This is elisp, produced by makeinfo version 4.0f from ./elisp.texi. INFO-DIR-SECTION Editors START-INFO-DIR-ENTRY * Elisp: (elisp). The Emacs Lisp Reference Manual. END-INFO-DIR-ENTRY This Info file contains edition 2.8 of the GNU Emacs Lisp Reference Manual, corresponding to Emacs version 21.2. Published by the Free Software Foundation 59 Temple Place, Suite 330 Boston, MA 02111-1307 USA Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being "Copying", with the Front-Cover texts being "A GNU Manual", and with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled "GNU Free Documentation License". (a) The FSF's Back-Cover Text is: "You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development."  File: elisp, Node: Major Modes, Next: Minor Modes, Up: Modes Major Modes =========== Major modes specialize Emacs for editing particular kinds of text. Each buffer has only one major mode at a time. The least specialized major mode is called "Fundamental mode". This mode has no mode-specific definitions or variable settings, so each Emacs command behaves in its default manner, and each option is in its default state. All other major modes redefine various keys and options. For example, Lisp Interaction mode provides special key bindings for `C-j' (`eval-print-last-sexp'), (`lisp-indent-line'), and other keys. When you need to write several editing commands to help you perform a specialized editing task, creating a new major mode is usually a good idea. In practice, writing a major mode is easy (in contrast to writing a minor mode, which is often difficult). If the new mode is similar to an old one, it is often unwise to modify the old one to serve two purposes, since it may become harder to use and maintain. Instead, copy and rename an existing major mode definition and alter the copy--or define a "derived mode" (*note Derived Modes::). For example, Rmail Edit mode, which is in `emacs/lisp/mail/rmailedit.el', is a major mode that is very similar to Text mode except that it provides two additional commands. Its definition is distinct from that of Text mode, but uses that of Text mode. Even if the new mode is not an obvious derivative of any other mode, it can be convenient to define it as a derivative of `fundamental-mode', so that `define-derived-mode' can automatically enforce the most important coding conventions for you. Rmail Edit mode offers an example of changing the major mode temporarily for a buffer, so it can be edited in a different way (with ordinary Emacs commands rather than Rmail commands). In such cases, the temporary major mode usually provides a command to switch back to the buffer's usual mode (Rmail mode, in this case). You might be tempted to present the temporary redefinitions inside a recursive edit and restore the usual ones when the user exits; but this is a bad idea because it constrains the user's options when it is done in more than one buffer: recursive edits must be exited most-recently-entered first. Using an alternative major mode avoids this limitation. *Note Recursive Editing::. The standard GNU Emacs Lisp library directory tree contains the code for several major modes, in files such as `text-mode.el', `texinfo.el', `lisp-mode.el', `c-mode.el', and `rmail.el'. They are found in various subdirectories of the `lisp' directory. You can study these libraries to see how modes are written. Text mode is perhaps the simplest major mode aside from Fundamental mode. Rmail mode is a complicated and specialized mode. * Menu: * Major Mode Conventions:: Coding conventions for keymaps, etc. * Example Major Modes:: Text mode and Lisp modes. * Auto Major Mode:: How Emacs chooses the major mode automatically. * Mode Help:: Finding out how to use a mode. * Derived Modes:: Defining a new major mode based on another major mode.  File: elisp, Node: Major Mode Conventions, Next: Example Major Modes, Up: Major Modes Major Mode Conventions ---------------------- The code for existing major modes follows various coding conventions, including conventions for local keymap and syntax table initialization, global names, and hooks. Please follow these conventions when you define a new major mode. This list of conventions is only partial, because each major mode should aim for consistency in general with other Emacs major modes. This makes Emacs as a whole more coherent. It is impossible to list here all the possible points where this issue might come up; if the Emacs developers point out an area where your major mode deviates from the usual conventions, please make it compatible. * Define a command whose name ends in `-mode', with no arguments, that switches to the new mode in the current buffer. This command should set up the keymap, syntax table, and buffer-local variables in an existing buffer, without changing the buffer's contents. * Write a documentation string for this command that describes the special commands available in this mode. `C-h m' (`describe-mode') in your mode will display this string. The documentation string may include the special documentation substrings, `\[COMMAND]', `\{KEYMAP}', and `\', which enable the documentation to adapt automatically to the user's own key bindings. *Note Keys in Documentation::. * The major mode command should start by calling `kill-all-local-variables'. This is what gets rid of the buffer-local variables of the major mode previously in effect. * The major mode command should set the variable `major-mode' to the major mode command symbol. This is how `describe-mode' discovers which documentation to print. * The major mode command should set the variable `mode-name' to the "pretty" name of the mode, as a string. This string appears in the mode line. * Since all global names are in the same name space, all the global variables, constants, and functions that are part of the mode should have names that start with the major mode name (or with an abbreviation of it if the name is long). *Note Coding Conventions::. * In a major mode for editing some kind of structured text, such as a programming language, indentation of text according to structure is probably useful. So the mode should set `indent-line-function' to a suitable function, and probably customize other variables for indentation. * The major mode should usually have its own keymap, which is used as the local keymap in all buffers in that mode. The major mode command should call `use-local-map' to install this local map. *Note Active Keymaps::, for more information. This keymap should be stored permanently in a global variable named `MODENAME-mode-map'. Normally the library that defines the mode sets this variable. *Note Tips for Defining::, for advice about how to write the code to set up the mode's keymap variable. * The key sequences bound in a major mode keymap should usually start with `C-c', followed by a control character, a digit, or `{', `}', `<', `>', `:' or `;'. The other punctuation characters are reserved for minor modes, and ordinary letters are reserved for users. It is reasonable for a major mode to rebind a key sequence with a standard meaning, if it implements a command that does "the same job" in a way that fits the major mode better. For example, a major mode for editing a programming language might redefine `C-M-a' to "move to the beginning of a function" in a way that works better for that language. Major modes such as Dired or Rmail that do not allow self-insertion of text can reasonably redefine letters and other printing characters as editing commands. Dired and Rmail both do this. * Major modes must not define to do anything other than insert a newline. The command to insert a newline and then indent is `C-j'. Please keep this distinction uniform for all major modes. * Major modes should not alter options that are primary a matter of user preference, such as whether Auto-Fill mode is enabled. Leave this to each user to decide. However, a major mode should customize other variables so that Auto-Fill mode will work usefully _if_ the user decides to use it. * The mode may have its own syntax table or may share one with other related modes. If it has its own syntax table, it should store this in a variable named `MODENAME-mode-syntax-table'. *Note Syntax Tables::. * If the mode handles a language that has a syntax for comments, it should set the variables that define the comment syntax. *Note Options Controlling Comments: (emacs)Options for Comments. * The mode may have its own abbrev table or may share one with other related modes. If it has its own abbrev table, it should store this in a variable named `MODENAME-mode-abbrev-table'. *Note Abbrev Tables::. * The mode should specify how to do highlighting for Font Lock mode, by setting up a buffer-local value for the variable `font-lock-defaults' (*note Font Lock Mode::). * The mode should specify how Imenu should find the definitions or sections of a buffer, by setting up a buffer-local value for the variable `imenu-generic-expression' or `imenu-create-index-function' (*note Imenu::). * Use `defvar' or `defcustom' to set mode-related variables, so that they are not reinitialized if they already have a value. (Such reinitialization could discard customizations made by the user.) * To make a buffer-local binding for an Emacs customization variable, use `make-local-variable' in the major mode command, not `make-variable-buffer-local'. The latter function would make the variable local to every buffer in which it is subsequently set, which would affect buffers that do not use this mode. It is undesirable for a mode to have such global effects. *Note Buffer-Local Variables::. With rare exceptions, the only reasonable way to use `make-variable-buffer-local' in a Lisp package is for a variable which is used only within that package. Using it on a variable used by other packages would interfere with them. * Each major mode should have a "mode hook" named `MODENAME-mode-hook'. The major mode command should run that hook, with `run-hooks', as the very last thing it does. *Note Hooks::. * The major mode command may also run the hooks of some more basic modes. For example, `indented-text-mode' runs `text-mode-hook' as well as `indented-text-mode-hook'. It may run these other hooks immediately before the mode's own hook (that is, after everything else), or it may run them earlier. * If something special should be done if the user switches a buffer from this mode to any other major mode, this mode can set up a buffer-local value for `change-major-mode-hook' (*note Creating Buffer-Local::). * If this mode is appropriate only for specially-prepared text, then the major mode command symbol should have a property named `mode-class' with value `special', put on as follows: (put 'funny-mode 'mode-class 'special) This tells Emacs that new buffers created while the current buffer is in Funny mode should not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this feature. * If you want to make the new mode the default for files with certain recognizable names, add an element to `auto-mode-alist' to select the mode for those file names. If you define the mode command to autoload, you should add this element in the same file that calls `autoload'. Otherwise, it is sufficient to add the element in the file that contains the mode definition. *Note Auto Major Mode::. * In the documentation, you should provide a sample `autoload' form and an example of how to add to `auto-mode-alist', that users can include in their init files (*note Init File::). * The top-level forms in the file defining the mode should be written so that they may be evaluated more than once without adverse consequences. Even if you never load the file more than once, someone else will.  File: elisp, Node: Example Major Modes, Next: Auto Major Mode, Prev: Major Mode Conventions, Up: Major Modes Major Mode Examples ------------------- Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts from `text-mode.el' that illustrate many of the conventions listed above: ;; Create mode-specific tables. (defvar text-mode-syntax-table nil "Syntax table used while in text mode.") (if text-mode-syntax-table () ; Do not change the table if it is already set up. (setq text-mode-syntax-table (make-syntax-table)) (modify-syntax-entry ?\" ". " text-mode-syntax-table) (modify-syntax-entry ?\\ ". " text-mode-syntax-table) (modify-syntax-entry ?' "w " text-mode-syntax-table)) (defvar text-mode-abbrev-table nil "Abbrev table used while in text mode.") (define-abbrev-table 'text-mode-abbrev-table ()) (defvar text-mode-map nil ; Create a mode-specific keymap. "Keymap for Text mode. Many other modes, such as Mail mode, Outline mode and Indented Text mode, inherit all the commands defined in this map.") (if text-mode-map () ; Do not change the keymap if it is already set up. (setq text-mode-map (make-sparse-keymap)) (define-key text-mode-map "\e\t" 'ispell-complete-word) (define-key text-mode-map "\t" 'indent-relative) (define-key text-mode-map "\es" 'center-line) (define-key text-mode-map "\eS" 'center-paragraph)) Here is the complete major mode function definition for Text mode: (defun text-mode () "Major mode for editing text intended for humans to read... Special commands: \\{text-mode-map} Turning on text-mode runs the hook `text-mode-hook'." (interactive) (kill-all-local-variables) (use-local-map text-mode-map) (setq local-abbrev-table text-mode-abbrev-table) (set-syntax-table text-mode-syntax-table) (make-local-variable 'paragraph-start) (setq paragraph-start (concat "[ \t]*$\\|" page-delimiter)) (make-local-variable 'paragraph-separate) (setq paragraph-separate paragraph-start) (make-local-variable 'indent-line-function) (setq indent-line-function 'indent-relative-maybe) (setq mode-name "Text") (setq major-mode 'text-mode) (run-hooks 'text-mode-hook)) ; Finally, this permits the user to ; customize the mode with a hook. The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have more features than Text mode and the code is correspondingly more complicated. Here are excerpts from `lisp-mode.el' that illustrate how these modes are written. ;; Create mode-specific table variables. (defvar lisp-mode-syntax-table nil "") (defvar emacs-lisp-mode-syntax-table nil "") (defvar lisp-mode-abbrev-table nil "") (if (not emacs-lisp-mode-syntax-table) ; Do not change the table ; if it is already set. (let ((i 0)) (setq emacs-lisp-mode-syntax-table (make-syntax-table)) ;; Set syntax of chars up to 0 to class of chars that are ;; part of symbol names but not words. ;; (The number 0 is `48' in the ASCII character set.) (while (< i ?0) (modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table) (setq i (1+ i))) ... ;; Set the syntax for other characters. (modify-syntax-entry ? " " emacs-lisp-mode-syntax-table) (modify-syntax-entry ?\t " " emacs-lisp-mode-syntax-table) ... (modify-syntax-entry ?\( "() " emacs-lisp-mode-syntax-table) (modify-syntax-entry ?\) ")( " emacs-lisp-mode-syntax-table) ...)) ;; Create an abbrev table for lisp-mode. (define-abbrev-table 'lisp-mode-abbrev-table ()) Much code is shared among the three Lisp modes. The following function sets various variables; it is called by each of the major Lisp mode functions: (defun lisp-mode-variables (lisp-syntax) (cond (lisp-syntax (set-syntax-table lisp-mode-syntax-table))) (setq local-abbrev-table lisp-mode-abbrev-table) ... Functions such as `forward-paragraph' use the value of the `paragraph-start' variable. Since Lisp code is different from ordinary text, the `paragraph-start' variable needs to be set specially to handle Lisp. Also, comments are indented in a special fashion in Lisp and the Lisp modes need their own mode-specific `comment-indent-function'. The code to set these variables is the rest of `lisp-mode-variables'. (make-local-variable 'paragraph-start) (setq paragraph-start (concat page-delimiter "\\|$" )) (make-local-variable 'paragraph-separate) (setq paragraph-separate paragraph-start) ... (make-local-variable 'comment-indent-function) (setq comment-indent-function 'lisp-comment-indent)) ... Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode binds `C-c C-z' to `run-lisp', but the other Lisp modes do not. However, all Lisp modes have some commands in common. The following code sets up the common commands: (defvar shared-lisp-mode-map () "Keymap for commands shared by all sorts of Lisp modes.") (if shared-lisp-mode-map () (setq shared-lisp-mode-map (make-sparse-keymap)) (define-key shared-lisp-mode-map "\e\C-q" 'indent-sexp) (define-key shared-lisp-mode-map "\177" 'backward-delete-char-untabify)) And here is the code to set up the keymap for Lisp mode: (defvar lisp-mode-map () "Keymap for ordinary Lisp mode...") (if lisp-mode-map () (setq lisp-mode-map (make-sparse-keymap)) (set-keymap-parent lisp-mode-map shared-lisp-mode-map) (define-key lisp-mode-map "\e\C-x" 'lisp-eval-defun) (define-key lisp-mode-map "\C-c\C-z" 'run-lisp)) Finally, here is the complete major mode function definition for Lisp mode. (defun lisp-mode () "Major mode for editing Lisp code for Lisps other than GNU Emacs Lisp. Commands: Delete converts tabs to spaces as it moves back. Blank lines separate paragraphs. Semicolons start comments. \\{lisp-mode-map} Note that `run-lisp' may be used either to start an inferior Lisp job or to switch back to an existing one. Entry to this mode calls the value of `lisp-mode-hook' if that value is non-nil." (interactive) (kill-all-local-variables) (use-local-map lisp-mode-map) ; Select the mode's keymap. (setq major-mode 'lisp-mode) ; This is how `describe-mode' ; finds out what to describe. (setq mode-name "Lisp") ; This goes into the mode line. (lisp-mode-variables t) ; This defines various variables. (setq imenu-case-fold-search t) (set-syntax-table lisp-mode-syntax-table) (run-hooks 'lisp-mode-hook)) ; This permits the user to use a ; hook to customize the mode.  File: elisp, Node: Auto Major Mode, Next: Mode Help, Prev: Example Major Modes, Up: Major Modes How Emacs Chooses a Major Mode ------------------------------ Based on information in the file name or in the file itself, Emacs automatically selects a major mode for the new buffer when a file is visited. It also processes local variables specified in the file text. - Command: fundamental-mode Fundamental mode is a major mode that is not specialized for anything in particular. Other major modes are defined in effect by comparison with this one--their definitions say what to change, starting from Fundamental mode. The `fundamental-mode' function does _not_ run any hooks; you're not supposed to customize it. (If you want Emacs to behave differently in Fundamental mode, change the _global_ state of Emacs.) - Command: normal-mode &optional find-file This function establishes the proper major mode and buffer-local variable bindings for the current buffer. First it calls `set-auto-mode', then it runs `hack-local-variables' to parse, and bind or evaluate as appropriate, the file's local variables. If the FIND-FILE argument to `normal-mode' is non-`nil', `normal-mode' assumes that the `find-file' function is calling it. In this case, it may process a local variables list at the end of the file and in the `-*-' line. The variable `enable-local-variables' controls whether to do so. *Note Local Variables in Files: (emacs)File variables, for the syntax of the local variables section of a file. If you run `normal-mode' interactively, the argument FIND-FILE is normally `nil'. In this case, `normal-mode' unconditionally processes any local variables list. `normal-mode' uses `condition-case' around the call to the major mode function, so errors are caught and reported as a `File mode specification error', followed by the original error message. - Function: set-auto-mode This function selects the major mode that is appropriate for the current buffer. It may base its decision on the value of the `-*-' line, on the visited file name (using `auto-mode-alist'), on the `#!' line (using `interpreter-mode-alist'), or on the file's local variables list. However, this function does not look for the `mode:' local variable near the end of a file; the `hack-local-variables' function does that. *Note How Major Modes are Chosen: (emacs)Choosing Modes. - User Option: default-major-mode This variable holds the default major mode for new buffers. The standard value is `fundamental-mode'. If the value of `default-major-mode' is `nil', Emacs uses the (previously) current buffer's major mode for the major mode of a new buffer. However, if that major mode symbol has a `mode-class' property with value `special', then it is not used for new buffers; Fundamental mode is used instead. The modes that have this property are those such as Dired and Rmail that are useful only with text that has been specially prepared. - Function: set-buffer-major-mode buffer This function sets the major mode of BUFFER to the value of `default-major-mode'. If that variable is `nil', it uses the current buffer's major mode (if that is suitable). The low-level primitives for creating buffers do not use this function, but medium-level commands such as `switch-to-buffer' and `find-file-noselect' use it whenever they create buffers. - Variable: initial-major-mode The value of this variable determines the major mode of the initial `*scratch*' buffer. The value should be a symbol that is a major mode command. The default value is `lisp-interaction-mode'. - Variable: auto-mode-alist This variable contains an association list of file name patterns (regular expressions; *note Regular Expressions::) and corresponding major mode commands. Usually, the file name patterns test for suffixes, such as `.el' and `.c', but this need not be the case. An ordinary element of the alist looks like `(REGEXP . MODE-FUNCTION)'. For example, (("\\`/tmp/fol/" . text-mode) ("\\.texinfo\\'" . texinfo-mode) ("\\.texi\\'" . texinfo-mode) ("\\.el\\'" . emacs-lisp-mode) ("\\.c\\'" . c-mode) ("\\.h\\'" . c-mode) ...) When you visit a file whose expanded file name (*note File Name Expansion::) matches a REGEXP, `set-auto-mode' calls the corresponding MODE-FUNCTION. This feature enables Emacs to select the proper major mode for most files. If an element of `auto-mode-alist' has the form `(REGEXP FUNCTION t)', then after calling FUNCTION, Emacs searches `auto-mode-alist' again for a match against the portion of the file name that did not match before. This feature is useful for uncompression packages: an entry of the form `("\\.gz\\'" FUNCTION t)' can uncompress the file and then put the uncompressed file in the proper mode according to the name sans `.gz'. Here is an example of how to prepend several pattern pairs to `auto-mode-alist'. (You might use this sort of expression in your init file.) (setq auto-mode-alist (append ;; File name (within directory) starts with a dot. '(("/\\.[^/]*\\'" . fundamental-mode) ;; File name has no dot. ("[^\\./]*\\'" . fundamental-mode) ;; File name ends in `.C'. ("\\.C\\'" . c++-mode)) auto-mode-alist)) - Variable: interpreter-mode-alist This variable specifies major modes to use for scripts that specify a command interpreter in a `#!' line. Its value is a list of elements of the form `(INTERPRETER . MODE)'; for example, `("perl" . perl-mode)' is one element present by default. The element says to use mode MODE if the file specifies an interpreter which matches INTERPRETER. The value of INTERPRETER is actually a regular expression. This variable is applicable only when the `auto-mode-alist' does not indicate which major mode to use.  File: elisp, Node: Mode Help, Next: Derived Modes, Prev: Auto Major Mode, Up: Major Modes Getting Help about a Major Mode ------------------------------- The `describe-mode' function is used to provide information about major modes. It is normally called with `C-h m'. The `describe-mode' function uses the value of `major-mode', which is why every major mode function needs to set the `major-mode' variable. - Command: describe-mode This function displays the documentation of the current major mode. The `describe-mode' function calls the `documentation' function using the value of `major-mode' as an argument. Thus, it displays the documentation string of the major mode function. (*Note Accessing Documentation::.) - Variable: major-mode This variable holds the symbol for the current buffer's major mode. This symbol should have a function definition that is the command to switch to that major mode. The `describe-mode' function uses the documentation string of the function as the documentation of the major mode.  File: elisp, Node: Derived Modes, Prev: Mode Help, Up: Major Modes Defining Derived Modes ---------------------- It's often useful to define a new major mode in terms of an existing one. An easy way to do this is to use `define-derived-mode'. - Macro: define-derived-mode variant parent name docstring body... This construct defines VARIANT as a major mode command, using NAME as the string form of the mode name. The new command VARIANT is defined to call the function PARENT, then override certain aspects of that parent mode: * The new mode has its own keymap, named `VARIANT-map'. `define-derived-mode' initializes this map to inherit from `PARENT-map', if it is not already set. * The new mode has its own syntax table, kept in the variable `VARIANT-syntax-table'. `define-derived-mode' initializes this variable by copying `PARENT-syntax-table', if it is not already set. * The new mode has its own abbrev table, kept in the variable `VARIANT-abbrev-table'. `define-derived-mode' initializes this variable by copying `PARENT-abbrev-table', if it is not already set. * The new mode has its own mode hook, `VARIANT-hook', which it runs in standard fashion as the very last thing that it does. (The new mode also runs the mode hook of PARENT as part of calling PARENT.) In addition, you can specify how to override other aspects of PARENT with BODY. The command VARIANT evaluates the forms in BODY after setting up all its usual overrides, just before running `VARIANT-hook'. The argument DOCSTRING specifies the documentation string for the new mode. If you omit DOCSTRING, `define-derived-mode' generates a documentation string. Here is a hypothetical example: (define-derived-mode hypertext-mode text-mode "Hypertext" "Major mode for hypertext. \\{hypertext-mode-map}" (setq case-fold-search nil)) (define-key hypertext-mode-map [down-mouse-3] 'do-hyper-link) Do not write an `interactive' spec in the definition; `define-derived-mode' does that automatically.  File: elisp, Node: Minor Modes, Next: Mode Line Format, Prev: Major Modes, Up: Modes Minor Modes =========== A "minor mode" provides features that users may enable or disable independently of the choice of major mode. Minor modes can be enabled individually or in combination. Minor modes would be better named "generally available, optional feature modes," except that such a name would be unwieldy. A minor mode is not usually meant as a variation of a single major mode. Usually they are general and can apply to many major modes. For example, Auto Fill mode works with any major mode that permits text insertion. To be general, a minor mode must be effectively independent of the things major modes do. A minor mode is often much more difficult to implement than a major mode. One reason is that you should be able to activate and deactivate minor modes in any order. A minor mode should be able to have its desired effect regardless of the major mode and regardless of the other minor modes in effect. Often the biggest problem in implementing a minor mode is finding a way to insert the necessary hook into the rest of Emacs. Minor mode keymaps make this easier than it used to be. * Menu: * Minor Mode Conventions:: Tips for writing a minor mode. * Keymaps and Minor Modes:: How a minor mode can have its own keymap. * Defining Minor Modes:: A convenient facility for defining minor modes.  File: elisp, Node: Minor Mode Conventions, Next: Keymaps and Minor Modes, Up: Minor Modes Conventions for Writing Minor Modes ----------------------------------- There are conventions for writing minor modes just as there are for major modes. Several of the major mode conventions apply to minor modes as well: those regarding the name of the mode initialization function, the names of global symbols, and the use of keymaps and other tables. In addition, there are several conventions that are specific to minor modes. * Make a variable whose name ends in `-mode' to control the minor mode. We call this the "mode variable". The minor mode command should set this variable (`nil' to disable; anything else to enable). If possible, implement the mode so that setting the variable automatically enables or disables the mode. Then the minor mode command does not need to do anything except set the variable. This variable is used in conjunction with the `minor-mode-alist' to display the minor mode name in the mode line. It can also enable or disable a minor mode keymap. Individual commands or hooks can also check the variable's value. If you want the minor mode to be enabled separately in each buffer, make the variable buffer-local. * Define a command whose name is the same as the mode variable. Its job is to enable and disable the mode by setting the variable. The command should accept one optional argument. If the argument is `nil', it should toggle the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the mode on if the argument is a positive integer, a symbol other than `nil' or `-', or a list whose CAR is such an integer or symbol; it should turn the mode off otherwise. Here is an example taken from the definition of `transient-mark-mode'. It shows the use of `transient-mark-mode' as a variable that enables or disables the mode's behavior, and also shows the proper way to toggle, enable or disable the minor mode based on the raw prefix argument value. (setq transient-mark-mode (if (null arg) (not transient-mark-mode) (> (prefix-numeric-value arg) 0))) * Add an element to `minor-mode-alist' for each minor mode (*note Mode Line Variables::), if you want to indicate the minor mode in the mode line. This element should be a list of the following form: (MODE-VARIABLE STRING) Here MODE-VARIABLE is the variable that controls enabling of the minor mode, and STRING is a short string, starting with a space, to represent the mode in the mode line. These strings must be short so that there is room for several of them at once. When you add an element to `minor-mode-alist', use `assq' to check for an existing element, to avoid duplication. For example: (unless (assq 'leif-mode minor-mode-alist) (setq minor-mode-alist (cons '(leif-mode " Leif") minor-mode-alist))) or like this, using `add-to-list' (*note Setting Variables::): (add-to-list 'minor-mode-alist '(leif-mode " Leif")) Global minor modes distributed with Emacs should if possible support enabling and disabling via Custom (*note Customization::). To do this, the first step is to define the mode variable with `defcustom', and specify `:type boolean'. If just setting the variable is not sufficient to enable the mode, you should also specify a `:set' method which enables the mode by invoke the mode command. Note in the variable's documentation string that setting the variable other than via Custom may not take effect. Also mark the definition with an autoload cookie (*note Autoload::), and specify a `:require' so that customizing the variable will load the library that defines the mode. This will copy suitable definitions into `loaddefs.el' so that users can use `customize-option' to enable the mode. For example: ;;;###autoload (defcustom msb-mode nil "Toggle msb-mode. Setting this variable directly does not take effect; use either \\[customize] or the function `msb-mode'." :set (lambda (symbol value) (msb-mode (or value 0))) :initialize 'custom-initialize-default :version "20.4" :type 'boolean :group 'msb :require 'msb)  File: elisp, Node: Keymaps and Minor Modes, Next: Defining Minor Modes, Prev: Minor Mode Conventions, Up: Minor Modes Keymaps and Minor Modes ----------------------- Each minor mode can have its own keymap, which is active when the mode is enabled. To set up a keymap for a minor mode, add an element to the alist `minor-mode-map-alist'. *Note Active Keymaps::. One use of minor mode keymaps is to modify the behavior of certain self-inserting characters so that they do something else as well as self-insert. In general, this is the only way to do that, since the facilities for customizing `self-insert-command' are limited to special cases (designed for abbrevs and Auto Fill mode). (Do not try substituting your own definition of `self-insert-command' for the standard one. The editor command loop handles this function specially.) The key sequences bound in a minor mode should consist of `C-c' followed by a punctuation character _other than_ `{', `}', `<', `>', `:', and `;'. (Those few punctuation characters are reserved for major modes.)  File: elisp, Node: Defining Minor Modes, Prev: Keymaps and Minor Modes, Up: Minor Modes Defining Minor Modes -------------------- The macro `define-minor-mode' offers a convenient way of implementing a mode in one self-contained definition. It supports only buffer-local minor modes, not global ones. - Macro: define-minor-mode mode doc &optional init-value mode-indicator keymap body... This macro defines a new minor mode whose name is MODE (a symbol). It defines a command named MODE to toggle the minor mode, with DOC as its documentation string. It also defines a variable named MODE, which is set to `t' or `nil' by enabling or disabling the mode. The variable is initialized to INIT-VALUE. The command named MODE finishes by executing the BODY forms, if any, after it has performed the standard actions such as setting the variable named MODE. The string MODE-INDICATOR says what to display in the mode line when the mode is enabled; if it is `nil', the mode is not displayed in the mode line. The optional argument KEYMAP specifies the keymap for the minor mode. It can be a variable name, whose value is the keymap, or it can be an alist specifying bindings in this form: (KEY-SEQUENCE . DEFINITION) Here is an example of using `define-minor-mode': (define-minor-mode hungry-mode "Toggle Hungry mode. With no argument, this command toggles the mode. Non-null prefix argument turns on the mode. Null prefix argument turns off the mode. When Hungry mode is enabled, the control delete key gobbles all preceding whitespace except the last. See the command \\[hungry-electric-delete]." ;; The initial value. nil ;; The indicator for the mode line. " Hungry" ;; The minor mode bindings. '(("\C-\^?" . hungry-electric-delete) ("\C-\M-\^?" . (lambda () (interactive) (hungry-electric-delete t))))) This defines a minor mode named "Hungry mode", a command named `hungry-mode' to toggle it, a variable named `hungry-mode' which indicates whether the mode is enabled, and a variable named `hungry-mode-map' which holds the keymap that is active when the mode is enabled. It initializes the keymap with key bindings for `C-' and `C-M-'. The name `easy-mmode-define-minor-mode' is an alias for this macro.  File: elisp, Node: Mode Line Format, Next: Imenu, Prev: Minor Modes, Up: Modes Mode Line Format ================ Each Emacs window (aside from minibuffer windows) typically has a mode line at the bottom, which displays status information about the buffer displayed in the window. The mode line contains information about the buffer, such as its name, associated file, depth of recursive editing, and major and minor modes. A window can also have a "header line", which is much like the mode line but appears at the top of the window (starting in Emacs 21). This section describes how to control the contents of the mode line and header line. We include it in this chapter because much of the information displayed in the mode line relates to the enabled major and minor modes. `mode-line-format' is a buffer-local variable that holds a template used to display the mode line of the current buffer. All windows for the same buffer use the same `mode-line-format', so their mode lines appear the same--except for scrolling percentages, and line and column numbers, since those depend on point and on how the window is scrolled. `header-line-format' is used likewise for header lines. The mode line and header line of a window are normally updated whenever a different buffer is shown in the window, or when the buffer's modified-status changes from `nil' to `t' or vice-versa. If you modify any of the variables referenced by `mode-line-format' (*note Mode Line Variables::), or any other variables and data structures that affect how text is displayed (*note Display::), you may want to force an update of the mode line so as to display the new information or display it in the new way. - Function: force-mode-line-update Force redisplay of the current buffer's mode line and header line. The mode line is usually displayed in inverse video; see `mode-line-inverse-video' in *Note Inverse Video::. * Menu: * Mode Line Data:: The data structure that controls the mode line. * Mode Line Variables:: Variables used in that data structure. * %-Constructs:: Putting information into a mode line. * Properties in Mode:: Using text properties in the mode line. * Header Lines:: Like a mode line, but at the top.  File: elisp, Node: Mode Line Data, Next: Mode Line Variables, Up: Mode Line Format The Data Structure of the Mode Line ----------------------------------- The mode line contents are controlled by a data structure of lists, strings, symbols, and numbers kept in buffer-local variables. The data structure is called a "mode line construct", and it is built in recursive fashion out of simpler mode line constructs. The same data structure is used for constructing frame titles (*note Frame Titles::) and header lines (*note Header Lines::). - Variable: mode-line-format The value of this variable is a mode line construct with overall responsibility for the mode line format. The value of this variable controls which other variables are used to form the mode line text, and where they appear. If you set this variable to `nil' in a buffer, that buffer does not have a mode line. (This feature was added in Emacs 21.) A mode line construct may be as simple as a fixed string of text, but it usually specifies how to use other variables to construct the text. Many of these variables are themselves defined to have mode line constructs as their values. The default value of `mode-line-format' incorporates the values of variables such as `mode-name' and `minor-mode-alist'. Because of this, very few modes need to alter `mode-line-format' itself. For most purposes, it is sufficient to alter some of the variables that `mode-line-format' refers to. A mode line construct may be a list, a symbol, or a string. If the value is a list, each element may be a list, a symbol, or a string. The mode line can display various faces, if the strings that control it have the `face' property. *Note Properties in Mode::. In addition, the face `mode-line' is used as a default for the whole mode line (*note Standard Faces::). `STRING' A string as a mode line construct is displayed verbatim in the mode line except for "`%'-constructs". Decimal digits after the `%' specify the field width for space filling on the right (i.e., the data is left justified). *Note %-Constructs::. `SYMBOL' A symbol as a mode line construct stands for its value. The value of SYMBOL is used as a mode line construct, in place of SYMBOL. However, the symbols `t' and `nil' are ignored, as is any symbol whose value is void. There is one exception: if the value of SYMBOL is a string, it is displayed verbatim: the `%'-constructs are not recognized. `(STRING REST...) or (LIST REST...)' A list whose first element is a string or list means to process all the elements recursively and concatenate the results. This is the most common form of mode line construct. `(:eval FORM)' A list whose first element is the symbol `:eval' says to evaluate FORM, and use the result as a string to display. (This feature is new as of Emacs 21.) `(SYMBOL THEN ELSE)' A list whose first element is a symbol that is not a keyword specifies a conditional. Its meaning depends on the value of SYMBOL. If the value is non-`nil', the second element, THEN, is processed recursively as a mode line element. But if the value of SYMBOL is `nil', the third element, ELSE, is processed recursively. You may omit ELSE; then the mode line element displays nothing if the value of SYMBOL is `nil'. `(WIDTH REST...)' A list whose first element is an integer specifies truncation or padding of the results of REST. The remaining elements REST are processed recursively as mode line constructs and concatenated together. Then the result is space filled (if WIDTH is positive) or truncated (to -WIDTH columns, if WIDTH is negative) on the right. For example, the usual way to show what percentage of a buffer is above the top of the window is to use a list like this: `(-3 "%p")'. If you do alter `mode-line-format' itself, the new value should use the same variables that appear in the default value (*note Mode Line Variables::), rather than duplicating their contents or displaying the information in another fashion. This way, customizations made by the user or by Lisp programs (such as `display-time' and major modes) via changes to those variables remain effective. Here is an example of a `mode-line-format' that might be useful for `shell-mode', since it contains the host name and default directory. (setq mode-line-format (list "-" 'mode-line-mule-info 'mode-line-modified 'mode-line-frame-identification "%b--" ;; Note that this is evaluated while making the list. ;; It makes a mode line construct which is just a string. (getenv "HOST") ":" 'default-directory " " 'global-mode-string " %[(" '(:eval (mode-line-mode-name)) 'mode-line-process 'minor-mode-alist "%n" ")%]--" '(which-func-mode ("" which-func-format "--")) '(line-number-mode "L%l--") '(column-number-mode "C%c--") '(-3 . "%p") "-%-")) (The variables `line-number-mode', `column-number-mode' and `which-func-mode' enable particular minor modes; as usual, these variable names are also the minor mode command names.)