /* [RCO_TAB_SIZE] */ u4byte (*ft_tab)[FT_TAB_SIZE_LS]; u4byte (*it_tab)[IT_TAB_SIZE_LS]; #ifdef LARGE_TABLES u4byte (*fl_tab)[FL_TAB_SIZE_LS]; u4byte (*il_tab)[IL_TAB_SIZE_LS]; #endif /* LARGE_TABLES */ #endif /* new_way */ #define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) #define f_rn(bo, bi, n, k) \ bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) #define i_rn(bo, bi, n, k) \ bo[n] = it_tab[0][byte(bi[n],0)] ^ \ it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) #ifdef LARGE_TABLES #define ls_box(x) \ ( fl_tab[0][byte(x, 0)] ^ \ fl_tab[1][byte(x, 1)] ^ \ fl_tab[2][byte(x, 2)] ^ \ fl_tab[3][byte(x, 3)] ) #define f_rl(bo, bi, n, k) \ bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) #define i_rl(bo, bi, n, k) \ bo[n] = il_tab[0][byte(bi[n],0)] ^ \ il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) #else #define ls_box(x) \ ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \ ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \ ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \ ((u4byte)sbx_tab[byte(x, 3)] << 24) #define f_rl(bo, bi, n, k) \ bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \ rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \ rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n) #define i_rl(bo, bi, n, k) \ bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \ rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \ rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n) #endif void gen_tabs(void) { u4byte i, t; u1byte p, q; /* log and power tables for GF(2**8) finite field with */ /* 0x11b as modular polynomial - the simplest prmitive */ /* root is 0x11, used here to generate the tables */ for(i = 0,p = 1; i < 256; ++i) { pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i; p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0); } log_tab[1] = 0; p = 1; for(i = 0; i < 10; ++i) { rco_tab[i] = p; p = (p << 1) ^ (p & 0x80 ? 0x1b : 0); } /* note that the affine byte transformation matrix in */ /* rijndael specification is in big endian format with */ /* bit 0 as the most significant bit. In the remainder */ /* of the specification the bits are numbered from the */ /* least significant end of a byte. */ for(i = 0; i < 256; ++i) { p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; q = (q >> 7) | (q << 1); p ^= q; q = (q >> 7) | (q << 1); p ^= q; q = (q >> 7) | (q << 1); p ^= q; q = (q >> 7) | (q << 1); p ^= q ^ 0x63; sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i; } for(i = 0; i < 256; ++i) { p = sbx_tab[i]; #ifdef LARGE_TABLES t = p; fl_tab[0][i] = t; fl_tab[1][i] = rotl(t, 8); fl_tab[2][i] = rotl(t, 16); fl_tab[3][i] = rotl(t, 24); #endif t = ((u4byte)ff_mult(2, p)) | ((u4byte)p << 8) | ((u4byte)p << 16) | ((u4byte)ff_mult(3, p) << 24); ft_tab[0][i] = t; ft_tab[1][i] = rotl(t, 8); ft_tab[2][i] = rotl(t, 16); ft_tab[3][i] = rotl(t, 24); p = isb_tab[i]; #ifdef LARGE_TABLES t = p; il_tab[0][i] = t; il_tab[1][i] = rotl(t, 8); il_tab[2][i] = rotl(t, 16); il_tab[3][i] = rotl(t, 24); #endif t = ((u4byte)ff_mult(14, p)) | ((u4byte)ff_mult( 9, p) << 8) | ((u4byte)ff_mult(13, p) << 16) | ((u4byte)ff_mult(11, p) << 24); it_tab[0][i] = t; it_tab[1][i] = rotl(t, 8); it_tab[2][i] = rotl(t, 16); it_tab[3][i] = rotl(t, 24); } }; #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) #define imix_col(y,x) \ u = star_x(x); \ v = star_x(u); \ w = star_x(v); \ t = w ^ (x); \ (y) = u ^ v ^ w; \ (y) ^= rotr(u ^ t, 8) ^ \ rotr(v ^ t, 16) ^ \ rotr(t,24) /* initialise the key schedule from the user supplied key */ #define loop4(i) \ { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \ t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \ t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \ t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \ } #define loop6(i) \ { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \ t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \ t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \ t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \ t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \ t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \ } #define loop8(i) \ { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \ t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \ t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \ t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \ t = e_key[8 * i + 4] ^ ls_box(t); \ e_key[8 * i + 12] = t; \ t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \ t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \ t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \ } u4byte *set_key( const u4byte in_key[], const u4byte key_len, GAesKey *aesKey) { u4byte i, t, u, v, w; u4byte *e_key = aesKey->e_key; u4byte *d_key = aesKey->d_key; aesKey->k_len = (key_len + 31) / 32; #if USE_SWAP_MACROS get_key(e_key, key_len); #else e_key[0] = in_key[0]; e_key[1] = in_key[1]; e_key[2] = in_key[2]; e_key[3] = in_key[3]; #endif switch(aesKey->k_len) { case 4: t = e_key[3]; for(i = 0; i < 10; ++i) loop4(i); break; case 6: #if USE_SWAP_MACROS t = e_key[5]; #else /* done in get_key macros in USE_SWAP_MACROS case */ e_key[4] = in_key[4]; t = e_key[5] = in_key[5]; #endif for(i = 0; i < 8; ++i) loop6(i); break; case 8: #if USE_SWAP_MACROS t = e_key[7]; #else e_key[4] = in_key[4]; e_key[5] = in_key[5]; e_key[6] = in_key[6]; t = e_key[7] = in_key[7]; #endif for(i = 0; i < 7; ++i) loop8(i); break; } d_key[0] = e_key[0]; d_key[1] = e_key[1]; d_key[2] = e_key[2]; d_key[3] = e_key[3]; for(i = 4; i < 4 * aesKey->k_len + 24; ++i) { imix_col(d_key[i], e_key[i]); } return e_key; }; /* encrypt a block of text */ #define f_nround(bo, bi, k) \ f_rn(bo, bi, 0, k); \ f_rn(bo, bi, 1, k); \ f_rn(bo, bi, 2, k); \ f_rn(bo, bi, 3, k); \ k += 4 #define f_lround(bo, bi, k) \ f_rl(bo, bi, 0, k); \ f_rl(bo, bi, 1, k); \ f_rl(bo, bi, 2, k); \ f_rl(bo, bi, 3, k) void rEncrypt( const u4byte in_blk[4], u4byte out_blk[4], const GAesKey *aesKey) { u4byte b0[4], b1[4], *kp; u4byte *e_key = aesKey->e_key; #if USE_SWAP_MACROS u4byte swap_block[4]; get_block(swap_block); b0[0] = swap_block[0] ^ e_key[0]; b0[1] = swap_block[1] ^ e_key[1]; b0[2] = swap_block[2] ^ e_key[2]; b0[3] = swap_block[3] ^ e_key[3]; #else b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1]; b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3]; #endif kp = e_key + 4; if(aesKey->k_len > 6) { f_nround(b1, b0, kp); f_nround(b0, b1, kp); } if(aesKey->k_len > 4) { f_nround(b1, b0, kp); f_nround(b0, b1, kp); } f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_nround(b0, b1, kp); f_nround(b1, b0, kp); f_lround(b0, b1, kp); #if USE_SWAP_MACROS put_block(b0); #else out_blk[0] = b0[0]; out_blk[1] = b0[1]; out_blk[2] = b0[2]; out_blk[3] = b0[3]; #endif }; /* decrypt a block of text */ #define i_nround(bo, bi, k) \ i_rn(bo, bi, 0, k); \ i_rn(bo, bi, 1, k); \ i_rn(bo, bi, 2, k); \ i_rn(bo, bi, 3, k); \ k -= 4 #define i_lround(bo, bi, k) \ i_rl(bo, bi, 0, k); \ i_rl(bo, bi, 1, k); \ i_rl(bo, bi, 2, k); \ i_rl(bo, bi, 3, k) void rDecrypt( const u4byte in_blk[4], u4byte out_blk[4], const GAesKey *aesKey) { u4byte b0[4], b1[4], *kp; u4byte *e_key = aesKey->e_key; u4byte *d_key = aesKey->d_key; u4byte k_len = aesKey->k_len; #if USE_SWAP_MACROS u4byte swap_block[4]; get_block(swap_block); b0[0] = swap_block[0] ^ e_key[4 * k_len + 24]; b0[1] = swap_block[1] ^ e_key[4 * k_len + 25]; b0[2] = swap_block[2] ^ e_key[4 * k_len + 26]; b0[3] = swap_block[3] ^ e_key[4 * k_len + 27]; #else b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25]; b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27]; #endif kp = d_key + 4 * (k_len + 5); if(k_len > 6) { i_nround(b1, b0, kp); i_nround(b0, b1, kp); } if(k_len > 4) { i_nround(b1, b0, kp); i_nround(b0, b1, kp); } i_nround(b1, b0, kp); i_nround(b0, b1, kp); i_nround(b1, b0, kp); i_nround(b0, b1, kp); i_nround(b1, b0, kp); i_nround(b0, b1, kp); i_nround(b1, b0, kp); i_nround(b0, b1, kp); i_nround(b1, b0, kp); i_lround(b0, b1, kp); #if USE_SWAP_MACROS put_block(b0); #else out_blk[0] = b0[0]; out_blk[1] = b0[1]; out_blk[2] = b0[2]; out_blk[3] = b0[3]; #endif };