// @(#)root/quadp:$Name:  $:$Id: TQpLinSolverBase.h,v 1.2 2004/05/24 12:45:40 brun Exp $
// Author: Eddy Offermann   May 2004

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

/*************************************************************************
 * Parts of this file are copied from the OOQP distribution and          *
 * are subject to the following license:                                 *
 *                                                                       *
 * COPYRIGHT 2001 UNIVERSITY OF CHICAGO                                  *
 *                                                                       *
 * The copyright holder hereby grants you royalty-free rights to use,    *
 * reproduce, prepare derivative works, and to redistribute this software*
 * to others, provided that any changes are clearly documented. This     *
 * software was authored by:                                             *
 *                                                                       *
 *   E. MICHAEL GERTZ      gertz@mcs.anl.gov                             *
 *   Mathematics and Computer Science Division                           *
 *   Argonne National Laboratory                                         *
 *   9700 S. Cass Avenue                                                 *
 *   Argonne, IL 60439-4844                                              *
 *                                                                       *
 *   STEPHEN J. WRIGHT     swright@cs.wisc.edu                           *
 *   Computer Sciences Department                                        *
 *   University of Wisconsin                                             *
 *   1210 West Dayton Street                                             *
 *   Madison, WI 53706   FAX: (608)262-9777                              *
 *                                                                       *
 * Any questions or comments may be directed to one of the authors.      *
 *                                                                       *
 * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF   *
 * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND     *
 * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT   *
 * WITH THE DEPARTMENT OF ENERGY.                                        *
 *************************************************************************/

#ifndef ROOT_TQpLinSolverBase
#define ROOT_TQpLinSolverBase

#ifndef ROOT_TROOT
#include "TROOT.h"
#endif
#ifndef ROOT_TClass
#include "TClass.h"
#endif
#ifndef ROOT_TError
#include "TError.h"
#endif
#ifndef ROOT_TMath
#include "TMath.h"
#endif

#ifndef ROOT_TQpVar
#include "TQpVar.h"
#endif
#ifndef ROOT_TQpDataBase
#include "TQpDataBase.h"
#endif
#ifndef ROOT_TQpResidual
#include "TQpResidual.h"
#endif
#ifndef ROOT_TQpProbBase
#include "TQpProbBase.h"
#endif

#ifndef ROOT_TMatrixD
#include "TMatrixD.h"
#endif

///////////////////////////////////////////////////////////////////////////
//                                                                       //
// Implements the main solver for linear systems that arise in           //
// primal-dual interior-point methods for QP . This class  contains      //
// definitions of methods and data common to the sparse and dense        //
// special cases of the general formulation. The derived classes contain //
// the aspects that are specific to the sparse and dense forms.          //
//                                                                       //
///////////////////////////////////////////////////////////////////////////

class TQpProbBase;
class TQpLinSolverBase : public TObject {

protected:

  TVectorD     fNomegaInv; // stores a critical diagonal matrix as a vector
  TVectorD     fRhs;       // right-hand side of the system

  Int_t        fNx;        // dimensions of the vectors in the general QP formulation
  Int_t        fMy;
  Int_t        fMz;

  TVectorD     fDd;        // temporary storage vectors
  TVectorD     fDq;

  TVectorD     fXupIndex;  // index matrices for the upper and lower bounds on x and Cx
  TVectorD     fCupIndex;
  TVectorD     fXloIndex;
  TVectorD     fCloIndex;

  Int_t        fNxup;     // dimensions of the upper and lower bound vectors
  Int_t        fNxlo;
  Int_t        fMcup;
  Int_t        fMclo;

  TQpProbBase *fFactory;

public:
  TQpLinSolverBase();
  TQpLinSolverBase(TQpProbBase *factory,TQpDataBase *data);
  TQpLinSolverBase(const TQpLinSolverBase &another);

  virtual ~TQpLinSolverBase() {};

  virtual void Factor      (TQpDataBase *prob,TQpVar *vars);        // sets up the matrix for the main linear system in
                                                                    // "augmented system" form. The actual factorization is
                                                                    // performed by a routine specific to either the sparse
                                                                    // or dense case
  virtual void Solve       (TQpDataBase *prob,TQpVar *vars,         // solves the system for a given set of residuals.
                            TQpResidual *resids,TQpVar *step);      // Assembles the right-hand side appropriate to the
                                                                    // matrix factored in factor, solves the system using
                                                                    // the factorization produced there, partitions the
                                                                    // solution vector into step components, then recovers
                                                                    // the step components eliminated during the block
                                                                    // elimination that produced the augmented system form
  virtual void JoinRHS     (TVectorD &rhs, TVectorD &rhs1,          // assembles a single vector object from three given vectors
                            TVectorD &rhs2,TVectorD &rhs3);         //  rhs (output) final joined vector
                                                                    //  rhs1 (input) first part of rhs
                                                                    //  rhs2 (input) middle part of rhs
                                                                    //  rhs3 (input) last part of rhs
  virtual void SeparateVars(TVectorD &vars1,TVectorD &vars2,        // extracts three component vectors from a given aggregated
                            TVectorD &vars3,TVectorD &vars);        // vector.
                                                                    //  vars (input) aggregated vector
                                                                    //  vars1 (output) first part of vars
                                                                    //  vars2 (output) middle part of vars
                                                                    //  vars3 (output) last part of vars

  virtual void SolveXYZS   (TVectorD &stepx,TVectorD &stepy,        // assemble right-hand side of augmented system and call
                            TVectorD &stepz,TVectorD &steps,        // SolveCompressed to solve it
                            TVectorD &ztemp,TQpDataBase *data);

  virtual void SolveCompressed                                      // perform the actual solve using the factors produced in
                           (TVectorD &rhs) = 0;                     // factor.
                                                                    //  rhs on input contains the aggregated right-hand side of
                                                                    //  the augmented system; on output contains the solution in
                                                                    //  aggregated form

  virtual void PutXDiagonal(TVectorD &xdiag) = 0;                   // places the diagonal resulting from the bounds on x into                                                                      // the augmented system matrix
  virtual void PutZDiagonal(TVectorD& zdiag) = 0;                   // places the diagonal resulting from the bounds on Cx into
                                                                    // the augmented system matrix
  virtual void ComputeDiagonals                                     // computes the diagonal matrices in the augmented system
                           (TVectorD &dd,TVectorD &omega,           // from the current set of variables
                            TVectorD &t, TVectorD &lambda,
                            TVectorD &u, TVectorD &pi,
                            TVectorD &v, TVectorD &gamma,
                            TVectorD &w, TVectorD &phi);

  TQpLinSolverBase &operator= (const TQpLinSolverBase &source);

  ClassDef(TQpLinSolverBase,1) // Qp linear solver base class
};

#endif


syntax highlighted by Code2HTML, v. 0.9.1