/* Save and restore call-clobbered registers which are live across a call.
Copyright (C) 1989, 1992, 1994, 1995 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "basic-block.h"
#include "reload.h"
#include "expr.h"
#ifndef MAX_MOVE_MAX
#define MAX_MOVE_MAX MOVE_MAX
#endif
#ifndef MIN_UNITS_PER_WORD
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#endif
/* Modes for each hard register that we can save. The smallest mode is wide
enough to save the entire contents of the register. When saving the
register because it is live we first try to save in multi-register modes.
If that is not possible the save is done one register at a time. */
static enum machine_mode
regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
/* For each hard register, a place on the stack where it can be saved,
if needed. */
static rtx
regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
/* We will only make a register eligible for caller-save if it can be
saved in its widest mode with a simple SET insn as long as the memory
address is valid. We record the INSN_CODE is those insns here since
when we emit them, the addresses might not be valid, so they might not
be recognized. */
static enum insn_code
reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
static enum insn_code
reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
/* Set of hard regs currently live (during scan of all insns). */
static HARD_REG_SET hard_regs_live;
/* Set of hard regs currently residing in save area (during insn scan). */
static HARD_REG_SET hard_regs_saved;
/* Set of hard regs which need to be restored before referenced. */
static HARD_REG_SET hard_regs_need_restore;
/* Number of registers currently in hard_regs_saved. */
int n_regs_saved;
static void set_reg_live PROTO((rtx, rtx));
static void clear_reg_live PROTO((rtx));
static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode));
static int insert_save_restore PROTO((rtx, int, int,
enum machine_mode, int));
/* Initialize for caller-save.
Look at all the hard registers that are used by a call and for which
regclass.c has not already excluded from being used across a call.
Ensure that we can find a mode to save the register and that there is a
simple insn to save and restore the register. This latter check avoids
problems that would occur if we tried to save the MQ register of some
machines directly into memory. */
void
init_caller_save ()
{
char *first_obj = (char *) oballoc (0);
rtx addr_reg;
int offset;
rtx address;
int i, j;
/* First find all the registers that we need to deal with and all
the modes that they can have. If we can't find a mode to use,
we can't have the register live over calls. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (call_used_regs[i] && ! call_fixed_regs[i])
{
for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
{
regno_save_mode[i][j] = choose_hard_reg_mode (i, j);
if (regno_save_mode[i][j] == VOIDmode && j == 1)
{
call_fixed_regs[i] = 1;
SET_HARD_REG_BIT (call_fixed_reg_set, i);
}
}
}
else
regno_save_mode[i][1] = VOIDmode;
}
/* The following code tries to approximate the conditions under which
we can easily save and restore a register without scratch registers or
other complexities. It will usually work, except under conditions where
the validity of an insn operand is dependent on the address offset.
No such cases are currently known.
We first find a typical offset from some BASE_REG_CLASS register.
This address is chosen by finding the first register in the class
and by finding the smallest power of two that is a valid offset from
that register in every mode we will use to save registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
break;
if (i == FIRST_PSEUDO_REGISTER)
abort ();
addr_reg = gen_rtx (REG, Pmode, i);
for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
{
address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regno_save_mode[i][1] != VOIDmode
&& ! strict_memory_address_p (regno_save_mode[i][1], address))
break;
if (i == FIRST_PSEUDO_REGISTER)
break;
}
/* If we didn't find a valid address, we must use register indirect. */
if (offset == 0)
address = addr_reg;
/* Next we try to form an insn to save and restore the register. We
see if such an insn is recognized and meets its constraints. */
start_sequence ();
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
if (regno_save_mode[i][j] != VOIDmode)
{
rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address);
rtx reg = gen_rtx (REG, regno_save_mode[i][j], i);
rtx savepat = gen_rtx (SET, VOIDmode, mem, reg);
rtx restpat = gen_rtx (SET, VOIDmode, reg, mem);
rtx saveinsn = emit_insn (savepat);
rtx restinsn = emit_insn (restpat);
int ok;
reg_save_code[i][j] = recog_memoized (saveinsn);
reg_restore_code[i][j] = recog_memoized (restinsn);
/* Now extract both insns and see if we can meet their constraints. */
ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1);
if (ok)
{
insn_extract (saveinsn);
ok = constrain_operands (reg_save_code[i][j], 1);
insn_extract (restinsn);
ok &= constrain_operands (reg_restore_code[i][j], 1);
}
if (! ok)
{
regno_save_mode[i][j] = VOIDmode;
if (j == 1)
{
call_fixed_regs[i] = 1;
SET_HARD_REG_BIT (call_fixed_reg_set, i);
}
}
}
end_sequence ();
obfree (first_obj);
}
/* Initialize save areas by showing that we haven't allocated any yet. */
void
init_save_areas ()
{
int i, j;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
regno_save_mem[i][j] = 0;
}
/* Allocate save areas for any hard registers that might need saving.
We take a conservative approach here and look for call-clobbered hard
registers that are assigned to pseudos that cross calls. This may
overestimate slightly (especially if some of these registers are later
used as spill registers), but it should not be significant.
Then perform register elimination in the addresses of the save area
locations; return 1 if all eliminated addresses are strictly valid.
We assume that our caller has set up the elimination table to the
worst (largest) possible offsets.
Set *PCHANGED to 1 if we had to allocate some memory for the save area.
Future work:
In the fallback case we should iterate backwards across all possible
modes for the save, choosing the largest available one instead of
falling back to the smallest mode immediately. (eg TF -> DF -> SF).
We do not try to use "move multiple" instructions that exist
on some machines (such as the 68k moveml). It could be a win to try
and use them when possible. The hard part is doing it in a way that is
machine independent since they might be saving non-consecutive
registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
int
setup_save_areas (pchanged)
int *pchanged;
{
int i, j, k;
HARD_REG_SET hard_regs_used;
int ok = 1;
/* Allocate space in the save area for the largest multi-register
pseudos first, then work backwards to single register
pseudos. */
/* Find and record all call-used hard-registers in this function. */
CLEAR_HARD_REG_SET (hard_regs_used);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0)
{
int regno = reg_renumber[i];
int endregno
= regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
int nregs = endregno - regno;
for (j = 0; j < nregs; j++)
{
if (call_used_regs[regno+j])
SET_HARD_REG_BIT (hard_regs_used, regno+j);
}
}
/* Now run through all the call-used hard-registers and allocate
space for them in the caller-save area. Try to allocate space
in a manner which allows multi-register saves/restores to be done. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--)
{
int ok = 1;
int do_save;
/* If no mode exists for this size, try another. Also break out
if we have already saved this hard register. */
if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
continue;
/* See if any register in this group has been saved. */
do_save = 1;
for (k = 0; k < j; k++)
if (regno_save_mem[i + k][1])
{
do_save = 0;
break;
}
if (! do_save)
continue;
for (k = 0; k < j; k++)
{
int regno = i + k;
ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0);
}
/* We have found an acceptable mode to store in. */
if (ok)
{
regno_save_mem[i][j]
= assign_stack_local (regno_save_mode[i][j],
GET_MODE_SIZE (regno_save_mode[i][j]), 0);
/* Setup single word save area just in case... */
for (k = 0; k < j; k++)
{
/* This should not depend on WORDS_BIG_ENDIAN.
The order of words in regs is the same as in memory. */
rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1],
XEXP (regno_save_mem[i][j], 0));
regno_save_mem[i+k][1]
= adj_offsettable_operand (temp, k * UNITS_PER_WORD);
}
*pchanged = 1;
}
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
if (regno_save_mem[i][j] != 0)
ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]),
XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0));
return ok;
}
/* Find the places where hard regs are live across calls and save them.
INSN_MODE is the mode to assign to any insns that we add. This is used
by reload to determine whether or not reloads or register eliminations
need be done on these insns. */
void
save_call_clobbered_regs (insn_mode)
enum machine_mode insn_mode;
{
rtx insn;
int b;
for (b = 0; b < n_basic_blocks; b++)
{
regset regs_live = basic_block_live_at_start[b];
rtx prev_block_last = PREV_INSN (basic_block_head[b]);
REGSET_ELT_TYPE bit;
int offset, i, j;
int regno;
/* Compute hard regs live at start of block -- this is the
real hard regs marked live, plus live pseudo regs that
have been renumbered to hard regs. No registers have yet been
saved because we restore all of them before the end of the basic
block. */
#ifdef HARD_REG_SET
hard_regs_live = *regs_live;
#else
COPY_HARD_REG_SET (hard_regs_live, regs_live);
#endif
CLEAR_HARD_REG_SET (hard_regs_saved);
CLEAR_HARD_REG_SET (hard_regs_need_restore);
n_regs_saved = 0;
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (hard_regs_live, j);
}
/* Now scan the insns in the block, keeping track of what hard
regs are live as we go. When we see a call, save the live
call-clobbered hard regs. */
for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn))
{
RTX_CODE code = GET_CODE (insn);
if (GET_RTX_CLASS (code) == 'i')
{
rtx link;
/* If some registers have been saved, see if INSN references
any of them. We must restore them before the insn if so. */
if (n_regs_saved)
restore_referenced_regs (PATTERN (insn), insn, insn_mode);
/* NB: the normal procedure is to first enliven any
registers set by insn, then deaden any registers that
had their last use at insn. This is incorrect now,
since multiple pseudos may have been mapped to the
same hard reg, and the death notes are ambiguous. So
it must be done in the other, safe, order. */
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_DEAD)
clear_reg_live (XEXP (link, 0));
/* When we reach a call, we need to save all registers that are
live, call-used, not fixed, and not already saved. We must
test at this point because registers that die in a CALL_INSN
are not live across the call and likewise for registers that
are born in the CALL_INSN.
If registers are filled with parameters for this function,
and some of these are also being set by this function, then
they will not appear to die (no REG_DEAD note for them),
to check if in fact they do, collect the set registers in
hard_regs_live first. */
if (code == CALL_INSN)
{
HARD_REG_SET this_call_sets;
{
HARD_REG_SET old_hard_regs_live;
/* Save the hard_regs_live information. */
COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live);
/* Now calculate hard_regs_live for this CALL_INSN
only. */
CLEAR_HARD_REG_SET (hard_regs_live);
note_stores (PATTERN (insn), set_reg_live);
COPY_HARD_REG_SET (this_call_sets, hard_regs_live);
/* Restore the hard_regs_live information. */
COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live);
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (call_used_regs[regno] && ! call_fixed_regs[regno]
&& TEST_HARD_REG_BIT (hard_regs_live, regno)
/* It must not be set by this instruction. */
&& ! TEST_HARD_REG_BIT (this_call_sets, regno)
&& ! TEST_HARD_REG_BIT (hard_regs_saved, regno))
regno += insert_save_restore (insn, 1, regno,
insn_mode, 0);
/* Put the information for this CALL_INSN on top of what
we already had. */
IOR_HARD_REG_SET (hard_regs_live, this_call_sets);
COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved);
/* Must recompute n_regs_saved. */
n_regs_saved = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
n_regs_saved++;
}
else
{
note_stores (PATTERN (insn), set_reg_live);
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC)
set_reg_live (XEXP (link, 0), NULL_RTX);
#endif
}
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_UNUSED)
clear_reg_live (XEXP (link, 0));
}
if (insn == basic_block_end[b])
break;
}
/* At the end of the basic block, we must restore any registers that
remain saved. If the last insn in the block is a JUMP_INSN, put
the restore before the insn, otherwise, put it after the insn. */
if (n_regs_saved)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno))
regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN
? insn : NEXT_INSN (insn)), 0,
regno, insn_mode, MOVE_MAX / UNITS_PER_WORD);
/* If we added any insns at the start of the block, update the start
of the block to point at those insns. */
basic_block_head[b] = NEXT_INSN (prev_block_last);
}
}
/* Here from note_stores when an insn stores a value in a register.
Set the proper bit or bits in hard_regs_live. All pseudos that have
been assigned hard regs have had their register number changed already,
so we can ignore pseudos. */
static void
set_reg_live (reg, setter)
rtx reg, setter;
{
register int regno, endregno, i;
enum machine_mode mode = GET_MODE (reg);
int word = 0;
if (GET_CODE (reg) == SUBREG)
{
word = SUBREG_WORD (reg);
reg = SUBREG_REG (reg);
}
if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
return;
regno = REGNO (reg) + word;
endregno = regno + HARD_REGNO_NREGS (regno, mode);
for (i = regno; i < endregno; i++)
{
SET_HARD_REG_BIT (hard_regs_live, i);
CLEAR_HARD_REG_BIT (hard_regs_saved, i);
CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
}
}
/* Here when a REG_DEAD note records the last use of a reg. Clear
the appropriate bit or bits in hard_regs_live. Again we can ignore
pseudos. */
static void
clear_reg_live (reg)
rtx reg;
{
register int regno, endregno, i;
if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
return;
regno = REGNO (reg);
endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
for (i = regno; i < endregno; i++)
{
CLEAR_HARD_REG_BIT (hard_regs_live, i);
CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
CLEAR_HARD_REG_BIT (hard_regs_saved, i);
}
}
/* If any register currently residing in the save area is referenced in X,
which is part of INSN, emit code to restore the register in front of INSN.
INSN_MODE is the mode to assign to any insns that we add. */
static void
restore_referenced_regs (x, insn, insn_mode)
rtx x;
rtx insn;
enum machine_mode insn_mode;
{
enum rtx_code code = GET_CODE (x);
char *fmt;
int i, j;
if (code == CLOBBER)
return;
if (code == REG)
{
int regno = REGNO (x);
/* If this is a pseudo, scan its memory location, since it might
involve the use of another register, which might be saved. */
if (regno >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[regno] != 0)
restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0),
insn, insn_mode);
else if (regno >= FIRST_PSEUDO_REGISTER
&& reg_equiv_address[regno] != 0)
restore_referenced_regs (reg_equiv_address[regno],
insn, insn_mode);
/* Otherwise if this is a hard register, restore any piece of it that
is currently saved. */
else if (regno < FIRST_PSEUDO_REGISTER)
{
int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
/* Save at most SAVEREGS at a time. This can not be larger than
MOVE_MAX, because that causes insert_save_restore to fail. */
int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD);
int endregno = regno + numregs;
for (i = regno; i < endregno; i++)
if (TEST_HARD_REG_BIT (hard_regs_need_restore, i))
i += insert_save_restore (insn, 0, i, insn_mode, saveregs);
}
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
restore_referenced_regs (XEXP (x, i), insn, insn_mode);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode);
}
}
/* Insert a sequence of insns to save or restore, SAVE_P says which,
REGNO. Place these insns in front of INSN. INSN_MODE is the mode
to assign to these insns. MAXRESTORE is the maximum number of registers
which should be restored during this call (when SAVE_P == 0). It should
never be less than 1 since we only work with entire registers.
Note that we have verified in init_caller_save that we can do this
with a simple SET, so use it. Set INSN_CODE to what we save there
since the address might not be valid so the insn might not be recognized.
These insns will be reloaded and have register elimination done by
find_reload, so we need not worry about that here.
Return the extra number of registers saved. */
static int
insert_save_restore (insn, save_p, regno, insn_mode, maxrestore)
rtx insn;
int save_p;
int regno;
enum machine_mode insn_mode;
int maxrestore;
{
rtx pat;
enum insn_code code;
int i, numregs;
/* A common failure mode if register status is not correct in the RTL
is for this routine to be called with a REGNO we didn't expect to
save. That will cause us to write an insn with a (nil) SET_DEST
or SET_SRC. Instead of doing so and causing a crash later, check
for this common case and abort here instead. This will remove one
step in debugging such problems. */
if (regno_save_mem[regno][1] == 0)
abort ();
#ifdef HAVE_cc0
/* If INSN references CC0, put our insns in front of the insn that sets
CC0. This is always safe, since the only way we could be passed an
insn that references CC0 is for a restore, and doing a restore earlier
isn't a problem. We do, however, assume here that CALL_INSNs don't
reference CC0. Guard against non-INSN's like CODE_LABEL. */
if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
&& reg_referenced_p (cc0_rtx, PATTERN (insn)))
insn = prev_nonnote_insn (insn);
#endif
/* Get the pattern to emit and update our status. */
if (save_p)
{
int i, j, k;
int ok;
/* See if we can save several registers with a single instruction.
Work backwards to the single register case. */
for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--)
{
ok = 1;
if (regno_save_mem[regno][i] != 0)
for (j = 0; j < i; j++)
{
if (! call_used_regs[regno + j] || call_fixed_regs[regno + j]
|| ! TEST_HARD_REG_BIT (hard_regs_live, regno + j)
|| TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
ok = 0;
}
else
continue;
/* Must do this one save at a time */
if (! ok)
continue;
pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i],
gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno));
code = reg_save_code[regno][i];
/* Set hard_regs_saved for all the registers we saved. */
for (k = 0; k < i; k++)
{
SET_HARD_REG_BIT (hard_regs_saved, regno + k);
SET_HARD_REG_BIT (hard_regs_need_restore, regno + k);
n_regs_saved++;
}
numregs = i;
break;
}
}
else
{
int i, j, k;
int ok;
/* See if we can restore `maxrestore' registers at once. Work
backwards to the single register case. */
for (i = maxrestore; i > 0; i--)
{
ok = 1;
if (regno_save_mem[regno][i])
for (j = 0; j < i; j++)
{
if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j))
ok = 0;
}
else
continue;
/* Must do this one restore at a time */
if (! ok)
continue;
pat = gen_rtx (SET, VOIDmode,
gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]),
regno),
regno_save_mem[regno][i]);
code = reg_restore_code[regno][i];
/* Clear status for all registers we restored. */
for (k = 0; k < i; k++)
{
CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k);
n_regs_saved--;
}
numregs = i;
break;
}
}
/* Emit the insn and set the code and mode. */
insn = emit_insn_before (pat, insn);
PUT_MODE (insn, insn_mode);
INSN_CODE (insn) = code;
/* Tell our callers how many extra registers we saved/restored */
return numregs - 1;
}
syntax highlighted by Code2HTML, v. 0.9.1