// @(#)root/graf:$Name:  $:$Id: TSpline.h,v 1.10 2004/10/21 09:48:57 brun Exp $
// Author: Federico Carminati   28/02/2000

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#ifndef ROOT_TSpline
#define ROOT_TSpline


#ifndef ROOT_TH1
#include "TH1.h"
#endif

#ifndef ROOT_TGraph
#include "TGraph.h"
#endif

class TF1;

class TSpline : public TNamed, public TAttLine,
		public TAttFill, public TAttMarker
{
protected:
  Double_t  fDelta;     // Distance between equidistant knots
  Double_t  fXmin;      // Minimum value of abscissa
  Double_t  fXmax;      // Maximum value of abscissa
  Int_t     fNp;        // Number of knots
  Bool_t    fKstep;     // True of equidistant knots
  TH1F     *fHistogram; // Temporary histogram
  TGraph   *fGraph;     // Graph for drawing the knots
  Int_t     fNpx;       // Number of points used for graphical representation

  virtual void BuildCoeff()=0;

public:
  TSpline() : fDelta(-1), fXmin(0), fXmax(0),
    fNp(0), fKstep(kFALSE), fHistogram(0), fGraph(0), fNpx(100) {}
  TSpline(const char *title, Double_t delta, Double_t xmin,
	  Double_t xmax, Int_t np, Bool_t step) :
    TNamed("Spline",title), TAttFill(0,1),
    fDelta(delta), fXmin(xmin),
    fXmax(xmax), fNp(np), fKstep(step),
    fHistogram(0), fGraph(0), fNpx(100) {}
  virtual ~TSpline() {if(fHistogram) delete fHistogram; if(fGraph) delete fGraph;}
  virtual  void     GetKnot(Int_t i, Double_t &x, Double_t &y) const =0;
  virtual  void     Draw(Option_t *option="");
  virtual  Int_t    GetNpx() const {return fNpx;}
  virtual  void     Paint(Option_t *option="");
  virtual Double_t  Eval(Double_t x) const=0;
  virtual  void     SaveAs(const char * /*filename*/) const {;}
           void     SetNpx(Int_t n) {fNpx=n;}

  ClassDef (TSpline,2) // Spline base class
};


//________________________________________________________________________
class TSplinePoly : public TObject {
protected:
  Double_t fX;     // abscissa
  Double_t fY;     // constant term
public:
  TSplinePoly() :
    fX(0), fY(0) {}
  TSplinePoly(Double_t x, Double_t y) :
    fX(x), fY(y) {}
  Double_t &X() {return fX;}
  Double_t &Y() {return fY;}
  void GetKnot(Double_t &x, Double_t &y) const {x=fX; y=fY;}

  virtual Double_t Eval(Double_t) const {return fY;}

  ClassDef(TSplinePoly,1) // Spline polynomial terms
};


//________________________________________________________________________
class TSplinePoly3 : public TSplinePoly {
private:
  Double_t fB; // first order expansion coefficient :  fB*1! is the first derivative at x
  Double_t fC; // second order expansion coefficient : fC*2! is the second derivative at x
  Double_t fD; // third order expansion coefficient :  fD*3! is the third derivative at x
public:
  TSplinePoly3() :
    fB(0), fC(0), fD(0) {}
  TSplinePoly3(Double_t x, Double_t y, Double_t b, Double_t c, Double_t d) :
    TSplinePoly(x,y), fB(b), fC(c), fD(d) {}
  Double_t &B() {return fB;}
  Double_t &C() {return fC;}
  Double_t &D() {return fD;}
  Double_t Eval(Double_t x) const {
    Double_t dx=x-fX;
    return (fY+dx*(fB+dx*(fC+dx*fD)));
  }
  Double_t Derivative(Double_t x) const {
    Double_t dx=x-fX;
    return (fB+2*fC*dx+3*fD*dx*dx);
  }

  ClassDef(TSplinePoly3,1)  // Third spline polynomial terms

};


//________________________________________________________________________
class TSplinePoly5 : public TSplinePoly {
private:
  Double_t fB; // first order expansion coefficient :  fB*1! is the first derivative at x
  Double_t fC; // second order expansion coefficient : fC*2! is the second derivative at x
  Double_t fD; // third order expansion coefficient :  fD*3! is the third derivative at x
  Double_t fE; // fourth order expansion coefficient : fE*4! is the fourth derivative at x
  Double_t fF; // fifth order expansion coefficient :  fF*5! is the fifth derivative at x
public:
  TSplinePoly5() :
    fB(0), fC(0), fD(0), fE(0), fF(0) {}
  TSplinePoly5(Double_t x, Double_t y, Double_t b, Double_t c,
	 Double_t d, Double_t e, Double_t f) :
    TSplinePoly(x,y), fB(b), fC(c), fD(d), fE(e), fF(f) {}
  Double_t &B() {return fB;}
  Double_t &C() {return fC;}
  Double_t &D() {return fD;}
  Double_t &E() {return fE;}
  Double_t &F() {return fF;}
  Double_t Eval(Double_t x) const {
    Double_t dx=x-fX;
    return (fY+dx*(fB+dx*(fC+dx*(fD+dx*(fE+dx*fF)))));
  }
  Double_t Derivative(Double_t x) const{
    Double_t dx=x-fX;
    return (fB+2*fC*dx+3*fD*dx*dx+4*fE*dx*dx*dx+5*fF*dx*dx*dx*dx);
  }

  ClassDef(TSplinePoly5,1)  // Quintic spline polynomial terms

};


//________________________________________________________________________
class TSpline3 : public TSpline {
private:
  TSplinePoly3  *fPoly;       //[fNp] Array of polynomial terms
  Double_t       fValBeg;     // Initial value of first or second derivative
  Double_t       fValEnd;     // End value of first or second derivative
  Int_t          fBegCond;    // 0=no beg cond, 1=first derivative, 2=second derivative
  Int_t          fEndCond;    // 0=no end cond, 1=first derivative, 2=second derivative

  void BuildCoeff();
  void SetCond(const char *opt);

public:
  TSpline3() : fPoly(0), fValBeg(0), fValEnd(0),
    fBegCond(-1), fEndCond(-1) {}
  TSpline3(const char *title,
	   Double_t x[], Double_t y[], Int_t n, const char *opt=0,
	   Double_t valbeg=0, Double_t valend=0);
  TSpline3(const char *title,
	   Double_t xmin, Double_t xmax,
	   Double_t y[], Int_t n, const char *opt=0,
	   Double_t valbeg=0, Double_t valend=0);
  TSpline3(const char *title,
	   Double_t x[], const TF1 *func, Int_t n, const char *opt=0,
	   Double_t valbeg=0, Double_t valend=0);
  TSpline3(const char *title,
	   Double_t xmin, Double_t xmax,
	   const TF1 *func, Int_t n, const char *opt=0,
	   Double_t valbeg=0, Double_t valend=0);
  TSpline3(const char *title,
	   const TGraph *g, const char *opt=0,
	   Double_t valbeg=0, Double_t valend=0);
  Int_t    FindX(Double_t x) const;
  Double_t Eval(Double_t x) const;
  Double_t Derivative(Double_t x) const;
  virtual ~TSpline3() {if (fPoly) delete [] fPoly;}
  void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b,
		Double_t &c, Double_t &d) {x=fPoly[i].X();y=fPoly[i].Y();
		b=fPoly[i].B();c=fPoly[i].C();d=fPoly[i].D();}
  void GetKnot(Int_t i, Double_t &x, Double_t &y) const
    {x=fPoly[i].X(); y=fPoly[i].Y();}
  virtual  void     SaveAs(const char *filename) const;
  static void Test();

  ClassDef (TSpline3,2)  // Class to create third natural splines
};


//________________________________________________________________________
class TSpline5 : public TSpline {
private:
  TSplinePoly5  *fPoly;     //[fNp] Array of polynomial terms

  void BuildCoeff();
  void BoundaryConditions(const char *opt, Int_t &beg, Int_t &end,
			  const char *&cb1, const char *&ce1, const char *&cb2,
                          const char *&ce2);
  void SetBoundaries(Double_t b1, Double_t e1, Double_t b2, Double_t e2,
		     const char *cb1, const char *ce1, const char *cb2,
                     const char *ce2);

public:
  TSpline5() : fPoly(0) {}
  TSpline5(const char *title,
	   Double_t x[], Double_t y[], Int_t n,
	   const char *opt=0, Double_t b1=0, Double_t e1=0,
	   Double_t b2=0, Double_t e2=0);
  TSpline5(const char *title,
	   Double_t xmin, Double_t xmax,
	   Double_t y[], Int_t n,
	   const char *opt=0, Double_t b1=0, Double_t e1=0,
	   Double_t b2=0, Double_t e2=0);
  TSpline5(const char *title,
	   Double_t x[], const TF1 *func, Int_t n,
	   const char *opt=0, Double_t b1=0, Double_t e1=0,
	   Double_t b2=0, Double_t e2=0);
  TSpline5(const char *title,
	   Double_t xmin, Double_t xmax,
	   const TF1 *func, Int_t n,
	   const char *opt=0, Double_t b1=0, Double_t e1=0,
	   Double_t b2=0, Double_t e2=0);
  TSpline5(const char *title,
	   const TGraph *g,
	   const char *opt=0, Double_t b1=0, Double_t e1=0,
	   Double_t b2=0, Double_t e2=0);
  Int_t    FindX(Double_t x) const;
  Double_t Eval(Double_t x) const;
  Double_t Derivative(Double_t x) const;
  ~TSpline5() {if (fPoly) delete [] fPoly;}
  void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b,
		Double_t &c, Double_t &d, Double_t &e, Double_t &f)
    {x=fPoly[i].X();y=fPoly[i].Y();b=fPoly[i].B();
    c=fPoly[i].C();d=fPoly[i].D();
    e=fPoly[i].E();f=fPoly[i].F();}
  void GetKnot(Int_t i, Double_t &x, Double_t &y) const
    {x=fPoly[i].X(); y=fPoly[i].Y();}
  virtual  void     SaveAs(const char *filename) const;
  static void Test();

  ClassDef (TSpline5,2) // Class to create quintic natural splines
};

#endif


syntax highlighted by Code2HTML, v. 0.9.1