/*********************************************************************** quaternion.cpp A quaternion class ------------------------------------------------------------------- Feb 1998, Paul Rademacher (rademach@cs.unc.edu) ************************************************************************/ #include "quaternion.h" #include #include "stdinc.h" /******************************************* constructors **************/ quat::quat( void ) { *this = quat_identity(); } quat::quat(const float x, const float y, const float z, const float w) { v.set( x, y, z ); s = w; } quat::quat( vec3 _v, float _s ) { set( _v, _s ); } quat::quat( float _s, vec3 _v ) { set( _v, _s ); } quat::quat( const float *d ) { v[0] = d[0]; v[1] = d[1]; v[2] = d[2]; s = d[3]; } quat::quat( const double *d ) { v[0] = d[0]; v[1] = d[1]; v[2] = d[2]; s = d[3]; } quat::quat( const quat &q ) { v = q.v; s = q.s; } void quat::set( vec3 _v, float _s ) { v = _v; s = _s; } quat& quat::operator = (const quat& q) { v = q.v; s = q.s; return *this; } /* ... */ /******** quat friends ************/ quat operator + (const quat &a, const quat &b) { return quat( a.s+b.s, a.v+b.v ); } quat operator - (const quat &a, const quat &b) { return quat( a.s-b.s, a.v-b.v ); } quat operator - (const quat &a ) { return quat( -a.s, -a.v ); } quat operator * ( const quat &a, const quat &b) { return quat( a.s*b.s - a.v*b.v, a.s*b.v + b.s*a.v + a.v^b.v ); } quat operator * ( const quat &a, const float t) { return quat( a.v * t, a.s * t ); } quat operator * ( const float t, const quat &a ) { return quat( a.v * t, a.s * t ); } mat4 quat::to_mat4( void ) { float t, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz; vec3 a, c, b, d; t = 2.0 / (v*v + s*s); xs = v[VX]*t; ys = v[VY]*t; zs = v[VZ]*t; wx = s*xs; wy = s*ys; wz = s*zs; xx = v[VX]*xs; xy = v[VX]*ys; xz = v[VX]*zs; yy = v[VY]*ys; yz = v[VY]*zs; zz = v[VZ]*zs; mat4 matrix( 1.0-(yy+zz), xy+wz, xz-wy, 0.0, xy-wz, 1.0-(xx+zz), yz+wx, 0.0, xz+wy, yz-wx, 1.0-(xx+yy), 0.0, 0.0, 0.0, 0.0, 1.0 ); return matrix; } /************************************************* quat_identity() *****/ /* Returns quaternion identity element */ quat quat_identity( void ) { return quat( vec3( 0.0, 0.0, 0.0 ), 1.0 ); } /************************************************ quat_slerp() ********/ /* Quaternion spherical interpolation */ quat quat_slerp( quat from, quat to, float t ) { quat to1; double omega, cosom, sinom, scale0, scale1; /* calculate cosine */ cosom = from.v * to.v + from.s + to.s; /* Adjust signs (if necessary) */ if ( cosom < 0.0 ) { cosom = -cosom; to1 = -to; } else { to1 = to; } /* Calculate coefficients */ if ((1.0 - cosom) > FUDGE ) { /* standard case (slerp) */ omega = acos( cosom ); sinom = sin( omega ); scale0 = sin((1.0 - t) * omega) / sinom; scale1 = sin(t * omega) / sinom; } else { /* 'from' and 'to' are very close - just do linear interpolation */ scale0 = 1.0 - t; scale1 = t; } return scale0 * from + scale1 * to1; } /********************************************** set_angle() ************/ /* set rot angle (degrees) */ void quat::set_angle( float f ) { vec3 axis = get_axis(); s = cos( DEG2RAD( f ) / 2.0 ); v = axis * sin(DEG2RAD(f) / 2.0); } /********************************************** scale_angle() ************/ /* scale rot angle (degrees) */ void quat::scale_angle( float f ) { set_angle( f * get_angle() ); } /********************************************** get_angle() ************/ /* get rot angle (degrees). Assumes s is between -1 and 1 */ float quat::get_angle( void ) { return RAD2DEG( 2.0 * acos( s ) ); } /********************************************* get_axis() **************/ vec3 quat::get_axis( void ) { float scale; scale = sin( acos( s ) ); if ( scale < FUDGE AND scale > -FUDGE ) return vec3( 0.0, 0.0, 0.0 ); else return v / scale; } /******************************************* quat::print() ************/ void quat::print( FILE *dest, char *name ) { fprintf( dest, "%s: v:<%3.2f %3.2f %3.2f> s:%3.2f\n", name, v[0], v[1], v[2], s ); }