/*
 * The entry, domoon(), is intended to be called by the AA.ARC
 * ephemeris calculator.  It calculates the Moon's apparent position.
 * Corrections for nutation and light time are included, but the
 * required routines for this are given as separate files in AA.ARC.
 * Note that the difference between Ephemeris and Universal
 * time is significant here, since the Moon moves in right
 * ascension at the rate of about 2s/minute.
 *
 */
#include "kep.h"
#ifdef ANSIPROT
int gmoon (double, double *, double *);
int moonll (double, double *, double *);
#else
int gmoon (), moonll ();
#endif

extern double aearth, au;

static double FAR ra;	/* Right Ascension */
static double FAR dec;	/* Declination */
double FAR Rearth;

/* Calculate geometric position of the Moon and apply
 * approximate corrections to find apparent position,
 * phase of the Moon, etc. for AA.ARC.
 */
int domoon()
{
int i, prtsav;
double ra0, dec0;
double x, y, z, lon0;
double pp[3], qq[3], pe[3], re[3], moonpp[3], moonpol[3];

/* Geometric equatorial coordinates of the earth.  */
for (i = 0; i < 3; i++)
	re[i] = rearth[i];

/* Run the orbit calculation twice, at two different times,
 * in order to find the rate of change of R.A. and Dec.
 */

/* Calculate for 0.001 day ago
 */
prtsav = prtflg;
prtflg = 0; /* disable display */
moonll(TDT-0.001, moonpp, moonpol);
ra0 = ra;
dec0 = dec;
lon0 = moonpol[0];
prtflg = prtsav;

/* Calculate for present instant.
 */
moonll(TDT, moonpp, moonpol);

if(prtflg)
  printf("Geometric lon %.3f deg, lat %.3f deg, rad %.4e au\n",
	 RTD * obpolar[0], RTD * obpolar[1], obpolar[2]);
prtflg = 0;

/* The rates of change.  These are used by altaz() to
 * correct the time of rising, transit, and setting.
 */
dradt = ra - ra0;
if (dradt >= PI)
  dradt = dradt - 2.0 * PI;
if (dradt <= -PI)
  dradt = dradt + 2.0 * PI;
dradt = 1000.0 * dradt;
ddecdt = 1000.0*(dec-dec0);

/* Rate of change in longitude, degrees per day
 * used for phase of the moon
 */
lon0 = 1000.0*RTD*(moonpol[0] - lon0);

/* Get apparent coordinates for the earth.  */
z = re[0] * re[0] + re[1] * re[1] + re[2] * re[2];
z = sqrt(z);
for (i = 0; i < 3; i++)
  re[i] /= z;
annuab( re );  /* aberration of light.  */
/* pe[0] -= STR * (20.496/(RTS*pe[2])); */
precess( re, TDT, -1 );
nutate( TDT, re );
for (i = 0; i < 3; i++)
  re[i] *= z;
lonlat( re, TDT, pe, 0 );
prtflg = prtsav; /* reenable display */

/* Find sun-moon-earth angles */
for( i=0; i<3; i++ )
	qq[i] = re[i] + moonpp[i];
angles( moonpp, qq, re );

/* Display answers
 */
if( prtflg )
	{
	printf( "Apparent geocentric longitude %.3f deg",
		RTD * moonpol[0] );
	printf( "   latitude %.3f deg\n", RTD * moonpol[1] );
	printf( "Distance %.3f Earth-radii\n", moonpol[2]/Rearth );
	printf( "Horizontal parallax" );
	x = Rearth/moonpol[2];
	dms( asin(x) );
	printf( "Semidiameter" );
	x = 0.272453 * x  +  0.0799/RTS; /* AA page L6 */
	dms( x );

	x = RTD * acos(-ep);
/*	x = 180.0 - RTD * arcdot (re, pp); */
	printf( "\nElongation from sun %.2f deg,", x );
	x = 0.5 * (1.0 + pq);
	printf( "  Illuminated fraction %.2f\n", x );

/* Find phase of the Moon by comparing Moon's longitude
 * with Earth's longitude.
 *
 * The number of days before or past indicated phase is
 * estimated by assuming the true longitudes change linearly
 * with time.  These rates are estimated for the date, but
 * do not stay constant.  The error can exceed 0.15 day in 4 days.
 */
	x = moonpol[0] - pe[0];
	x = modtp( x ) * RTD;	/* difference in longitude */
	i = (int) (x/90);	/* number of quarters */
	x = (x - i*90.0);	/* phase angle mod 90 degrees */

/* days per degree of phase angle */
	z = moonpol[2]/(12.3685 * 0.00257357);

	if( x > 45.0 )
		{
		y = -(x - 90.0)*z;
		if( y > 1.0 )
			printf( "Phase %.1f days before ", y );
		else
			printf( "Phase %.2f days before ", y );
		i = (i+1) & 3;
		}
	else
		{
		y = x*z;
		if( y > 1.0 )
			printf( "Phase %.1f days past ", y );
		else
			printf( "Phase %.2f days past ", y );
		}


	switch(i)
		{
		case 0: printf( "Full Moon\n" ); break;
		case 1: printf( "Third Quarter\n" ); break;
		case 2: printf( "New Moon\n" ); break;
		case 3: printf( "First Quarter\n" ); break;
		}

	printf( "    Apparent:  R.A." );
	hms(ra);
	printf( "Declination" );
	dms(dec);
	printf( "\n" );
	} /* if prtflg */

/* Compute and display topocentric position (altaz.c)
 */
pp[0] = ra;
pp[1] = dec;
pp[2] = moonpol[2];
altaz( pp, UT );
return(0);
}

/* Calculate apparent latitude, longitude, and horizontal parallax
 * of the Moon at Julian date J.
 */
int moonll(J, rect, pol)
double J, rect[], pol[];
{
double cosB, sinB, cosL, sinL, y, z;
double qq[3], pp[3];
int i;

/* Compute obliquity of the ecliptic, coseps, and sineps.  */
epsiln( J );
/* Get geometric coordinates of the Moon.  */
gmoon (J, rect, pol);
/* Post the geometric ecliptic longitude and latitude, in radians,
 * and the radius in au.
 */
obpolar[0] = pol[0];
obpolar[1] = pol[1];
obpolar[2] = pol[2];

/* Light time correction to longitude,
 * about 0.7".
 */
pol[0] -= 0.0118 * DTR * Rearth / pol[2];

/* convert to equatorial system of date */
cosB = cos(pol[1]);
sinB = sin(pol[1]);
cosL = cos(pol[0]);
sinL = sin(pol[0]);
rect[0] = cosB*cosL;
rect[1] = coseps*cosB*sinL - sineps*sinB;
rect[2] = sineps*cosB*sinL + coseps*sinB;

/* Rotate to J2000. */
precess( rect, TDT, 1 );


/* Find Euclidean vectors and angles between earth, object, and the sun
 */
for( i=0; i<3; i++ )
	{
	pp[i] = rect[i] * pol[2];
	qq[i] = rearth[i] + pp[i];
	}
angles( pp, qq, rearth );

/* Make rect a unit vector.  */
/* for (i = 0; i < 3; i++) */
/*  rect[i] /= EO; */

/* Correct position for light deflection.
   (Ignore.)  */
/* relativity( rect, qq, rearth ); */

/* Aberration of light.
   The Astronomical Almanac (Section D, Daily Polynomial Coefficients)
   seems to omit this, even though the reference ephemeris is inertial.  */
/* annuab (rect); */

/* Precess to date.  */
precess( rect, TDT, -1 );

/* Correct for nutation at date TDT.
 */
nutate( TDT, rect );

/* Apparent geocentric right ascension and declination.  */
ra = zatan2(rect[0],rect[1]);
dec = asin(rect[2]);

/* For apparent ecliptic coordinates, rotate from the true
   equator into the ecliptic of date.  */
cosL = cos(eps+nuto);
sinL  = sin(eps+nuto);
y = cosL * rect[1] + sinL * rect[2];
z = -sinL * rect[1] + cosL * rect[2];
pol[0] = zatan2( rect[0], y );
pol[1] = asin(z);

/* Restore earth-moon distance.  */
for( i=0; i<3; i++ )
  rect[i] *= EO;

return(0);
}


syntax highlighted by Code2HTML, v. 0.9.1