/* Program to solve Keplerian orbit
* given orbital parameters and the time.
* Returns Heliocentric equatorial rectangular coordinates of
* the object.
*
* This program detects several cases of given orbital elements.
* If a program for perturbations is pointed to, it is called
* to calculate all the elements.
* If there is no program, then the mean longitude is calculated
* from the mean anomaly and daily motion.
* If the daily motion is not given, it is calculated
* by Kepler's law.
* If the eccentricity is given to be 1.0, it means that
* meandistance is really the perihelion distance, as in a comet
* specification, and the orbit is parabolic.
*
* Reference: Taff, L.G., "Celestial Mechanics, A Computational
* Guide for the Practitioner." Wiley, 1985.
*/
#include "kep.h"
#ifdef ANSIPROT
extern int embofs ( double J, double emb[], double *r );
int gplan (double, struct plantbl *, double *);
int g3plan (double, struct plantbl *, double *, int);
int gmoon (double, double *, double *);
#else
int embofs(), g3plan(), gplan(), gmoon();
#endif
extern struct orbit earth; /* orbital elements of the earth */
extern double eps, coseps, sineps; /* obliquity of ecliptic */
int kepler(J, e, rect, polar)
double J, rect[], polar[];
struct orbit *e;
{
double alat, E, M, W, temp;
double epoch, inclination, ascnode, argperih;
double meandistance, dailymotion, eccent, meananomaly;
double r, coso, sino, cosa;
/* Call program to compute position, if one is supplied. */
if( e->ptable )
{
if( e == &earth )
g3plan (J, e->ptable, polar, 3);
else
gplan (J, e->ptable, polar);
E = polar[0]; /* longitude */
e->L = E;
W = polar[1]; /* latitude */
r = polar[2]; /* radius */
e->r = r;
e->epoch = J;
e->equinox = J2000;
goto kepdon;
}
/* Decant the parameters from the data structure
*/
epoch = e->epoch;
inclination = e->i;
ascnode = e->W * DTR;
argperih = e->w;
meandistance = e->a; /* semimajor axis */
dailymotion = e->dm;
eccent = e->ecc;
meananomaly = e->M;
/* Check for parabolic orbit. */
if( eccent == 1.0 )
{
/* meandistance = perihelion distance, q
* epoch = perihelion passage date
*/
temp = meandistance * sqrt(meandistance);
W = (J - epoch ) * 0.0364911624 / temp;
/* The constant above is 3 k / sqrt(2),
* k = Gaussian gravitational constant = 0.01720209895 . */
E = 0.0;
M = 1.0;
while( fabs(M) > 1.0e-11 )
{
temp = E * E;
temp = (2.0 * E * temp + W)/( 3.0 * (1.0 + temp));
M = temp - E;
if( temp != 0.0 )
M /= temp;
E = temp;
}
r = meandistance * (1.0 + E * E );
M = atan( E );
M = 2.0 * M;
alat = M + DTR*argperih;
goto parabcon;
}
if( eccent > 1.0 )
{
/* The equation of the hyperbola in polar coordinates r, theta
* is r = a(e^2 - 1)/(1 + e cos(theta))
* so the perihelion distance q = a(e-1),
* the "mean distance" a = q/(e-1).
*/
meandistance = meandistance/(eccent - 1.0);
temp = meandistance * sqrt(meandistance);
W = (J - epoch ) * 0.01720209895 / temp;
/* solve M = -E + e sinh E */
E = W/(eccent - 1.0);
M = 1.0;
while( fabs(M) > 1.0e-11 )
{
M = -E + eccent * sinh(E) - W;
E += M/(1.0 - eccent * cosh(E));
}
r = meandistance * (-1.0 + eccent * cosh(E));
temp = (eccent + 1.0)/(eccent - 1.0);
M = sqrt(temp) * tanh( 0.5*E );
M = 2.0 * atan(M);
alat = M + DTR*argperih;
goto parabcon;
}
/* Calculate the daily motion, if it is not given.
*/
if( dailymotion == 0.0 )
{
/* The constant is 180 k / pi, k = Gaussian gravitational constant.
* Assumes object in heliocentric orbit is massless.
*/
dailymotion = 0.9856076686/(e->a*sqrt(e->a));
}
dailymotion *= J - epoch;
/* M is proportional to the area swept out by the radius
* vector of a circular orbit during the time between
* perihelion passage and Julian date J.
* It is the mean anomaly at time J.
*/
M = DTR*( meananomaly + dailymotion );
M = modtp(M);
/* If mean longitude was calculated, adjust it also
* for motion since epoch of elements.
*/
if( e->L )
{
e->L += dailymotion;
e->L = mod360( e->L );
}
/* By Kepler's second law, M must be equal to
* the area swept out in the same time by an
* elliptical orbit of same total area.
* Integrate the ellipse expressed in polar coordinates
* r = a(1-e^2)/(1 + e cosW)
* with respect to the angle W to get an expression for the
* area swept out by the radius vector. The area is given
* by the mean anomaly; the angle is solved numerically.
*
* The answer is obtained in two steps. We first solve
* Kepler's equation
* M = E - eccent*sin(E)
* for the eccentric anomaly E. Then there is a
* closed form solution for W in terms of E.
*/
E = M; /* Initial guess is same as circular orbit. */
temp = 1.0;
do
{
/* The approximate area swept out in the ellipse */
temp = E - eccent * sin(E)
/* ...minus the area swept out in the circle */
- M;
/* ...should be zero. Use the derivative of the error
* to converge to solution by Newton's method.
*/
E -= temp/(1.0 - eccent*cos(E));
}
while( fabs(temp) > 1.0e-11 );
/* The exact formula for the area in the ellipse is
* 2.0*atan(c2*tan(0.5*W)) - c1*eccent*sin(W)/(1+e*cos(W))
* where
* c1 = sqrt( 1.0 - eccent*eccent )
* c2 = sqrt( (1.0-eccent)/(1.0+eccent) ).
* Substituting the following value of W
* yields the exact solution.
*/
temp = sqrt( (1.0+eccent)/(1.0-eccent) );
W = 2.0 * atan( temp * tan(0.5*E) );
/* The true anomaly.
*/
W = modtp(W);
meananomaly *= DTR;
/* Orbital longitude measured from node
* (argument of latitude)
*/
if( e->L )
alat = (e->L)*DTR + W - meananomaly - ascnode;
else
alat = W + DTR*argperih; /* mean longitude not given */
/* From the equation of the ellipse, get the
* radius from central focus to the object.
*/
r = meandistance*(1.0-eccent*eccent)/(1.0+eccent*cos(W));
parabcon:
/* The heliocentric ecliptic longitude of the object
* is given by
* tan( longitude - ascnode ) = cos( inclination ) * tan( alat ).
*/
coso = cos( alat );
sino = sin( alat );
inclination *= DTR;
W = sino * cos( inclination );
E = zatan2( coso, W ) + ascnode;
/* The ecliptic latitude of the object
*/
W = sino * sin( inclination );
W = asin(W);
kepdon:
/* Convert to rectangular coordinates,
* using the perturbed latitude.
*/
rect[2] = r * sin(W);
cosa = cos(W);
rect[1] = r * cosa * sin(E);
rect[0] = r * cosa * cos(E);
/* Convert from heliocentric ecliptic rectangular
* to heliocentric equatorial rectangular coordinates
* by rotating eps radians about the x axis.
*/
epsiln( e->equinox );
W = coseps*rect[1] - sineps*rect[2];
M = sineps*rect[1] + coseps*rect[2];
rect[1] = W;
rect[2] = M;
/* Precess the position
* to ecliptic and equinox of J2000.0
* if not already there.
*/
precess( rect, e->equinox, 1 );
/* If earth, adjust from earth-moon barycenter to earth
* by AA page E2.
*/
if( e == &earth )
{
embofs( J, rect, &r ); /* see below */
}
/* Rotate back into the ecliptic. */
epsiln( J2000 );
W = coseps*rect[1] + sineps*rect[2];
M = -sineps*rect[1] + coseps*rect[2];
/* Convert to polar coordinates */
E = zatan2( rect[0], W );
W = asin( M/r );
/* Output the polar cooordinates
*/
polar[0] = E; /* longitude */
polar[1] = W; /* latitude */
polar[2] = r; /* radius */
return(0);
}
/* Adjust position from Earth-Moon barycenter to Earth
*
* J = Julian day number
* emb = Equatorial rectangular coordinates of EMB.
* pr = Earth's distance to the Sun (au)
*/
extern double emrat;
int embofs( J, ea, pr )
double J;
double ea[];
double *pr;
{
double pm[3], polm[3];
double a, b;
int i;
/* Compute the vector Moon - Earth. */
gmoon( J, pm, polm );
/* Precess the lunar position
* to ecliptic and equinox of J2000.0
*/
precess( pm, J, 1 );
/* Adjust the coordinates of the Earth
*/
a = 1.0 / (emrat + 1.0);
b = 0.0;
for( i=0; i<3; i++ )
{
ea[i] = ea[i] - a * pm[i];
b = b + ea[i] * ea[i];
}
/* Sun-Earth distance. */
*pr = sqrt(b);
return(0);
}
syntax highlighted by Code2HTML, v. 0.9.1