

I n s i d e M a c O S X

Carbon Porting Guide

December 2002



 Apple Computer, Inc.
© 1999-2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
AppleTalk, ColorSync, HyperCard,
LaserWriter, Mac, Macintosh, MPW,
QuickDraw, QuickTime, SANE, and
WorldScript are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Carbon and Quartz are trademarks of
Apple Computer, Inc.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company, Ltd.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3



 Apple Computer, Inc. December 2002

Contents

Chapter 1

Introduction

11

What Is Carbon? 11
What Are the Benefits of Carbon? 12
What Is in Carbon Today? 13
What’s Not in Carbon? 14
How Does Carbon Work? 14
Carbon and the Mac OS Application Model 16

Preemptive Scheduling and Application Threading 16
Separate Application Address Spaces 16
Virtual Memory 17
Resources 17
Code Fragments and the Code Fragment Manager 17
Mixed Mode Manager 17
Printing 18
Control Panels 18
The Trap Table 18
Standard and Custom Definition Procedures 18
Application-Defined Functions 19
Data Structure Access 19

Additional Information and Feedback 20

Chapter 2

Preparing Your Code for Carbon

21

Using Carbon Dater 22
Analyzing Your Application 22
Reading the Report 23

Analysis of Imports 23
Analysis of Access to Low Memory Addresses 23
Analysis of Resources Loaded Into the System Heap 24

Additional Reports 24
The Carbon Specification 24

Essential Steps for Porting Your Application 25

4



 Apple Computer, Inc. December 2002

C O N T E N T S

Make Sure All of Your Code Is PowerPC-Native 25
Update to the Current Universal Interfaces 25
Use the Carbon SDK 26
Target Mac OS 8 and 9 First 26
Begin With CarbonAccessors.o 26
Use Casting Functions to Convert DialogPtrs and WindowPtrs 27
Replace Macro Calls to the Mixed Mode Manager With UPP Accessor
Functions 28
Move Custom Definition Procedures Out of Resources 29
Remove Direct Access to Low-Memory Globals 30
Use DebuggingCarbonLib 32
Modify or Conditionalize Your Headers 32
Update Modified or Obsolete Functions 33
Adopt Required Carbon Technologies 33
Add a 'plst' 0 Resource 33
Conditionalize Quit Menu Items 34

Additional Porting Issues 35
Determine the Appropriate CarbonLib Version 35
Draw Only Within Your Own Windows 36
Do Not Patch Traps 37
Don’t Pass Pointers Across Processes 37
Do Not Write to Your Application’s Resource Fork 37
Check Your OpenGL Code 38
Examine Your Plug-ins 38
Linking to Non-Carbon-Compliant Code 38
Window Manager Issues 39

Handling Buffered Windows 39
Bypassing the Window Manager Port 40
Window Dragging and Resizing Q&A 41

Optimizing Your Code for Carbon 45
Manage Memory Efficiently 45
Avoid Polling and Busy Waiting 46
Use “Lazy” Initialization for Shared Libraries 47
Adopt HFS Plus APIs 47
Consider Mach-O Executables 48
Move Resources to Data Fork–Based Files 48
Consider Using Bundles 49
Begin Transitioning to the Aqua Interface 50

C O N T E N T S

5



 Apple Computer, Inc. December 2002

Adopt a Terse Name for the Application Menu 51
Provide Thumbnail Icons for Your Application 51

Chapter 3

Building Carbon Applications

55

Native Mac OS 9 Versus Mac OS X’s Classic Environment 55
Development Scenarios 56

Using CodeWarrior to Build a CFM Carbon Application 56
Using CodeWarrior to Build a Mach-O Carbon Application 56
Using Project Builder to Build a Mach-O Carbon Application 57

Building a CFM Carbon Application With CodeWarrior 57
Preparing Your Development Environment 57
Building Your Application 58
Running Your Application on Mac OS 9 59
Running Your Application on Mac OS X 59

Building a Mach-O Carbon Application With CodeWarrior 60
Preparing Your Development Environment 60
Building Your Application 60
Running Your Application on Mac OS X 60

Building a Mach-O Carbon Application With Project Builder 61
Building Applications Using MPW 61
Debugging Your Application 62

Chapter 4

A Porting Example

65

The Sample Application 65
Obtaining the Carbon Dater Report 66
The Basic Port 70

Make Sure All of Your Code is PowerPC–Native 70
Update to the Current Universal Interfaces and Use the Carbon SDK 71
Target Mac OS 8 and 9 First 71
Begin With CarbonAccessors.o 72
Use Casting Functions to Convert DialogPtrs and WindowPtrs 74
Modify or Conditionalize Your Headers 74
Replace Macro Calls to the Mixed Mode Manager With UPP Accessor
Functions 75

6



 Apple Computer, Inc. December 2002

C O N T E N T S

Move Custom Definition Procedures Out of Resources 75
Remove Direct Access to Low-Memory Globals 75
Use DebuggingCarbonLib 75
Update Modified or Obsolete Functions 76
Adopt Required Carbon Technologies 77
Add a ‘plst’ 0 Resource 77
Conditionalize Quit Menu Items 78
Cleanup 79

Additional Changes for Aqua 80
Adjust the Window Size 80
Modify the About Box 80

The Carbon Version of Sample 81

Chapter 5

New Carbon Technologies

99

Carbon Event Manager 99
Core Foundation 100
DataBrowser 101
Multilingual Text Engine (MLTE) 102
An Example: Adding Carbon Events to Sample 103

Standard Event Handlers 103
The Basic Conversion 104

Installing the Standard Event Handlers 105
Registering Your Own Event Handlers 106
The Application-Level Event Handler 107
The Window Event Handler 110
Cleanup 113

Appendix A

New Carbon Functions

115

Custom Definition Procedures 115
Changes to WDEFs 115
Changes to MDEFs 116

Functions for Accessing Opaque Data Structures 116
Casting Functions 117
Accessor Functions 118

C O N T E N T S

7



 Apple Computer, Inc. December 2002

Utility Functions 127
Functions in CarbonAccessors.o 128
Debugging Functions 131

CheckAllHeaps 131
IsHeapValid 131
IsHandleValid 132
IsPointerValid 132

Resource Chain Manipulation Functions 132
InsertResourceFile 132
DetachResourceFile 133
FSpResourceFileAlreadyOpen 133

Appendix B

The Sample Application

135

Appendix C

Document Version History

157

8



 Apple Computer, Inc. December 2002

C O N T E N T S

9



 Apple Computer, Inc. December 2002

Figures, Listings, and Tables

Chapter 1

Introduction

11

Figure 1-1 Current and future composition of the Carbon API 13
Figure 1-2 Calling Carbon functions on Mac OS X and Mac OS 8 and 9 15

Chapter 2

Preparing Your Code for Carbon

21

Figure 2-1 Outline feedback as a user resizes a window 43
Figure 2-2 Thumbnail icons in a .icns file, displayed in Icon Browser 52
Table 2-1 Summary of Carbon low memory accessor support 31

Chapter 4

A Porting Example

65

Figure 4-1 The Sample application 66
Figure 4-2 A Carbon Dater report 67
Figure 4-3 The About box for Sample 81
Figure 4-4 The Carbon version of Sample on Mac OS X 82
Listing 4-1 Carbon version of Sample.c 82
Listing 4-2 Carbon version of SampleInit.c 94
Table 4-1 Carbon Dater output for incompatible functions 68

Chapter 5

New Carbon Technologies

99

Listing 5-1 Application-level event handler for Sample 107
Listing 5-2 Window event handler for Sample 111

Appendix A

New Carbon Functions

115

Listing A-1 Example of unsupported data structure access 118
Listing A-2 Example of using Carbon-compatible accessor functions 119
Table A-1 Summary of Carbon Human Interface Toolbox accessors 121

10



 Apple Computer, Inc. December 2002

F I G U R E S A N D T A B L E S

Table A-2 QuickDraw accessor functions 124
Table A-3 Functions in CarbonAccessors.o 128
Table A-4 Functions removed from CarbonAccessors.o 131

Appendix B

The Sample Application

135

Listing B-1 Sample.c 135
Listing B-2 SampleInit.c 151

Appendix C

Document Version History

157

Table C-1 Carbon Porting Guide revision history 157

What Is Carbon?

11



 Apple Computer, Inc. December 2002

C H A P T E R 1

1 [[Introduction]

[[The Carbon Porting Guide is intended to help experienced Macintosh developers
convert existing Mac OS applications into Carbon applications that can run on Mac
OS X as well as Mac OS 8 and 9. It contains detailed information about how to adapt
and build your application using the Carbon API as well as step-by-step examples
of the porting process.]

[To make the Carbon transition as smooth as possible, you should also be familiar
with the following documents before beginning your port:]

� ✻[[Inside Mac OS X: System Overview] . This document contains in-depth
discussions of Mac OS X features and architecture. It also contains more detailed
information about some topics discussed in this document.]

� ✻[Inside Mac OS X: Aqua Human Interface Guidelines] . This document provides the
human interface guidelines for the Mac OS X user interface.]]

[This chapter introduces Carbon and provides an overview of the changes you’ll
need to be aware of as you convert your application.]]

[[What Is Carbon?]

[Carbon is the set of programming interfaces derived from earlier Mac OS APIs that
can run on Mac OS X. Some of these APIs have been modified or extended to take
advantage of Mac OS X features such as preemptive multitasking and protected
memory.]

12

What Are the Benefits of Carbon?



 Apple Computer, Inc. December 2002

C H A P T E R 1

Introduction

[In addition to being able to run on Mac OS X, Carbon applications built for
Mac OS X can also run on Mac OS 8 and 9 when the CarbonLib system extension is
installed. (As always, you should test for the existence of specific features before
using them.)]

[Carbon includes about 70 percent of the existing Mac OS APIs, covering about 95
percent of the functions used by applications. Because it includes most of the
functions you rely on today, converting to Carbon is a straightforward process.
Apple provides tools and documentation to help you determine the changes you
will need to make in your source code, as well as the header files and libraries
necessary to build a Carbon application.]

[Mac OS X brings important new features and enhancements that developers have
asked for, and Carbon allows you to take advantage of them while preserving your
investment in Mac OS source code. As Apple moves the Mac OS forward, Carbon
ensures you won’t be left behind.]]

[[What Are the Benefits of Carbon?]

[Carbon applications gain these benefits when running under Mac OS X:]

� ✻[Greater stability. Protected address spaces help prevent errant applications
from crashing the system or other applications.]

� ✻ Improved responsiveness. Each application is guaranteed processing time
through preemptive multitasking, resulting in a more responsive user
experience.]

� ✻ Dynamic resource allocation. More efficient use of system resources, including
the elimination of fixed size heaps, means your application can allocate memory
and other shared resources based on actual needs rather than predetermined
values. Each application can access up to 4GB of potential addressable memory.
]

� ✻ Aqua look and feel. Apple’s newest user interface is available only to
applications that run natively on Mac OS X.]]]

C H A P T E R 1

Introduction

What Is in Carbon Today?

13



 Apple Computer, Inc. December 2002

[[What Is in Carbon Today?]

[The Carbon programming interface consists of the following types of APIs:]

� ✻[Classic Mac OS APIs that can run unchanged on Mac OS X. These comprise the
majority of the APIs in your current application.]

� ✻ Classic Mac OS APIs that have been modified to work on Mac OS X. For
example, to operate properly in a preemptively-scheduled environment, a
function may now require an additional parameter to specify the context (or
process) to which it belongs.]

� ✻ New APIs that can run on both Mac OS X and Mac OS 8 and 9. For example,
Core Foundation and the Carbon Event Manager provide additional benefits for
Carbon applications but are not required for porting.]

� ✻ New APIs that are available only on Mac OS X.]]

[Currently, the Classic Mac OS APIs make up the largest proportion of Carbon
APIs, as shown in [Figure 1-1] . However, as Carbon evolves to take advantage of
new features in Mac OS X, new Mac OS X-specific APIs will be added that enhance
its capabilities.]

Figure 1-1 [[Current and future composition of the Carbon API]]]

New APIs for Mac OS 8 and 9
and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs

New APIs for Mac OS 8 and 9
and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs

Now Future

14

What’s Not in Carbon?



 Apple Computer, Inc. December 2002

C H A P T E R 1

Introduction

[[What’s Not in Carbon?]

[If Carbon does not support a Classic Mac OS function, it is generally for one of the
following reasons:]

� ✻[The function performs actions that are illegal or make no sense in Mac OS X.
For example, functions that are 68K-specific, or functions that allocate memory
in the system heap (Mac OS X has no concept of a system heap).]

� ✻ The function directly accesses hardware. The Carbon environment was
designed to be fully abstracted from hardware, so such functions are not
allowed.]

� ✻ The function was there for legacy purposes only, and has more modern
replacements (for example, File Manager functions that use working
directories).]]

[In addition, certain Classic Mac OS programming practices are no longer allowed:]

� ✻[No 68K code allowed. All Carbon code must be PowerPC-based.]

� ✻ No trap table access. The trap table and Patch Manager are 68K-specific.]

� ✻ Limited access to data structure fields. See [“Data Structure Access”
(page 19)] .]]]

[[How Does Carbon Work?]

[Carbon lets you create one executable file that can run on both Mac OS X and Mac
OS 8 and 9. You accomplish this by linking your application with a single stub
library, [CarbonLibStub] , at build time. At runtime your application links with the
appropriate Carbon implementation stored as shared libraries (sometimes referred
to as DLLs).]

C H A P T E R 1

Introduction

How Does Carbon Work?

15



 Apple Computer, Inc. December 2002

[On Mac OS X, your application links dynamically to the Carbon framework, which
is a hierarchy of libraries and resources that contains the implementation of
Carbon.]

[On Mac OS 8 and 9, the Carbon implementation is stored as a system extension
named [CarbonLib] . This library contains two types of elements:]

� ✻[Implementations of all functions specific to Carbon.]

� ✻ Exports of functions currently available in system software. For example, calls
to a Menu Manager function available in both Carbon and Mac OS 8 and 9 will
merely call through to the implementation in InterfaceLib.]]

[[Figure 1-2] shows Carbon functions called on Mac OS X and Mac OS 8 and 9.]

Figure 1-2 [[Calling Carbon functions on Mac OS X and Mac OS 8 and 9]]

[In general, for a pure Carbon application, the only library you should link against
is [CarbonLib] . See [“Linking to Non-Carbon-Compliant Code” (page 38)] for special
cases where you may need to link to other libraries.]]

Runtime
Mac OS X

Carbon.framework

myCarbonApp

Runtime
Mac OS 8 and 9

InterfaceLib

CarbonLib

myCarbonApp

or

myCarbonApp

CarbonLibStub

Build Time

16

Carbon and the Mac OS Application Model



 Apple Computer, Inc. December 2002

C H A P T E R 1

Introduction

[[Carbon and the Mac OS Application Model]

[The Mac OS application model remains fundamentally unchanged in Carbon.
Carbon applications employ system services in essentially the same manner for
both Mac OS 8 and 9 and Mac OS X. But because Mac OS 8 and 9 and Mac OS X are
built on different architectures, there will be slight differences in the way your
application uses some system services. This section highlights the most important
changes you need to be aware of. [Chapter 2, “Preparing Your Code for Carbon,”]
provides more detailed information on each of these subjects.]

[[Preemptive Scheduling and Application
Threading]
[In Mac OS X, each Carbon application is scheduled preemptively against other
Carbon applications. For calls to most low-level operating system services,
Mac OS X also supports preemptive threading within an application. Because most
Human Interface Toolbox functions are not reentrant, however, a multithreaded
application will initially be able to call these functions only from cooperatively
scheduled threads. Thread-based preemptive access to all system services—
including the Human Interface Toolbox—is an important future direction for the
Mac OS.]

[In both Mac OS 8 and 9 and Mac OS X, you can use the Multiprocessing Services
API to create preemptively scheduled tasks.]]

[[Separate Application Address Spaces]
[In Mac OS X, each Carbon application runs in its own protected address space. An
application can’t reference memory locations—or corrupt another application’s
data—outside of its assigned address space. This separation of address spaces
increases the reliability of the user’s system, but it may require small programming
changes to applications that use zones, system memory, or temporary memory. For
example, temporary memory allocations in Mac OS X will be allocated in the

C H A P T E R 1

Introduction

Carbon and the Mac OS Application Model

17



 Apple Computer, Inc. December 2002

application’s address space, and Apple will define new functions for sharing
memory between applications. [“Manage Memory Efficiently” (page 45)] provides
more detailed information about memory management for Carbon applications.]]

[[Virtual Memory]
[Mac OS X uses a dynamic and highly efficient virtual memory system that is
always enabled. Your Carbon application must therefore assume that virtual
memory is turned on at all times. In addition, the Mac OS X virtual memory system
introduces a number of changes to the addressing model that are discussed in
[“Manage Memory Efficiently” (page 45)] .]]

[[Resources]
[Mac OS X supports traditional Resource Manager resources, but you should
consider moving resources to the data fork of your application and accessing them
using Core Foundation CFBundle APIs instead. Doing so will ensure that this
information will not be lost if your application is copied by a method that does not
recognize resource forks. See [“Move Resources to Data Fork–Based Files”
(page 48)] and [“Consider Using Bundles” (page 49)] for more information.]

[Note that you can no longer store executable code in resources. See [“Move Custom
Definition Procedures Out of Resources” (page 29)] for more information.]]

[[Code Fragments and the Code Fragment Manager]
[Carbon fully supports the Code Fragment Manager, and the Mac OS X runtime
environment supports code compiled into code fragments. For Mac OS X, however,
all code fragments must contain only native PowerPC code. In addition,
resource-based fragments are no longer allowed.]]

[[Mixed Mode Manager]
[While the Mixed Mode Manager is no longer needed to handle calls between
PowerPC and 68K code, there may be instances where it must handle calls between
CFM-based code and Mach-O code (the native executable format on Mac OS X). In
any case, you must replace the macros for creating and disposing routine

18

Carbon and the Mac OS Application Model



 Apple Computer, Inc. December 2002

C H A P T E R 1

Introduction

descriptors with new Carbon functions for creating, invoking, and disposing
universal procedure pointers (UPPs). See [“Replace Macro Calls to the Mixed Mode
Manager With UPP Accessor Functions” (page 28)] for more information.]]

[[Printing]
[Carbon introduces a new Printing Manager that allows applications to print on
Mac OS 9 using current printer drivers and on Mac OS X using new printer drivers.
The functions and data types defined by the Carbon Printing Manager are
contained in the header files [PMApplication.h] , [PMCore.h] , and [PMDefinitions.h] .
Documentation for the Carbon Printing Manager is provided with the Mac OS X
Developer Tools CD and at the following website:]

[[http://developer.apple.com/techpubs/carbon/graphics/
CarbonPrintingManager/carbonprintingmgr.html]]]

[[Control Panels]
[Carbon does not support control panels. If possible, you should package your
control panel as an application.]]

[[The Trap Table]
[The trap table is a 68K-specific mechanism for dispatching calls to Mac OS Toolbox
functions. Because Mac OS X does not support 68K code, the Trap Manager is
unavailable in Carbon, and your application should not dispatch calls through the
trap table. Likewise, the Patch Manager is unsupported in Carbon, and your
application should not attempt to patch the trap table or any operating system entry
points. If your application relies on patches, please tell us why, so that we can help
you remove this dependency.]]

[[Standard and Custom Definition Procedures]
[Carbon supports the standard Mac OS definition procedures (also known as
defprocs) for such human interface elements as windows, menus, and controls.
Custom definition procedures are also supported (as long as they are compiled as

C H A P T E R 1

Introduction

Carbon and the Mac OS Application Model

19



 Apple Computer, Inc. December 2002

PowerPC code), but there are new procedures for creating and packaging them.
These new functions are discussed in [“Move Custom Definition Procedures Out of
Resources” (page 29)] and [“Custom Definition Procedures” (page 115)] .]]

[[Application-Defined Functions]
[Carbon supports most Mac OS application-defined (callback) functions. Mac OS X
fully supports callback functions within an application’s address space. In Carbon,
callback functions use native PowerPC conventions instead of 68K conventions, but
Carbon doesn’t change these function definitions. As usual you should pass
universal procedure pointers when specifying your callback functions.]]

[[Data Structure Access]
[So that future versions of Mac OS can support access to all system services through
preemptive threads, Carbon limits direct application access to some Mac OS data
structures. Carbon allows three levels of data structure access, depending on which
is appropriate for a given structure:]

� ✻[Direct access—your application can read from and write to the data structure
without restriction.]

� ✻ Direct access with notification—your application can read from and write to the
data structure, but after modifying the structure your application must call a
function to notify the operating system that the structure has been changed.]

� ✻ Indirect access—your application has no direct access to the data structure.
Instead, your application can obtain and set values in the structure only by using
accessor functions. Structures of this type are said to be “opaque” because their
contents are not visible to applications.]]

[Opaque data structures and the functions for using them are discussed in
[“Functions for Accessing Opaque Data Structures” (page 116)] .]]]

20

Additional Information and Feedback



 Apple Computer, Inc. December 2002

C H A P T E R 1

Introduction

[[Additional Information and Feedback]

[Apple is working hard to deliver the features and performance you expect from
Carbon. You can keep abreast of current developments by visiting the Carbon
website at]

[[http://developer.apple.com/macosx/carbon/]]

[where you’ll find the complete Carbon Specification, preliminary documentation,
and links to other useful information.]

[If you have comments or suggestions about Carbon, please send them to
[carbon@apple.com] .]]]

21



 Apple Computer, Inc. December 2002

C H A P T E R 2

2 [[Preparing Your Code for
Carbon]

[[This chapter describes the modifications you need to make to your source code to
create a Carbon application. These changes are divided into three categories:]

� ✻[Essential changes. Applications that follow these steps should run on
Mac OS X, but may suffer from performance or responsiveness problems.]

� ✻ Other porting issues. These are topics that could affect the porting process
depending on the capabilities and needs of your application.]

� ✻ Optimization steps. This section describes steps and issues to consider so your
application can take best advantage of Mac OS X. Apple highly recommends
that you address at least some of the topics described in this section.]]

[For more details about porting an application, see [Chapter 4, “A Porting
Example.”]]

[Technote TN2003, “Moving Your Code to Mac OS X,” contains additional porting
information that you may find useful:]

[[http://developer.apple.com/technotes/tn/tn2003.html]]

[To make your job easier, begin by using the Carbon Dater tool to analyze the
current compatibility level of your application.]]

[Note: Carbon also provides new technologies that give additional functionality
to your application. While entirely optional, these additions can improve
performance, enhance the user experience, and even simplify future code
development. See [Chapter 5, “New Carbon Technologies,”] for more
information.]

22

Using Carbon Dater



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Using Carbon Dater]

[Apple has developed a tool called Carbon Dater to analyze compiled applications
and libraries for compatibility with Carbon. You can use Carbon Dater to obtain
information about the compatibility of your existing code and the scope of your
future conversion efforts.]

[Carbon Dater works by examining PEF containers in application binaries and CFM
libraries. It compares the list of Mac OS symbols your code imports against Apple’s
database of Carbon-supported functions.]

[You’ll find the Carbon Dater tool and complete instructions online at]

[[http://developer.apple.com/macosx/carbon/dater.html]]

[[Analyzing Your Application]
[Using Carbon Dater is a two-step process. You begin by dropping your compiled
application or CFM library file onto the Carbon Dater tool. The tool examines the
first PEF container in your file and outputs a text file named [filename][.CCT] (Carbon
Compatibility Test). You can drop more than one file onto the Carbon Dater tool to
get a combined report, but the tool examines only the first PEF container in each
file.]

[The CCT file contains a list of all the Mac OS functions referenced by your code. If
applicable, it may also include information about your application’s use of direct
access to low memory addresses or about resources stored in the system heap.]

[The second step is to send your CCT file to Apple for analysis. The information
gathered by the Carbon Dater tool is used to create a compatibility report for your
application. Attach the CCT file as an email enclosure (preferably compressed) and
send it to [CarbonDating@apple.com] .]

[Note: Because Carbon Dater examines only PEF containers, it cannot examine
68K-based executable files. If you are porting an older 68K application, you must
convert it to PowerPC before running the Carbon Dater tool.]

C H A P T E R 2

Preparing Your Code for Carbon

Using Carbon Dater

23



 Apple Computer, Inc. December 2002

[Important
[Carbon Dater does not expose any proprietary information
about your product. The CCT file only lists calls to Mac OS
functions and certain other potential compatibility issues.
You can examine the CCT file to verify its contents.]]]

[[Reading the Report]
[The CCT file you send to Apple will be processed by an automated analysis tool.
The analyzer compares the list of Mac OS functions your code calls against Apple’s
Carbon API database, and returns a report to you by email. This report is an HTML
document that provides a snapshot of your application’s Carbon compatibility
level.]

[[Analysis of Imports]

[For each Mac OS function your code calls that is not fully supported in Carbon, the
compatibility report specifies whether the function is]

� ✻[supported but modified in some way from how it is used in previous versions
of the Mac OS]

� ✻ supported but not recommended—that is, you can use the function, but it may
not be supported in the future]

� ✻ unsupported]

� ✻ not found in the latest version of Universal Interfaces]]

[The report includes a chart that shows the percentages of Mac OS functions in each
category. For many functions, the report also describes how to modify your
application. For example, text accompanying an unsupported function might
describe a replacement function or recommended workaround.]]

[[Analysis of Access to Low Memory Addresses]

[This section of the compatibility report lists instances where your code makes a
direct access to low memory. For information on how to access low memory
correctly, see [“Remove Direct Access to Low-Memory Globals” (page 30)] . If the
tested code was built with symbolic debugging information enabled, the report
specifies the names of the routines that access low memory directly.]

24

Using Carbon Dater



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[Many of the low-memory accessor functions currently defined in the Universal
Interfaces are implemented as inline macros that insert load or store instructions
directly in your code. Carbon Dater can’t tell the difference between one of these
macros and the code you wrote yourself, so you’ll need to verify that you’re using
an approved accessor function.]]

[[Analysis of Resources Loaded Into the System Heap]

[This section of the compatibility report lists resources that have their system heap
bit set, indicating they should be stored in the system heap. For each flagged
resource, the report lists the resource type and ID, as well as the resource name if
one is available. Applications do not have access to the system heap in Mac OS X,
so Carbon applications cannot store resources there.]]]

[[Additional Reports]
[You can obtain additional compatibility reports as often as you wish. This is a good
way to see how much progress you’ve made in your porting effort. Also, as work
on Mac OS X and Carbon continues, there may be changes in the level of support
for some functions, which Carbon Dater may bring to your attention.]

[Important
[The Carbon dating process cannot guarantee that your
application is entirely compatible with Carbon and
Mac OS X, even if your report lists no specific
incompatibilities. For example, applications might access
low memory in a way that is not supported but that cannot
be detected by the compatibility analyzer.]]]

[[The Carbon Specification]
[To determine compatibility, Carbon Dater uses the Carbon Specification available
at]

[[http://developer.apple.com/techpubs/carbon/]]

[You can browse this document for general compatibility information. Apple
updates the Carbon Specification regularly to reflect the latest state of the Carbon
APIs.]]]

C H A P T E R 2

Preparing Your Code for Carbon

Essential Steps for Porting Your Application

25



 Apple Computer, Inc. December 2002

[[Essential Steps for Porting Your Application]

[This section describes the bare minimum steps you must take to port your
application to Carbon. Applications ported by following these instructions will run
on Mac OS 8 and 9 and Mac OS X, but may not function optimally. To further
improve performance and responsiveness, see the guidelines in [“Optimizing Your
Code for Carbon” (page 45)] .]

[In addition to reading this section, you should also read the information provided
in [“Additional Porting Issues” (page 35)] before beginning to port your
application.]

[[Make Sure All of Your Code Is PowerPC-Native]
[Because Mac OS X requires 100% native PowerPC code, you will need to remove
any dependencies on 68K instructions. This applies to custom definition procedures
(defprocs) and plug-ins as well as your main application. See [“Move Custom
Definition Procedures Out of Resources” (page 29)] and [“Custom Definition
Procedures” (page 115)] for information about new functions for creating native
defprocs.]]

[[Update to the Current Universal Interfaces]
[Your transition to Carbon will be easier if your application already compiles using
the latest version of Universal Interfaces (as of this writing, the most recent version
is 3.4). Although updating is not a requirement, doing so will minimize the number
of compatibility problems. Once your project compiles without errors, you should
switch to the Carbon headers provided with the Carbon SDK.]

[You’ll find the most recent Universal Interfaces on Apple’s website at]

[[http://developer.apple.com/sdk/]]]

26

Essential Steps for Porting Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Use the Carbon SDK]
[The Carbon SDK contains the headers, stub libraries, extensions and other material
that you will need to build your Carbon application. You can download it from the
following website:]

[[http://developer.apple.com/macosx/carbon/index.html]]]

[[Target Mac OS 8 and 9 First]
[To ease the transition to Carbon, you should initially focus on getting your
application running on Mac OS 8 and 9 with the CarbonLib extension. Then you can
test your application on Mac OS X.]

[Note that just because your Carbon application runs on Mac OS 8 and 9, there is no
guarantee that it will correctly run on Mac OS X. For example, Mac OS X is stricter
about direct casting of types, so what is allowable on Mac OS 8 and 9 may not work
on Mac OS X.]]

[[Begin With CarbonAccessors.o]
[[CarbonAccessors.o] is a static library that may help ease your transition to Carbon
by allowing you to begin using certain Carbon features while continuing to link
against [InterfaceLib] and other non-Carbon libraries.]

[Because many toolbox data structures are opaque in Carbon, one of the first steps
you should take in porting your application is to begin using the new accessor
functions. It’s easier to do this if you can continue compiling as a classic
[InterfaceLib] -based application, because you can keep your application running
and qualify your changes incrementally. [CarbonAccessors.o] facilitates this by
providing implementations of the accessor functions for opaque toolbox data
structures. For a list of the functions in [CarbonAccessors.o] , see [Table A-3
(page 128)] .]

[We recommend that as the first step in the porting process, you add
[CarbonAccessors.o] to your link, and then begin modifying your source code to use
Carbon accessor functions, one file at a time. You can do this by setting the
following conditional macro at the top of each source file you plan to convert:]

[[[#define ACCESSOR_CALLS_ARE_FUNCTIONS 1]]]

C H A P T E R 2

Preparing Your Code for Carbon

Essential Steps for Porting Your Application

27



 Apple Computer, Inc. December 2002

[This conditional makes the prototypes for the accessor functions available to that
source file.]

[When you have converted all of your source files to use accessor functions, you can
add the following conditional macro to your build options to ensure that you are no
longer directly accessing any opaque toolbox data structures:]

[[[#define OPAQUE_TOOLBOX_STRUCTS 1]]]

[At this point you have an application that uses the Carbon accessor functions but
does not link against the Carbon libraries. You can continue to run and test your
application on any Mac OS release, because it does not require the [CarbonLib]
extension at runtime.]

[The next step in the conversion process is to allow only Carbon-compatible APIs in
your code by adding the following conditional macro to your build options:]

[[[#define TARGET_API_MAC_CARBON 1]]]

[You can now begin modifying your code so that it no longer calls functions that are
obsolete in Carbon. At this point you must stop linking against [InterfaceLib] (and
[CarbonAccessors.o]) and begin linking against [CarbonLibStub] (that is, the
[CarbonLib] shared library).]]

[[Use Casting Functions to Convert DialogPtrs and
WindowPtrs]
[You cannot directly cast values of type [DialogPtr] or [WindowPtr] to a [GrafPtr] , but
instead you must use the new functions described in [“Casting Functions”
(page 117)] . Direct casting will not affect compilation, but it will cause crashes on
Mac OS X.]]

[Note: You can also use [CarbonAccessors.o] to maintain some backwards
compatibility with non-Carbon systems. For example, if you don’t require
functions that are available only in CarbonLib, by linking against the
[CarbonAccessors.o] static library you can build an application from a
Carbon-compliant code base that runs on non-Carbon systems.]

28

Essential Steps for Porting Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Replace Macro Calls to the Mixed Mode Manager
With UPP Accessor Functions]
[Carbon introduces significant changes to the Mixed Mode Manager. Static routine
descriptors are not supported, and you must use the system-supplied functions for
creating, invoking, and disposing of universal procedure pointers. For example,
Carbon provides the following functions to replace the macros previously used to
create, invoke, and dispose of universal procedure pointers:]

[[[ControlActionUPP NewControlActionUPP (ControlActionProcPtr userRoutine);]
[void InvokeControlActionUPP (ControlRef theControl,]

[ControlPartCode partCode]

[ControlActionUPP userUPP);]

[void DisposeControlActionUPP (ControlActionUPP userUPP);]]]

[Similar functions are provided for all supported UPPs. Note that Carbon does not
support the generic functions [NewRoutineDescriptor] , [DisposeRoutineDescriptor] ,
and [CallUniversalProc] .]

[On Mac OS 8 and 9, the UPP creation functions allocate routine descriptors in
memory just as you would expect. On Mac OS X, the implementation of UPPs
depends on various factors, including the object file format you choose. Universal
procedure pointers will allocate memory if your application is compiled as a CFM
binary, but are likely to return a simple procedure pointer if your application is
compiled as a Mach-O binary.]

[On Mac OS X, UPPs are opaque types that may or may not require memory
allocation, depending on the particular function and the runtime they are created
in. By using the system-supplied UPP functions, your application will operate
correctly in either environment. You must dispose of your UPPs using the
system-supplied functions to ensure that any allocated memory is released. See
[“Consider Mach-O Executables” (page 48)] for more information about the
differences between these formats.]

[Important
[If you are using the Thread Manager, be aware that
functions that did not require UPPs for designating callbacks
(such as [SetThreadScheduler] and [SetThreadSwitcher]) now
require them in Carbon. See the Thread Manager
documentation or the header file [Threads.h] for a list of
these functions and for information on the required UPP
creation and disposal functions.]]

C H A P T E R 2

Preparing Your Code for Carbon

Essential Steps for Porting Your Application

29



 Apple Computer, Inc. December 2002

[Your own plug-ins must be compiled as PowerPC code, so there is no need to
create universal procedure pointers for them. Use normal procedure pointers
instead.]]

[[Move Custom Definition Procedures Out of
Resources]
[The resource-based format for custom definition functions (such as WDEFs,
CDEFs, and so on) is defined to start with 68K instructions. Because Mac OS X does
not support 68K code, you must move your custom definition functions out of
resources and compile them directly in your application.]

[To access your custom code, you can do either of the following:]

� ✻[Use new Carbon functions ([CreateCustomXXXX]) to create your objects. For
example, to create a custom window, pass a universal procedure pointer (UPP)
to your window definition function into the [CreateCustomWindow] function:

[[[OSStatus CreateCustomWindow (]
[const WindowDefSpec *def,]

[WindowClass windowClass,]

[WindowAttributes attributes,]

[const Rect *contentBounds,]

[WindowRef *outWindow]

[);]]]

[You can specify your function pointer in the [WindowDefSpec] structure by taking
the following steps:]

[[[WindowDefSpec defSpec;]
[defSpec.defType = kWindowDefProcPtr;]

[defSpec.u.defProc = NewWindowDefUPP(MyWindowDefProc);]]]]

� ✻ Map the old [procID] s to pointers to your custom code using the
[RegisterXXXDefinition] functions. For example, if you still want to use
[NewCWindow] to create your window, you should call
[RegisterWindowDefinition] , passing it the resource ID referenced by your
[procID] s and a UPP to your window definition function:

[[[OSStatus RegisterWindowDefinition (]
[SInt16 inResID,]

[const WindowDefSpec *inDefSpec]

[);]]]

30

Essential Steps for Porting Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[When [NewCWindow] receives a [procID] that isn’t one of the standard system
[procID] s, it will look in the mapping table to find the function that’s registered
for the resource ID embedded in the [procID] .]

[For more details about changes to custom definition procedures, see [“Custom
Definition Procedures” (page 115)] .]]]]

[[Remove Direct Access to Low-Memory Globals]
[Low-memory globals are system and application global data located below the
system heap in the Mac OS 8 and 9 runtime environment. They typically fall
between the hexadecimal addresses $100 and $2800. Carbon applications can
continue to use many of the existing low-memory globals, although in some cases
the scope and impact of the global has changed. But in all cases, Carbon applications
must use the supplied accessor routines to examine or change global variables.
Attempting to access them directly with an absolute address will crash your
application when running on Mac OS X.]

[The complete list of low-memory globals supported in Carbon is not yet finalized,
but your transition to Carbon will be easier if you follow these guidelines:]

� ✻[Use high-level calls instead of low-memory accessors whenever possible.
For example, use [GetGlobalMouse] instead of [LMGetMouseLocation] .]

� ✻ If a high-level call is not available, use an accessor function.]

� ✻ Rely on global data only from Mac OS managers supported in Carbon.
For example, because the driver-related calls in the Device Manager are not
supported in Carbon, low-memory accessors like [LMGetUTableBase] are not
likely to be available. Similarly, direct access to hardware is not supported in
Carbon, so calls like [LMGetVIA] will no longer be useful.]]

C H A P T E R 2

Preparing Your Code for Carbon

Essential Steps for Porting Your Application

31



 Apple Computer, Inc. December 2002

[[Table 2-1] lists some frequently used low-memory accessors that are unsupported
in Carbon. Refer to the Carbon Specification for the most recent information.]]

Table 2-1

Summary of Carbon low memory accessor support

Accessor Replacement

[LMGet/SetAuxCtlHead] not supported

[LMGet/SetAuxWinHead] not supported

[LMGet/SetCurActivate] not supported

[LMGet/SetCurDeactive] not supported

[LMGet/SetDABeeper] not supported

[LMGet/SetDAStrings] [GetParamText, ParamText]

[LMGet/SetDeskPort] not supported

[LMGet/SetDlgFont] not supported

[LMGet/SetGhostWindow] not supported

[LMGetGrayRgn] [GetGrayRgn]

[LMGetMBarHeight] [GetMBarHeight]

[LMSetMBarHeight] not supported

[LMGet/SetMBarHook] not supported

[LMGet/SetMenuHook] not supported

[LMGetMouseLocation] [GetGlobalMouse]

[LMSetMouseLocation] not supported

[LMGet/SetPaintWhite] not supported

[LMGetWindowList] [GetWindowList]

[LMSetWindowList] not supported

[LMGet/SetWMgrPort] not supported

32

Essential Steps for Porting Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Use DebuggingCarbonLib]
[The debugging version of [CarbonLib] on Mac OS 8 and 9 checks for the validity of
ports and windows, so using it is a good way to quickly identify potential problem
areas. However, you should be aware that it runs considerably slower than the
standard version of the library.]]

[[Modify or Conditionalize Your Headers]
[If you plan to build your application on Mac OS X using Project Builder, be aware
that the standard flat Mac OS 8 and 9 headers (such as [Dialogs.h] and
[MacWindows.h]) do not correspond directly with Mac OS X frameworks. To address
this issue, you can do either of the following:]

� ✻[Add [-I /Developer/Headers/FlatCarbon] to the cc compiler command line
when building your application. The files in the FlatCarbon folder act as a
compatibility layer, mapping the standard flat header includes to the proper
frameworks.]

� ✻ Replace your flat headers with the single include statement [#include <Carbon/
Carbon.h>] . This statement lets you access the Carbon framework directly. You
should choose this method if you plan to build exclusively on Mac OS X, as it
will improve compile times.]]

[If you choose not to include the path to FlatCarbon at build time, you can also
conditionalize your code to use the proper headers :]

[[[#if <Some flag for building on X is set>]
[#include <Carbon/Carbon.h>]

[#else]

[<The usual Mac OS 8 and 9 includes>]

[#endif]]]]

[Note: [Carbon.h] is treated as a flat Mac OS 8 and 9 header, so the suggested
workarounds will still apply.]

C H A P T E R 2

Preparing Your Code for Carbon

Essential Steps for Porting Your Application

33



 Apple Computer, Inc. December 2002

[[Update Modified or Obsolete Functions]
[From the list given to you by Carbon Dater, you should replace all functions listed
as “out” or “modified” with their suggested replacements. Depending on the
function it may have been easier to remove them earlier in the process (such as
removing A5 functions when purging all 68K-related code).]]

[[Adopt Required Carbon Technologies]
[Carbon requires you to replace some older system services with newer ones as
follows:]

� ✻[Navigation Services replaces the Standard File Package. For documentation,
see the web site:

[[http://developer.apple.com/techpubs/carbon/Files/NavigationServices/
navigationservices.html]]]

� ✻ The Carbon Printing Manager replaces the Classic Printing Manager. For
documentation, see the web site:

[[http://developer.apple.com/techpubs/carbon/multimedia/
CarbonPrintingManager/carbonprintingmgr.html]]]]]

[[Add a 'plst' 0 Resource]
[On Mac OS X, Carbon applications that do not contain a ['plst' 0] resource will
open in the Classic compatibility environment and will not gain all the advantages
of Mac OS X. To ensure that Mac OS X properly recognizes your application, your
application must include a resource of type ['plst'] with ID 0 or a plist file in a
bundle. You can also store additional information about your application in a plist
resource or file. See [“Consider Using Bundles” (page 49)] for more information
about plists and bundles.]

[Even if you include a ['plst' 0] resource, you can still launch the application in the
Classic environment:]

[Note: The ['plst' 0] resource supersedes the older ['carb' 0] resource. While
you can continue to use the ['carb' 0] resource, the ['plst' 0] resource provides
the exact same functionality while also allowing you to store additional
information useful to the Mac OS X Finder.]

34

Essential Steps for Porting Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

� ✻[If you include an empty ['plst' 0] resource, a “user choice” checkbox appears
in the Finder’s Get Info window, allowing the user to choose whether to launch
the application in Mac OS X or the Classic compatibility environment. The
default is Mac OS X. (This checkbox feature does not appear if you include only
a ['carb' 0] resource).]

� ✻ By specifying options in the ['plst' 0] resource, you can force the application
to launch into either Mac OS X or the Classic environment.]]

[If your application does not contain a resource fork, it launches in Mac OS X by
default.]

[See [Inside Mac OS X: System Overview] for more information about specifying
Launch Services keys in your plist file or resource.]]

[[Conditionalize Quit Menu Items]
[Carbon applications running on Mac OS X automatically adopt the Aqua interface.
Because Aqua provides a Quit menu item under the Application menu, your
application does not need to add one to the File menu. As long as your application
supports the Quit Apple event, it will quit normally. However, because the Mac OS
8 and 9 user interfaces still require a Quit menu item, you must conditionalize your
code to add one in the File menu when running under Mac OS 8 or 9. The easiest
way to identify the user interface is to check the [gestaltMenuMgrAquaLayoutBit] bit
of the [gestaltMenuMgrAttr] gestalt selector. If the bit is set, the application is using
the Aqua interface, and you should not add a Quit item to the File menu.]

[For example, you could use code such as the following to conditionalize your
menus:]

[[[Gestalt(gestaltMenuMgrAttr, &result);]
[if (result & gestaltMenuMgrAquaLayoutMask)]

[menuBar = GetNewMBar(rSysXMenuBar);]

[else]

[menuBar = GetNewMBar(rMenuBar);]]]

[This method uses two different ['MBAR'] resources, each with a different ['MENU']
resource for the File menu.]

[If you must enable and disable the Quit menu item programmatically, you can use
the new functions [DisableMenuCommand] and [EnableMenuCommand] to do so. Pass
[NULL] for the menu reference and ['quit'] for the command ID.]]]

C H A P T E R 2

Preparing Your Code for Carbon

Additional Porting Issues

35



 Apple Computer, Inc. December 2002

[[Additional Porting Issues]

[In addition to the steps described in the [“Essential Steps for Porting Your
Application” (page 25)] , you should be aware of these other issues that can affect
the porting process.]

[[Determine the Appropriate CarbonLib Version]
[Just like system software, [CarbonLib] also exists in various versions, each of which
contains different levels of functionality. Because some calls to [CarbonLib] merely
call through to the underlying system software, the functions available can depend
on the system software version.]]

CarbonLib
version

Reflects
Universal
Interfaces
version

Compatible
back to Notes

1.0 3.3.1 Mac OS 8.1 [Shipped with Mac OS 9. Do not develop with this
version.]

1.0.4 3.3.1 Mac OS 8.1 [Includes the following] :

All Carbon APIs available with Mac OS 8.1

Toolbox accessor functions

Control, Window, and Menu properties

Appearance Manager 1.1

Navigation Services

Core Foundation

Carbon Printing Manager

36

Additional Porting Issues



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Draw Only Within Your Own Windows]
[Because Mac OS X is a truly preemptive system, any number of applications may
be drawing into their windows at the same time. Carbon applications, therefore,
cannot draw outside their own windows. In the past you could call the
[GetWMgrPort] function and use that port to draw anywhere on the screen. This port
does not exist in Mac OS X, so you will need to use alternate methods to implement
window dragging and resizing. For more detailed information about handling
windows in Carbon, see [“Window Manager Issues” (page 39)] .]]

1.2 3.4 Mac OS 8.6 [Adds the following:]

DataBrowser

Carbon Event Manager

XML

URL Access Manager

Apple Type Services for Unicode Imaging
(ATSUI)

Interface Builder Services

Font Sync

Apple Help Viewer

Font Management

Mac OS 9 [Adds the following:]

Keychain Manager

CarbonLib
version

Reflects
Universal
Interfaces
version

Compatible
back to Notes

C H A P T E R 2

Preparing Your Code for Carbon

Additional Porting Issues

37



 Apple Computer, Inc. December 2002

[[Do Not Patch Traps]
[Carbon applications should not patch traps because there is no trap table in
Mac OS X. The Patch Manager is unsupported, and functions like [GetTrapAddress]
and [SetTrapAddress] are not available in Carbon. You can, of course, conditionalize
your code and continue to patch traps when running under Mac OS 9, but your
programs will be much easier to maintain if you avoid patching entirely.]]

[[Don’t Pass Pointers Across Processes]
[In Mac OS X, every process has its own address space, so attempting to pass a
pointer to another process is meaningless at best and may cause your application to
misbehave. Threads or tasks created by an application (for example,
Multiprocessing Services tasks or Thread Manager threads) occupy the
application’s address space, so you can pass pointers between them.]]

[[Do Not Write to Your Application’s Resource Fork]
[While writing to your application’s resource fork is acceptable (if not encouraged)
in Mac OS 8 and 9, you should not do so in Mac OS X, as there are many common
instances that will cause such write attempts to fail. Some examples:]

� ✻[when file-system permissions don't allow it

when the application resides on a network server

when the application resides on read-only media]]

[If you have application-specific data that you need to save, you should store them
in a preferences file.]

[Ideally you should remove resource forks from your application altogether and
place your resources in the data fork (see [“Move Resources to Data Fork–Based
Files” (page 48)] . Note, however, that such resources are also read-only.]

[Note that you can still write to other resource forks (such as in document files).]]

38

Additional Porting Issues



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Check Your OpenGL Code]
[If you use OpenGL in your application, you should continue to link to the
OpenGLLibrary, OpenGLMemory, and OpenGLUtility stubs as you would for
non-Carbon applications. On Mac OS X these functions will link with the OpenGL
framework.]

[Note that if you are building a Mach-O–based Carbon application that uses the
OpenGL header [aglMacro.h] , you must make the following call before creating any
OpenGL contexts:]

[[[aglConfigure(AGL_TARGET_OS_MAC_OSX,GL_TRUE);]]]

[Do not make this call from CFM-based Carbon applications.]

[See [“Consider Mach-O Executables” (page 48)] for more information about the
Mach-O format.]]

[[Examine Your Plug-ins]
[Carbon applications can load non-Carbon plug-ins. You must make sure, however,
that your plug-ins do not link to [InterfaceLib] . On Mac OS 8 and 9 this will not
cause a problem, but it can cause a crash on Mac OS X (because [InterfaceLib] is
unavailable).]

[You can use the MPW tool DumpPEF with the [-loader i library] option to find
unintentional links to non-Carbon libraries.]]

[[Linking to Non-Carbon-Compliant Code]
[In some cases, your CFM application may need to call code that is not
Carbon-compliant to maintain cross-platform compatibility between Mac OS 8
and 9 and Mac OS X. For example, say your application makes calls to the Device
Manager. The Device Manager is not part of Carbon as it cannot run on Mac OS X.
However, its replacement, I/O Kit, is a Mac OS X technology that cannot run on
Mac OS 8 and 9. The only way to maintain your application’s functionality is to fork
your code and make calls to either the Device Manager or I/O Kit, depending on
the platform.]

C H A P T E R 2

Preparing Your Code for Carbon

Additional Porting Issues

39



 Apple Computer, Inc. December 2002

[Forking your code in this manner brings up some build issues. For example, if you
had set preprocessor directives to build with Carbon, the Universal Interfaces will
conditionalize out any non-Carbon functions, and attempting to call non-Carbon
functions will generate a compiler error indicating missing prototypes.]

[The easiest way to work around this problem is to compile your noncompliant
code separately, using non-Carbon headers. You can package your non-Carbon
code as a shared library, which you can then call from your application.]

[The safest method for calling non-Carbon functions in shared libraries is to prepare
the fragment and locate the symbols manually. That is, call [GetSharedLibrary] to
prepare the library and use [FindSymbol] to get the symbol address. You can then
call the function through the returned pointer. This method gives you maximum
flexibility in handling missing symbols or libraries. See the sample code included
with the Mac OS X Developer Tools CD for examples.]]

[[Window Manager Issues]
[This section addresses common issues encountered when porting code that draws
or otherwise manipulates windows.]

[[Handling Buffered Windows]

[In Mac OS X, all windows are buffered. A window’s contents are written first to a
buffer and then the Window Manager periodically refreshes the screen with the
contents of the buffers. As you don’t automatically have control over when a
window’s contents are written to the screen, you may need to make some minor
changes to your windowing code to account for buffering.]

[If you are writing periodically to the screen in a loop that doesn’t call
[WaitNextEvent] , you must call [QDFlushPortBuffer] to flush your drawing to the
screen. Otherwise, you are only updating the contents of the buffer.]

[If you draw directly into a window’s pixel map, QuickDraw cannot tell which parts
of the pixel map are dirty. To work around this, you must do one of the following:]

� ✻[Call [QDFlushPortBuffer] explicitly, passing a nonempty region parameter
describing the modified area.]

40

Additional Porting Issues



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

� ✻ Call, [QDGetDirtyRegion] to get the port’s dirty region, add in the area you
modified by calling [UnionRgn] , and then set the updated dirty region by calling
[QDSetDirtyRegion] . The Window Manager will the update the region during the
next call to [WaitNextEvent] .]]

[If you draw directly into the pixel map of your windows without using
QuickDraw, you’ll need to wrap those blits with two new calls that signal the
Window Manager not to update the window until your drawing operation
completes. Here are the basic steps:]

1. [[Use the [GetWindowPort] function to get the window’s port.]

2. [Use the [LockPortBits] function to lock the port’s pixel map. Note that this
function is different from [LockPixels] ; they are not interchangeable.]

3. [Use the [GetPortPixMap] function to get a handle to the port’s pixel map.
The [baseAddr] field of the [PixMap] structure contains the base address of the
actual port bits in memory.

[Important
[The port address is valid only after you’ve locked the
port using the [LockPortBits] function, and is invalid
after you call the [UnlockPortBits] function.]]]

4. [Perform your drawing operation as quickly as possible. Because the
[LockPortBits] function blocks all other updates to the port, it’s important that
your drawing code be small and fast to avoid impacting system performance.]

5. [Call the [UnlockPortBits] function to release the port. The [PixMapHandle] is
automatically disposed when you call this function. Do not attempt to reuse the
handle.]]

[Note that the [UnlockPortBits] function does not initiate a window update, it
merely allows any pending or future updates to occur. An update is initiated either
by the [BeginUpdate/EndUpdate] routines or when the [QDFlushPortBuffer] function
is called.]]

[[Bypassing the Window Manager Port]

[Prior to Carbon and Mac OS X, any Mac application could access the Window
Manager port, which included all available screens. Using that port, an application
could write directly to the screen on top of all windows. Developers used this
capability to implement a number of features, such as custom window grow
outlines and custom window dragging.]

C H A P T E R 2

Preparing Your Code for Carbon

Additional Porting Issues

41



 Apple Computer, Inc. December 2002

[Because recent releases of Mac OS 8 and 9 offer improved Window Manager
functionality, as well as robust drag-and-drop support through the Drag Manager,
many applications no longer need to use the Window Manager port. This is a good
thing, because in Mac OS X, there is no Window Manager port, and Carbon
provides no access to the Window Manager port for applications running in
Mac OS 8 and 9.]

[The Carbon Window Manager does supply alternate mechanisms to implement
features that may have relied on use of the Window Manager port. To learn more
about when to use these mechanisms, see [“Window Dragging and Resizing Q&A”
(page 41)] .]

[If your application is drawing in the Window Manager port and you don’t see an
alternate mechanism described, you should consider whether you can achieve the
same results by modifying your user interface. If that’s not appropriate, send an
email to [carbon@apple.com] explaining what you need and some APIs may be
added to support additional features.]]

[[Window Dragging and Resizing Q&A]

[This section answers some frequently asked questions about dragging and resizing
windows in Carbon and Mac OS X. For related information, see [“Bypassing the
Window Manager Port” (page 40)] .]

� ✻[Q. What is the standard window dragging feedback supplied by [DragWindow] ?

[A. In Mac OS X, if you call [DragWindow] for a buffered window, the Carbon
Window Manager provides live dragging—that is, the contents of the window
remain visible as a user moves the window around the screen.]

[For a Carbon application running in Mac OS 8 or 9, [DragWindow] supplies the
traditional outline feedback.]]

� ✻ Q. Can I still use [DragGrayRegion] ?

[A. Although [DragGrayRegion] is fully supported in Carbon, it only applies to
the current port. If you’re currently using [DragGrayRegion] with the Window
Manager port, you should instead use one of the other mechanisms described
here, such as calling [DragWindow] or using Carbon event handlers.]]

� ✻ Q. How do I implement custom window dragging—for example, to modify the
position and shape of a tool palette as the user moves it to dock with another
palette?

42

Additional Porting Issues



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[A. You can implement features of this type using a Carbon event handler that
tracks move events. When a user starts to drag a window, your handler receives
a move window event ([kEventWindowOriginChange]). If you so request, your
event handler can also receive periodic move window events as the user
continues to drag the window. When the user completes the move, your handler
receives a window moved event that includes the final position of the window.
Your handler should get the [kEventParamCurrentBounds] parameter from the
event, modify the [Rect] structure as needed, update the parameter, and then
return [noErr] . In the example of docking a palette to another palette, you can
either make changes to the palettes during the move as the current position
warrants, or you can modify them after the move is complete.]

[Keep in mind that using a move event handler that receives and processes
events during the move may have an impact on performance.]

[The Carbon Window Manager may also support custom dragging as part of an
API to be added later. However, in Mac OS X this approach would only provide
outline feedback for the drag, rather than live feedback.]]

� ✻ Q. What is the standard window resizing feedback supplied by [GrowWindow] ?

[A. If you do not supply a resize event handler (described in another question),
[GrowWindow] provides the traditional outline feedback.]

[[Figure 2-1] shows the traditional outline feedback for resizing a window.]]]

C H A P T E R 2

Preparing Your Code for Carbon

Additional Porting Issues

43



 Apple Computer, Inc. December 2002

Figure 2-1 [[Outline feedback as a user resizes a window]]

� ✻[Q. How do I take advantage of live resizing in Mac OS X?

[A. If you want live resizing in Mac OS X—that is, the contents of a window
remain visible and are adjusted and redrawn as needed as a user resizes the
window—you must set the [kWindowLiveResizeAttribute] attribute on the
window (either at creation time using [CreateNewWindow] or
[CreateCustomWindow] , or by called [ChangeWindowAttributes] on an existing
window) and then provide a resize event handler. The Carbon Window

44

Additional Porting Issues



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

Manager sends an event ([kEventWindowBoundsChanged]) to your handler that
indicates when it should adjust its scrollbars, redraw its content, and so on, as
the user resizes the window.]

[Carbon applications running in Mac OS 8 and 9 will only get outline resizing.]]

� ✻ Q. How do I implement custom window resize feedback—for example, to make
the window snap to a grid as a user resizes the window?

[A. You can implement custom resizing using the same Carbon event handler
you use to support live resizing. When a user starts to resize a window, your
handler receives a resize window event ([kEventWindowBoundsChanged]). Your
handler also receives periodic events as the user continues the resize. When the
user completes the resize, your handler receives a window resized event that
includes the final size. You can modify the [kEventParamCurrentBounds]
parameter to constrain resizing to the desired grid as the user resizes, or do so
after the resize is complete.]

[If you are already using a custom window definition (WDEF) and you do not
need live resizing, the easiest way to provide custom resize feedback is to
support the new WDEF message [kWindowMsgGrowImageRegion] . Your WDEF
receives this message periodically as the user moves the mouse during a resize
operation. You can use this message to override the region that gets displayed
during resize. To get these messages, your WDEF must report the
[kWindowSupportsSetGrowImageRegion] feature bit.]]

� ✻ Q. Do I need to make any other changes to my existing WDEF?

[A. In most cases, you should not have to change your custom window
definition. Prior to Carbon and Mac OS X, custom window definitions expected
to draw directly in the global port. Now the Carbon Window Manager
automatically sets up an appropriate port for drawing. When your window
definition gets a draw message, it can go ahead and draw—but it shouldn’t
assume it’s drawing in a global port, because it isn’t.]]

� ✻ Q. I use the Window Manager port to implement custom dragging with
translucent drag images. How do I keep my translucent drag images without the
Window Manager port?

[A. The Drag Manager has supported translucent dragging since version 1.3 and
System 7.5.3. This feature is fully supported in Carbon, so you don’t need to
write any custom code.]]

� ✻ Q. How can I capture a region of the current global screen?

C H A P T E R 2

Preparing Your Code for Carbon

Optimizing Your Code for Carbon

45



 Apple Computer, Inc. December 2002

[A. There is currently no way to do this in Carbon, although we are considering
providing an interface that will allow you to grab an arbitrary screen region.]

[You should not rely on calling [CreateNewPort] and determining the location of
the screen bits from the new port. This behavior is no longer supported and code
that relies on it is likely to break in future versions of Mac OS X.]]

� ✻ Q. How can I write a screen saver or other application that needs to take over
the whole screen?

[A. Use the QuickTime functions [BeginFullScreen] and [EndFullScreen] . For
more information, see the QuickTime documentation at]

[[http://developer.apple.com/techpubs/quicktime/quicktime.html]]]

� ✻ Q. I don’t want to modify my user interface and I don’t see anything described
here that will help me do what I want to do.

[A. Tell us what you need and why, so that we can help provide a solution.]]]]]]

[[Optimizing Your Code for Carbon]

[This section describes steps and issues you should consider for your application to
take best advantage of the Mac OS X environment.]

[[Manage Memory Efficiently]
[Memory management doesn’t change much for Carbon applications running on
Mac OS 9. You’ll need all the code you use today to handle heap fragmentation, low
memory situations, and stack depth.]

[However, there are some techniques you can adopt now that will help your
application perform well when running on Mac OS X, which uses an entirely
different heap structure and allocation behavior. The most significant change is in
determining the amounts of free memory and stack space available. For example,
you should avoid preallocating memory, as doing so will not make best use of the
allocators available in Mac OS X. Similarly, using suballocators (allocating a block
of memory and then allocating from within the block) is not suggested.]

46

Optimizing Your Code for Carbon



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[The functions [FreeMem] , [PurgeMem] , [MaxMem] , and [StackSpace] are all included in
Carbon. You should, however, think about how and why you are using them. You’ll
probably want to consider additional code to better tune your performance.]

[The [FreeMem] , [PurgeMem] , and [MaxMem] functions behave as expected when your
Carbon application is running on Mac OS 9, but they’re almost meaningless when
it’s running on Mac OS X, where the system provides essentially unlimited virtual
memory. Although you can still use these calls to ensure that your memory
allocations won’t fail, you shouldn’t use them to allocate all available memory.
Allocating too much virtual memory will cause excessive page faults and reduce
system performance. Instead, determine how much memory you really need for
your data, and allocate that amount.]

[Before Carbon, you would use the [StackSpace] function to determine how much
space was left before the stack collided with the heap. This routine could not be
called at interrupt time, but was useful for preventing heap corruption in code using
recursion or deep call chains. But because a Carbon application may have different
stack sizes under Mac OS 9 and Mac OS X, the [StackSpace] function is no longer
very useful. You shouldn’t rely on it for your logic to terminate a recursive function.
It might still be useful as a safety check to prevent heap corruption, but for
terminating runaway recursion, you should consider passing a counter or the
address of a stack local variable instead of calling [StackSpace] .]

[The Carbon API does not include any subzone creation or manipulation routines.
If you use subzones today to track system or plug-in memory allocations, you must
use a different mechanism. For plug-ins, you might switch to using your own
allocator routines. To prevent memory leaks, make sure all your allocations are
matched with the appropriate dispose calls.]

[The Carbon API also removes the definition of zone headers. You can no longer
modify the variables in a zone header to change the behavior of routines like
[MoreMasters] . Simply call [MoreMasters] multiple times instead, which will allocate
128 master pointers each time. (You can also use the new Carbon call
[MoreMasterPointers] , which allows you to specify the number of master pointers to
allocate in one relocatable block.)]]

[[Avoid Polling and Busy Waiting]
[Polling for events or using a timer loop is allowable (but not recommended) on
Mac OS 9, but it can cause severe performance problems on Mac OS X. In the Mac
OS X multitasking environment, the OS gives time to all active processes. A process

C H A P T E R 2

Preparing Your Code for Carbon

Optimizing Your Code for Carbon

47



 Apple Computer, Inc. December 2002

that is busy waiting for an event is considered active, even though it is not actually
doing anything. Such waiting reduces the performance of other active processes. As
an extreme example, multiple instances of a shared library, all polling for an event,
can easily bog down the system. Instead of polling, your code should implement
some sort of notification mechanism (such as an event queue or semaphore).]

[Note that triggering actions on null events (to blink the cursor, for example) does
not work on Mac OS X, as the system will notify your application only when real
events occur. To work around this issue you should use Carbon Event Manager
timers.]]

[[Use “Lazy” Initialization for Shared Libraries]
[To allow Mac OS X to manage memory efficiently, you should not prepare shared
libraries at application launch time, but rather only when you need them. Also, try
to avoid using initialization functions if possible. See [Mac OS Runtime Architectures]
for more information about initialization functions.]]

[[Adopt HFS Plus APIs]
[HFS Plus, the Mac OS Extended File Format, is the default file system for Mac OS
X, so you should consider using HFS Plus APIs if you need to programmatically
access files on hard drives. Some of the advantages of HFS Plus are as follows:]

� ✻[support for long Unicode filenames (255 characters)]

� ✻ support for files larger than 2 GB]

� ✻ support for extended file attributes]]

[See the File Manager documentation at]

[[http://developer.apple.com/techpubs/carbon/Files/FileManager/
filemanager.html]]

[for more information about HFS Plus.]]

48

Optimizing Your Code for Carbon



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[[Consider Mach-O Executables]
[You can build Carbon applications in two object file formats: PEF, which uses the
Code Fragment Manager introduced with PowerPC Macintosh computers, and
Mach-O, which is the preferred format for Mac OS X. Depending on your needs,
you may want to consider creating Mach-O-based Carbon applications. There are
advantages and disadvantages.]

[Advantages:]

� ✻[Applications get access to all native Mac OS X APIs such as Quartz and POSIX.
CFM-based Carbon applications can access only Carbon APIs.]

� ✻ Symbolic debugging is easier on Mac OS X (using GDB).]

� ✻ You can take full advantage of the Interface Builder and Project Builder
development tools on Mac OS X.]]

[Disadvantages:]

� ✻[Applications cannot run on Mac OS 8 and 9.]

� ✻ Mach-O doesn’t support the existing CFM plug-in architecture.]

� ✻ Programmatic manipulation of the Code Fragment Manager (for example,
calling [GetSharedLibrary]) may not work as expected.]]

[You can also package CFM-based code and Mach-O–based executables together in
bundles (as described in [“Consider Using Bundles” (page 49)]). Bundling creates
file packages analogous to PowerPC/68K fat applications built during the
transition to PowerPC. Such CFM/Mach-O packages will execute the CFM version
of the application on Mac OS 8 and 9, and the Mach-O version on Mac OS X. See
[Inside Mac OS X: System Overview] for more information about the Mach-O format.
]

[Eventually, as customer focus shifts to Mac OS X, you should concentrate on
building Mach-O binaries.]]

[[Move Resources to Data Fork–Based Files]
[While Mac OS X can handle application resources stored in the resource fork of an
executable file, in general you should begin storing these resources in the data fork.
The major reason for doing this is to maximize compatibilty when moving files

C H A P T E R 2

Preparing Your Code for Carbon

Optimizing Your Code for Carbon

49



 Apple Computer, Inc. December 2002

between different file systems. Many computing environments and file copying
tools recognize only single-fork files; copying uncompressed files usually results in
the loss of any information stored in the resource fork.]

[The only exceptions at this time are the ['cfrg' 0] and ['plst' 0] (or ['carb' 0])
resources, which must remain in the resource fork for CFM-based applications so
the Mac OS X Finder can launch them properly.]

[In general you should use the Core Foundation CFBundle APIs to package and
access resources in the data fork. While you can simply move your existing resource
files to the data fork, a better solution is to save each resource as an individual data
fork–based file. Doing so makes it much easier to access (and perhaps modify) any
individual resource.]

[See [“Consider Using Bundles” (page 49)] and [Inside Mac OS X: System Overview]
for more information about bundling resources.]]

[[Consider Using Bundles]
[A bundle is a Mac OS X concept that lets you store all the software resources and
executable files that an application requires in one package. Essentially a directory
or folder hierarchy, a bundle could contain any of the following:]

� ✻[images, sounds, or other files used by the application]

� ✻ localized character strings]

� ✻ multiple executable versions of an application.]]

[A bundle can contain multiple sets of resources, grouped by language, locale, and
platform. By combining all these resources and executables in one package, you can
create one version of your application that is localized for multiple languages and
can run on multiple platforms.]

[On Mac OS X, a bundle hierarchy normally appears as a single file, unless the
bundle bit is unset, in which case it appears as a folder hierarchy.]

[On Mac OS 8 and 9, a bundle appears as a folder hierarchy, because the system
software does not have knowledge of bundles. For this reason you should generally
place an alias to your application prominently in the top level folder where the user
can find it.]

50

Optimizing Your Code for Carbon



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

[For maximum compatibility, you should use the Core Foundation CFBundle APIs
to access bundled resources and executable files. See the Core Foundation Bundle
Services documentation at]

[[http://developer.apple.com/techpubs/corefoundation/BundleServices/
CFBundleServices/index.html]]

[Note that if you do not wish to adopt bundles at this time, you can include some of
the information stored in a bundle’s [Info.plist] file in a resource of type ['plst']
with ID 0. Doing so allows you to specify attributes that provide information to the
Finder (for example, what icons to use, what document types the application
recognizes). You can also access data in the ['plst'] resource using Resource
Manager or CFBundle APIs.]

[See [Inside Mac OS X: System Overview] for more specific information about
packaging files in bundles.]]

[[Begin Transitioning to the Aqua Interface]
[By linking with CarbonLib, your Carbon application will automatically register
itself with the Appearance Manager and adopt the basic Aqua look and feel. You
should make sure that your interface elements are Appearance
Manager–compliant; generally this means using system-defined controls, menus,
and windows as much as possible.]

[To provide the best user experience, however, you should take the additional time
to modify dialog boxes, windows, icons, controls, and so on, to conform with the
Aqua specification. Doing so ensures that your application will look its best on
Mac OS X. For details, see the document [Aqua Human Interface Guidelines] available
at]

[[http://developer.apple.com/techpubs/macosx/]]

[For additional information on icons, see [“Provide Thumbnail Icons for Your
Application” (page 51)] .]

[You should also consider adding some new interface elements introduced with
Aqua, such as the following:]

� ✻[Sheets: Sheets are the new window-centric modal dialogs that slide down from
the title bar. Sheet functions appear in [MacWindows.h] .]

C H A P T E R 2

Preparing Your Code for Carbon

Optimizing Your Code for Carbon

51



 Apple Computer, Inc. December 2002

� ✻ Help Tags: A help tag is a little yellow text field that appears over a control
when you roll the cursor on top of it. The tag typically describes or clarifies the
control’s purpose. Help tags replace the Help balloons available on older
Mac OS systems. Help tag functions appear in [MacHelp.h] .]]]

[[Adopt a Terse Name for the Application Menu]
[The leftmost pull-down menu in Mac OS X is the application menu. To maximize
space for other menus, you should adopt a short version of your application name
(16 characters or less) for this menu. You should add this information in your
application’s [InfoPlist.strings] file.]]

[[Provide Thumbnail Icons for Your Application]
[The information in this section supplements the document “Obtaining and Using
Icons With Icon Services,” available at the Carbon documentation website at]

[[http://developer.apple.com/techpubs/carbon/]]

[In Mac OS X, a user may choose to display very large icons for the desktop, the
application Dock, and so on. The Finder uses a high-quality scaling algorithm,
supplied by Icon Services, to generate the variable-sized icons it needs. To help
ensure a pleasing result for your application, you should provide a thumbnail icon
and a thumbnail mask as part of the ['icns'] resource for your icon family. [Figure
2-2] shows the icon family, including thumbnail icons, for [Classic.app] in
Mac OS X.]

Figure 2-2 [[Thumbnail icons in a [.icns] file, displayed in Icon Browser]]

[A thumbnail icon is 128x128 pixels with 32-bit depth. A thumbnail mask is 128x128
pixels with 8-bit depth (there is no one-bit mask for a thumbnail). Within an icon
family resource, you specify thumbnail elements with the following constants:]

[[[enum {]
[kThumbnail32BitData = 'it32',]

[kThumbnail8BitMask = 't8mk']

[};]]]

[You can use these icon types only for an icon element within an ['icns'] icon
family, not for an individual icon or icon mask resource.]

C H A P T E R 2

Preparing Your Code for Carbon

Optimizing Your Code for Carbon

53



 Apple Computer, Inc. December 2002

[Your application can continue to provide small (16x16) and large (32x32) icons as a
complement to its thumbnail icons, especially if you need to preserve certain fine
details at smaller resolutions. Icon Services will pick the best available icon for a
particular size, so providing additional icons gives it more flexibility and gives you
more control.]

[As of this writing, some third-party resource editor applications support editing of
thumbnail icons, so you can investigate to determine which one best meets your
needs.]

[If you want to add a thumbnail icon or mask to an icon family yourself, you can do
so with the Icon Services function [SetIconFamilyData] .]

[[[pascal OSErr SetIconFamilyData (]
[IconFamilyHandle iconFamily,]

[OSType iconType,]

[Handle h)]]]

[[[[iconFamily]]
[A handle to an [iconFamily] data structure to be used as the
target.]]

[[[iconType]]
[A value of type [OSType] specifying the format of the icon
data you provide. For a thumbnail icon, for example, you specify
[kThumbnail32BitData] in this parameter. For a thumbnail mask, you
specify [kThumbnail8BitMask] .]]

[[[h]]
[A handle to the icon data you provide. For a thumbnail icon, the handle
contains raw image data in the form of 128x128, four bytes per pixel,
RGB data. For a thumbnail mask, the data is in the same format except
that it is one byte per pixel.]]]

[When you are finished constructing the icon family, you can write it to a file with
the [WriteIconFile] function. For more information on these functions, see the
document “Obtaining and Using Icons With Icon Services.”]]]]

54

Optimizing Your Code for Carbon



 Apple Computer, Inc. December 2002

C H A P T E R 2

Preparing Your Code for Carbon

Native Mac OS 9 Versus Mac OS X’s Classic Environment

55



 Apple Computer, Inc. December 2002

C H A P T E R 3

3 [[Building Carbon Applications]

[[This chapter describes how to use the tools and libraries provided with the
Mac OS X Developer Tools CD to build Carbon applications for both Mac OS 9 and
Mac OS X. You can also install the Carbon system extension, [CarbonLib] , to run
Carbon applications on Mac OS versions 8.1 and later.]]

[[Native Mac OS 9 Versus Mac OS X’s Classic
Environment]

[If you plan to build, run, and debug Carbon applications for both Mac OS 9 and
Mac OS X on a single system, the Mac OS X application [Classic.app] provides a
convenient environment for running your development system. You can easily
switch between the two environments, and launch applications in either.]

[If you prefer to develop on a native Mac OS 9 system (that is, on a computer
running Mac OS 9 instead of Mac OS X), you’ll need to reboot to run Mac OS X and
test your Carbon application in that environment.]

[If you have two computers, you might want to run Mac OS 9 on one computer and
Mac OS X on the other. To transfer files between them, you can use one of the
following methods:]

� ✻[Enable file sharing on one of the machines and copy the files directly.]

� ✻ Copy the files using FTP.]

56

Development Scenarios



 Apple Computer, Inc. December 2002

C H A P T E R 3

Building Carbon Applications

� ✻ Activate the Metrowerks remote debugger and select “Debug”. (Doing so
transfers the file to Mac OS X and begins a debugging session. After transfer, you
can quit the debugging session, leaving the file ready for launch, or perhaps
GDB debugging.)]]]

[[Development Scenarios]

[There are a number of tools and processes you can use to build and debug Carbon
applications. This section describes three scenarios that Apple recommends, and the
advantages of each.]

[[Using CodeWarrior to Build a CFM Carbon
Application]
[This is the most likely scenario if you’re porting an existing Mac OS 9 application
to Carbon, especially if you’re already using CodeWarrior. You’ll continue to use
the Mac OS development tools and processes you’re familiar with, and you’ll create
CFM applications that can run on both Mac OS 9 and Mac OS X. The only difference
is that you’ll include the [CarbonLib] stub library in your CodeWarrior project.]]

[[Using CodeWarrior to Build a Mach-O Carbon
Application]
[Metrowerks CodeWarrior Pro version 8.0 and later has support to build Mach-O
applications on Mac OS 9, as well as build and debug applications on Mac OS X. If
you have a second computer, you may also want to investigate whether
Metrowerks’ two-machine debugger suits your needs, as it can debug CFM
applications on both platforms. Contact Metrowerks for information about these
products.]]

C H A P T E R 3

Building Carbon Applications

Building a CFM Carbon Application With CodeWarrior

57



 Apple Computer, Inc. December 2002

[[Using Project Builder to Build a Mach-O Carbon
Application]
[Project Builder is Apple’s integrated development environment (IDE) for Mac
OS X. It offers a comprehensive feature set that includes source-level debugging.
Project Builder is a good choice if your application will run only on Mac OS X, and
you want to take advantage of features available only on that platform. However,
you can’t use Project Builder to build a CFM application, so if you want your
program to run on both platforms you’ll either need to use CodeWarrior or other
tools to create a CFM version for Mac OS 9.]

[See the Project Builder online help documentation for more information about
creating Mach-O Carbon applications.]]]

[[Building a CFM Carbon Application With
CodeWarrior]

[If you plan to use Metrowerks CodeWarrior, CodeWarrior Pro version 8.0 or later
is recommended. You can run CodeWarrior natively on Mac OS 9 or Mac OS X.]

[[Preparing Your Development Environment]
[Before you start Carbon development with CodeWarrior, you’ll need to install the
tools and libraries provided with the Mac OS X Developer Tools CD or the Carbon
SDK.]

1. [[Copy the Carbon Support folder to the Metrowerks CodeWarrior folder on
your hard disk. The Carbon Support folder should reside in the same folder as
the CodeWarrior IDE application.]

2. [Copy the appropriate Carbon system extension ([CarbonLib] or
[DebuggingCarbonLib]) from the Carbon Support:CarbonLib folder to your
Extensions folder. You should keep only one Carbon extension in your
Extensions folder at any time.

58

Building a CFM Carbon Application With CodeWarrior



 Apple Computer, Inc. December 2002

C H A P T E R 3

Building Carbon Applications

� ✻[[CarbonLib] is the standard implementation of Carbon for Mac OS 8.1 or
later.]

� ✻[DebuggingCarbonLib] is a debugging version of CarbonLib.]]]

3. [[CarbonLib] is included in all versions of Mac OS 9 as well as the Classic
environment on Mac OS X. However, to make sure you are using the latest
version, you should replace the default [CarbonLib] with the latest one available
(in this case version 1.6).]

4. [To avoid the potential for data loss in the event that you need to reinstall
Mac OS X, ensure that your CodeWarrior project files and source code reside on
a separate hard disk.]]]

[[Building Your Application]
[To build a Carbon version of your application, you’ll need to make the following
changes to your CodeWarrior project.]

1. [[Add the following statement to one of your source files before including any
of the Carbon headers:

[[[#define TARGET_API_MAC_CARBON 1]]]

[This conditional specifies that the included header files should allow only
Carbon-compatible APIs and data structures. You can include the conditional in
a prefix file if you wish.]]

2. [Add the [CarbonLibStub] stub file to your project.]

3. [Ensure that your project is not linking to any libraries that are not Carbon
compatible. For example, the MPW ANSI C library is not Carbon compatible.
Note that you should not directly link to [InterfaceLib] when you are linking
with [CarbonLib] . On Classic Mac OS, [CarbonLib] will return an error to the Code
Fragment Manager if your application attempts to link to both [CarbonLib] and
[InterfaceLib] , causing the application launch to fail.]

[Note: Moving a project from CodeWarrior Pro 8.0 to an earlier CodeWarrior
version may result in the loss of prefix file information in the C/C++ Language
Preferences panel. Many of the code samples on the Mac OS X Developer Tools
CD make use of a prefix file (usually [CarbonPrefix.h]) to define
[TARGET_API_MAC_CARBON] , so if you try to build a sample on an older CodeWarrior
system, you may need to reinstate the prefix file information.]

C H A P T E R 3

Building Carbon Applications

Building a CFM Carbon Application With CodeWarrior

59



 Apple Computer, Inc. December 2002

4. [Ensure that your CodeWarrior access paths and other target settings are
correctly specified. See the sample code included with the Carbon SDK for
examples of how to do this.]]]

[[Running Your Application on Mac OS 9]
[You can launch your application from the Finder on a Mac OS 9 system by
double-clicking its icon. To run Carbon applications on Mac OS 8 (version 8.1 or
later), you must install the [CarbonLib] or [DebugCarbonLib] extension in the
Extensions folder.]]

[[Running Your Application on Mac OS X]
[As long as your application resides on an HFS Plus disk, you can launch it by
double-clicking its icon. You cannot launch applications from a standard HFS
format disk on Mac OS X.]

[You can also use the command-line tool LaunchCFMApp to launch CFM
applications from a terminal window in Mac OS X. If the CFM application is in the
current working directory, the command is:]

[[/System/Library/Frameworks/Carbon.framework/Versions/A/Support/
LaunchCFMApp] [filename]]

[If the application is in a different directory, you must specify the path.]

[Note that if your application does not contain a ['plst'] resource, a bundled
[Info.plist] file, or a ['carb'] resource, Mac OS X opens the application in the
Classic compatibility environment. To ensure that Mac OS X properly recognizes
your application, it must include a resource of type ['plst'] with ID 0, a bundled
[Info.plist] file, or a resource of type ['carb'] with ID 0.]]]

60

Building a Mach-O Carbon Application With CodeWarrior



 Apple Computer, Inc. December 2002

C H A P T E R 3

Building Carbon Applications

[[Building a Mach-O Carbon Application With
CodeWarrior]

[Before building a Mach-O version of your application with CodeWarrior, you
should follow the instructions in the previous section for building a CFM Carbon
application. After you’ve successfully built and tested a CFM version of your
application on Mac OS 9, you can use CodeWarrior to build a Mach-O version for
debugging on Mac OS X.]

[[Preparing Your Development Environment]
[Metrowerks CodeWarrior Pro 8.0 and later has support for Mach-O applications.
See the Metrowerks documentation for more information.]]

[[Building Your Application]
[Refer to your Metrowerks CodeWarrior documentation for instructions on
building Mach-O versions of your application.]]

[[Running Your Application on Mac OS X]
[CodeWarrior creates an executable Mach-O binary that includes a resource fork.
As long as this file resides on an HFS Plus disk, the resource fork remains intact and
you can launch the application by double-clicking its icon.]]]

C H A P T E R 3

Building Carbon Applications

Building a Mach-O Carbon Application With Project Builder

61



 Apple Computer, Inc. December 2002

[[Building a Mach-O Carbon Application With Project
Builder]

[Project Builder is included on the Mac OS X Developer Tools CD. Instructions for
building Mach-O Carbon applications are available in Project Builder’s online help
documentation.]]

[[Building Applications Using MPW]

[An alternative to using CodeWarrior or ProjectBuilder for CFM applications is to
use Apple’s MPW development environment, which is now available as a free
download from the following website:]

[[http://developer.apple.com/tools/mpw-tools/]]

[You should place the [CarbonLibStub] stub file in the folder [Interfaces and
Libraries:Libraries:SharedLibraries] , while the Carbon version of the Universal
Headers should be placed in [Interfaces and Libraries:Interfaces:CIncludes] .]

[You compile your application and link against [CarbonLibStub] just as you would
when using CodeWarrior. Note however that Carbon applications must contain a
[‘SIZE’] resource, and the resource must have the [acceptSuspendResumeEvents] flag
set. While CodeWarrior adds a [‘SIZE’] resource automatically, you must create
your own when building with MPW.]

[In addition, you need to override your default entry point (by using the [-m] option
in PPCLink) with one of the following:]

� ✻[[main] if your application does not call [exit()] and does not expect any exit
procedures to run.]

62

Debugging Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 3

Building Carbon Applications

� ✻[__appstart] if you want the functionality previously supplied by [__start] .
[__appstart] is a stripped-down version of [__start] that initializes the
environment, but does not provide support for MPW tools. To use [__appstart] ,
you need to link with [StdCRuntime.o] and [StdCLib] in addition to CarbonLib.]]

[The version of [StdCRuntime.o] containing [__appstart] , as well as a
Carbon-friendly version of the CreateMake tool, will be available from the
following web site:]

[[http://developer.apple.com/tools/mpw-tools/updates.html]]

[You should also examine the PackageTool sample application in the Sample Code
folder of the CarbonLib SDK and the MPW release notes for more specifics about
the build process.]]

[[Debugging Your Application]

[You can debug Carbon applications on Mac OS 9 or Mac OS X using the
Metrowerks debugger. You can use also this debugger with two networked
machines (for example, one running Mac OS 9 and the other running Mac OS X).
Contact Metrowerks for more information.]

[You can also debug Carbon applications on Mac OS X using GDB, which you can
run from a terminal window. Although GDB cannot directly debug a CFM
application at this time, there is a workaround that lets you perform low-level
debugging on a CFM application. You’ll use GDB to debug LaunchCFMApp, a
Mach-O program that launches CFM applications.]

[This workaround has the following features and limitations:]

� ✻[You can set breakpoints at Mach-O functions. Since the Carbon library is
Mach-O code, you can set breakpoints at Carbon functions. However, you
cannot set breakpoints at CFM functions, including those in your application.]

� ✻ You can examine the memory contents at any address with the [x] command.
However, you cannot view variables or expressions, since GDB cannot use the
symbol names in a CFM application.]

� ✻ You cannot step through your application’s code.]]

C H A P T E R 3

Building Carbon Applications

Debugging Your Application

63



 Apple Computer, Inc. December 2002

[To debug your CFM application:]

1. [[Launch the Terminal application: [/Applications/Utilities/Terminal.app] .]

2. [Enter [gdb /System/Library/Frameworks/Carbon.framework/Versions/A/
Support/LaunchCFMApp] .

[GDB loads the LaunchCFMApp program.]]

3. [If you want, set breakpoints at any Carbon function with the [br] command.

[For example, you may want to set a breakpoint at the [DebugStr] function,
because [DebugStr] prints its argument without stopping the program’s
execution. Enter[br DebugStr] at the GDB prompt.]]

4. [At the GDB prompt, enter [r <app-pathname>] , where [<app-pathname>] is the full
pathname for your CFM application.

[To enter the application’s pathname, drag the application’s icon to the Terminal
window.]

[LaunchCFMApp launches your application.]]]

[To pause your application’s execution at any time, press Control-C in the Terminal
application. To continue your application, enter [cont] . For more information on
GDB, enter [help] .]

[Here are some additional hints that you might find useful:]

� ✻[From the terminal window, entering [setenv CFMDebugFull 1] directs
LaunchCFMApp to display debugging information at application launch time.]

� ✻ Entering [setenv USERBREAK 1] enables GDB to catch C++ exceptions.]

� ✻ You can set the environment variable [DYLD_IMAGE_SUFFIX] to specify an
optional suffix to add to Mach-O libraries when they are loaded. For example,
entering [setenv DYLD_IMAGE_SUFFIX _debug] provides an easy way to link to the
debug versions of the various frameworks. You can easily toggle between the
normal and debug versions of these libraries without having to rebuild your
application each time. The debug versions often perform more assertions,
parameter checks, and so on, which may simplify debugging.]

� ✻ You can call functions in Mach-O libraries directly from the GDB command
line, as long as they were explicitly or implicitly loaded. For example, you could
call the [CFShow] function, which shows the contents of various Core Foundation

64

Debugging Your Application



 Apple Computer, Inc. December 2002

C H A P T E R 3

Building Carbon Applications

and Cocoa objects. Because the Carbon framework is built as Mach-O binaries,
you can call Carbon functions from GDB, even those not directly called by your
application.]

� ✻ The remote debugger nub has some command line options which you can view
by entering [/usr/libexec/gdb/DebugNub -help]]

� ✻ If you want to examine parameter values for CFM applications in GDB, you can
do so by examining register values. For example, given a function

[[[void loofah (int x, int y, int z);]]]

[then [print $r3] from the GDB command line obtains the value of x (passed in
GPR3). Remember that the usual calling conventions apply in determining
which parameters are passed in which registers. See [Mac OS Runtime
Architectures] for more information about PowerPC calling conventions.]]]]]

The Sample Application

65



 Apple Computer, Inc. December 2002

C H A P T E R 4

4 [[A Porting Example]

[[This chapter details the process required to port a simple application to the Carbon
interface. While this application is likely much simpler than your code, many of the
steps are similar and you can use this example as a guideline for porting your own
application.]]

[[The Sample Application]

[The application used for this porting example is Sample (also known as
TrafficLight), which is an old Mac OS demonstration program used to illustrate
basic windowing and user interaction. You can find Sample at the following
website:]

[[http://developer.apple.com/samplecode/Sample_Code/Overview/
Sample__Traffic_Light_.htm]]

[The original C code listing is also reproduced in [“The Sample Application”
(page 135)] .]

[Sample puts up a small window containing a rudimentary traffic light which
toggles between red and green when you click in the window or when you select a
color from the Light menu. [Figure 4-1] shows the Sample application.]

66

Obtaining the Carbon Dater Report



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

Figure 4-1 [[The Sample application]]]

[[Obtaining the Carbon Dater Report]

[The first step in the porting process is to obtain a Carbon Dater report detailing
what APIs will need to be changed or modified. [Figure 4-2] shows the opening
page of a Carbon Dater report on Sample.]

C H A P T E R 4

A Porting Example

Obtaining the Carbon Dater Report

67



 Apple Computer, Inc. December 2002

Figure 4-2 [[A Carbon Dater report]]

[Note that while the percentage of unsupported APIs seems high (33.3 %), this
fraction corresponds to only 23 functions. Larger applications typically contain
many more supported functions, often resulting in compatibility ratings of 90% or
higher.]

68

Obtaining the Carbon Dater Report



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[[Table 4-1] summarizes Carbon Dater’s comments about the incompatible
functions.]

Table 4-1

Carbon Dater output for incompatible functions

Manager Function Name Comments

Memory Management Utilities [SysEnvirons] Uses working directories. Use [FindFolder]
and [Gestalt] instead.

Memory Manager [ApplicationZon
e]

Carbon does not support zones because
they do not work in a preemptively
multitasked environment.

[GetApplLimit] Mac OS X applications have no size limit
on their application partition.

[MaxApplZone] This routine is not needed by
PowerPC-based applications because they
can specify a stack size in the ['cfrg' 0]
resource.

Patch Manager [NGetTrapAddres
s]

Patch Manager not supported in Carbon.

Disk Initialization Manager [DIBadMount] Carbon does not support the Disk
Initialization Manager. Disk Initialization
is supported by the system. Mac OS X
applications that need to initialize disks
can do so using new APIs in the I/OKit.

QuickDraw Manager [InitGraf] In Carbon, the Mac OS automatically
initializes Quickdraw for every
application. When the Mac OS initializes
QuickDraw, the Mac OS also
automatically calls [InitGraf] .

Device Manager [CloseDeskAcc] Desk accessories not supported in Carbon.

[OpenDeskAcc] Desk accessories not supported in Carbon.

Dialog Manager [InitDialogs] [InitDialogs] is not supported in Carbon.
There is no need to initialize the Dialog
Manager as the shared library is loaded as
needed.

C H A P T E R 4

A Porting Example

Obtaining the Carbon Dater Report

69



 Apple Computer, Inc. December 2002

Event Manager [OSEventAvail] [OSEventAvail] is not supported in Carbon.
Use the [EventAvail] function instead.

[SystemClick] Desk accessories are not supported in
Carbon.

[SystemTask] In Carbon, the Event Manager
automatically handles all task scheduling.

Menu Manager [CheckItem] Replaced by [CheckMenuItem] .

[DisableItem] Replaced by [DisableMenuItem] .

[EnableItem] Replaced by [EnableMenuItem] .

[InitMenus] [InitMenus] is not supported in Carbon.
There is no need to initialize the Menu
Manager because the shared library is
loaded as needed.

[SystemEdit] Carbon does not support desk accessories.

Window Manager [CloseWindow] The [CloseWindow] function is not
supported because developers do not
allocate their own memory for windows in
Carbon. Use the [DisposeWindow] function
to remove a window instead.

[InitWindows] [InitWindows] is not supported in Carbon.
There is no need to initialize the Window
Manager because the shared library is
loaded as needed.

Table 4-1

Carbon Dater output for incompatible functions (continued)

Manager Function Name Comments

70

The Basic Port



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[The Carbon Dater report indicates that many of the incompatible functions are
either no longer needed or obsolete (such as those related to desk accessories), while
others require just a replacement. There are only a few cases which might require
some thoughtful workarounds.]]

[[The Basic Port]

[This section describes the initial steps of the porting process. For clarity, the
subsection names parallel the porting steps described in [Chapter 2, “Preparing
Your Code for Carbon.”]]

[[Make Sure All of Your Code is PowerPC–Native]
[To qualify for this step, the Sample application should compile as a PowerPC
executable, which it does. You can also make the following changes to clean up the
code:]

[InvalRect] Calls [InvalWindowRect] , which takes a
window pointer as an additional
parameter. This change is necessary
because invalidation works only on
windows, not ports, and windows are not
ports in Carbon.

Font Manager [InitFonts] There is no need to initialize the Font
Manager because the shared library is
loaded as needed.

TextEdit [TEInit] There is no need to initialize TextEdit
because the shared library is loaded as
needed.

Table 4-1

Carbon Dater output for incompatible functions (continued)

Manager Function Name Comments

C H A P T E R 4

A Porting Example

The Basic Port

71



 Apple Computer, Inc. December 2002

� ✻[Remove the [#pragma segment] statements. These statements indicate which
segments should contain which parts of the code. PowerPC code does not use
segments, so these are unnecessary.]

� ✻ Remove [UnloadSeg] calls in [Main] (2 instances). Again, these calls make sense
only on 68K machines.]

� ✻ Remove the comment on segmentation strategy.]

� ✻ Remove the [TrapAvailable] function and all references to it. Because
[WaitNextEvent] is always available on current systems, [TrapAvailable] is
superfluous. Also, it relies on the [NGetTrapAddress] function, which is illegal in
Carbon anyway, so you might as well get rid of it now.]]]

[[Update to the Current Universal Interfaces and Use
the Carbon SDK]
[You must make sure that Sample compiles and runs using the latest version of
Universal Interfaces, which should be included with the latest version of the Carbon
SDK. The examples here assume you are building your code using Metrowerks
CodeWarrior. The following changes are necessary to update to the latest headers:]

� ✻[Remove [Desk.h] include statement and add [Devices.h] in both [Sample.c] and
[SampleInit.c] .]

� ✻ Change name of [GetGlobalMouse] function in [Sample.c] and [Sample.h] to
[MyGetGlobalMouse] (or something similar). The local function collides with the
[GetGlobalMouse] function in [Events.h] .]

� ✻ Remove the reference to [_DataInit] in [main] and its external declaration. This
function (part of the MPW runtime library) initializes global data on 68K
machines.]]]

[[Target Mac OS 8 and 9 First]
[This guideline requires you to focus on building a CFM-based Carbon application
(at least initially), rather than a Mach-O–based one.]]

72

The Basic Port



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[[Begin With CarbonAccessors.o]
[This step is probably the most tedious as it requires you to inspect your code for
data structure access that will become illegal in Carbon.]

[First, add the object file [CarbonAccessors.o] to your CodeWarrior project.]

[Then add [#define ACCESSOR_CALLS_ARE_FUNCTIONS 1] to the beginning of [Sample.c]
and [SampleInit.c] . With this setting in place, the compiler generates errors
indicating places where you need to add accessor functions.]

[If you don’t mind seeing additional compile errors initially, you can also add
[#define OPAQUE_TOOLBOX_STRUCTS 1] . The compiler will then generate errors if it
detects attempts to directly access fields of the now opaque structures. You can use
this error list to identify places where you need to modify the code to use accessor
functions.]

[For example, after setting both conditionals, CodeWarrior generates errors such as
the following when attempting to compile [Sample.c] :]

[[[Error : cannot convert]
['struct OpaqueWindowPtr *' to]

['struct OpaqueGrafPtr *']

[Sample.c line 224 SetPort(window); /* the window must be the current port... */]

[]

[Error : illegal use of incomplete struct/union/class 'struct OpaqueWindowPtr']

[Sample.c line 225 EraseRect(&window->portRect); /* because of a bug in ZoomWindow */]

[]

[Error : illegal use of incomplete struct/union/class 'struct OpaqueWindowPtr']

[Sample.c line 227 InvalRect(&window->portRect); /* to make things look better on-screen

*/]]]

[The code indicated by the errors (contained in the function [DoEvent]) is as follows:]

[[[…]
[case inZoomIn:]

[case inZoomOut:]

[hit = TrackBox(window, event->where, part);]

[if (hit) {]

[SetPort(window);/* window must be the current port */]

[EraseRect(&window->portRect); /* because of a bug in ZoomWindow */]

[ZoomWindow(window, part, true); /* note that we invalidate and erase... */]

[InvalRect(&window->portRect); /* to make things look better on-screen */]

C H A P T E R 4

A Porting Example

The Basic Port

73



 Apple Computer, Inc. December 2002

[}]

[break;]

[…]]]

[You must use an accessor to obtain the contents of the [window.portRect] field, and
then you must cast the window pointer to a graphics pointer ([GrafPtr]) before
setting the port. For more information about available accessor functions and how
to use them, see [“Functions for Accessing Opaque Data Structures” (page 116)] .]

[After the required changes, the code might look something like this:]

[[[…]
[case inZoomIn:]

[case inZoomOut:]

[hit = TrackBox(window, event->where, part);]

[if (hit) {]

[Rect portRect; /*•• new variable to hold the value of */]

[/*•• the portRect field of window. */]

[GetPortBounds(GetWindowPort(window), &portRect); /*•• new accessor added */]

[SetPort(GetWindowPort(window));/*•• The windowPtr is now cast to */]

[/*•• a GrafPtr before setting */]

[EraseRect(&portRect); /* because of a bug in ZoomWindow */]

[ZoomWindow(window, part, true); /* note that we invalidate and erase... */]

[InvalRect(&portRect); /* to make things look better on-screen */]

[}]

[break;]

[…]]]

[Note that the event record (referenced in a parameter for [TrackBox]) is not opaque.
This is one of the few Carbon structures that remains accessible without accessors.]

[You also need to add accessor functions to the following functions:]

� ✻[[DoEvent] : add an accessor to obtain the [screenbits] field of the [QDGlobals]
structure.]

� ✻[AdjustCursor] : add accessors to obtain the port bounds, the visible region, and
the arrow field of the [QDGlobals] structure. Instead of attempting to get the
[portBits] field of the window port and setting the global origin from that, you
can obtain the local port bounds, translate them to global coordinates, and set
the origin to the upper left corner of those bounds. Also, you must allocate (and
afterwards dispose of) a region handle to hold the visible region obtained by the
accessor.]

74

The Basic Port



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

� ✻[DoUpdate] : Add an accessor to obtain the visible region.]

� ✻[DrawWindow] : Convert the Window pointer to type [GrafPtr] before setting the
port.]

� ✻[SetLight] : Add an accessor to obtain the port bounds.]

� ✻ [DoCloseWindow] : You would normally want to use an accessor to obtain the
[windowKind] field, but the function using it is [CloseDeskAcc] , which is not
supported in Carbon anyway. So the simplest thing to do is to eliminate the code
that handles the desk accessory case altogether.]

� ✻[IsAppWindow] : Add an accessor to obtain the window kind.]

� ✻[IsDAWindow] : Normally you would use an accessor to obtain the window kind,
but because the entire function is useful only for desk accessories, it is simpler to
remove it altogether.]

� ✻[AlertUser] : Add an accessor to obtain the arrow field of the [QDGlobals]
structure.]

� ✻ [Initialize] (in[SampleInit.c]): Instead of determining the size of a window
record in order to allocate space for a new window, you can leave these lines out
entirely, because the need to preallocate memory for windows has not been an
issue for some time. Note that instead of calling [GetNewWindow] , you could call
[CreateNewWindow] , which is the suggested replacement for window creation on
Mac OS 8.5 and later.]]]

[[Use Casting Functions to Convert DialogPtrs and
WindowPtrs]
[Use the [GetWindowPort] function to convert window pointers to graphics pointers
in the following functions, if you have not already done so: [DoEvent] ,
[AdjustCursor] , [DrawWindow] , and [SetLight] .]]

[[Modify or Conditionalize Your Headers]
[To allow compilation on both Mac OS X and Mac OS 8 and 9, replace the usual
header includes with the following:]

[[[#define MAC_OS_X_BUILD 0]
[#if MAC_OS_X_BUILD]

[#include <Carbon/Carbon.h>]

C H A P T E R 4

A Porting Example

The Basic Port

75



 Apple Computer, Inc. December 2002

[#else]

[#include <Carbon.h>]

[#endif]]]

[To build on Mac OS X, you would set the [MAC_OS_X_BUILD] flag to [1] (true).]

[Note that [Carbon.h] is not required; you could have included the usual Mac OS 8
and 9 headers instead. However, by including [Carbon.h] , you set the preprocessor
directive]

[[[#define TARGET_API_MAC_CARBON 1]]]

[(if it wasn’t already defined) which sets the previous directives
([ACCESSOR_CALLS_ARE_FUNCTIONS] and [OPAQUE_TOOLBOX_STRUCTS]) as well.]]

[[Replace Macro Calls to the Mixed Mode Manager
With UPP Accessor Functions]
[Sample does not use universal procedure pointers, so this step is unnecessary.]]

[[Move Custom Definition Procedures Out of
Resources]
[Sample uses no custom definition functions, so you can skip this step.]]

[[Remove Direct Access to Low-Memory Globals]
[Sample does not access any low-memory globals, so you can skip this step as well.
]]

[[Use DebuggingCarbonLib]
[During development, it’s usually useful to keep the debugging version of
[CarbonLib] in your Extensions folder instead of the standard [CarbonLib] .]]

76

The Basic Port



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[[Update Modified or Obsolete Functions]
[Using the information obtained from Carbon Dater, you can now add the required
replacements or modifications for Carbon compatibility. First, remove
[CarbonAccessors.o] and [InterfaceLib] from your link path and begin linking
exclusively against [CarbonLibStub] .]

[Any attempts to build Sample at this stage will generate linker errors for any
functions that are not available in Carbon. You can use the linker errors and the
Carbon Dater report as guides for making the following changes:]

� ✻[In [main] : Remove [MaxApplZone] as it’s not needed in PowerPC applications.]

� ✻ In [DoEvent] :

[Remove [SystemClick] , which is specific to desk accessories.]

[Replace [InvalRect] with [InvalWindowRect] . Note that [InvalWindowRect] takes
an additional window pointer as a parameter.]

[Remove [DIBadMount] . This function is hardware-specific. If you want to
reproduce its functionality on Mac OS X, you must use the I/O Kit API to do so.
Actually, because Carbon does not support the [diskEvt] event , you can remove
this particular case altogether. The Carbon Event Manager will provide support
for disk and volume events.]]

� ✻ In [SetLight] : Replace [InvalRect] with [InvalWindowRect] .]

� ✻ In [DoMenuCommand] :

[Remove [SystemEdit] because it’s specific to desk accessories.]

[Remove [OpenDeskAcc] because, again, Carbon doesn’t support desk accessories.
]]

� ✻ In [DoCloseWindow] : Replace [CloseWindow] with [DisposeWindow] .]

� ✻ In [AdjustMenus] :

[Replace [EnableItem] with [EnableMenuItem] .]

[Replace [CheckItem] with [CheckMenuItem] .]

[Normally you would replace [DisableItem] with [DisableMenuItem] . Here,
[DisableItem] is used only in the desk accessory case, which will never occur.
Therefore, you can remove all instances of [DisableItem] as well as the
conditional to distinguish between the traffic light window and desk
accessories.]]

C H A P T E R 4

A Porting Example

The Basic Port

77



 Apple Computer, Inc. December 2002

� ✻ In [EventLoop] : Remove the [SystemTask] function as it is not needed in Carbon.
Actually, because [WaitNextEvent] is guaranteed to be present, you can remove
the conditional altogether.]

� ✻ In [MyGetGlobalMouse] : Change [OSEventAvail] to [EventAvail] .]

� ✻ In [Initialize] :

[Remove initialization functions [InitGraf] , [InitFonts] , [InitWindows] ,
[InitMenus] , [TEInit] , and [InitDialogs] , as they are not needed in Carbon.]

[Remove the [SysEnvirons] function, which is not supported in Carbon. This
function is part of a check to see if [WaitNextEvent] is available. Because
[WaitNextEvent] is always available in Carbon, you can remove all of the code
associated with this check, which eliminates the unsupported functions.]

[Remove [GetApplLimit] and [ApplicationZone] as they are not supported in
Carbon.]]]

[In addition, it turns out that the [WaitNextEvent] time [LONG_MAX] (referenced in the
[EventLoop] function) is not defined in Carbon. You can replace it with 0x7FFFFFFF
because there are no periodic actions that need to be taken..]

[After making these changes, your version of Sample should be able to run on Mac
OS 8 and 9 using the [CarbonLib] extension.]]

[[Adopt Required Carbon Technologies]
[Sample does not require interfaces for printing or saving files, so this step is
unnecessary.]]

[[Add a ‘plst’ 0 Resource]
[To ensure that Sample will launch as a Carbon application on the Mac OS X and
not in the Classic environment, you must add a resource of type ['plst'] with ID 0
to the resource file [TCSample.rsrc] . To add this resource, you can either modify the
resource file directly using an editor such as ResEdit or Resourcerer, or you can
DeRez the file, add text defining the resource, and then recompile the resource file.
A minimal ['plst'] resource entry would be as follows:]

[[[data 'plst' (0) {]

78

The Basic Port



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[$"00" /* . */]

[};]]]]

[[Conditionalize Quit Menu Items]
[To make sure that Sample can quit properly in Mac OS X, you must add a Quit
Apple event handler to [SampleInit.c] such as the following:]

[[[/* Here is our Quit Apple event handler */]
[static pascal OSErr QuitAppleEventHandler (const AppleEvent *appleEvt,]

[AppleEvent* reply, UInt32 refcon)]

[{]

[Terminate(); /* close window and terminate gracefully */]

[} /* QuitAppleEventHandler */]]]

[To install the handler, you must call [AEInstallEventHandler] in the [Initialize]
function:]

[[[…]
[OSErr err;]

[err = AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,]

[NewAEEventHandlerUPP(QuitAppleEventHandler), 0, false);]

[if (err != noErr) ExitToShell();]

[…]]]

[Note that the Apple event installer function requires one of the new UPP accessor
functions, [NewAEEventHandlerUPP] . This accessor replaces the old macro
[NewAEEventHandlerProc] .]

[In addition, you must add a case to the [DoEvent] function to process the event
properly when it occurs.]

[[[void DoEvent (EventRecord *event)]
[{]

[…]

[/*•• Add a case to process the Quit Apple event */]

[case kHighLevelEvent:]

[AEProcessAppleEvent(event);]

[break;]

[…]

[}]]]

C H A P T E R 4

A Porting Example

The Basic Port

79



 Apple Computer, Inc. December 2002

[After installing the handler, you must adjust the Quit menu item depending on
whether Sample is running on Mac OS X or on Mac OS 8 and 9. Because the Quit
item appears automatically in the application menu on Mac OS X, you should add
code to the [Initialize] function to remove the Quit item from the File menu
(where it normally appears for Mac OS 8 and 9) if Sample is running on Mac OS X:]

[[[…]
[SetMenuBar(menuBar); /* install menus */]

[DisposeHandle(menuBar);]

[]

[/*•• New code begins here */]

[long result;]

[MenuRef menu;]

[]

[err = Gestalt(gestaltMenuMgrAttr, &result);]

[if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {]

[menu = GetMenuHandle (mFile);]

[DeleteMenuItem(menu, iQuit);]

[DeleteMenuItem(menu, iQuit-1); /* the element above the Quit */]

[/* item is a separator */]

[/*•• End of new code */]

[]

[DrawMenuBar();]

[…]]]

[This snippet uses [Gestalt] to get the Menu Manager attributes and checks to see if
the Aqua interface is present. If it is, then Sample running on Mac OS X. It then
simply deletes the Quit item and its separator from the menu bar before it gets
drawn.]]

[[Cleanup]
[At this point the Sample application should run on both Mac OS X and Mac OS 8
and 9. However, you can remove a few extraneous bits of code to clean up Sample:]

� ✻[Remove all references to the variable [gMac] , which was only used in the (now
nonexistent) [SysEnvirons] call.]

� ✻ Remove the [gHasWaitNextEvent] flag. Because [WaitNextEvent] is always
available in Carbon, this flag is unnecessary.]]

80

Additional Changes for Aqua



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[If desired, you can now use the same code to build a Mach-O–based version of
Sample which can run only on Mac OS X.]]]

[[Additional Changes for Aqua]

[While the Carbon version of Sample now executes on Mac OS X, it is also important
that the application adheres to the new Aqua interface. Here are a few additional
changes you can make to adopt the Aqua look and feel.]

[[Adjust the Window Size]
[Due to the placement of the three Aqua buttons in each window (the close,
minimize, and zoom buttons) and the small default size of Sample’s window, the
title, Traffic, is truncated. To work around this, you can increase the dimensions of
the window and avoid truncation.]]

[[Modify the About Box]
[About boxes in Mac OS X have a consistent appearance that is different from what
you may be used to in Mac OS 8 and 9. They should be modeless dialogs that
contain the application icon as well as informative text. [Figure 4-3] shows an About
box created for Sample.]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

81



 Apple Computer, Inc. December 2002

Figure 4-3 [[The About box for Sample]]

[See [Inside Mac OS X: Aqua Human Interface Guidelines] for the full specifications for
the About box.]]]

[[The Carbon Version of Sample]

[[Listing 4-1] and [Listing 4-2] show the Sample application now ported to Carbon.
Changes related to the porting process are indicated by “••” in comments [/*••
just like this */] . Some discussion comments were removed for clarity.]

[Note: The section [“An Example: Adding Carbon Events to Sample” (page 103)]
describes how to modify Sample to use the Carbon Event Manager.]

82

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

Figure 4-4 [[The Carbon version of Sample on Mac OS X]]

Listing 4-1 [[Carbon version of Sample.c]

[[//#define ACCESSOR_CALLS_ARE_FUNCTIONS 1 /*•• leftovers from the porting process */]

[//#define OPAQUE_TOOLBOX_STRUCTS 1]

[]

[#define TARGET_API_MAC_CARBON 1]

[]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

83



 Apple Computer, Inc. December 2002

[#define MAC_OS_X_BUILD 0]

[/*•• use only one include for all Carbon headers */]

[#if MAC_OS_X_BUILD]

[#include <Carbon/Carbon.h>]

[#else]

[#include <Carbon.h>]

[#endif]

[]

[#include "Sample.h "/* bring in all the #defines for Sample */]

[]

[/* The "g" prefix is used to emphasize that a variable is global. */]

[]

[/*•• removed gMac and gHasWaitNextEvent global variables, as they are never used */]

[]

[/* GInBackground is maintained by our osEvent handling routines. Any part of]

[the program can check it to find out if it is currently in the background. */]

[Boolean gInBackground; /* maintained by Initialize and DoEvent */]

[]

[]

[/* The following globals are the state of the window. If we supported more than]

[one window, they would be attached to each document, rather than globals. */]

[]

[/* GStopped tells whether the stop light is currently on stop or go. */]

[Boolean gStopped; /* maintained by Initialize and SetLight */]

[]

[/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */]

[Rect gStopRect; /* set up by Initialize */]

[Rect gGoRect; /* set up by Initialize */]

[]

[]

[/* Define TopLeft and BotRight macros for convenience. Notice the implicit]

[dependency on the ordering of fields within a Rect */]

[#define TopLeft(aRect) (* (Point *) &(aRect).top)]

[#define BotRight(aRect) (* (Point *) &(aRect).bottom)]

[]

[]

[/*•• Removed _DataInit, which is 68K-specific */]

[]

[]

[void main()]

[{]

84

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[/*•• Removed UnloadSeg call, which is 68K-specific */]

[]

[/* 1.01 - call to ForceEnvirons removed */]

[/*•• Removed MaxApplZone as it's not needed in PowerPC apps */]

[]

[Initialize(); /* initialize the program */]

[/*•• Removed UnloadSeg call, which is 68K-specific */]

[]

[EventLoop(); /* call the main event loop */]

[} /*main*/]

[]

[]

[void EventLoop()]

[{]

[RgnHandle cursorRgn;]

[Boolean gotEvent;]

[EventRecord event;]

[Point mouse;]

[]

[cursorRgn = NewRgn(); /* we’ll pass WNE an empty region the 1st time thru */]

[do {]

[/*•• WNE is always available in Carbon, so the conditional was removed. */]

[MyGetGlobalMouse(&mouse);]

[AdjustCursor(mouse, cursorRgn);]

[/*•• Note wait period LONG_MAX not defined in Carbon. Replaced with 0x7FFFFFFF */]

[gotEvent = WaitNextEvent(everyEvent, &event, 0x7FFFFFFF, cursorRgn);]

[]

[if (gotEvent) {]

[/* make sure we have the right cursor before handling the event */]

[AdjustCursor(event.where, cursorRgn);]

[DoEvent(&event);]

[}]

[/* If you are using modeless dialogs that have editText items,]

[you will want to call IsDialogEvent to give the caret a chance]

[to blink, even if WNE/GNE returned FALSE. However, check FrontWindow]

[for a non-NIL value before calling IsDialogEvent. */]

[} while (true); /* loop forever; we quit via ExitToShell */]

[} /*EventLoop*/]

[]

[]

[void DoEvent(EventRecord *event)]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

85



 Apple Computer, Inc. December 2002

[{]

[short part, err;]

[WindowPtr window;]

[Boolean hit;]

[char key;]

[Point aPoint;]

[BitMap screenBits; /*•• needed to hold contents of qd.screenBits */]

[Rect bounds, portRect; /*•• needed to hold contents of screenbits.bounds and */]

[/*•• the value of the portRect field of the window rec */]

[]

[switch (event->what) {]

[case mouseDown:]

[part = FindWindow(event->where, &window);]

[switch (part) {]

[case inMenuBar: /* process a mouse menu command (if any) */]

[AdjustMenus();]

[DoMenuCommand(MenuSelect(event->where));]

[break;]

[case inSysWindow: /*•• removed SystemClick (not part of Carbon) */]

[break;]

[case inContent:]

[if (window != FrontWindow()) {]

[SelectWindow(window);]

[/*DoEvent(event);*/ /* use this line for "do first click" */]

[} else]

[DoContentClick(window);]

[break;]

[case inDrag: /* pass screenBits.bounds to get all gDevices */]

[GetQDGlobalsScreenBits(&screenBits); /*•• use accessor to obtain */]

[/*•• screenBits */]

[bounds = screenBits.bounds; /*•• get bounds from screenBits.*/]

[/*•• Note that bitmaps are not opaque */]

[DragWindow(window, event->where, &bounds);]

[break;]

[case inGrow:]

[break;]

[case inZoomIn:]

[case inZoomOut:]

[hit = TrackBox(window, event->where, part);]

[if (hit) {]

[/*•• new accessor in place */]

86

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[GetPortBounds(GetWindowPort(window), &portRect);]

[]

[/*•• The windowPtr is now cast to a GrafPtr before setting */]

[SetPort(GetWindowPort(window));]

[]

[EraseRect(&portRect); /* because of a bug in ZoomWindow */]

[ZoomWindow(window, part, true); /* note that we invalidate */]

[/* and erase...to make things look */]

[/* better on-screen */]

[]

[/*•• InvalRect replaced with InvalWindowRect */]

[InvalWindowRect(window, &portRect);]

[}]

[break;]

[}]

[break;]

[case keyDown:]

[case autoKey: /* check for menukey equivalents */]

[key = event->message & charCodeMask;]

[if (event->modifiers & cmdKey) /* Command key down */]

[if (event->what == keyDown) {]

[AdjustMenus(); /* enable/disable/check menu items properly */]

[DoMenuCommand(MenuKey(key));]

[}]

[break;]

[case activateEvt:]

[DoActivate((WindowPtr) event->message,]

[(event->modifiers & activeFlag) != 0);]

[break;]

[case updateEvt:]

[DoUpdate((WindowPtr) event->message);]

[break;]

[/*•• Add a case to process the Quit Apple event */]

[case kHighLevelEvent:]

[AEProcessAppleEvent(event);]

[break;]

[]

[/*•• Removed diskEvt case (and DIBadMount)--not supported in Carbon]

[]

[case kOSEvent:]

[/* 1.02 - must BitAND with 0x0FF to get only low byte */]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

87



 Apple Computer, Inc. December 2002

[switch ((event->message >> 24) & 0x0FF) { /* high byte of message */]

[case kSuspendResumeMessage: /* suspend/resume is also an activate/ */]

[/* deactivate */]

[gInBackground = (event->message & kResumeMask) == 0;]

[DoActivate(FrontWindow(), !gInBackground);]

[break;]

[}]

[break;]

[}]

[} /*DoEvent*/]

[]

[]

[void AdjustCursor(Point mouse, RgnHandle region)]

[{]

[WindowPtr window;]

[RgnHandle arrowRgn;]

[RgnHandle plusRgn;]

[RgnHandle visRgn; /*•• needed to hold field value obtained by accessor function */]

[Cursor arrow; /*•• used to hold the contents of the qd.arrow field */]

[Rect globalPortRect, portRect;]

[]

[window = FrontWindow(); /* we only adjust the cursor when we are in front */]

[]

[if (! gInBackground) { /*•• removed desk accessory case from conditional */]

[/* calculate regions for different cursor shapes */]

[arrowRgn = NewRgn();]

[plusRgn = NewRgn();]

[]

[/* start with a big, big rectangular region */]

[SetRectRgn(arrowRgn, kExtremeNeg, kExtremeNeg, kExtremePos, kExtremePos);]

[]

[/* calculate plusRgn */]

[if (IsAppWindow(window)) {]

[]

[Point tempPoint;]

[]

[SetPort(GetWindowPort(window)); /* make a global version of the viewRect */
]

[/*•• Added accessor to cast WindowPtr to GrafPtr */]

[GetPortBounds (GetWindowPort(window), &portRect);]

[SetPt(&tempPoint, portRect.left, portRect.top); /*•• obtain local origin */]

88

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[LocalToGlobal(&tempPoint); /*•• translate point to global coordinates */]

[SetOrigin(tempPoint.h, tempPoint.v); /*•• Set the global origin */]

[]

[/*•• Added accessor to get value for globalPortRect */]

[GetPortBounds(GetWindowPort(window), &globalPortRect);]

[RectRgn(plusRgn, &globalPortRect);]

[]

[visRgn = NewRgn();/*•• allocate a new region */]

[/*•• Added accessor to get value for visRgn */]

[GetPortVisibleRegion(GetWindowPort(window), visRgn);]

[SectRgn(plusRgn, visRgn, plusRgn);]

[SetOrigin(0, 0);]

[DisposeRgn(visRgn);/*•• dispose of the region */]

[}]

[]

[/* subtract other regions from arrowRgn */]

[DiffRgn(arrowRgn, plusRgn, arrowRgn);]

[]

[/* change the cursor and the region parameter */]

[if (PtInRgn(mouse, plusRgn)) {]

[SetCursor(*GetCursor(plusCursor));]

[CopyRgn(plusRgn, region);]

[} else {]

[SetCursor(GetQDGlobalsArrow(&arrow)); /*•• new accessor in place */]

[CopyRgn(arrowRgn, region);]

[}]

[]

[/* get rid of our local regions */]

[DisposeRgn(arrowRgn);]

[DisposeRgn(plusRgn);]

[}]

[} /*AdjustCursor*/]

[]

[]

[/*•• "My" added to GetGlobalMouse to avoid name collision with the function in Events.h

*/]

[]

[void MyGetGlobalMouse(Point *mouse)]

[{]

[EventRecord event;]

[]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

89



 Apple Computer, Inc. December 2002

[/*•• Changed OSEventAvail to EventAvail */]

[EventAvail(kNoEvents, &event); /* we aren't interested in any events */]

[*mouse = event.where; /* just the mouse position */]

[} /*MyGetGlobalMouse*/]

[]

[]

[void DoUpdate(WindowPtr window)]

[{]

[]

[if (IsAppWindow(window)) {]

[RgnHandle visRgn; /*•• needed to hold contents of window->visRgn */]

[]

[BeginUpdate(window); /* this sets up the visRgn */]

[visRgn = NewRgn();]

[/*•• Added accessor to obtain the visRgn */]

[GetPortVisibleRegion (GetWindowPort(window), visRgn);]

[if (! EmptyRgn(visRgn)) /* draw if updating needs to be done */]

[DrawWindow(window);]

[EndUpdate(window);]

[}]

[} /*DoUpdate*/]

[]

[]

[void DoActivate(WindowPtr window, Boolean becomingActive)]

[{]

[if (IsAppWindow(window)) {]

[]

[if (becomingActive)]

[/* do whatever you need to at activation */ ;]

[else]

[/* do whatever you need to at deactivation */ ;]

[}]

[} /*DoActivate*/]

[]

[]

[void DoContentClick(WindowPtr window)]

[{]

[SetLight(window, ! gStopped);]

[} /*DoContentClick*/]

[]

[]

90

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[void DrawWindow(WindowPtr window)]

[{]

[Rect portRect; /*•• Needed to hold the contents of window->portRect */]

[]

[SetPort(GetWindowPort(window));]

[]

[/*•• Use accessor to obtain port bounds */]

[GetPortBounds(GetWindowPort(window), &portRect);]

[]

[EraseRect(&portRect); /* clear out any garbage that may linger */]

[]

[if (gStopped) /* draw a red (or white) stop light */]

[ForeColor(redColor);]

[else]

[ForeColor(whiteColor);]

[]

[PaintOval(&gStopRect);]

[ForeColor(blackColor);]

[FrameOval(&gStopRect);]

[]

[if (! gStopped) /* draw a green (or white) go light */]

[ForeColor(greenColor);]

[else]

[ForeColor(whiteColor);]

[]

[PaintOval(&gGoRect);]

[ForeColor(blackColor);]

[FrameOval(&gGoRect);]

[} /*DrawWindow*/]

[]

[]

[void AdjustMenus()]

[{]

[MenuHandle menu;]

[]

[/*•• Removed references to IsDAWindow, because desk accessories are not in Carbon*/]

[/*•• removed DisableItems and all code dealing with the desk accessory case.*/]

[]

[menu = GetMenuHandle(mLight);]

[EnableMenuItem(menu, iStop); /*•• replaced EnableItem with EnableMenuItem */]

[EnableMenuItem(menu, iGo);]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

91



 Apple Computer, Inc. December 2002

[]

[/*•• replaced CheckItem with CheckMenuItem */]

[CheckMenuItem(menu, iStop, gStopped); /* we can also determine check/uncheck */]

[/* state, too */]

[CheckMenuItem(menu, iGo, ! gStopped);]

[} /*AdjustMenus*/]

[]

[]

[void DoMenuCommand(long menuResult)]

[{]

[short menuID; /* the resource ID of the selected menu */]

[short menuItem; /* the item number of the selected menu */]

[short itemHit;]

[Str255 daName;]

[short daRefNum;]

[Boolean handledByDA;]

[]

[menuID = HiWord(menuResult); /* use macros for efficiency to... */]

[menuItem = LoWord(menuResult); /* get menu item number and menu number */]

[switch (menuID) {]

[case mApple:]

[switch (menuItem) {]

[case iAbout: /* bring up alert for About */]

[itemHit = Alert(rAboutAlert, nil);]

[break;]

[default: /* all non-About items in this menu are DAs */]

[/*•• removed desk accessory code (not supported in Carbon) */]

[break;]

[}]

[break;]

[case mFile:]

[switch (menuItem) {]

[case iClose:]

[DoCloseWindow(FrontWindow());]

[break;]

[case iQuit:]

[Terminate();]

[break;]

[}]

[break;]

[case mEdit: /* call SystemEdit for DA editing & MultiFinder */]

92

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[/*•• removed because Carbon doesn't support desk accessories */]

[break;]

[case mLight:]

[switch (menuItem) {]

[case iStop:]

[SetLight(FrontWindow(), true);]

[break;]

[case iGo:]

[SetLight(FrontWindow(), false);]

[break;]

[}]

[break;]

[}]

[HiliteMenu(0); /* unhighlight what MenuSelect (or MenuKey) hilited */]

[} /*DoMenuCommand*/]

[]

[]

[void SetLight(WindowPtr window, Boolean newStopped)]

[{]

[if (newStopped != gStopped) {]

[]

[Rect portRect; /*•• Needed to hold port bounds */]

[]

[gStopped = newStopped;]

[]

[/*•• Use accessor to obtain port bounds */]

[GetPortBounds(GetWindowPort(window), &portRect);]

[]

[/*•• Use accessor to cast WindowPtr to GrafPtr */]

[SetPort(GetWindowPort(window));]

[]

[InvalWindowRect(window,&portRect);]

[}]

[} /*SetLight*/]

[]

[]

[Boolean DoCloseWindow(WindowPtr window)]

[{]

[/*•• Desk accessory–related code removed, because it's not supported in Carbon */]

[]

[DisposeWindow(window); /*•• replaced CloseWindow with DisposeWindow */]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

93



 Apple Computer, Inc. December 2002

[return true;]

[} /*DoCloseWindow*/]

[]

[]

[void Terminate()]

[{]

[WindowPtr aWindow;]

[Boolean closed;]

[]

[closed = true;]

[do {]

[aWindow = FrontWindow(); /* get the current front window */]

[if (aWindow != nil)]

[closed = DoCloseWindow(aWindow); /* close this window */]

[}]

[while (closed && (aWindow != nil));]

[if (closed)]

[ExitToShell(); /* exit if no cancellation */]

[} /*Terminate*/]

[]

[]

[Boolean IsAppWindow(WindowPtr window)]

[{]

[short windowKind;]

[]

[if (window == nil)]

[return false;]

[else { /* application windows have windowKinds = userKind (8) */]

[windowKind = GetWindowKind(window);]

[return (windowKind == userKind);]

[}]

[} /*IsAppWindow*/]

[]

[]

[/* Boolean IsDAWindow(WindowPtr window) */]

[/*•• Carbon does not support desk accessories, so we removed this function */]

[/* */]

[/*IsDAWindow*/]

[]

[]

[void AlertUser()]

94

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[{]

[short itemHit;]

[Cursor arrow; /*•• used to hold the contents of the qd.arrow field */]

[]

[SetCursor(GetQDGlobalsArrow(&arrow)); /*•• new accessor in place */]

[itemHit = Alert(rUserAlert, nil);]

[ExitToShell();]

[} /* AlertUser */]]]

Listing 4-2 [[Carbon version of SampleInit.c]

[[//#define ACCESSOR_CALLS_ARE_FUNCTIONS 1 /*•• leftovers from the porting process */]

[//#define OPAQUE_TOOLBOX_STRUCTS 1]

[]

[#define TARGET_API_MAC_CARBON 1]

[]

[#define MAC_OS_X_BUILD 0]

[/*•• use only one include for all Carbon headers */]

[#if MAC_OS_X_BUILD]

[#include <Carbon/Carbon.h>]

[#else]

[#include <Carbon.h>]

[#endif]

[]

[#include "Sample.h "/* bring in all the #defines for Sample */]

[]

[]

[/* The "g" prefix is used to emphasize that a variable is global. */]

[/* All are extern since the variables are declared in the main segment. */]

[]

[/*•• removed gMac and gHasWaitNextEvent global variables, as they are never used */]

[]

[/* GInBackground is maintained by our osEvent handling routines. Any part of]

[the program can check it to find out if it is currently in the background. */]

[extern Boolean gInBackground; /* maintained by Initialize and DoEvent */]

[]

[]

[/* The following globals are the state of the window. If we supported more than]

[one window, they would be attached to each document, rather than globals. */]

[]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

95



 Apple Computer, Inc. December 2002

[/* GStopped tells whether the stop light is currently on stop or go. */]

[extern Boolean gStopped; /* maintained by Initialize and SetLight */]

[]

[/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */]

[extern Rect gStopRect; /* set up by Initialize */]

[extern Rect gGoRect; /* set up by Initialize */]

[]

[]

[/*•• Here is our Quit Apple event handler */]

[static pascal OSErr QuitAppleEventHandler(const AppleEvent *appleEvt,]

[AppleEvent* reply, UInt32 refcon)]

[{]

[Terminate(); /* close window and terminate gracefully */]

[} /*•• QuitAppleEventHandler */]

[]

[]

[void Initialize()]

[{]

[Handle menuBar;]

[WindowPtr window;]

[long total, contig;]

[EventRecord event;]

[short count;]

[MenuRef menu;]

[long result; /*•• used to hold results of Gestalt call */]

[OSErr err;]

[]

[gInBackground = false;]

[]

[/*•• Removed most of the init functions (InitGraf, etc) as they */]

[/*•• are not needed in Carbon */]

[InitCursor();]

[]

[/* Call MPPOpen and ATPLoad at this point to initialize AppleTalk,]

[if you are using it. */]

[]

[/* This next bit of code is necessary to allow the default button of our]

[alert be outlined.]

[1.02 - Changed to call EventAvail so that we don't lose some important]

[events. */]

[]

96

The Carbon Version of Sample



 Apple Computer, Inc. December 2002

C H A P T E R 4

A Porting Example

[for (count = 1; count <= 3; count++)]

[EventAvail(everyEvent, &event);]

[]

[/*•• WaitNextEvent is always available in Carbon, so we eliminated the code that */]

[/*•• calls SysEnvirons and checks a trap for its presence. */]

[]

[/*•• Removed calls to GetApplLimit and ApplicationZone. They are not supported */]

[/*•• in Carbon, and the memory problem they protect against is no longer an issue */]

[]

[PurgeSpace(&total, &contig);]

[if (total < kMinSpace) AlertUser();]

[]

[/*•• Removed code to preallocate space for our window, because memory */]

[/*•• requirements are no longer strict enough to make it necessary */]

[]

[window = GetNewWindow(rWindow, nil, (WindowPtr) -1);]

[]

[menuBar = GetNewMBar(rMenuBar); /* read menus into menu bar */]

[if (menuBar == nil) AlertUser();]

[]

[SetMenuBar(menuBar); /* install menus */]

[DisposeHandle(menuBar);]

[/*•• Removed code that added desk accessories to the Apple Menu */]

[]

[/*•• Determine if we're running on Mac OS X, and if we are, remove the Quit menu */]

[/*•• item and the Quit separator from the File Menu */]

[err = Gestalt(gestaltMenuMgrAttr, &result);]

[if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {]

[menu = GetMenuHandle (mFile);]

[DeleteMenuItem(menu, iQuit);]

[DeleteMenuItem(menu, iQuit-1); /*•• the element above the Quit item */]

[/* •• is a separator */]

[}]

[]

[DrawMenuBar();]

[]

[/*•• Install a Quit Apple Event handler to make sure that the application can */]

[/*•• quit properly on Mac OS X. It's also just good programming practice on 8/9 */]

[err = AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,]

[NewAEEventHandlerUPP(QuitAppleEventHandler), 0, false);]

[if (err != noErr) ExitToShell();]

C H A P T E R 4

A Porting Example

The Carbon Version of Sample

97



 Apple Computer, Inc. December 2002

[]

[gStopped = true;]

[if (!GoGetRect(rStopRect, &gStopRect))]

[AlertUser(); /* the stop light rectangle */]

[if (!GoGetRect(rGoRect, &gGoRect))]

[AlertUser(); /* the go light rectangle */]

[} /*Initialize*/]

[]

[]

[Boolean GoGetRect(short rectID, Rect *theRect)]

[{]

[Handle resource;]

[]

[resource = GetResource('RECT', rectID);]

[if (resource != nil) {]

[*theRect = **((Rect**) resource);]

[return true;]

[}]

[else]

[return false;]

[} /* GoGetRect */]

[]

[]

[/* TrapAvailable */]

[/*•• Carbon does not support traps, so this function was removed. */]

[]

[/*TrapAvailable*/]]]]]

Carbon Event Manager

99



 Apple Computer, Inc. December 2002

C H A P T E R 5

5 [[New Carbon Technologies]

[[This chapter describes several Mac OS technologies that are new with Carbon.
While these technologies are not required in Carbon applications, adopting them
can result in improved performance and user experience as well as reduced
development cycles.]]

[[Carbon Event Manager]

[The Carbon Event Manager is an event handling API that replaces the Classic Mac
OS Event Manager. It simplifies the event model and it is well-suited for the
preemptive multitasking capabilities of Mac OS X. For example, when using Carbon
events, an application that is performing periodic actions while idle (blinking the
cursor, for example) does not have to endlessly cycle through a [WaitNextEvent] loop
while doing so. The advantages of the Carbon Event Manager include the
following:]

� ✻[Handlers for common events (such as mouse events and keyboard events) are
included. You don’t need to write your own event handlers unless you want to
override default behaviors.]

� ✻ The Carbon Event Manager can handle any number of event types (as opposed
to the16 event types available in the Classic event record).]

� ✻ The Carbon Event Manager handles notifications and defproc messaging in
addition to the usual events.]

� ✻ The streamlining of the event handling system results in a more responsive
system and a better user experience.]]

100

Core Foundation



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[When adapting an application to use Carbon events, you typically replace the
[WaitNextEvent] loop and event processing functions with one of more simple event
handling calls. Your application must register the types of events it wishes to be
notified about, and then implement handlers to address the registered events.]

[The Carbon Event Manager is available for Carbon applications running on
Mac OS 8.6 and later, so if you do not need compatibility back to Mac OS 8.1, we
highly encourage you to adopt it. The Carbon event model is flexible enough to
coexist with [WaitNextEvent] , so you can make the adoption as gradual as you like.
While the [WaitNextEvent] event model still works on Mac OS X, your programs and
the overall system will perform better if you use Carbon events.]

[For more information about the Carbon Event Manager, see the documentation
available at]

[[http://developer.apple.com/techpubs/carbon/oss/CarbonEventManager/
carboneventmanager.html]]

[as well as [“An Example: Adding Carbon Events to Sample” (page 103)] .]]

[[Core Foundation]

[Core Foundation is a new set of APIs that provides a simple interface for handling
many common needs for applications. For example, CFPreference APIs provide a
standard interface for creating and manipulating an application’s user preferences.
As most Core Foundation functions are part of the Carbon API, they run on both
Mac OS X and Mac OS 8 and 9. In addition, Core Foundation functions are
compatible with the Foundation classes available in the Cocoa environment, which
simplifies the sharing of data between Carbon and Cocoa applications.]

[In addition to Preferences Services, other Core Foundation services that you may
find useful for your Carbon application include the following:]

� ✻[Bundle Services, which provides the APIs used to access files and other
resources stored in a bundle hierarchy. See [“Consider Using Bundles”
(page 49)] for more information about bundles.]

C H A P T E R 5

New Carbon Technologies

DataBrowser

101



 Apple Computer, Inc. December 2002

� ✻ Plug-In Services, which provides a standard plug-in architecture for Mac OS X
and Mac OS 8 and 9 applications. You can package plug-in binaries for multiple
platforms together, and the Plug-In Services APIs can transparently load the
proper one (assuming, of course, that they share the same interface).]

� ✻ String Services, which provides a simple interface for storing, converting, and
manipulating Unicode strings. If your application uses (or is planning to
support) Unicode, you should consider adopting String Services.]

� ✻ The XML Parser, which provides an interface for writing and reading XML
documents.]

� ✻ Property List Services, which provides an interface to organize data into
property lists (“plists”). It also allows you to convert hierarchically structured
combinations of basic data types in these lists to and from standard XML.]]

[For more information about Core Foundation Services, see [Inside Mac OS X:
System Overview] and Core Foundation documentation at the Carbon
documentation site:]

[[http://developer.apple.com/techpubs/carbon/carbon.html]]]

[[DataBrowser]

[DataBrowser is a new Control Manager control (defined in
[ControlDefinitions.h]) that lets you display data in sortable, navigatable lists in a
manner similar to the list view and column view settings of the Finder. If you need
to organize data in manner that is easily accessible to the user, you should consider
using the DataBrowser. Here are some advantages of the various views:]

� ✻[The list view allows the user to sort by various column attributes related to the
data you are displaying. For example, the Finder allows you to display files by
type, size, or date modified, among other characteristics.]

� ✻ The column view is useful for navigating large hierarchies or trees of data. For
example both the Mac OS X Finder and the Navigation Services Save dialog box
use DataBrowser to let the user quickly find a particular location in a volume’s
file hierarchy.]]

102

Multilingual Text Engine (MLTE)



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[For more information about DataBrowser, see the sample code included with the
Carbon SDK.]]

[[Multilingual Text Engine (MLTE)]

[The Multilingual Text Engine (MLTE) is the suggested replacement for TextEdit in
Carbon applications. While you can still use TextEdit in Carbon, MLTE provides
many additional features and simplifies the programming interface; you can
accomplish more with fewer lines of code. Some of MLTE’s features include the
following:]

� ✻[Full Unicode support, including transparent access to Apple Type Services for
Unicode Imaging (ATSUI) for rendering text, and the Text Encoding Converter
(TEC) for converting between encodings.]

� ✻ Full support for alternate input methods using the Text Services Manager
(TSM).]

� ✻ Support for greater than 32 KB of text.]

� ✻ Built-in scroll bar handling.]

� ✻ Full justification of text.]

� ✻ Built-in support for basic user actions, such as highlighting selected text,
dragging selected text, and moving the caret in response to arrow key presses.]

� ✻ Multiple levels of undo.]

� ✻ Built-in printing support.]]

[MLTE is available in CarbonLib 1.2 and later. You can also use it in non-Carbon
applications on Mac OS 8.6 and later.]

[For more information about MLTE, see the documentation available at]

[[http://developer.apple.com/techpubs/carbon/text/MultilingualTextEngine/
multilingualtextengine.html]]

[and the MLTE SDK at]

[[http://developer.apple.com/sdk/]]]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

103



 Apple Computer, Inc. December 2002

[[An Example: Adding Carbon Events to Sample]

[The Carbon Event Manager is the most important of the optional technologies
available with Carbon; if you plan to add only one new API to your application, it
should be Carbon events. In addition to simplifying your event handling code,
Carbon events will make your application a good processor-sharing citizen on Mac
OS X, which will improve the performance of all running applications.]

[This section illustrates the adoption of the Carbon Event Manager by adding
Carbon events to the Carbon version of the Sample application shown in [Listing 4-1
(page 82)] and [Listing 4-2 (page 94)] .]

[[“Determine the Appropriate CarbonLib Version” (page 35)] indicates that the
Carbon Event Manager is available only in CarbonLib 1.2 and later when Mac OS
8.6 or later is present. While this means that you cannot run on Mac OS 8.1, it also
means that you are free to incorporate any newer APIs up to Mac OS 8.6 if that
makes the work easier.]

[The basic model for Carbon events is that you register callback handlers for each
event (or type of event) you wish to handle. You attach these handlers to specific
objects, such as a window or a button. Different objects of the same type do not have
to have the same handler. For example, two buttons can each have their own
distinct handler. With this level of flexibility in handling events, it is important to
determine the scope required for each event. For example, should an event affect a
single window, all open windows, or the entire application? In most cases it is easier
to think in terms of what object is affected rather than what event occurred.]

[After any initial setup, your application calls [RunApplicationEventLoop] , which
essentially replaces the [WaitNextEvent] loop. From that point on, your application
is notified only when an event you specified occurs.]

[[Standard Event Handlers]
[The Carbon Event Manager provides default event handlers for many common
types of events. For example, the standard handler for a window automatically
handles dragging, activation, deactivation, window zooming and resizing. Of
course, you will mostly likely still need to draw into or update the content region as

104

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

a result of some actions, but much of the basic work is taken care of for you. A good
rule of thumb is to install the standard handler first, see what actions it covers, and
then write handlers for any additional actions you may want to take.]]

[[The Basic Conversion]
[In the Carbon version of Sample, most of the event handling occurs in the functions
[EventLoop] and [DoEvent] . Here is a breakdown of the events to address:]

� ✻[Adjusting the cursor shape depending on the region it occupies: Previously the
cursor was adjusted each time through the event loop. Because there is no
equivalent event loop that we can access in Carbon events, an alternate
triggering mechanism is required. One method would be to update the cursor
whenever the mouse moves. Another would be to set up a timer to adjust the
cursor at regular intervals.]

� ✻ Menu selections: The Carbon Event Manager can associate special command
events with menu items. Many common menu items have command events
defined for them in [CarbonEvents.h] , and you can assign your own using the
Window Manager function [SetMenuItemCommandID] . When a menu item is
selected (either through menu selection or a keyboard equivalent), the Carbon
Event Manager sends the appropriate command event to the handler. Some
menu selections are related to the window only (such as setting the traffic light
color), while others are related to the application (such as the About command).
This division suggests a menu command handler at both the window level and
the application level.

[Note that the standard application handler automatically handles basic menu
tracking, highlighting, and so on. All you need to do is process the menu
selection.]]

� ✻ Keyboard events: Because the only keyboard input Sample requires are
keyboard equivalents for menu items, you can handle these the same as menu
selections.]

� ✻ Mouse clicks in the traffic light window: The light color toggles on each click in
the content region of the window. This event is entirely window-related, which
suggests a window-level handler.]

� ✻ Window dragging, zooming, resizing, activation, and deactivation: The
standard window event handler addresses these events, so all you need to do is
update the content region if necessary.]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

105



 Apple Computer, Inc. December 2002

� ✻ Update events: The Carbon Event Manager posts events indicating that you
should change your window contents, so you should redraw the contents at that
time.]

� ✻ High level (Apple) events: The only case to worry about is the Quit Apple event,
for which we have already installed a handler.]

� ✻ Disk Events: This case deals with bad floppy disks, and Carbon does not
support the [DIBadMount] function or the [diskEvt] event. This example ignores
disk events.]

� ✻ Application suspend and resume events: The standard application event
handler covers the basic functionality required for suspend and resume events.
]]

[This information indicates that event handlers are needed at both the
window-level and the application level.]

[[Installing the Standard Event Handlers]

[Before adding your application-specific event handlers, you should install the
standard handlers for window and application events.]

[One way to assign the standard window handler to the traffic light window is to
call the function [InstallStandardWindowEventHandler] after creating the window in
the [Initialize] function.]

[[[window = GetNewWindow(rWindow, NULL, (WindowPtr)-1);]
[InstallStandardEventHandler(GetWindowEventTarget(window)); /* installs the default */]

[/* handler for window events */]

[ShowWindow(window);]]]

[The [GetWindowEventTarget] function returns an event reference (type
[EventTargetRef]) to associate with the desired object (in this case, a window).
Similar functions exist to create event references for controls, menus, and other
objects.]

[However, because the application must run in Mac OS 8.6 or later, you can call the
Window Manager function [CreateNewWindow] instead, which lets you specify an
attribute to use the standard window handler. Doing so also provides many of the
standard window controls (resize button, and so on) for free.]

[[[Rect windowBounds; /* use Rect for bounds in CreateNewWindow */]

106

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[WindowAttributes windowAttr; /* to hold window attribute flags in

CreateNewWindow */]

[…]

[windowAttr = kWindowStandardDocumentAttributes| /* standard window */]

[kWindowStandardHandlerAttribute| /* standard window event

handler */]

[kWindowInWindowMenuAttribute;]

[]

[SetRect (&windowBounds, 40, 60, 280, 520); /* bounds for the new window */]

[]

[CreateNewWindow(kDocumentWindowClass, windowAttr, &windowBounds, &window);]

[SetWindowTitleWithCFString(window, CFSTR("Traffic"));]

[]

[ChangeWindowAttributes(window, NULL, /* remove close box and resize tab */]

[

kWindowCloseBoxAttribute|kWindowResizableAttribute);]

[ShowWindow(window);]]]

[The [SetWindowTitleWithCFString] function is a Core Foundation String Services
function.]

[To more closely approximate the original Sample, you can call the Window
Manager function [ChangeWindowAttributes] to remove the close box and the resize
tab.]

[The standard application event handler is installed automatically when you call
[RunApplicationEventLoop] , so you do not need to explicitly install it.]]

[[Registering Your Own Event Handlers]

[After installing the standard handlers, you must register your event handlers with
the system. The Carbon Event Manager defines events by the class of event
(window, mouse, and so on) as well as the type (mouse moved, content region
clicked, and so on). You must specify these when registering your handlers, as in
this example:]

[[[EventTypeSpec appEventList[] = {{kEventClassCommand, kEventCommandProcess},]

[{ kEventClassMouse, kEventMouseMoved}};]

[]

[EventTypeSpec windEventList[] = {{kEventClassWindow, kEventWindowDrawContent },]

[{ kEventClassWindow, kEventWindowClickContentRgn },]

[{ kEventClassWindow, kEventWindowBoundsChanged},]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

107



 Apple Computer, Inc. December 2002

[{ kEventClassCommand, kEventCommandProcess}};]

[]

[…]

[]

[/* Installing the application event handler */]

[InstallApplicationEventHandler(NewEventHandlerUPP(MyAppEventHandler),]

[2, appEventList, 0, NULL);]

[]

[/* Installing the window event handler */]

[InstallWindowEventHandler(window, NewEventHandlerUPP(MyWindowEventHandler),]

[4, windEventList, 0, NULL);]]]

[The type [EventTypeSpec] arrays hold the pairs of event classes and types which are
then passed into the appropriate handler installation calls. The calls
[InstallApplicationEventHandler] and [InstallWindowEventHandler] are macros
derived from the more general Carbon Event Manager function
[InstallEventHandler] . Remember to pass universal procedure pointers instead of
normal pointers when specifying your callback handlers. [CarbonEvents.h] defines
the format for your callback handlers.]

[If desired, you can register individual event handlers for each event. However, for
this example it is convenient to group them by object.]

[The handlers in this example essentially take the place of the [DoEvent] function,
which called other functions to process the events.]]

[[The Application-Level Event Handler]

[[Listing 5-1] shows an application-level event handler for the Sample application.]

Listing 5-1 [[Application-level event handler for Sample]

[[static pascal OSStatus MyAppEventHandler (EventHandlerCallRef myHandlerChain,]

[Note: The handlers you install complement the standard event handlers
described earlier. For example, the standard window handler will resize a
window in response to a resize event. However, if you indicated that you wanted
to handle window resize events in your own handler, you could specify
additional actions to take (such as refreshing the content window after the resize)
while still allowing the standard handler to perform the window resize.]

108

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[EventRef event, void* userData)]

[{]

[UInt32 whatHappened;]

[HICommand commandStruct;]

[Point wheresMyMouse;]

[RgnHandle CursorRgn;]

[short itemHit;]

[OSStatus result = eventNotHandledErr; /* report failure by default */]

[]

[]

[whatHappened = GetEventKind(event);]

[]

[switch (whatHappened)]

[{]

[case kEventCommandProcess:]

[]

[GetEventParameter (event, kEventParamDirectObject,]

[typeHICommand, NULL, sizeof(HICommand),]

[NULL, &commandStruct);]

[]

[switch (commandStruct.commandID)]

[{]

[case kCommandAbout:]

[itemHit = Alert (rAboutAlert, nil);]

[result = noErr;]

[break;]

[default:]

[break;]

[}]

[break;]

[]

[case kEventMouseMoved:]

[]

[CursorRgn = NewRgn();]

[GetEventParameter (event, kEventParamMouseLocation, typeQDPoint,]

[NULL, sizeof(Point), NULL, &wheresMyMouse);]

[AdjustCursor(wheresMyMouse, CursorRgn);]

[DisposeRgn(CursorRgn);]

[result = noErr;]

[break;]

[]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

109



 Apple Computer, Inc. December 2002

[default:]

[break;]

[}]

[return result;]

[}]]]

[The event handler takes three parameters:]

� ✻[The [myHandlerChain] parameter is a reference to the handler calling chain; that
is, the hierarchy of event handlers that could handle this event. You would pass
this reference if you wanted to call [CallNextEventHandler] , for example, which
you could use to add pre- or postprocessing to the actions of a standard handler.
]

� ✻ The [event] parameter contains specific information related to the event (much
the way the fields of an event record hold event-specific information).]

� ✻ The [userData] field holds any user data you specified when you registered
your handler with the call to [InstallEventHandler] (none in this case).]]

[When an event occurs, [MyAppEventHandler] gets passed the event along with any
user data you may have requested (none in this case). It then calls the [GetEventKind]
function to determine the type of event that occurred and then handles the event
appropriately.]

[The[kEventCommandProcess] function indicates a menu-related command occurred.
By calling the [GetEventParameter] function, the handler determines which item was
selected. At the application level only one command is possible: the About
selection. Note [kCommandAbout] is not defined in [CarbonEvents.h] so, you need to
define it yourself. You can do so and then call the Menu Manager function
[SetMenuItemCommandID] in the [Initialize] function to register it with the system.]

[[[const MenuCommand kCommandAbout = FOUR_CHAR_CODE ('abou');]
[]

[void Initialize()]

[{]

[…]

[SetMenuItemCommandID (GetMenuRef(mApple), iAbout, kCommandAbout);]

[…]

[}]]]

[Note that instead of calling [SetMenuItemCommandID] to assign the command ID, you
could choose the define it in an ['xmnu'] resource.]

110

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[You don’t need to handle the Quit event because the standard application event
handler calls the default Quit Apple event handler when this occurs. If you need to
take additional actions before quitting, you can install your own Quit Apple event
handler. If you are not using [RunApplicationEventLoop] , (and therefore not using
the standard application handler), you can process the Quit event here. Typically
you call the function [QuitApplicationEventLoop] to break out of the Carbon event
loop.]

[If you are running your application on Mac OS 8 and 9, you need to register the
Quit command ID (defined as [kHICommandQuit] in [CarbonEvents.h]) using the
[SetMenuItemCommandID] function, much as you had to for the About item. If you
don’t, the Carbon Event Manager will not properly process the event when the Quit
item is selected. A convenient time to do this is when you use Gestalt to determine
whether to place a Quit item in the File menu.]

[[[err = Gestalt(gestaltMenuMgrAttr, &result);]
[if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {]

[menu = GetMenuHandle (mFile);]

[DeleteMenuItem(menu, iQuit);]

[DeleteMenuItem(menu, iQuit-1); /*•• the element above the Quit item */]

[/*•• is a separator */]

[}]

[else]

[{ /* Assign a command ID to the Quit Item so that the Carbon Event Manager */]

[/* can recognize it. */]

[SetMenuItemCommandID(GetMenuRef(mFile), iQuit, kHICommandQuit);]

[}]]]

[The other application-level event you need to handle is the mouse-moved event,
which determines whether or not to adjust the cursor shape. The handler for Sample
calls [GetEventParameter] to obtain the mouse position (the types of parameters you
can obtain depends on the event that occurred) and then calls [AdjustCursor] .]

[Alternatively, you can adjust the cursor periodically by using a Carbon event
timer. Doing so merely involves creating the function to call and then registering it
by calling [InstallEventLoopTimer] . However, this method is similar to polling for
an event, which is more processor-intensive, and therefore not suggested for
Mac OS X.]]

[[The Window Event Handler]

[[Listing 5-2] shows a window event handler for Sample.]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

111



 Apple Computer, Inc. December 2002

Listing 5-2 [[Window event handler for Sample]

[[static pascal OSStatus MyWindowEventHandler(EventHandlerCallRef myHandler,]

[EventRef event, void* userData)]

[{]

[WindowRef window;]

[Rect bounds;]

[UInt32 whatHappened;]

[HICommand commandStruct;]

[MenuRef theMenuRef;]

[UInt16 theMenuItem;]

[OSStatus result = eventNotHandledErr; /* report failure by default */]

[]

[GetEventParameter(event, kEventParamDirectObject, typeWindowRef, NULL,]

[sizeof(window), NULL, &window);]

[]

[whatHappened = GetEventKind(event);]

[]

[switch (whatHappened)]

[{]

[case kEventWindowDrawContent:]

[]

[DoUpdate(window);]

[result = noErr;]

[break;]

[]

[case kEventWindowBoundsChanged:]

[]

[InvalWindowRect(window, GetWindowPortBounds(window, &bounds));]

[DoUpdate(window);]

[result = noErr;]

[break;]

[]

[case kEventWindowClickContentRgn:]

[]

[DoContentClick(window);]

[DoUpdate(window);]

[AdjustMenus();]

[result = noErr;]

[break;]

[]

112

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

[case kEventCommandProcess:]

[]

[GetEventParameter (event, kEventParamDirectObject,]

[typeHICommand, NULL, sizeof(HICommand),]

[NULL, &commandStruct);]

[]

[theMenuRef = commandStruct.menu.menuRef;]

[if (theMenuRef == GetMenuHandle(mLight))]

[{]

[/* Because the event didn't occur *in* the window, the */]

[/* window reference isn't valid until we set it here */]

[window = FrontWindow();]

[]

[theMenuItem = commandStruct.menu.menuItemIndex;]

[switch (theMenuItem)]

[{]

[case iStop:]

[SetLight(window, true);]

[break;]

[case iGo:]

[SetLight(window, false);]

[break;]

[}]

[DoUpdate(window);]

[AdjustMenus();]

[result = noErr;]

[}]

[break;]

[]

[default:]

[/* If nobody handled the event, it gets propagated to the */]

[/* application-level handler. */]

[break;]

[]

[}]

[]

[return result;]

[}]]]

C H A P T E R 5

New Carbon Technologies

An Example: Adding Carbon Events to Sample

113



 Apple Computer, Inc. December 2002

[As with the application-level handler, the window event handler first calls
[GetEventKind] to determine the type of event and then processes them
appropriately:]

� ✻[[kEventWindowDrawContent] indicates that the window contents must be
redrawn. This event is similar to an update event in the Classic event model.
However, if you have the standard window handler installed, the Carbon Event
Manager automatically calls [BeginUpdate] and [EndUpdate] for this event; all you
need to do is draw in the window. To avoid nesting update calls, you should
remove the duplicate [BeginUpdate] and [EndUpdate] calls in the [DoUpdate]
function.]

� ✻[kEventWindowBoundsChanged] indicates that the window size has changed (by
clicking the zoom button). The handler calls [DoUpdate] to redraw the content
region to reflect the new size.]

� ✻[kEventWindowClickContentRgn] indicates that the user has clicked in the Traffic
window. To toggle the light setting, the handler calls [DoContentClick] as before,
but because Sample no longer receives update events, the handler also calls
[DoUpdate] to draw the new setting. Similarly, because Sample cannot update the
Traffic menu settings by calling [AdjustMenus] from the [WaitNextEvent] loop, the
handler calls it here.]

� ✻[kEventCommandProcess] indicates that a menu-related command occurred.
Because this is the window handler, the handler processes only cases related to
the Traffic window (that is, the Red Light/Green Light items in the Traffic
menu). Other commands will end up being handled by the application-level
handler. To change the traffic light setting, the handler first isolates the menu
item selected from the event parameter and then redraws the light (using the
same calls as in the [kEventWindowClickContentRgn] case).

[If desired, instead of obtaining the menu item from the [commandStruct]
structure, you can define and register constants for these items as you did for the
About menu item.]]]]

[[Cleanup]

[After adapting Sample to use Carbon events, you no longer need the following
functions:]

� ✻[[EventLoop] : Replaced by the call to [RunApplicationEventLoop] .]

� ✻[DoEvent] : Replaced by the application and window event handlers.]

114

An Example: Adding Carbon Events to Sample



 Apple Computer, Inc. December 2002

C H A P T E R 5

New Carbon Technologies

� ✻[MyGetGlobalMouse] : The application event handler now retrieves the mouse
location from the event structure.]

� ✻[DoMenuCommand] : The handling of these events is split between the application
and window event handlers.]]]]]]

Custom Definition Procedures

115



 Apple Computer, Inc. December 2002

A P P E N D I X A

A New Carbon Functions

This section provides an overview of some of the new functions introduced in
Carbon. Until complete documentation is available, you should refer to the header
files and sample code included on the Mac OS X Developer Tools CD for additional
information.

Custom Definition Procedures

Custom defprocs (that is, WDEFs, MDEFs, CDEFs, and LDEFs) must be compiled
as PowerPC code and can no longer be stored in resources. Carbon introduces new
variants of

CreateWindow

 and similar functions (such as

NewControl

 and

NewMenu

) that
take a universal procedure pointer (UPP) to your custom defproc. Instead of
creating a window definition as a WDEF resource, for example, you call the Carbon
routine

CreateCustomWindow

:

OSStatus CreateCustomWindow(const WindowDefSpec *def,

WindowClass windowClass, WindowAttributes attributes,

const Rect *bounds, WindowPtr *outWindow);

The

WindowDefSpec

 parameter contains a UPP that points to your custom window
definition procedure.

Changes to WDEFs

You need to be aware of the following changes for custom WDEFs:

116

Functions for Accessing Opaque Data Structures



 Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

�

Window defprocs no longer receive the

wCalcRgns

 message. Instead they receive
the

kWindowMsgGetRegion

 message twice, once for the structure region and once
for the content region. The structure passed in the message parameter indicates
the desired region in each case. Your defproc must handle these messages.

�

If you need to get the global bounds of a window’s

portRect

 in order to

determine the structure or content regions, you should call

GetWindowBounds

 and
pass the

kWindowGlobalPortRgn

 constant. On return, the function will supply a
pointer to a

Rect

 indicating the bounds in global coordinates. The pixel map
(

PixMap

) bounds on Mac OS X will always start at (0,0), so you will obtain
incorrect results if you attempt to manually convert the port’s bounds from local
to global coordinates by offsetting the bounds by the port’s pixel map’s bounds.

Changes to MDEFs

You need to be aware of the following changes to custom MDEFs:

�

Menu defprocs no longer receive the

mChooseMsg

 message. Instead they receive
two new messages:

kMenuFindItemMsg

 and

kMenuHiliteItemMsg

 .

�

Code that sets or reads the low memory global variables

TopMenuItem

,

AtMenuBottom

,

MenuDisable

, and

MBSaveLoc

 should use the new

MenuTrackingData

structure instead. You can obtain the contents of the structure at any time by
calling the new function

GetMenuTrackingData

.

�

When a menu defproc receives a

mDrawMsg

 message, it also receives a pointer to
a

MenuTrackingData

 structure in the

whichItem

 parameter. Your defproc should
read the structure to obtain the menu virtual top and bottom rather than using
the low memory accessor functions

LMTopMenuItem

 and

LMAtMenuBottom

.

Functions for Accessing Opaque Data Structures

A major change introduced in Carbon is that some commonly used data structures
are now opaque—meaning their internal structure is hidden. Directly referencing
fields within these structures is no longer allowed, and will cause a compiler error.
QuickDraw global variables, graphics ports, regions, window and dialog records,

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures

117

 Apple Computer, Inc. December 2002

controls, menus, and TSMTE dialogs are all opaque to Carbon applications.
Anywhere you reference fields in these structures directly, you must use new
casting and accessor functions described in the following sections.

Casting Functions
Many applications assume that window pointer (WindowPtr) and dialog pointer
(DialogPtr) types have a graphics port (GrafPort) embedded at the top of their
structures. In fact, the standard Universal Interfaces defines dialog pointers and
window pointers as graphics pointers so that you don’t have to cast them to a type
GrafPtr before using them. For example:

void DrawIntoWindow(WindowPtr window)

{

SetPort(window);

MoveTo(x, y);

LineTo(x + 50, y + 50);

}

If you compile the above code using the Carbon interfaces, you’ll get a number of
compilation errors due to the fact that window pointers are no longer defined as
graphics pointers. But you can’t simply cast these variables to type GrafPtr because
doing so will cause your application to crash under Mac OS X.

Instead, Carbon provides a set of casting functions that allow you to obtain a pointer
to a window’s GrafPort structure or vice versa. Using these new functions, code like
the previous example must be updated as follows to be Carbon-compliant and
compile without errors:

void DrawIntoWindow(WindowPtr window)

{

SetPort(GetWindowPort(window));

MoveTo(x, y);

LineTo(x + 50, y + 50);

}

Casting functions are provided for obtaining graphics ports from windows,
windows from dialogs, and various other combinations. By convention, functions
that cast up (that is, going from a lower-level data structure like a graphics port to

118 Functions for Accessing Opaque Data Structures
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

a window or going from a window to a dialog pointer) are named
GetHigherLevelTypeFromLowerLevelType. Functions that cast down are named
GetHigherLevelTypeLowerLevelType.

Examples of functions that cast up include:

pascal DialogPtr GetDialogFromWindow(WindowPtr window);

pascal WindowPtr GetWindowFromPort(CGrafPtr port);

Functions that cast down include:

pascal WindowPtr GetDialogWindow(DialogPtr dialog);

pascal CGrafPtr GetWindowPort(WindowPtr window);

Accessor Functions
Carbon includes a number of functions to allow applications to access fields within
system data structures that are now opaque. Listing A-1 shows an example of some
typical coding practices that must be modified for Carbon.

Listing A-1 Example of unsupported data structure access

void WalkWindowsAndDoSomething(WindowPtr firstWindow)

{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)

{

if ((WindowPeek) currentWindow->visible)

&& RectIsFourByFour(¤tWindow->portRect))

{

DoSomethingSpecial(currentWindow);

}

currentWindow = (WindowPtr) ((WindowPeek)

currentWindow->nextWindow);

}

}

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures 119
  Apple Computer, Inc. December 2002

There are four problems in Listing A-1 that will cause compiler errors when
building a Carbon application.

1. Checking the visible field directly is not allowed because the WindowPeek type is
no longer defined (it’s only useful when you can assume that type WindowPtr can
be cast to a WindowRecord pointer, which is not the case in Carbon).

2. The currentWindow variable is treated as a graphics port. You need to use the
casting functions discussed above to access a window’s GrafPort structure.

3. Graphics ports are now opaque data structures, so you must use an accessor to
get the port’s bounding rectangle.

4. Accessing the nextWindow field directly from the WindowRecord structure is not
allowed.

To compile and run under Carbon, the code above would have to be changed as
shown in Listing A-2.

Listing A-2 Example of using Carbon-compatible accessor functions

void WalkWindowsAndDoSomething(WindowPtr firstWindow)

{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)

{

Rect windowBounds;

if (IsWindowVisible(currentWindow) &&

RectIsFourByFour(GetPortBounds(GetWindowPort(currentWindow),

&windowBounds))

{

DoSomethingSpecial(currentWindow);

}

currentWindow = GetNextWindow(currentWindow);

}

}

120 Functions for Accessing Opaque Data Structures
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

One thing to note is that the GetPortBounds function returns a pointer to the input
rectangle as a syntactic convenience, to allow you to pass the result of GetPortBounds
directly to another function. Many of the accessor functions return a pointer to the
input in the same way, as a convenience to the caller.

With a few exceptions as noted below, all accessor functions return copies to data,
not the data itself. You must make sure to allocate storage before you access
non-scalar types such as regions and pixel patterns. For example, if you use code
like this to test the visible region of a graphics port:

if (EmptyRgn(somePort->visRgn))

DoSomething();

you’ll have to change it as shown below in order to allow the accessor to copy the
port’s visible region into your reference:

RgnHandle visibleRegion;

visibleRegion = NewRgn();

if (EmptyRgn(GetPortVisibleRegion(somePort, visibleRegion)))

DoSomething();

DisposeRgn(visibleRegion);

A few accessor functions continue to return actual data rather than copied data.
GetPortPixMap, for example, is provided specifically to allow calls to CopyBits,
CopyMask, and similar functions, and should only be used for these calls. The
interface for the CopyBits-type calls will be changing to work around this exception,
but for now be aware that this exception exists. The QuickDraw bottleneck routines,
which are stored in a GrafProc record, continue to operate just like their classic
Mac OS equivalents. That is, the actual pointer to the structure is returned rather
than creating a copy. Other instances where the actual handle is passed back include
cases where user-specified data is carried in a data structure, such as the UserHandle
field in ListHandle records.

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures 121
  Apple Computer, Inc. December 2002

Table A-1 lists common accessor functions for Human Interface Toolbox structures.

Table A-1 Summary of Carbon Human Interface Toolbox accessors

Data structure Element Accessor

Controls

ControlRecord nextControl Use Control Manager embedding hierarchy
functions. (See Mac OS 8 Control Manager
Reference.)

contrlOwner Get/SetControlOwner. May be replaced in favor of
Embed/DetachControl.

contrlRect Get/SetControlBounds

contrlVis IsControlVisible, SetControlVisibility

contrlHilite GetControlHilite, HiliteControl

contrlValue Get/SetControlValue, Get/SetControl32BitValue

contrlMin Get/SetControlMinimum, Get/
SetControl32BitMinimum

contrlMax Get/SetControlMaximum, Get/
SetControl32BitMaximum

contrlDefProc not supported

contrlData Get/SetControlDataHandle

contrlAction Get/SetControlAction

contrlRfCon Get/SetControlReference

contrlTitle Get/SetControlTitle

AuxCtlRec acNext not supported

acOwner not supported

acCTable not supported

acFlags not supported

acReserved not supported

acRefCon Use Get/SetControlProperty if you need more
refCons.

122 Functions for Accessing Opaque Data Structures
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

PopupPrivateData mHandle Use Get/SetControlData with proper tags.

mID Use Get/SetControlData with proper tags.

Dialog Boxes

DialogRecord window Use GetDialogWindow to obtain the value. There is no
equivalent function for setting the value.

items AppendDITL, ShortenDITL, AppendDialogItemList,
InsertDialogItem, RemoveDialogItems

textH GetDialogTextEditHandle

editField GetDialogKeyboardFocusItem

editOpen Get/SetDialogCancelItem

aDefItem Get/SetDialogDefaultItem

Menus

MenuInfo menuID Get/SetMenuID

menuWidth Get/SetMenuWidth

menuHeight Get/SetMenuHeight

menuProc SetMenuDefinition

enableFlags Enable/DisableMenuItem, IsMenuItemEnabled

menuData Get/SetMenuTitle

Windows

WindowRecord
CWindowRecord

port Use GetWindowPort to obtain the value. There is no
equivalent function for setting the value.

windowKind Get/SetWindowKind

visible Hide/ShowWindow, ShowHide, IsWindowVisible

hilited HiliteWindow, IsWindowHilited

goAwayFlag ChangeWindowAttributes

spareFlag ChangeWindowAttributes

strucRgn GetWindowRegion

Table A-1 Summary of Carbon Human Interface Toolbox accessors (continued)

Data structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures 123
  Apple Computer, Inc. December 2002

contRgn GetWindowRegion

updateRgn GetWindowRegion

windowDefProc not supported

dataHandle not supported

titleHandle Get/SetWTitle

titleWidth GetWindowRegion

controlList GetRootControl

nextWindow GetNextWindow

windowPic Get/SetWindowPic

refCon Get/SetWRefCon

AuxWinRec awNext not supported

awOwner not supported

awCTable Get/SetWindowContentColor

reserved not supported

awFlags not supported

awReserved not supported

awRefCon Use Get/SetWindowProperty if you need more
reference constants.

Lists

ListRec rView Get/SetListViewBounds

port Get/SetListPort

indent Get/SetListCellIndent

cellSize Get/SetListCellSize

visible Use GetListVisibileCells to obtain the value.
No equivalent function for setting the value.

vScroll GetListVerticalScrollBar, use new API (TBD) to
turn off automatic scroll bar drawing.

Table A-1 Summary of Carbon Human Interface Toolbox accessors (continued)

Data structure Element Accessor

124 Functions for Accessing Opaque Data Structures
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

Table A-2 provides a summary of accessor functions you can use to access common
QuickDraw data structures.

hScroll GetListHorizontalScrollBar, use new API (TBD) to
turn off automatic scroll bar drawing.

selFlags Get/SetListSelectionFlags

lActive LActivate, GetListActive

lReserved not supported

listFlags Get/SetListFlags

clikTime Get/SetListClickTime

clikLoc GetListClickLocation

mouseLoc GetListMouseLocation

lClickLoop Get/SetListClickLoop

lastClick SetListLastClick

refCon Get/SetListRefCon

listDefProc not supported

userHandle Get/SetListUserHandle

dataBounds GetListDataBounds

cells LGet/SetCell

maxIndex LGet/SetCell

cellArray LGet/SetCell

Table A-2 QuickDraw accessor functions

Data structure Element Accessor

GrafPort device not supported
portBits Use GetPortBitMapsForCopyBits or IsPortColor.
portRect Get/SetPortBounds

Table A-1 Summary of Carbon Human Interface Toolbox accessors (continued)

Data structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures 125
  Apple Computer, Inc. December 2002

visRgn Get/SetPortVisibleRegion

clipRgn Get/SetPortClipRgn

bkPat not supported
fillPat not supported
pnLoc Get/SetPortPenLocation

pnSize Get/SetPortPenSize

pnMode Get/SetPortPenMode

pnPat not supported
pnVis Use GetPortPenVisibility or Show/HidePen.
txFont Use GetPortTextFont or TextFont.
txFace Use GetPortTextFace or TextFace.
txMode Use GetPortTextMode or TextMode.
txSize Use GetPortTextSize or TextSize.
spExtra Use GetPortSpExtra or SpaceExtra.
fgColor not supported
bkColor not supported
colrBit not supported
patStretch not supported
picSave IsPortPictureBeingDefined

rgnSave not supported
polySave not supported
grafProcs not supported

CGrafPort device not supported
portPixMap GetPortPixMap

portVersion IsPortColor

grafVars not supported
chExtra GetPortChExtra

pnLocHFrac Get/SetPortFracHPenLocation

portRect Get/SetPortBounds

Table A-2 QuickDraw accessor functions (continued)

Data structure Element Accessor

126 Functions for Accessing Opaque Data Structures
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

visRgn Get/SetPortVisibleRegion

clipRgn Get/SetPortClipRegion

bkPixPat Use GetPortBackPixPat or BackPixPat.
rgbFgColor Use GetPortForeColor or RGBForeColor.
rgbBkColor Use GetPortBackColor or RGBBackColor.
pnLoc Get/SetPortPenLocation

pnSize Get/SetPortPenSize

pnMode Get/SetPortPenMode

pnPixPat Get/SetPortPenPixPat

fillPixPat Get/SetPortFillPixPat

pnVis Use GetPortPenVisibility or Show/HidePen.
txFont Use GetPortTextFont or TextFont.
txFace Use GetPortTextFace or TextFace.
txMode Use GetPortTextMode or TextMode.
txSize Use GetPortTextSize or TextSize.
spExtra Use GetPortSpExtra or SpaceExtra.
fgColor not supported
bkColor not supported
colrBit not supported
patStretch not supported
picSave IsPortPictureBeingDefined

rgnSave not supported
polySave not supported
grafProcs Get/SetPortGrafProcs

QDGlobals randSeed GetQDGlobalsRandomSeed

screenBits GetQDGlobalsScreenBits

arrow GetQDGlobalsArrow

dkGray GetQDGlobalsDarkGray

ltGray GetQDGlobalsLightGray

Table A-2 QuickDraw accessor functions (continued)

Data structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions for Accessing Opaque Data Structures 127
  Apple Computer, Inc. December 2002

Utility Functions
Carbon includes a number of utility functions to make it easier to port your
application. Under the classic Mac OS API, new graphics ports were created by
allocating non-relocatable memory the size of a CGrafPort record and calling
OpenCPort. Because GrafPort records are now opaque, and their size is
system-defined, Carbon includes new routines to create and dispose of graphics
ports:

pascal CGrafPtr CreateNewPort()

pascal void DisposePort(CGrafPtr port)

These functions provide access to commonly used bounding rectangles:

pascal OSStatus GetWindowBounds(WindowRef window,

WindowRegionCode regionCode, Rect *bounds);

pascal OSStatus GetWindowRegion(WindowRef window,

WindowRegionCode regionCode, RgnHandle windowRegion);

Often you’ll find the need to set the current port to the one that belongs to a window
or dialog box. SetPortWindowPort and SetPortDialogPort allow you to do this:

pascal void SetPortWindowPort(WindowPtr window)

pascal void SetPortDialogPort(DialogPtr dialog)

The new function GetParamText replaces LMGetDAStrings as the method to retrieve
the current ParamText setting. Pass NULL for a parameter if you don’t want a
particular string.

pascal void GetParamText(StringPtr param0, StringPtr param1,

 StringPtr param2, StringPtr param3)

gray GetQDGlobalsGray

black GetQDGlobalsBlack

white GetQDGlobalsWhite

GrafPtr thePort GetQDGlobalsThePort

Table A-2 QuickDraw accessor functions (continued)

Data structure Element Accessor

128 Functions in CarbonAccessors.o
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

Functions in CarbonAccessors.o

CarbonAccessors.o is a static library that contains implementations of the Carbon
functions for accessing opaque toolbox data structures. See “Begin With
CarbonAccessors.o” (page 26) for information on how you can use this library to
assist in porting your code to Carbon.

Table A-3 lists the Carbon functions implemented in CarbonAccessors.o. The “•”
symbol indicates a function added since the Developer Preview 3 version of this
document. “••” indicates a function added since Developer Preview 4.

Note: You can also use CarbonAccessors.o to maintain some backwards
compatibility with non-Carbon systems. For example, if you don’t require
functions that are available only in CarbonLib, by linking against the
CarbonAccessors.o static library you can build an application from a
Carbon-compliant code base that runs on non-Carbon systems.

Table A-3 Functions in CarbonAccessors.o

AEFlattenDesc•• AEGetDescData

AEGetDescDataSize AEReplaceDescData•
AESizeOfFlattenedDesc•• AEUnflattenDesc••
c2pstrcpy• CopyCStringToPascal•
CopyPascalStringToC• CreateNewPort

DisposePort GetControlBounds

GetControlDataHandle GetControlHilite

GetControlOwner GetControlPopupMenuHandle

GetControlPopupMenuID GetDialogCancelItem

GetDialogDefaultItem GetDialogFromWindow

GetDialogKeyboardFocusItem GetDialogPort

GetDialogTextEditHandle GetDialogWindow

GetGlobalMouse GetListActive

GetListCellIndent GetListCellSize

A P P E N D I X A

New Carbon Functions

Functions in CarbonAccessors.o 129
  Apple Computer, Inc. December 2002

GetListClickLocation GetListClickLoop

GetListClickTime GetListDataBounds

GetListDataHandle GetListDefinition

GetListFlags GetListHorizontalScrollBar

GetListMouseLocation GetListPort

GetListRefCon GetListSelectionFlags

GetListUserHandle GetListVerticalScrollBar

GetListViewBounds GetListVisibleCells

GetMenuHeight GetMenuID

GetMenuTitle GetMenuWidth

GetNextWindow• GetParamText

GetPixBounds GetPixDepth

GetPortBackColor GetPortBackPixPat

GetPortBackPixPatDirect GetPortBitMapForCopyBits•
GetPortBounds GetPortChExtra

GetPortClipRegion GetPortFillPixPat

GetPortForeColor GetPortFracHPenLocation

GetPortGrafProcs GetPortHiliteColor

GetPortOpColor GetPortPenLocation

GetPortPenMode GetPortPenPixPat

GetPortPenPixPatDirect GetPortPenSize

GetPortPenVisibility GetPortPixMap

GetPortPrintingReference GetPortSpExtra

GetPortTextFace GetPortTextFont

GetPortTextMode GetPortTextSize

GetPortVisibleRegion GetQDGlobals

GetQDGlobalsArrow GetQDGlobalsBlack

GetQDGlobalsDarkGray GetQDGlobalsGray

GetQDGlobalsLightGray GetQDGlobalsRandomSeed

GetQDGlobalsScreenBits GetQDGlobalsThePort

GetQDGlobalsWhite GetRegionBounds

Table A-3 Functions in CarbonAccessors.o (continued)

130 Functions in CarbonAccessors.o
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

GetTSMDialogDocumentID GetTSMTEDialogTSMTERecHandle•
GetWindowFromPort GetWindowKind

GetWindowList• GetWindowPort

GetWindowPortBounds GetWindowSpareFlag

GetWindowStandardState GetWindowUserState

InvalWindowRect InvalWindowRgn

IsControlHilited IsPortColor•
IsPortOffscreen IsPortPictureBeingDefined

IsPortRegionBeingDefined IsRegionRectangular

IsTSMTEDialog• IsWindowHilited

IsWindowUpdatePending IsWindowVisible

p2cstrcpy• SetControlBounds

SetControlDataHandle SetControlOwner

SetControlPopupMenuHandle SetControlPopupMenuID

SetListCellIndent SetListClickLoop

SetListClickTime SetListFlags

SetListLastClick SetListPort

SetListRefCon SetListSelectionFlags

SetListUserHandle SetListViewBounds

SetMenuHeight SetMenuID

SetMenuTitle SetMenuWidth

SetPortBackPixPat SetPortBackPixPatDirect

SetPortBounds SetPortClipRegion

SetPortDialogPort SetPortFracHPenLocation

SetPortGrafProcs SetPortOpColor

SetPortPenMode SetPortPenPixPat

SetPortPenPixPatDirect SetPortPenSize

SetPortPrintingReference SetPortVisibleRegion

SetPortWindowPort SetQDError•
SetQDGlobalsArrow SetQDGlobalsRandomSeed

SetTSMDialogDocumentID SetTSMTEDialogTSMTERecHandle•

Table A-3 Functions in CarbonAccessors.o (continued)

A P P E N D I X A

New Carbon Functions

Debugging Functions 131
  Apple Computer, Inc. December 2002

The following functions were removed from CarbonAccessors.o.

Debugging Functions

The following functions have been added to MacMemory.h to aid in debugging.

CheckAllHeaps
pascal Boolean CheckAllHeaps(void);

Checks all applicable heaps for validity. Returns false if there is any corruption.

IsHeapValid
pascal Boolean IsHeapValid(void);

Similar to CheckAllHeaps, but checks only the application heap for validity.

SetWindowKind SetWindowStandardState

SetWindowUserState ValidWindowRect

ValidWindowRgn

Table A-4 Functions removed from CarbonAccessors.o

DisableMenuItem EnableMenuItem

GetControlColorTable GetControlDefinition

GetTSMDialogPtr GetTSMDialogTextEditHandle

GetWindowGoAwayFlag SetControlColorTable

Table A-3 Functions in CarbonAccessors.o (continued)

132 Resource Chain Manipulation Functions
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

IsHandleValid
pascal Boolean IsHandleValid(Handle h);

Returns true if the specified handle is valid. You cannot pass NULL or an empty
handle to IsHandleValid.

IsPointerValid
pascal Boolean IsPointerValid(Ptr p);

Returns true if the specified pointer is valid. You cannot pass NULL or an empty
pointer to IsPointerValid.

Resource Chain Manipulation Functions

Three functions have been added to Resources.h to facilitate resource chain
manipulation in Carbon applications.

InsertResourceFile
OSErr InsertResourceFile(SInt16 refNum, RsrcChainLocation where);

If the file is already in the resource chain, it is removed and re-inserted at the
location specified by the where parameter. If the file has been detached, it is added
to the resource chain at the specified location. Returns resFNotFound if the file is not
currently open. Valid constants for the where parameter are:

// RsrcChainLocation constants for InsertResourceFile

enum short

{

kRsrcChainBelowAll = 0, /* Below all other app files in

the resource chain */

kRsrcChainBelowApplicationMap = 1, /* Below the application's

resource map */

kRsrcChainAboveApplicationMap = 2 /* Above the application's

A P P E N D I X A

New Carbon Functions

Resource Chain Manipulation Functions 133
  Apple Computer, Inc. December 2002

resource map */

};

DetachResourceFile
OSErr DetachResourceFile(SInt16 refNum);

If the file is not currently in the resource chain, this function returns resNotFound.
Otherwise, the resource file is removed from the resource chain.

FSpResourceFileAlreadyOpen
Boolean FSpResourceFileAlreadyOpen (

const FSSpec *resourceFile,

 Boolean *inChain,

SInt16 *refNum);

This function returns true if the resource file is already open and known by the
Resource Manager (that is, if the file is either in the current resource chain or if it’s
a detached resource file). If the file is in the resource chain, the inChain parameter is
set to true on exit and the function returns true. If the file is open but currently
detached, inChain is set to false and the function returns true. If the file is open, the
refNum to the file is returned.

134 Resource Chain Manipulation Functions
  Apple Computer, Inc. December 2002

A P P E N D I X A

New Carbon Functions

135
  Apple Computer, Inc. December 2002

A P P E N D I X B

B The Sample Application

The main code for Sample is included in Sample.c and SampleInit.c as shown in
Listing B-1 and Listing B-2. Sample also includes a definition file, Sample.h, and a
compiled resource file, TCSample.rsrc.

The chapter “A Porting Example” (page 65) describes how to port the Sample
application to Carbon. “An Example: Adding Carbon Events to Sample” (page 103)
describes how to add Carbon events to the Carbon version of Sample.

Listing B-1 Sample.c

/*

File: Sample.c

Contains: Sample is an example application that demonstrates how to

initialize the commonly used toolbox managers, operate

successfully under MultiFinder, handle desk accessories,

and create, grow, and zoom windows.

It does not by any means demonstrate all the techniques

you need for a large application. In particular, Sample

does not cover exception handling, multiple windows/documents,

sophisticated memory management, printing, or undo. All of

these are vital parts of a normal full-sized application.

This application is an example of the form of a Macintosh

application; it is NOT a template. It is NOT intended to be

used as a foundation for the next world-class, best-selling,

600K application. A stick figure drawing of the human body may

136
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

be a good example of the form for a painting, but that does not

mean it should be used as the basis for the next Mona Lisa.

We recommend that you review this program or TESample before

beginning a new application.

Written by:

Copyright: Copyright © 1988-1999 by Apple Computer, Inc., All Rights Reserved.

You may incorporate this Apple sample source code into your program(s) without

restriction. This Apple sample source code has been provided "AS IS" and the

responsibility for its operation is yours. You are not permitted to redistribute

this Apple sample source code as "Apple sample source code" after having made

changes. If you're going to re-distribute the source, we require that you make

it clear in the source that the code was descended from Apple sample source

code, but that you've made changes.

Change History (most recent first):

8/13/1999 Karl Groethe Updated for Metrowerks Codewarror Pro 2.1

*/

/* Segmentation strategy:

 This program consists of three segments.

 1. "Main" contains most of the code, including the MPW libraries, and the

 main program. This segment is in the file Sample.c

 2. "Initialize" contains code that is only used once, during startup, and

 can be unloaded after the program starts. This segment is in the file

 SampleInit.c.

 3. "%A5Init" is automatically created by the Linker to initialize globals

 for the MPW libraries and is unloaded right away. */

/* SetPort strategy:

 Toolbox routines do not change the current port. In spite of this, in this

 program we use a strategy of calling SetPort whenever we want to draw or

 make calls which depend on the current port. This makes us less vulnerable

 to bugs in other software which might alter the current port (such as the

 bug (feature?) in many desk accessories which change the port on OpenDeskAcc).

A P P E N D I X B

The Sample Application

137
  Apple Computer, Inc. December 2002

 Hopefully, this also makes the routines from this program more self-contained,

 since they don't depend on the current port setting. */

#pragma segment Main

#include <Limits.h>

#include <Types.h>

#include <Resources.h>

#include <QuickDraw.h>

#include <Fonts.h>

#include <Events.h>

#include <Windows.h>

#include <Menus.h>

#include <TextEdit.h>

#include <Dialogs.h>

#include <Desk.h>

#include <ToolUtils.h>

#include <Memory.h>

#include <SegLoad.h>

#include <Files.h>

#include <OSUtils.h>

#include <DiskInit.h>

#include <Packages.h>

#include <Traps.h>

#include "Sample.h "/* bring in all the #defines for Sample */

/* The "g" prefix is used to emphasize that a variable is global. */

/* GMac is used to hold the result of a SysEnvirons call. This makes

 it convenient for any routine to check the environment. */

SysEnvRec gMac; /* set up by Initialize */

/* GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent

 trap is available. If it is false, we know that we must call GetNextEvent. */

Boolean gHasWaitNextEvent; /* set up by Initialize */

/* GInBackground is maintained by our osEvent handling routines. Any part of

 the program can check it to find out if it is currently in the background. */

Boolean gInBackground; /* maintained by Initialize and DoEvent */

138
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

/* The following globals are the state of the window. If we supported more than

 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */

Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */

Rect gStopRect; /* set up by Initialize */

Rect gGoRect; /* set up by Initialize */

/* Define TopLeft and BotRight macros for convenience. Notice the implicit

 dependency on the ordering of fields within a Rect */

#define TopLeft(aRect) (* (Point *) &(aRect).top)

#define BotRight(aRect) (* (Point *) &(aRect).bottom)

/* This routine is part of the MPW runtime library. This external

 reference to it is done so that we can unload its segment, %A5Init. */

#ifndef THINK_C

 extern void _DataInit();

#endif

void main()

{

#ifndef THINK_C

UnloadSeg((Ptr) _DataInit); /* note that _DataInit must not be in Main! */

#endif

/* 1.01 - call to ForceEnvirons removed */

/* If you have stack requirements that differ from the default,

then you could use SetApplLimit to increase StackSpace at

this point, before calling MaxApplZone. */

MaxApplZone(); /* expand the heap so code segments load at the top */

Initialize(); /* initialize the program */

UnloadSeg((Ptr) Initialize); /* note that Initialize must not be in Main! */

A P P E N D I X B

The Sample Application

139
  Apple Computer, Inc. December 2002

EventLoop(); /* call the main event loop */

} /*main*/

/* Get events forever, and handle them by calling DoEvent.

Get the events by calling WaitNextEvent, if it's available, otherwise

by calling GetNextEvent. Also call AdjustCursor each time through the loop. */

void EventLoop()

{

RgnHandle cursorRgn;

Boolean gotEvent;

EventRecord event;

Point mouse;

cursorRgn = NewRgn(); /* we’ll pass WNE an empty region the 1st time thru */

do {

/* use WNE if it is available */

if (gHasWaitNextEvent) {

GetGlobalMouse(&mouse);

AdjustCursor(mouse, cursorRgn);

gotEvent = WaitNextEvent(everyEvent, &event, LONG_MAX, cursorRgn);

}

else {

SystemTask();

gotEvent = GetNextEvent(everyEvent, &event);

}

if (gotEvent) {

/* make sure we have the right cursor before handling the event */

AdjustCursor(event.where, cursorRgn);

DoEvent(&event);

}

/* If you are using modeless dialogs that have editText items,

you will want to call IsDialogEvent to give the caret a chance

to blink, even if WNE/GNE returned FALSE. However, check FrontWindow

for a non-NIL value before calling IsDialogEvent. */

} while (true); /* loop forever; we quit via ExitToShell */

} /*EventLoop*/

/* Do the right thing for an event. Determine what kind of event it is, and call

 the appropriate routines. */

140
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

void DoEvent(EventRecord *event)

{

short part, err;

WindowPtr window;

Boolean hit;

char key;

Point aPoint;

switch (event->what) {

case mouseDown:

part = FindWindow(event->where, &window);

switch (part) {

case inMenuBar: /* process a mouse menu command (if any) */

AdjustMenus();

DoMenuCommand(MenuSelect(event->where));

break;

case inSysWindow: /* let the system handle the mouseDown */

SystemClick(event, window);

break;

case inContent:

if (window != FrontWindow()) {

SelectWindow(window);

/*DoEvent(event);*//* use this line for "do first click" */

} else

DoContentClick(window);

break;

case inDrag: /* pass screenBits.bounds to get all gDevices */

DragWindow(window, event->where, &qd.screenBits.bounds);

break;

case inGrow:

break;

case inZoomIn:

case inZoomOut:

hit = TrackBox(window, event->where, part);

if (hit) {

SetPort(window); /* the window must be the current port... */

EraseRect(&window->portRect); /* because of a bug in */

/* ZoomWindow */

ZoomWindow(window, part, true); /* note that we invalidate */

/* and erase... */

A P P E N D I X B

The Sample Application

141
  Apple Computer, Inc. December 2002

InvalRect(&window->portRect); /* to make things look */

/* better on-screen */

}

break;

}

break;

case keyDown:

case autoKey: /* check for menukey equivalents */

key = event->message & charCodeMask;

if (event->modifiers & cmdKey) /* Command key down */

if (event->what == keyDown) {

AdjustMenus(); /* enable/disable/check menu items properly */

DoMenuCommand(MenuKey(key));

}

break;

case activateEvt:

DoActivate((WindowPtr) event->message,

(event->modifiers & activeFlag) != 0);

break;

case updateEvt:

DoUpdate((WindowPtr) event->message);

break;

/* 1.01 - It is not a bad idea to at least call DIBadMount in response

to a diskEvt, so that the user can format a floppy. */

case diskEvt:

if (HiWord(event->message) != noErr) {

SetPt(&aPoint, kDILeft, kDITop);

err = DIBadMount(aPoint, event->message);

}

break;

case kOSEvent:

/* 1.02 - must BitAND with 0x0FF to get only low byte */

switch ((event->message >> 24) & 0x0FF) { /* high byte of message */

case kSuspendResumeMessage: /* suspend/resume is also an */

/* activate/deactivate */

gInBackground = (event->message & kResumeMask) == 0;

DoActivate(FrontWindow(), !gInBackground);

break;

}

break;

}

142
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

} /*DoEvent*/

/* Change the cursor's shape, depending on its position. This also calculates the region

where the current cursor resides (for WaitNextEvent). If the mouse is ever outside of

that region, an event would be generated, causing this routine to be called,

allowing us to change the region to the region the mouse is currently in. If

there is more to the event than just “the mouse moved”, we get called before the

event is processed to make sure the cursor is the right one. In any (ahem) event,

this is called again before we fall back into WNE. */

void AdjustCursor(Point mouse, RgnHandle region)

{

WindowPtr window;

RgnHandle arrowRgn;

RgnHandle plusRgn;

Rect globalPortRect;

window = FrontWindow(); /* we only adjust the cursor when we are in front */

if ((! gInBackground) && (! IsDAWindow(window))) {

/* calculate regions for different cursor shapes */

arrowRgn = NewRgn();

plusRgn = NewRgn();

/* start with a big, big rectangular region */

SetRectRgn(arrowRgn, kExtremeNeg, kExtremeNeg, kExtremePos, kExtremePos);

/* calculate plusRgn */

if (IsAppWindow(window)) {

SetPort(window); /* make a global version of the viewRect */

SetOrigin(-window->portBits.bounds.left, -window->portBits.bounds.top);

globalPortRect = window->portRect;

RectRgn(plusRgn, &globalPortRect);

SectRgn(plusRgn, window->visRgn, plusRgn);

SetOrigin(0, 0);

}

/* subtract other regions from arrowRgn */

DiffRgn(arrowRgn, plusRgn, arrowRgn);

/* change the cursor and the region parameter */

A P P E N D I X B

The Sample Application

143
  Apple Computer, Inc. December 2002

if (PtInRgn(mouse, plusRgn)) {

SetCursor(*GetCursor(plusCursor));

CopyRgn(plusRgn, region);

} else {

SetCursor(&qd.arrow);

CopyRgn(arrowRgn, region);

}

/* get rid of our local regions */

DisposeRgn(arrowRgn);

DisposeRgn(plusRgn);

}

} /*AdjustCursor*/

/* Get the global coordinates of the mouse. When you call OSEventAvail

it will return either a pending event or a null event. In either case,

the where field of the event record will contain the current position

of the mouse in global coordinates and the modifiers field will reflect

the current state of the modifiers. Another way to get the global

coordinates is to call GetMouse and LocalToGlobal, but that requires

being sure that thePort is set to a valid port. */

void GetGlobalMouse(Point *mouse)

{

EventRecord event;

OSEventAvail(kNoEvents, &event); /* we aren't interested in any events */

mouse = event.where; / just the mouse position */

} /*GetGlobalMouse*/

/* This is called when an update event is received for a window.

It calls DrawWindow to draw the contents of an application window.

As an efficiency measure that does not have to be followed, it

calls the drawing routine only if the visRgn is non-empty. This

will handle situations where calculations for drawing or drawing

itself is very time-consuming. */

void DoUpdate(WindowPtr window)

{

144
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

if (IsAppWindow(window)) {

BeginUpdate(window); /* this sets up the visRgn */

if (! EmptyRgn(window->visRgn)) /* draw if updating needs to be done */

DrawWindow(window);

EndUpdate(window);

}

} /*DoUpdate*/

/* This is called when a window is activated or deactivated.

In Sample, the Window Manager's handling of activate and

deactivate events is sufficient. Other applications may have

TextEdit records, controls, lists, etc., to activate/deactivate. */

void DoActivate(WindowPtr window, Boolean becomingActive)

{

if (IsAppWindow(window)) {

if (becomingActive)

/* do whatever you need to at activation */ ;

else

/* do whatever you need to at deactivation */ ;

}

} /*DoActivate*/

/* This is called when a mouse-down event occurs in the content of a window.

Other applications might want to call FindControl, TEClick, etc., to

further process the click. */

void DoContentClick(WindowPtr window)

{

SetLight(window, ! gStopped);

} /*DoContentClick*/

/* Draw the contents of the application window. We do some drawing in color, using

 Classic QuickDraw's color capabilities. This will be black and white on old

 machines, but color on color machines. At this point, the window’s visRgn

 is set to allow drawing only where it needs to be done. */

void DrawWindow(WindowPtr window)

A P P E N D I X B

The Sample Application

145
  Apple Computer, Inc. December 2002

{

SetPort(window);

EraseRect(&window->portRect); /* clear out any garbage that may linger */

if (gStopped) /* draw a red (or white) stop light */

ForeColor(redColor);

else

ForeColor(whiteColor);

PaintOval(&gStopRect);

ForeColor(blackColor);

FrameOval(&gStopRect);

if (! gStopped) /* draw a green (or white) go light */

ForeColor(greenColor);

else

ForeColor(whiteColor);

PaintOval(&gGoRect);

ForeColor(blackColor);

FrameOval(&gGoRect);

} /*DrawWindow*/

/* Enable and disable menus based on the current state.

The user can only select enabled menu items. We set up all the menu items

before calling MenuSelect or MenuKey, since these are the only times that

a menu item can be selected. Note that MenuSelect is also the only time

the user will see menu items. This approach to deciding what enable/

disable state a menu item has the advantage of concentrating all

the decision-making in one routine, as opposed to being spread throughout

the application. Other application designs may take a different approach

that is just as valid. */

void AdjustMenus()

{

WindowPtr window;

MenuHandle menu;

window = FrontWindow();

146
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

menu = GetMenuHandle(mFile);

if (IsDAWindow(window)) /* we can allow desk accessories to be */

/* closed from the menu */

EnableItem(menu, iClose);

else

DisableItem(menu, iClose); /* but not our traffic light window */

menu = GetMenuHandle(mEdit);

if (IsDAWindow(window)) { /* a desk accessory might need the edit menu… */

EnableItem(menu, iUndo);

EnableItem(menu, iCut);

EnableItem(menu, iCopy);

EnableItem(menu, iClear);

EnableItem(menu, iPaste);

} else { /* …but we don’t use it */

DisableItem(menu, iUndo);

DisableItem(menu, iCut);

DisableItem(menu, iCopy);

DisableItem(menu, iClear);

DisableItem(menu, iPaste);

}

menu = GetMenuHandle(mLight);

if (IsAppWindow(window)) { /* we know that it must be the traffic light */

EnableItem(menu, iStop);

EnableItem(menu, iGo);

} else {

DisableItem(menu, iStop);

DisableItem(menu, iGo);

}

CheckItem(menu, iStop, gStopped); /* we can also determine the check/uncheck */

 /* state,too */

CheckItem(menu, iGo, ! gStopped);

} /*AdjustMenus*/

/* This is called when an item is chosen from the menu bar (after calling

MenuSelect or MenuKey). It performs the right operation for each command.

It is good to have both the result of MenuSelect and MenuKey go to

one routine like this to keep everything organized. */

A P P E N D I X B

The Sample Application

147
  Apple Computer, Inc. December 2002

void DoMenuCommand(long menuResult)

{

short menuID; /* the resource ID of the selected menu */

short menuItem; /* the item number of the selected menu */

short itemHit;

Str255 daName;

short daRefNum;

Boolean handledByDA;

menuID = HiWord(menuResult); /* use macros for efficiency to... */

menuItem = LoWord(menuResult); /* get menu item number and menu number */

switch (menuID) {

case mApple:

switch (menuItem) {

case iAbout: /* bring up alert for About */

itemHit = Alert(rAboutAlert, nil);

break;

default: /* all non-About items in this menu are DAs */

/* type Str255 is an array in MPW 3 */

GetMenuItemText(GetMenuHandle(mApple), menuItem, daName);

daRefNum = OpenDeskAcc(daName);

break;

}

break;

case mFile:

switch (menuItem) {

case iClose:

DoCloseWindow(FrontWindow());

break;

case iQuit:

Terminate();

break;

}

break;

case mEdit: /* call SystemEdit for DA editing & MultiFinder */

handledByDA = SystemEdit(menuItem-1); /* since we don’t do any Editing */

break;

case mLight:

switch (menuItem) {

case iStop:

SetLight(FrontWindow(), true);

148
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

break;

case iGo:

SetLight(FrontWindow(), false);

break;

}

break;

}

HiliteMenu(0); /* unhighlight what MenuSelect (or MenuKey) hilited */

} /*DoMenuCommand*/

/* Change the setting of the light. */

void SetLight(WindowPtr window, Boolean newStopped)

{

if (newStopped != gStopped) {

gStopped = newStopped;

SetPort(window);

InvalRect(&window->portRect);

}

} /*SetLight*/

/* Close a window. This handles desk accessory and application windows. */

/* 1.01 - At this point, if there was a document associated with a

window, you could do any document saving processing if it is 'dirty'.

DoCloseWindow would return true if the window actually closed, i.e.,

the user didn’t cancel from a save dialog. This result is handy when

the user quits an application, but then cancels the save of a document

associated with a window. */

Boolean DoCloseWindow(WindowPtr window)

{

if (IsDAWindow(window))

CloseDeskAcc(((WindowPeek) window)->windowKind);

else if (IsAppWindow(window))

CloseWindow(window);

return true;

} /*DoCloseWindow*/

A P P E N D I X B

The Sample Application

149
  Apple Computer, Inc. December 2002

/**

*** 1.01 DoCloseBehind(window) was removed ***

1.01 - DoCloseBehind was a good idea for closing windows when quitting

and not having to worry about updating the windows, but it suffered

from a fatal flaw. If a desk accessory owned two windows, it would

close both those windows when CloseDeskAcc was called. When DoCloseBehind

got around to calling DoCloseWindow for that other window that was already

closed, things would go very poorly. Another option would be to have a

procedure, GetRearWindow, that would go through the window list and return

the last window. Instead, we decided to present the standard approach

of getting and closing FrontWindow until FrontWindow returns NIL. This

has a potential benefit in that the window whose document needs to be saved

may be visible since it is the front window, therefore decreasing the

chance of user confusion. For aesthetic reasons, the windows in the

application should be checked for updates periodically and have the

updates serviced.

**/

/* Clean up the application and exit. We close all of the windows so that

 they can update their documents, if any. */

/* 1.01 - If we find out that a cancel has occurred, we won't exit to the */

/* shell, but will return instead. */

void Terminate()

{

WindowPtr aWindow;

Boolean closed;

closed = true;

do {

aWindow = FrontWindow(); /* get the current front window */

if (aWindow != nil)

closed = DoCloseWindow(aWindow); /* close this window */

}

while (closed && (aWindow != nil));

if (closed)

ExitToShell(); /* exit if no cancellation */

150
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

} /*Terminate*/

/* Check to see if a window belongs to the application. If the window pointer

passed was NIL, then it could not be an application window. WindowKinds

that are negative belong to the system and windowKinds less than userKind

are reserved by Apple except for windowKinds equal to dialogKind, which

mean it is a dialog.

1.02 - In order to reduce the chance of accidentally treating some window

as an AppWindow that shouldn't be, we'll only return true if the windowkind

is userKind. If you add different kinds of windows to Sample you'll need

to change how this all works. */

Boolean IsAppWindow(WindowPtr window)

{

short windowKind;

if (window == nil)

return false;

else { /* application windows have windowKinds = userKind (8) */

windowKind = ((WindowPeek) window)->windowKind;

return (windowKind == userKind);

}

} /*IsAppWindow*/

/* Check to see if a window belongs to a desk accessory. */

Boolean IsDAWindow(WindowPtr window)

{

if (window == nil)

return false;

else /* DA windows have negative windowKinds */

return (((WindowPeek) window)->windowKind < 0);

} /*IsDAWindow*/

/* Display an alert that tells the user an error occurred, then exit the program.

This routine is used as an ultimate bail-out for serious errors that prohibit

the continuation of the application. Errors that do not require the termination

of the application should be handled in a different manner. Error checking and

A P P E N D I X B

The Sample Application

151
  Apple Computer, Inc. December 2002

reporting has a place even in the simplest application. The error number is used

to index an 'STR#' resource so that a relevant message can be displayed. */

void AlertUser()

{

short itemHit;

SetCursor(&qd.arrow);

itemHit = Alert(rUserAlert, nil);

ExitToShell();

} /* AlertUser */

Listing B-2 SampleInit.c

/* File: SampleInit.c */

/* Repeated comments from Sample.c removed */

#pragma segment Initialize

#include <Limits.h>

#include <Types.h>

#include <Resources.h>

#include <QuickDraw.h>

#include <Fonts.h>

#include <Events.h>

#include <Windows.h>

#include <Menus.h>

#include <TextEdit.h>

#include <Dialogs.h>

#include <Desk.h>

#include <ToolUtils.h>

#include <Memory.h>

#include <SegLoad.h>

#include <Files.h>

#include <OSUtils.h>

#include <DiskInit.h>

#include <Packages.h>

#include <Traps.h>

152
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

#include <OSUtils.h>

#include "Sample.h "/* bring in all the #defines for Sample */

/* The "g" prefix is used to emphasize that a variable is global. */

/* All are extern since the variables are declared in the main segment. */

/* GMac is used to hold the result of a SysEnvirons call. This makes

 it convenient for any routine to check the environment. */

extern SysEnvRec gMac; /* set up by Initialize */

/* GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent

 trap is available. If it is false, we know that we must call GetNextEvent. */

extern Boolean gHasWaitNextEvent; /* set up by Initialize */

/* GInBackground is maintained by our osEvent handling routines. Any part of

 the program can check it to find out if it is currently in the background. */

extern Boolean gInBackground; /* maintained by Initialize and DoEvent */

/* The following globals are the state of the window. If we supported more than

 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */

extern Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */

extern Rect gStopRect; /* set up by Initialize */

extern Rect gGoRect; /* set up by Initialize */

/* Set up the whole world, including global variables, Toolbox managers,

and menus. We also create our one application window at this time.

Since window storage is non-relocateable, how and when to allocate space

for windows is very important so that heap fragmentation does not occur.

Because Sample has only one window and it is only disposed when the application

quits, we will allocate its space here, before anything that might be a locked

relocatable object gets into the heap. This way, we can force the storage to be

in the lowest memory available in the heap. Window storage can differ widely

amongst applications depending on how many windows are created and disposed. */

A P P E N D I X B

The Sample Application

153
  Apple Computer, Inc. December 2002

/* 1.01 - The code that used to be part of ForceEnvirons has been moved into

this module. If an error is detected, instead of merely doing an ExitToShell,

which leaves the user without much to go on, we call AlertUser, which puts

up a simple alert that just says an error occurred and then calls ExitToShell.

Since there is no other cleanup needed at this point if an error is detected,

this form of error- handling is acceptable. If more sophisticated error recovery

is needed, an exception mechanism, such as is provided by Signals, can be used. */

void Initialize()

{

Handle menuBar;

WindowPtr window;

long total, contig;

EventRecord event;

short count;

gInBackground = false;

InitGraf((Ptr) &qd.thePort);

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(nil);

InitCursor();

/* Call MPPOpen and ATPLoad at this point to initialize AppleTalk,

 if you are using it. */

/* NOTE -- It is no longer necessary, and actually unhealthy, to check

PortBUse and SPConfig before opening AppleTalk. The drivers are capable

of checking for port availability themselves. */

/* This next bit of code is necessary to allow the default button of our

alert be outlined.

1.02 - Changed to call EventAvail so that we don't lose some important

events. */

for (count = 1; count <= 3; count++)

EventAvail(everyEvent, &event);

/* Ignore the error returned from SysEnvirons; even if an error occurred,

154
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

the SysEnvirons glue will fill in the SysEnvRec. You can save a redundant

call to SysEnvirons by calling it after initializing AppleTalk. */

SysEnvirons(kSysEnvironsVersion, &gMac);

/* Make sure that the machine has at least 128K ROMs. If it doesn't, exit. */

if (gMac.machineType < 0) AlertUser();

/* 1.02 - Move TrapAvailable call to after SysEnvirons so that we can tell

in TrapAvailable if a tool trap value is out of range. */

gHasWaitNextEvent = TrapAvailable(_WaitNextEvent, ToolTrap);

/* 1.01 - We used to make a check for memory at this point by examining ApplLimit,

ApplicationZone, and StackSpace and comparing that to the minimum size we told

MultiFinder we needed. This did not work well because it assumed too much about

the relationship between what we asked MultiFinder for and what we would actually

get back, as well as how to measure it. Instead, we will use an alternate

method comprised of two steps. */

/* It is better to first check the size of the application heap against a value

that you have determined is the smallest heap the application can reasonably

work in. This number should be derived by examining the size of the heap that

is actually provided by MultiFinder when the minimum size requested is used.

The derivation of the minimum size requested from MultiFinder is described

in Sample.h. The check should be made because the preferred size can end up

being set smaller than the minimum size by the user. This extra check acts to

insure that your application is starting from a solid memory foundation. */

if ((long) GetApplLimit() - (long) ApplicationZone() < kMinHeap) AlertUser();

/* Next, make sure that enough memory is free for your application to run. It

is possible for a situation to arise where the heap may have been of required

size, but a large scrap was loaded which left too little memory. To check for

this, call PurgeSpace and compare the result with a value that you have

determined is the minimum amount of free memory your application needs at

initialization. This number can be derived several different ways. One way that

is fairly straightforward is to run the application in the minimum size

configuration as described previously. Call PurgeSpace at initialization and

examine the value returned. However, you should make sure that this result is not

A P P E N D I X B

The Sample Application

155
  Apple Computer, Inc. December 2002

being modified by the scrap's presence. You can do that by calling ZeroScrap

before calling PurgeSpace. Remove this call before shipping, though. */

/* ZeroScrap(); */

PurgeSpace(&total, &contig);

if (total < kMinSpace) AlertUser();

/* The extra benefit to waiting until after the Toolbox Managers have been

initialized to check memory is that we can now give the user an alert to tell

him/her what happened. Although it is possible that the memory situation could

be worsened by displaying an alert, MultiFinder would gracefully exit the

application with an informative alert if memory became critical. Here we are

acting more in a preventative manner to avoid future disaster from low-memory

problems. */

/* We will allocate our own window storage instead of letting the Window

Manager do it because GetNewWindow may load in temp. resources before

making the NewPtr call, and this can lead to heap fragmentation. */

window = (WindowPtr) NewPtr(sizeof(WindowRecord));

if (window == nil) AlertUser();

window = GetNewWindow(rWindow, (Ptr) window, (WindowPtr) -1);

menuBar = GetNewMBar(rMenuBar); /* read menus into menu bar */

if (menuBar == nil) AlertUser();

SetMenuBar(menuBar); /* install menus */

DisposeHandle(menuBar);

AppendResMenu(GetMenuHandle(mApple), 'DRVR'); /* add DA names to Apple menu */

DrawMenuBar();

gStopped = true;

if (!GoGetRect(rStopRect, &gStopRect))

AlertUser(); /* the stop light rectangle */

if (!GoGetRect(rGoRect, &gGoRect))

AlertUser(); /* the go light rectangle */

} /*Initialize*/

/* This utility loads the global rectangles that are used by the window

drawing routines. It shows how the resource manager can be used to hold

156
  Apple Computer, Inc. December 2002

A P P E N D I X B

The Sample Application

values in a convenient manner. These values are then easily altered without

having to re-compile the source code. In this particular case, we know

that this routine is being called at initialization time. Therefore,

if a failure occurs here, we will assume that the application is in such

bad shape that we should just exit. Your error handling may differ, but

the check should still be made. */

Boolean GoGetRect(short rectID, Rect *theRect)

{

Handle resource;

resource = GetResource('RECT', rectID);

if (resource != nil) {

*theRect = **((Rect**) resource);

return true;

}

else

return false;

} /* GoGetRect */

/* Check to see if a given trap is implemented. This is only used by the

Initialize routine in this program, so we put it in the Initialize segment.

The recommended approach to see if a trap is implemented is to see if

the address of the trap routine is the same as the address of the

Unimplemented trap. */

/* 1.02 - Needs to be called after call to SysEnvirons so that it can check

if a ToolTrap is out of range of a pre-MacII ROM. */

Boolean TrapAvailable(short tNumber, TrapType tType)

{

if ((tType == ToolTrap) &&

(gMac.machineType > envMachUnknown) &&

(gMac.machineType < envMacII)) { /* it's a 512KE, Plus, or SE */

tNumber = tNumber & 0x03FF;

if (tNumber > 0x01FF) /* which means the tool traps */

tNumber = _Unimplemented; /* only go to 0x01FF */

}

return NGetTrapAddress(tNumber, tType) !=

NGetTrapAddress(_Unimplemented, ToolTrap);

} /*TrapAvailable*/

157
  Apple Computer, Inc. December 2002

A P P E N D I X C

C Document Version History

This appendix lists changes to the Carbon Porting Guide:

Table C-1 Carbon Porting Guide revision history

Version Notes

Updated path to LaunchCFMApp in “Debugging Your Application”
(page 62) to match that in “Running Your Application on Mac OS X”
(page 59).

Updated CodeWarrior Mach-O information in “Building Carbon
Applications” (page 55) to remove mention of the older cross-compiler.

Updated
version
6/23/01

Spelling correction: “supercedes” should be “supersedes.”

Added Important note to “Replace Macro Calls to the Mixed Mode
Manager With UPP Accessor Functions” (page 28) indicating that Thread
Manager functions that did not previously require UPPs for function
pointers now require them in Carbon.

Added new section: “Move Custom Definition Procedures Out of
Resources” (page 29).

Added additional information to “Add a 'plst' 0 Resource” (page 33) about
how the Mac OS X Finder interprets the presence of resource forks and
'plst' 0 resources in determining what environment to launch an
application.

IB Carbon Runtime in “Determine the Appropriate CarbonLib Version”
(page 35) is now called Interface Builder Services.

158
  Apple Computer, Inc. December 2002

A P P E N D I X C

Document Version History

Added new section “Do Not Write to Your Application’s Resource Fork”
(page 37).

Changed text in “Running Your Application on Mac OS X” (page 59) to
reflect new path to LaunchCFMApp: /System/Library/Frameworks/
Carbon.framework/Versions/A/Support/LaunchCFMApp.

Correction in “Carbon Event Manager” (page 99): The Carbon Event
Manager does not replace the functionality of the Notification Manager.

First public
release
12/4/00

The Aqua guidelines document, Adopting the Aqua Interface, is now called
Inside Mac OS X: Aqua Human Interface Guidelines.

Changed “Add a 'carb' 0 Resource” to “Add a 'plst' 0 Resource” (page 33).
The 'plst' 0 resource supersedes the 'carb' 0 resource.

Correction in “Consider Using Bundles” (page 49): A bundle appears as a
folder hierarchy on Mac OS X if the bundle bit is unset (not set as
previously stated).

Added information about __appstart to “Building Applications Using
MPW” (page 61).

Indicated in “Update Modified or Obsolete Functions” (page 76) and “The
Basic Conversion” (page 104) that Carbon does not support the diskEvt
event. Removed diskEvt case from Carbon version of Sample.

Further subdivided “The Basic Conversion” (page 104) by adding sections
“Installing the Standard Event Handlers” (page 105) and “Registering Your
Own Event Handlers” (page 106).

Added information about the event handler parameters in “The
Application-Level Event Handler” (page 107).

11/15/00
interim draft

General correction: specific references to CarbonLib 1.1 updated to
CarbonLib 1.2.

General correction: CarbonStub now renamed CarbonLibStub.

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

A P P E N D I X C

Document Version History

159
  Apple Computer, Inc. December 2002

In “Preparing Your Code for Carbon” (page 21), added a link to Technote
TN2003, “Moving Your Code to Mac OS X.”

Changed URL link in “Use the Carbon SDK” (page 26) to http://
developer.apple.com/macosx/carbon/index.html, as this location is more
Carbon-specific and allows ADC members to download prerelease versions
of the SDK.

Declaration that CarbonAccessors.o is only a porting tool softened in “Begin
With CarbonAccessors.o” (page 26) and “Functions in CarbonAccessors.o”
(page 128). You can link against CarbonAccessors.o to simplify building
non-Carbon applications from a Carbon code base.

In “Conditionalize Quit Menu Items” (page 34), reworded the text to
emphasize that the position of the Quit item is a feature of the user
interface (Aqua versus Mac OS 8 and 9) rather than of the underlying
system.

Added more information to “Begin Transitioning to the Aqua Interface”
(page 50), including details about Appearance Manager compliance, sheets,
and help tags.

In “Adopt a Terse Name for the Application Menu” (page 51) changed the
recommended storage location for the name from Info.plist to
InfoPlist.strings, because the latter allows the name to be localized.

Simplified methods of transferring files between Mac OS X and Mac OS 8
and 9 in “Native Mac OS 9 Versus Mac OS X’s Classic Environment”
(page 55), as file sharing is now fully supported.

Added About box screen shot to “Modify the About Box” (page 80).

Mentioned in “The Application-Level Event Handler” (page 107) that you
could assign a command ID for a menu item in an 'xmnu' resource instead
of calling SetMenuItemCommandID.

Bug fix in Listing 5-1 (page 107): Added DisposeRgn call to the
kEventMouseMoved case of the application event handler to deallocate
memory from the NewRgn call.

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

160
  Apple Computer, Inc. December 2002

A P P E N D I X C

Document Version History

10/24/00
interim draft

Revised text in “Resources” (page 17) and “Move Resources to Data
Fork–Based Files” (page 48) to emphasize that the preferred method for
accessing application resources is by using CFBundle APIs. Also added that
the 'cfrg' 0 and 'carb' 0 resources need to remain in the resource fork for
CFM-based Carbon applications so the Mac OS X Finder can launch them
properly.

The Carbon Event Manager constant kEventWindowSizeChanged now
replaced by kEventWindowBoundsChanged.

In section “Check Your OpenGL Code” (page 38), the
OpenGLMemoryLibrary library is now compatible with Carbon. Also, if
you are building a Mach-O Carbon applicatiojn that uses OpenGL, you
must call the aglConfigure function before creating any OpenGL contexts.

Added screen shot of the ported Sample application to “The Carbon
Version of Sample” (page 81).

Added information about new Carbon technology “Multilingual Text
Engine (MLTE)” (page 102).

Added Index.

10/12/00
review draft

Correction in “How Does Carbon Work?” (page 14): CarbonLibStub changed
to CarbonStub.

Changed section “Adopt the Carbon.h Header” to “Modify or
Conditionalize Your Headers” (page 32). You no longer need to adopt
Carbon.h. The path required for the cc compiler is now -I /Developer/
Headers/FlatCarbon. You can also use this path with the conventional Mac
OS 8 and 9 headers when building on Mac OS X.

Changed text in “Begin Transitioning to the Aqua Interface” (page 50) to
indicate that your application automatically registers with the Appearance
Manager when you link with CarbonLib.

Added new chapters, “A Porting Example” (page 65) and “New Carbon
Technologies” (page 99).

Added new appendix, “The Sample Application” (page 135) which
contains the source code to be ported in “A Porting Example” (page 65).

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

A P P E N D I X C

Document Version History

161
  Apple Computer, Inc. December 2002

Revised
Public Beta
 9/7/00

Updated software and header versions to reflect the latest available.

Added new porting guideline “Modify or Conditionalize Your Headers”
(page 32).

Added info about using plists to signify Mac OS X Carbon applications in
“Add a 'plst' 0 Resource” (page 33) and “Running Your Application on
Mac OS X” (page 59).

Correction in “Determine the Appropriate CarbonLib Version” (page 35)::
Appearance Manager 1.1 is available in all versions of CarbonLib, not
just 1.1 and later. Also, DataBrowser is now available back to System 8.6.

“Handling Buffered Windows” (page 39) section added, which incorporates
information from the older section “Drawing into Windows Without
QuickDraw”.

Added more specific event information (for example, which event to wait
on) in answers to questions in “Window Dragging and Resizing Q&A”
(page 41).

The Aqua guidelines document referenced in “Begin Transitioning to the
Aqua Interface” (page 50) is now Adopting the Aqua Interface. Added URL
pointer to the document.

Added new porting guidelines: “Move Resources to Data Fork–Based
Files” (page 48) and “Consider Using Bundles” (page 49).

Added new build section “Building Applications Using MPW” (page 61).

Added new sections “Changes to WDEFs” (page 115) and “Changes to
MDEFs” (page 116) under “Custom Definition Procedures” (page 115).

Removed private functions from CarbonAccessors.o list in Table A-3
(page 128).

In Table A-3 (page 128), QError should be QDError.

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

162
  Apple Computer, Inc. December 2002

A P P E N D I X C

Document Version History

Removed functions accidentally identified as removed from
CarbonAccessors.o in Table A-3 (page 128): GetWindowKind, SetWindowKind,
GetKeys, GetWindowSpareFlag, InvalWindowRect, and InvalWindowRgn,.

Public Beta
7/11/00

Major reorganization of material.

“Introduction” (page 11) rewritten to reflect the current state of Carbon.

Porting guidelines reorganized into sections: “Essential Steps for Porting
Your Application” (page 25), “Additional Porting Issues” (page 35), and
“Optimizing Your Code for Carbon” (page 45).

Some existing porting sections were renamed to better integrate wth the
new sections.

New porting guideline sections added: “Use the Carbon SDK” (page 26),
“Target Mac OS 8 and 9 First” (page 26), “Use DebuggingCarbonLib”
(page 32), “Adopt Required Carbon Technologies” (page 33), “Update
Modified or Obsolete Functions” (page 33), “Determine the Appropriate
CarbonLib Version” (page 35), “Examine Your Plug-ins” (page 38), “Adopt
HFS Plus APIs” (page 47), “Consider Mach-O Executables” (page 48),
“Adopt a Terse Name for the Application Menu” (page 51).

Softened requirements for the contents of a carb'0' resource in “Add a
'plst' 0 Resource” (page 33). The resource can contain arbitrary data.

Comparision of CFM versus Mach-O object file formats moved to the
porting guidelines chapter under “Consider Mach-O Executables”
(page 48).

“Linking to Non-Carbon-Compliant Code” (page 38) moved to porting
guidelines chapter.

Directory paths in Mac OS X have changed:

Path /System/Developer/Tools/LaunchCFMApp is now /Developer/Tools/
LaunchCFMApp.

Path System/Administration/Terminal.app is now /Applications/
Utilities/Terminal.app.

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

A P P E N D I X C

Document Version History

163
  Apple Computer, Inc. December 2002

Function descriptions and other reference-like material moved to the
Appendix: “Custom Definition Procedures” (page 115), “Functions for
Accessing Opaque Data Structures” (page 116), “Functions in
CarbonAccessors.o” (page 128), “Debugging Functions” (page 131), and
“Resource Chain Manipulation Functions” (page 132).

Revised contents of CarbonAccessors.o in Table A-3 (page 128) and Table
A-4 (page 131).

Developer
Preview 4

Updated software and header versions to reflect the latest available (for
example, CarbonLib 1.1 and Universal Interfaces 3.4d2).

Added new section, “The Carbon Specification” (page 24).

Added new sections describing preparations for Carbon conversion:“Don’t
Pass Pointers Across Processes” (page 37)“Avoid Polling and Busy Waiting”
(page 46)“Use Casting Functions to Convert DialogPtrs and WindowPtrs”
(page 27)“Use “Lazy” Initialization for Shared Libraries” (page 47)“Check
Your OpenGL Code” (page 38)“Begin Transitioning to the Aqua Interface”
(page 50)“Provide Thumbnail Icons for Your Application” (page 51)

Added information about avoiding preallocation and suballocators in
“Manage Memory Efficiently” (page 45).

Created new section, “Window Manager Issues” (page 39), to cover
Window Manager porting issues in detail.

In Table A-1 (page 121), added SetMenuDefinition as the accessor function
for the MenuProc element in a MenuInfo structure.

Added Table A-2 (page 124) listing QuickDraw accessor functions.

Added information about transferring files between Mac OS 9 and Mac OS
X computers in “Native Mac OS 9 Versus Mac OS X’s Classic Environment”
(page 55).

Revised contents of CarbonAccessors.o in Table A-3 (page 128)..

Added list of functions removed from CarbonAccessors.o in Table A-4
(page 131).

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

164
  Apple Computer, Inc. December 2002

A P P E N D I X C

Document Version History

Emphasized that you cannot link with InterfaceLib if you link to CarbonLib
in “Using CodeWarrior to Build a CFM Carbon Application” (page 56)

Created new section, “Linking to Non-Carbon-Compliant Code” (page 38).

Revised “Debugging Your Application” (page 62) to include specific
information about debugging Carbon applications using GDB.

Added this document revision history.

Table C-1 Carbon Porting Guide revision history (continued)

Version Notes

165

Index

Symbols

'SIZE' resource 61
__appstart entry point in MPW 61
__startentry point in MPW 61
’carb’0 resource 33, 59
’plst’0 resource 33, 59, 77

versus Info.plist file 50

A

About box 80, 109
accessor functions 118

for handling universal procedure pointers 28
for Human Interface Toolbox structures 121
for QuickDraw data structures 124

ACCESSOR_CALLS_ARE_FUNCTIONS 26, 72
aglConfigure, calling from Mach-O Carbon

applications 38
Apple events 34, 78
application address spaces 16
application menu, naming convention for 51
application threading 16
application-defined functions 19
Aqua

adopting in Carbon applications 50
changes to Sample application for 80
Quit menu item in 34, 78

B

benefits of Carbon 12
buffered windows, handling 39
building Carbon applications using MPW 61

building Carbon applications with CodeWarrior.
<i>See CodeWarrior

bundles 48, 49

C

Carbon
API composition of 13
benefits of 12
defined 11
events. <i>See Carbon Event Manager
feedback URL for 20
frameworks on Mac OS X 14
functions unavailable in 14
implementation on Mac OS X and Mac OS 8

and 9 14
memory management in 45
plug-ins 38
printing in 18
SDK, location of 26

Carbon Dater tool 22, 66
Carbon Event Manager

adding to Sample application 103
handling menu selections using 104
installing event handlers 105
keyboard events 104
overview 99
quitting the application 110
resizing windows with 44
standard event handlers 103
timers, in place of null events 46, 110
tracking window movement using 42

Carbon events <i>See Carbon Event Manager
Carbon Printing Manager 33
Carbon Specification 24
Carbon Support folder 57
Carbon.h header 32, 74

I N D E X

166

CarbonAccessors.o 26
contents of 128
used to port Sample application 72
using with non-Carbon applications 27

CarbonLib
versions of 35
versus Carbon frameworks 14

CarbonLibStub stub library 14
casting functions 27, 117
CFBundle APIs 49
changes to this document 157
CheckAllHeaps function 131
Classic environment versus Mac OS 9 55
Code Fragment Manager 17, 48
CodeWarrior

building Sample application with 71
using to build Carbon applications 56, 57

command IDs 109
composition of Carbon 13
control panels 18
converting types WindowPtr and DialogPtr 27
Core Foundation, overview 100
custom definition procedures 18, 115
custom menu definitions 116
custom window definitions 44, 115

D

data fork, resources in 17, 48
data structures, opaque 19, 116
DataBrowser, overview 101
debugging Carbon applications 62
debugging functions, new 131
DebuggingCarbonLib 32
defprocs 18
DetachResourceFile function 133
dialog pointers 117
Drag Manager, translucent dragging with 44
dragging and resizing windows in Carbon 41
DumpPEF tool 38

E

event handlers, Carbon Event Manager 103
events. <i>See Carbon Event Manager
exit() in MPW 61
Extended File Format 47

F

feedback URL 20
FlatCarbon headers 32
frameworks, Carbon 14
FSpResourceFileAlreadyOpen function 133
functions unavailable in Carbon 14

G

GDB debugger 62
gestaltMenuMgrAquaLayoutMask selector 34,

79
GetSharedLibrary for loading

non-Carbon–compliant code 38
graphics pointers 27

versus window pointers 117
graphics ports, creating and disposing in Carbon

127

H

headers
FlatCarbon 32
Universal 25

HFS Plus 47

I

icons, creating and adding to applications 51
idle events 46

I N D E X

167

Info.plist file 50
infoPlist.strings file 51
initialization functions 47
InsertResourceFile function 132
InterfaceLib, linking with 26, 58
IsHandleValid function 132
IsHeapValid function 131
IsPointerValid function 132

K

keyboard events 104

L

LaunchCFMApp tool 59
launching applications on Mac OS X using

LaunchCFMApp 59
lazy initialization 47
linking to non-Carbon–compliant code 38
low-memory globals 23, 30

M

Mac OS 8 and 9
API compatibility with CarbonLib 35

Mac OS 9 versus Classic environment 55
Mach-O file format, advantages and

disadvantages of 48
main entry point in MPW 61
MDEFs 116
memory management in Mac OS X 45
menu item selection using Carbon events 104
Metrowerks CodeWarrior. <i>See CodeWarrior
Mixed Mode Manager 17, 28
MLTE, overview 102
MPW, building Carbon applications using 61
Multilingual Text Engine, overview 102

N

Navigation Services 33
null events 46

O

opaque data structures 19, 116
OPAQUE_TOOLBOX_STRUCTS 26, 72
OpenGL in Carbon 38

P

passing pointers across processes 37
Patch Manager 37
PEF containers 22, 48
pixel maps, drawing into 39
plist file 50
plist resource. <i>See ’plst’0 resource
plug-ins 38
polling 46
preemptive scheduling of applications 16
prefix file information in CodeWarrior 58
printing in Carbon 18
Printing Manager 33
Project Builder, building Carbon applications

with 57
protected memory 16

Q

quit events 110
Quit menu item 34, 78
quitting Carbon applications 34, 110

R

resources

I N D E X

168

'SIZE' 61
’carb’0 33, 59
’plst’0 33, 50, 59
in data fork 17, 48

S

Sample application
adding accessors to 72
adding Carbon events to 103
Carbon Dater report on 66
described 65
listings of Carbon version 81
original code listings 135
porting to Carbon 70

screen savers in Carbon 45
SDK, Carbon 26
SetMenuItemCommandID function 109
shared libraries, lazy initialization of 47
standard definition procedures 18
standard event handlers for Carbon events 103
Standard File Package 33
StdCLib 62
StdCRuntime.o 62

T

TARGET_API_MAC_CARBON 26, 58, 74
TrafficLight. <i>See Sample application
transferring files between Mac OS 9 and Mac OS

X 55
trap tables 18, 37

U

Universal Interfaces 25, 71
universal procedure pointers 17, 19, 28
update events 105, 113
utility functions for porting 127

V

version history for this document 157
versions of CarbonLib 35
virtual memory on Mac OS X 17

W

WDEFs 44, 115
Window Manager Port 40
window pointers 117

	Contents
	Figures, Listings, and Tables
	Introduction
	What Is Carbon?
	What Are the Benefits of Carbon?
	What Is in Carbon Today?
	What’s Not in Carbon?
	How Does Carbon Work?
	Carbon and the Mac OS Application Model
	Preemptive Scheduling and Application Threading
	Separate Application Address Spaces
	Virtual Memory
	Resources
	Code Fragments and the Code Fragment Manager
	Mixed Mode Manager
	Printing
	Control Panels
	The Trap Table
	Standard and Custom Definition Procedures
	Application-Defined Functions
	Data Structure Access

	Additional Information and Feedback

	Preparing Your Code for Carbon
	Using Carbon Dater
	Analyzing Your Application
	Reading the Report
	Analysis of Imports
	Analysis of Access to Low Memory Addresses
	Analysis of Resources Loaded Into the System Heap

	Additional Reports
	The Carbon Specification

	Essential Steps for Porting Your Application
	Make Sure All of Your Code Is PowerPC-Native
	Update to the Current Universal Interfaces
	Use the Carbon SDK
	Target Mac OS 8 and 9 First
	Begin With CarbonAccessors.o
	Use Casting Functions to Convert DialogPtrs and WindowPtrs
	Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions
	Move Custom Definition Procedures Out of Resources
	Remove Direct Access to Low-Memory Globals
	Use DebuggingCarbonLib
	Modify or Conditionalize Your Headers
	Update Modified or Obsolete Functions
	Adopt Required Carbon Technologies
	Add a 'plst' 0 Resource
	Conditionalize Quit Menu Items

	Additional Porting Issues
	Determine the Appropriate CarbonLib Version
	Draw Only Within Your Own Windows
	Do Not Patch Traps
	Don’t Pass Pointers Across Processes
	Do Not Write to Your Application’s Resource Fork
	Check Your OpenGL Code
	Examine Your Plug-ins
	Linking to Non-Carbon-Compliant Code
	Window Manager Issues
	Handling Buffered Windows
	Bypassing the Window Manager Port
	Window Dragging and Resizing Q&A

	Optimizing Your Code for Carbon
	Manage Memory Efficiently
	Avoid Polling and Busy Waiting
	Use “Lazy” Initialization for Shared Libraries
	Adopt HFS Plus APIs
	Consider Mach-O Executables
	Move Resources to Data Fork–Based Files
	Consider Using Bundles
	Begin Transitioning to the Aqua Interface
	Adopt a Terse Name for the Application Menu
	Provide Thumbnail Icons for Your Application

	Building Carbon Applications
	Native Mac OS 9 Versus Mac OS X’s Classic Environment
	Development Scenarios
	Using CodeWarrior to Build a CFM Carbon Application
	Using CodeWarrior to Build a Mach-O Carbon Application
	Using Project Builder to Build a Mach-O Carbon Application

	Building a CFM Carbon Application With CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS 9
	Running Your Application on Mac�OS�X

	Building a Mach-O Carbon Application With CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS X

	Building a Mach-O Carbon Application With Project Builder
	Building Applications Using MPW
	Debugging Your Application

	A Porting Example
	The Sample Application
	Obtaining the Carbon Dater Report
	The Basic Port
	Make Sure All of Your Code is PowerPC–Native
	Update to the Current Universal Interfaces and Use the Carbon SDK
	Target Mac OS 8 and 9 First
	Begin With CarbonAccessors.o
	Use Casting Functions to Convert DialogPtrs and WindowPtrs
	Modify or Conditionalize Your Headers
	Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions
	Move Custom Definition Procedures Out of Resources
	Remove Direct Access to Low-Memory Globals
	Use DebuggingCarbonLib
	Update Modified or Obsolete Functions
	Adopt Required Carbon Technologies
	Add a ‘plst’ 0 Resource
	Conditionalize Quit Menu Items
	Cleanup

	Additional Changes for Aqua
	Adjust the Window Size
	Modify the About Box

	The Carbon Version of Sample

	New Carbon Technologies
	Carbon Event Manager
	Core Foundation
	DataBrowser
	Multilingual Text Engine (MLTE)
	An Example: Adding Carbon Events to Sample
	Standard Event Handlers
	The Basic Conversion
	Installing the Standard Event Handlers
	Registering Your Own Event Handlers
	The Application-Level Event Handler
	The Window Event Handler
	Cleanup

	New Carbon Functions
	Custom Definition Procedures
	Changes to WDEFs
	Changes to MDEFs

	Functions for Accessing Opaque Data Structures
	Casting Functions
	Accessor Functions
	Utility Functions

	Functions in CarbonAccessors.o
	Debugging Functions
	CheckAllHeaps
	IsHeapValid
	IsHandleValid
	IsPointerValid

	Resource Chain Manipulation Functions
	InsertResourceFile
	DetachResourceFile
	FSpResourceFileAlreadyOpen

	The Sample Application
	Document Version History
	Index

