/*
* Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* Portions Copyright (c) 1999 Apple Computer, Inc. All Rights
* Reserved. This file contains Original Code and/or Modifications of
* Original Code as defined in and that are subject to the Apple Public
* Source License Version 1.1 (the "License"). You may not use this file
* except in compliance with the License. Please obtain a copy of the
* License at http://www.apple.com/publicsource and read it before using
* this file.
*
* The Original Code and all software distributed under the License are
* distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT. Please see the
* License for the specific language governing rights and limitations
* under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#if defined(LIBC_SCCS) && !defined(lint)
/*static char *sccsid = "from: @(#)svc_udp.c 1.24 87/08/11 Copyr 1984 Sun Micro";*/
/*static char *sccsid = "from: @(#)svc_udp.c 2.2 88/07/29 4.0 RPCSRC";*/
static char *rcsid = "$Id: rpc_extra.c,v 1.5 2005/06/13 16:15:58 majka Exp $";
#endif
/*
* svc_udp.c,
* Server side for UDP/IP based RPC. (Does some caching in the hopes of
* achieving execute-at-most-once semantics.)
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*/
#include <NetInfo/config.h>
#include <stdio.h>
#ifdef RPC_SUCCESS
#undef RPC_SUCCESS
#endif
#include <rpc/rpc.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <NetInfo/system_log.h>
#ifdef _OS_NEXT_
#include <libc.h>
#endif
#define rpc_buffer(xprt) ((xprt)->xp_p1)
static bool_t svcudp_recv();
static bool_t svcudp_reply();
static enum xprt_stat svcudp_stat();
static bool_t svcudp_getargs();
static bool_t svcudp_freeargs();
static void svcudp_destroy();
static struct xp_ops svcudp_op = {
svcudp_recv,
svcudp_stat,
svcudp_getargs,
svcudp_reply,
svcudp_freeargs,
svcudp_destroy
};
extern int errno;
/*
* kept in xprt->xp_p2
*/
struct svcudp_data {
u_int su_iosz; /* byte size of send.recv buffer */
u_long su_xid; /* transaction id */
XDR su_xdrs; /* XDR handle */
char su_verfbody[MAX_AUTH_BYTES]; /* verifier body */
char * su_cache; /* cached data, NULL if no cache */
};
#define su_data(xprt) ((struct svcudp_data *)(xprt->xp_p2))
/*
* Ops vector for TCP/IP based rpc service handle
*/
static bool_t svctcp_recv();
static enum xprt_stat svctcp_stat();
static bool_t svctcp_getargs();
static bool_t svctcp_reply();
static bool_t svctcp_freeargs();
static void svctcp_destroy();
static struct xp_ops svctcp_op = {
svctcp_recv,
svctcp_stat,
svctcp_getargs,
svctcp_reply,
svctcp_freeargs,
svctcp_destroy
};
/*
* Ops vector for TCP/IP rendezvous handler
*/
static bool_t rendezvous_request();
static enum xprt_stat rendezvous_stat();
static struct xp_ops svctcp_rendezvous_op = {
rendezvous_request,
rendezvous_stat,
(bool_t (*)())abort,
(bool_t (*)())abort,
(bool_t (*)())abort,
svctcp_destroy
};
static int readtcp(), writetcp();
static SVCXPRT *makefd_xprt();
extern int bindresvport(int, struct sockaddr_in *);
extern int _rpc_dtablesize();
struct tcp_rendezvous { /* kept in xprt->xp_p1 */
u_int sendsize;
u_int recvsize;
};
struct tcp_conn { /* kept in xprt->xp_p1 */
enum xprt_stat strm_stat;
u_long x_id;
XDR xdrs;
char verf_body[MAX_AUTH_BYTES];
};
SVCXPRT *
svcudp_bufbind(int sock, struct sockaddr_in addr, u_int sendsz, u_int recvsz)
{
bool_t madesock = FALSE;
SVCXPRT *xprt;
struct svcudp_data *su;
int len, reuse, status;
len = sizeof(struct sockaddr_in);
reuse = 1;
if (sock == RPC_ANYSOCK)
{
sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sock < 0)
{
system_log(LOG_ERR, "svcudp_bufbind - udp socket: %m");
return NULL;
}
madesock = TRUE;
}
if (addr.sin_port != 0)
{
status = setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(int));
if (status < 0)
{
system_log(LOG_ERR, "svcudp_bufbind - setsockopt: %m");
if (madesock) close(sock);
return NULL;
}
status = bind(sock, (struct sockaddr *)&addr, len);
if (status < 0)
{
system_log(LOG_ERR, "svcudp_bufbind - bind: %m");
if (madesock) close(sock);
return NULL;
}
}
else if (bindresvport(sock, &addr))
{
addr.sin_port = 0;
status = bind(sock, (struct sockaddr *)&addr, len);
if (status < 0)
{
system_log(LOG_ERR, "svcudp_bufbind - bind: %m");
if (madesock) close(sock);
return NULL;
}
}
if (getsockname(sock, (struct sockaddr *)&addr, &len) != 0)
{
system_log(LOG_ERR, "svcudp_bufbind - getsockname %m");
if (madesock) close(sock);
return NULL;
}
xprt = (SVCXPRT *)mem_alloc(sizeof(SVCXPRT));
if (xprt == NULL)
{
system_log(LOG_ERR, "svcudp_bufbind: out of memory");
return NULL;
}
su = (struct svcudp_data *)mem_alloc(sizeof(*su));
if (su == NULL)
{
system_log(LOG_ERR, "svcudp_bufbind: out of memory");
return NULL;
}
su->su_iosz = ((MAX(sendsz, recvsz) + 3) / 4) * 4;
if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
{
system_log(LOG_ERR, "svcudp_bufbind: out of memory");
return NULL;
}
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_DECODE);
su->su_cache = NULL;
xprt->xp_p2 = (caddr_t)su;
xprt->xp_verf.oa_base = su->su_verfbody;
xprt->xp_ops = &svcudp_op;
xprt->xp_port = ntohs(addr.sin_port);
xprt->xp_sock = sock;
xprt_register(xprt);
return xprt;
}
SVCXPRT *
svcudp_bind(int sock, struct sockaddr_in addr)
{
return(svcudp_bufbind(sock, addr, UDPMSGSIZE, UDPMSGSIZE));
}
static enum xprt_stat
svcudp_stat(xprt)
SVCXPRT *xprt;
{
return (XPRT_IDLE);
}
static int cache_get();
static bool_t
svcudp_recv(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct svcudp_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
int rlen;
char *reply;
u_long replylen;
again:
xprt->xp_addrlen = sizeof(struct sockaddr_in);
rlen = recvfrom(xprt->xp_sock, rpc_buffer(xprt), (int) su->su_iosz,
0, (struct sockaddr *)&(xprt->xp_raddr), &(xprt->xp_addrlen));
if (rlen == -1 && errno == EINTR)
goto again;
if (rlen < 4*sizeof(u_long))
return (FALSE);
xdrs->x_op = XDR_DECODE;
XDR_SETPOS(xdrs, 0);
if (! xdr_callmsg(xdrs, msg))
return (FALSE);
su->su_xid = msg->rm_xid;
if (su->su_cache != NULL) {
if (cache_get(xprt, msg, &reply, &replylen)) {
(void) sendto(xprt->xp_sock, reply, (int) replylen, 0,
(struct sockaddr *) &xprt->xp_raddr, xprt->xp_addrlen);
return (TRUE);
}
}
return (TRUE);
}
static void cache_set();
static bool_t
svcudp_reply(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct svcudp_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
int slen;
bool_t stat = FALSE;
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
msg->rm_xid = su->su_xid;
if (xdr_replymsg(xdrs, msg)) {
slen = (int)XDR_GETPOS(xdrs);
if (sendto(xprt->xp_sock, rpc_buffer(xprt), slen, 0,
(struct sockaddr *)&(xprt->xp_raddr), xprt->xp_addrlen)
== slen) {
stat = TRUE;
if (su->su_cache && slen >= 0) {
cache_set(xprt, (u_long) slen);
}
}
}
return (stat);
}
static bool_t
svcudp_getargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
caddr_t args_ptr;
{
return ((*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr));
}
static bool_t
svcudp_freeargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
caddr_t args_ptr;
{
XDR *xdrs = &(su_data(xprt)->su_xdrs);
xdrs->x_op = XDR_FREE;
return ((*xdr_args)(xdrs, args_ptr));
}
static void
svcudp_destroy(xprt)
SVCXPRT *xprt;
{
struct svcudp_data *su = su_data(xprt);
xprt_unregister(xprt);
(void)close(xprt->xp_sock);
XDR_DESTROY(&(su->su_xdrs));
mem_free(rpc_buffer(xprt), su->su_iosz);
mem_free((caddr_t)su, sizeof(struct svcudp_data));
mem_free((caddr_t)xprt, sizeof(SVCXPRT));
}
/***********this could be a separate file*********************/
/*
* Fifo cache for udp server
* Copies pointers to reply buffers into fifo cache
* Buffers are sent again if retransmissions are detected.
*/
#define SPARSENESS 4 /* 75% sparse */
#define CACHE_PERROR(msg) \
system_log(LOG_ERR, "%s", msg)
#define ALLOC(type, size) \
(type *) mem_alloc((unsigned) (sizeof(type) * (size)))
#define BZERO(addr, type, size) \
bzero((char *) addr, sizeof(type) * (int) (size))
/*
* An entry in the cache
*/
typedef struct cache_node *cache_ptr;
struct cache_node {
/*
* Index into cache is xid, proc, vers, prog and address
*/
u_long cache_xid;
u_long cache_proc;
u_long cache_vers;
u_long cache_prog;
struct sockaddr_in cache_addr;
/*
* The cached reply and length
*/
char * cache_reply;
u_long cache_replylen;
/*
* Next node on the list, if there is a collision
*/
cache_ptr cache_next;
};
/*
* The entire cache
*/
struct udp_cache {
u_long uc_size; /* size of cache */
cache_ptr *uc_entries; /* hash table of entries in cache */
cache_ptr *uc_fifo; /* fifo list of entries in cache */
u_long uc_nextvictim; /* points to next victim in fifo list */
u_long uc_prog; /* saved program number */
u_long uc_vers; /* saved version number */
u_long uc_proc; /* saved procedure number */
struct sockaddr_in uc_addr; /* saved caller's address */
};
/*
* the hashing function
*/
#define CACHE_LOC(transp, xid) \
(xid % (SPARSENESS*((struct udp_cache *) su_data(transp)->su_cache)->uc_size))
#ifdef NOTDEF
/*
* Enable use of the cache.
* Note: there is no disable.
*/
int
svcudp_enablecache(transp, size)
SVCXPRT *transp;
u_long size;
{
struct svcudp_data *su = su_data(transp);
struct udp_cache *uc;
if (su->su_cache != NULL) {
CACHE_PERROR("enablecache: cache already enabled");
return(0);
}
uc = ALLOC(struct udp_cache, 1);
if (uc == NULL) {
CACHE_PERROR("enablecache: could not allocate cache");
return(0);
}
uc->uc_size = size;
uc->uc_nextvictim = 0;
uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
if (uc->uc_entries == NULL) {
CACHE_PERROR("enablecache: could not allocate cache data");
return(0);
}
BZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
uc->uc_fifo = ALLOC(cache_ptr, size);
if (uc->uc_fifo == NULL) {
CACHE_PERROR("enablecache: could not allocate cache fifo");
return(0);
}
BZERO(uc->uc_fifo, cache_ptr, size);
su->su_cache = (char *) uc;
return(1);
}
#endif
/*
* Set an entry in the cache
*/
static void
cache_set(xprt, replylen)
SVCXPRT *xprt;
u_long replylen;
{
cache_ptr victim;
cache_ptr *vicp;
struct svcudp_data *su = su_data(xprt);
struct udp_cache *uc = (struct udp_cache *) su->su_cache;
u_int loc;
char *newbuf;
/*
* Find space for the new entry, either by
* reusing an old entry, or by mallocing a new one
*/
victim = uc->uc_fifo[uc->uc_nextvictim];
if (victim != NULL) {
loc = CACHE_LOC(xprt, victim->cache_xid);
for (vicp = &uc->uc_entries[loc];
*vicp != NULL && *vicp != victim;
vicp = &(*vicp)->cache_next)
;
if (*vicp == NULL) {
CACHE_PERROR("cache_set: victim not found");
return;
}
*vicp = victim->cache_next; /* remote from cache */
newbuf = victim->cache_reply;
} else {
victim = ALLOC(struct cache_node, 1);
if (victim == NULL) {
CACHE_PERROR("cache_set: victim alloc failed");
return;
}
newbuf = mem_alloc(su->su_iosz);
if (newbuf == NULL) {
CACHE_PERROR("cache_set: could not allocate new rpc_buffer");
return;
}
}
/*
* Store it away
*/
victim->cache_replylen = replylen;
victim->cache_reply = rpc_buffer(xprt);
rpc_buffer(xprt) = newbuf;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_ENCODE);
victim->cache_xid = su->su_xid;
victim->cache_proc = uc->uc_proc;
victim->cache_vers = uc->uc_vers;
victim->cache_prog = uc->uc_prog;
victim->cache_addr = uc->uc_addr;
loc = CACHE_LOC(xprt, victim->cache_xid);
victim->cache_next = uc->uc_entries[loc];
uc->uc_entries[loc] = victim;
uc->uc_fifo[uc->uc_nextvictim++] = victim;
uc->uc_nextvictim %= uc->uc_size;
}
/*
* Try to get an entry from the cache
* return 1 if found, 0 if not found
*/
static int
cache_get(xprt, msg, replyp, replylenp)
SVCXPRT *xprt;
struct rpc_msg *msg;
char **replyp;
u_long *replylenp;
{
u_int loc;
cache_ptr ent;
struct svcudp_data *su = su_data(xprt);
struct udp_cache *uc = (struct udp_cache *) su->su_cache;
# define EQADDR(a1, a2) (bcmp((char*)&a1, (char*)&a2, sizeof(a1)) == 0)
loc = CACHE_LOC(xprt, su->su_xid);
for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
if (ent->cache_xid == su->su_xid &&
ent->cache_proc == uc->uc_proc &&
ent->cache_vers == uc->uc_vers &&
ent->cache_prog == uc->uc_prog &&
EQADDR(ent->cache_addr, uc->uc_addr)) {
*replyp = ent->cache_reply;
*replylenp = ent->cache_replylen;
return(1);
}
}
/*
* Failed to find entry
* Remember a few things so we can do a set later
*/
uc->uc_proc = msg->rm_call.cb_proc;
uc->uc_vers = msg->rm_call.cb_vers;
uc->uc_prog = msg->rm_call.cb_prog;
uc->uc_addr = xprt->xp_raddr;
return(0);
}
/*
* Usage:
* xprt = svctcp_create(sock, send_buf_size, recv_buf_size);
*
* Creates, registers, and returns a (rpc) tcp based transporter.
* Once *xprt is initialized, it is registered as a transporter
* see (svc.h, xprt_register). This routine returns
* a NULL if a problem occurred.
*
* If sock<0 then a socket is created, else sock is used.
* If the socket, sock is not bound to a port then svctcp_create
* binds it to an arbitrary port. The routine then starts a tcp
* listener on the socket's associated port. In any (successful) case,
* xprt->xp_sock is the registered socket number and xprt->xp_port is the
* associated port number.
*
* Since tcp streams do buffered io similar to stdio, the caller can specify
* how big the send and receive buffers are via the second and third parms;
* 0 => use the system default.
*/
SVCXPRT *
svctcp_bind(int sock, struct sockaddr_in s, u_int sendsize, u_int recvsize)
{
struct sockaddr_in name;
bool_t madesock = FALSE;
SVCXPRT *xprt;
struct tcp_rendezvous *r;
int len, reuse, status;
reuse = 1;
if (sock == RPC_ANYSOCK)
{
sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sock < 0)
{
system_log(LOG_ERR, "svctcp_bind - tcp socket: %m");
return NULL;
}
madesock = TRUE;
}
if (s.sin_port != 0)
{
status = setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(int));
if (status < 0)
{
system_log(LOG_ERR, "svctcp_bind - setsockopt: %m");
if (madesock) close(sock);
return NULL;
}
status = bind(sock, (struct sockaddr *)&s, sizeof(struct sockaddr_in));
if (status < 0)
{
system_log(LOG_ERR, "svctcp_bind - bind: %m");
if (madesock) close(sock);
return NULL;
}
}
else if (bindresvport(sock, &s))
{
s.sin_port = 0;
status = bind(sock, (struct sockaddr *)&s, sizeof(struct sockaddr_in));
if (status < 0)
{
system_log(LOG_ERR, "svctcp_bind - bind: %m");
if (madesock) close(sock);
return NULL;
}
}
len = sizeof(struct sockaddr_in);
if ((getsockname(sock, (struct sockaddr *)&name, &len) != 0) || (listen(sock, 2) != 0))
{
system_log(LOG_ERR, "svctcp_bind - getsockname / listen: %m");
if (madesock) close(sock);
return NULL;
}
r = (struct tcp_rendezvous *)mem_alloc(sizeof(*r));
if (r == NULL)
{
system_log(LOG_ERR, "svctcp_bind: out of memory");
if (madesock) close(sock);
return NULL;
}
r->sendsize = sendsize;
r->recvsize = recvsize;
xprt = (SVCXPRT *)mem_alloc(sizeof(SVCXPRT));
if (xprt == NULL)
{
system_log(LOG_ERR, "svctcp_bind: out of memory");
mem_free(r, sizeof(struct tcp_rendezvous));
if (madesock) close(sock);
return NULL;
}
xprt->xp_p2 = NULL;
xprt->xp_p1 = (caddr_t)r;
xprt->xp_verf = _null_auth;
xprt->xp_ops = &svctcp_rendezvous_op;
xprt->xp_port = ntohs(name.sin_port);
xprt->xp_sock = sock;
xprt_register(xprt);
return xprt;
}
#ifdef NOTDEF
/*
* Like svtcp_create(), except the routine takes any *open* UNIX file
* descriptor as its first input.
*/
SVCXPRT *
svcfd_create(fd, sendsize, recvsize)
int fd;
u_int sendsize;
u_int recvsize;
{
return (makefd_xprt(fd, sendsize, recvsize));
}
#endif
static SVCXPRT *
makefd_xprt(fd, sendsize, recvsize)
int fd;
u_int sendsize;
u_int recvsize;
{
SVCXPRT *xprt;
struct tcp_conn *cd;
xprt = (SVCXPRT *)mem_alloc(sizeof(SVCXPRT));
if (xprt == (SVCXPRT *)NULL) {
system_log(LOG_ERR, "ni_svc_tcp: makefd_xprt: out of memory");
goto done;
}
cd = (struct tcp_conn *)mem_alloc(sizeof(struct tcp_conn));
if (cd == (struct tcp_conn *)NULL) {
system_log(LOG_ERR, "ni_svc_tcp: makefd_xprt: out of memory");
mem_free((char *) xprt, sizeof(SVCXPRT));
xprt = (SVCXPRT *)NULL;
goto done;
}
cd->strm_stat = XPRT_IDLE;
xdrrec_create(&(cd->xdrs), sendsize, recvsize,
(caddr_t)xprt, readtcp, writetcp);
xprt->xp_p2 = NULL;
xprt->xp_p1 = (caddr_t)cd;
xprt->xp_verf.oa_base = cd->verf_body;
xprt->xp_addrlen = 0;
xprt->xp_ops = &svctcp_op; /* truely deals with calls */
xprt->xp_port = 0; /* this is a connection, not a rendezvouser */
xprt->xp_sock = fd;
xprt_register(xprt);
done:
return (xprt);
}
static bool_t
rendezvous_request(xprt)
SVCXPRT *xprt;
{
int sock;
struct tcp_rendezvous *r;
struct sockaddr_in addr;
int len;
int dontblock;
r = (struct tcp_rendezvous *)xprt->xp_p1;
again:
len = sizeof(struct sockaddr_in);
if ((sock = accept(xprt->xp_sock, (struct sockaddr *)&addr,
&len)) < 0) {
if (errno == EINTR)
goto again;
return (FALSE);
}
dontblock = 1;
(void)ioctl(sock, FIONBIO, &dontblock);
/*
* make a new transporter (re-uses xprt)
*/
xprt = makefd_xprt(sock, r->sendsize, r->recvsize);
xprt->xp_raddr = addr;
xprt->xp_addrlen = len;
return (FALSE); /* there is never an rpc msg to be processed */
}
static enum xprt_stat
rendezvous_stat()
{
return (XPRT_IDLE);
}
static void
svctcp_destroy(SVCXPRT *xprt)
{
struct tcp_conn *cd = (struct tcp_conn *)xprt->xp_p1;
xprt_unregister(xprt);
(void)close(xprt->xp_sock);
if (xprt->xp_port != 0) {
/* a rendezvouser socket */
xprt->xp_port = 0;
} else {
/* an actual connection socket */
XDR_DESTROY(&(cd->xdrs));
}
mem_free((caddr_t)cd, sizeof(struct tcp_conn));
mem_free((caddr_t)xprt, sizeof(SVCXPRT));
}
/*
* All read operations timeout after 35 seconds.
* A timeout is fatal for the connection.
*/
static struct timeval wait_per_try = { 35, 0 };
/*
* reads data from the tcp conection.
* any error is fatal and the connection is closed.
* (And a read of zero bytes is a half closed stream => error.)
*/
static int
readtcp(xprt, buf, len)
SVCXPRT *xprt;
caddr_t buf;
int len;
{
int sock = xprt->xp_sock;
#ifdef FD_SETSIZE
fd_set mask;
fd_set readfds;
if (((struct tcp_conn *)(xprt->xp_p1))->strm_stat == XPRT_DIED) {
return (-1);
}
FD_ZERO(&mask);
FD_SET(sock, &mask);
#else
int mask = 1 << sock;
int readfds;
#endif /* def FD_SETSIZE */
do {
readfds = mask;
if (select(_rpc_dtablesize(), &readfds, (fd_set*)NULL, (fd_set*)NULL,
&wait_per_try) <= 0) {
if (errno == EINTR) {
continue;
}
goto fatal_err;
}
#ifdef FD_SETSIZE
} while (!FD_ISSET(sock, &readfds));
#else
} while (readfds != mask);
#endif /* def FD_SETSIZE */
if ((len = read(sock, buf, len)) > 0) {
return (len);
}
fatal_err:
((struct tcp_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED;
return (-1);
}
/*
* writes data to the tcp connection.
* Any error is fatal and the connection is closed.
*/
static int
writetcp(xprt, buf, len)
SVCXPRT *xprt;
caddr_t buf;
int len;
{
int sock = xprt->xp_sock;
int i, cnt;
fd_set mask;
fd_set writefds;
if (((struct tcp_conn *)(xprt->xp_p1))->strm_stat == XPRT_DIED) {
return (-1);
}
for (cnt = len; cnt > 0; cnt -= i, buf += i) {
FD_ZERO(&mask);
FD_SET(sock, &mask);
do {
writefds = mask;
if (select(_rpc_dtablesize(), (fd_set *)NULL, &writefds,
(fd_set*)NULL, &wait_per_try) <= 0) {
if (errno == EINTR) {
continue;
}
goto fatal_err;
}
} while (!FD_ISSET(sock, &writefds));
if ((i = write(xprt->xp_sock, buf, cnt)) < 0) {
goto fatal_err;
}
}
return (len);
fatal_err:
((struct tcp_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED;
return (-1);
}
static enum xprt_stat
svctcp_stat(xprt)
SVCXPRT *xprt;
{
struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1);
if (cd->strm_stat == XPRT_DIED)
return (XPRT_DIED);
if (! xdrrec_eof(&(cd->xdrs)))
return (XPRT_MOREREQS);
return (XPRT_IDLE);
}
static bool_t
svctcp_recv(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1);
XDR *xdrs = &(cd->xdrs);
xdrs->x_op = XDR_DECODE;
(void)xdrrec_skiprecord(xdrs);
if (xdr_callmsg(xdrs, msg)) {
cd->x_id = msg->rm_xid;
return (TRUE);
}
return (FALSE);
}
static bool_t
svctcp_getargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
caddr_t args_ptr;
{
return ((*xdr_args)(&(((struct tcp_conn *)(xprt->xp_p1))->xdrs), args_ptr));
}
static bool_t
svctcp_freeargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
caddr_t args_ptr;
{
XDR *xdrs = &(((struct tcp_conn *)(xprt->xp_p1))->xdrs);
xdrs->x_op = XDR_FREE;
return ((*xdr_args)(xdrs, args_ptr));
}
static bool_t
svctcp_reply(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1);
XDR *xdrs = &(cd->xdrs);
bool_t stat;
xdrs->x_op = XDR_ENCODE;
msg->rm_xid = cd->x_id;
stat = xdr_replymsg(xdrs, msg);
(void)xdrrec_endofrecord(xdrs, TRUE);
return (stat);
}
syntax highlighted by Code2HTML, v. 0.9.1