(* Title: Provers/induct_method.ML ID: $Id: induct_method.ML,v 1.30 2005/06/14 19:56:57 wenzelm Exp $ Author: Markus Wenzel, TU Muenchen Proof by cases and induction on sets and types. *) signature INDUCT_METHOD_DATA = sig val dest_concls: term -> term list val cases_default: thm val local_impI: thm val conjI: thm val atomize: thm list val rulify1: thm list val rulify2: thm list val localize: thm list end; signature INDUCT_METHOD = sig val cases_tac: Proof.context -> bool -> term option list list -> thm option -> thm list -> int -> RuleCases.tactic val induct_tac: Proof.context -> bool -> term option list list -> thm option -> thm list -> int -> RuleCases.tactic val setup: (theory -> theory) list end; functor InductMethodFun(Data: INDUCT_METHOD_DATA): INDUCT_METHOD = struct (** misc utils **) (* align lists *) fun align_left msg xs ys = let val m = length xs and n = length ys in if m < n then raise ERROR_MESSAGE msg else (Library.take (n, xs) ~~ ys) end; fun align_right msg xs ys = let val m = length xs and n = length ys in if m < n then raise ERROR_MESSAGE msg else (Library.drop (m - n, xs) ~~ ys) end; (* prep_inst *) fun prep_inst align cert tune (tm, ts) = let fun prep_var (x, SOME t) = let val cx = cert x; val {T = xT, sign, ...} = Thm.rep_cterm cx; val ct = cert (tune t); in if Sign.typ_instance sign (#T (Thm.rep_cterm ct), xT) then SOME (cx, ct) else raise ERROR_MESSAGE (Pretty.string_of (Pretty.block [Pretty.str "Ill-typed instantiation:", Pretty.fbrk, Display.pretty_cterm ct, Pretty.str " ::", Pretty.brk 1, Display.pretty_ctyp (#T (Thm.crep_cterm ct))])) end | prep_var (_, NONE) = NONE; val xs = InductAttrib.vars_of tm; in align "Rule has fewer variables than instantiations given" xs ts |> List.mapPartial prep_var end; (** cases method **) (* rule selection scheme: cases - classical case split cases ... - set cases cases t - type cases ... cases ... R - explicit rule *) local fun resolveq_cases_tac make ruleq i st = ruleq |> Seq.map (fn (rule, (cases, facts)) => (Method.insert_tac facts THEN' Tactic.rtac rule) i st |> Seq.map (rpair (make (Thm.sign_of_thm rule, Thm.prop_of rule) cases))) |> Seq.flat; fun find_casesT ctxt ((SOME t :: _) :: _) = InductAttrib.find_casesT ctxt (fastype_of t) | find_casesT _ _ = []; fun find_casesS ctxt (fact :: _) = InductAttrib.find_casesS ctxt fact | find_casesS _ _ = []; in fun cases_tac ctxt is_open insts opt_rule facts = let val sg = ProofContext.sign_of ctxt; val cert = Thm.cterm_of sg; fun inst_rule r = if null insts then RuleCases.add r else (align_left "Rule has fewer premises than arguments given" (Thm.prems_of r) insts |> (List.concat o map (prep_inst align_left cert I)) |> Drule.cterm_instantiate) r |> rpair (RuleCases.get r); val ruleq = (case opt_rule of NONE => let val rules = find_casesS ctxt facts @ find_casesT ctxt insts @ [Data.cases_default] in Method.trace ctxt rules; Seq.flat (Seq.map (Seq.try inst_rule) (Seq.of_list rules)) end | SOME r => Seq.single (inst_rule r)); fun prep_rule (th, (cases, n)) = Seq.map (apsnd (rpair (Library.drop (n, facts))) o rpair cases) (Method.multi_resolves (Library.take (n, facts)) [th]); in resolveq_cases_tac (RuleCases.make is_open NONE) (Seq.flat (Seq.map prep_rule ruleq)) end; val cases_meth = Method.METHOD_CASES o ((Seq.DETERM o HEADGOAL) oo (fn (ctxt, (is_open, (insts, opt_rule))) => cases_tac ctxt is_open insts opt_rule)); end; (** induct method **) (* rule selection scheme: induct ... - set induction induct x - type induction ... induct ... R - explicit rule *) local (* atomize and rulify *) fun atomize_term sg = ObjectLogic.drop_judgment sg o MetaSimplifier.rewrite_term sg Data.atomize []; fun rulified_term thm = let val sg = Thm.sign_of_thm thm in Thm.prop_of thm |> MetaSimplifier.rewrite_term sg Data.rulify1 [] |> MetaSimplifier.rewrite_term sg Data.rulify2 [] |> pair sg end; val atomize_tac = Tactic.rewrite_goal_tac Data.atomize; val rulify_tac = Tactic.rewrite_goal_tac Data.rulify1 THEN' Tactic.rewrite_goal_tac Data.rulify2 THEN' Tactic.norm_hhf_tac; val localize = Tactic.norm_hhf_rule o Tactic.simplify false Data.localize; (* imp_intr --- limited to atomic prems *) fun imp_intr i raw_th = let val th = Thm.permute_prems (i - 1) 1 raw_th; val cprems = Drule.cprems_of th; val As = Library.take (length cprems - 1, cprems); val C = Thm.cterm_of (Thm.sign_of_thm th) (Var (("C", #maxidx (Thm.rep_thm th) + 1), propT)); val dummy_st = Drule.mk_triv_goal (Drule.list_implies (As, C)); in th COMP Thm.lift_rule (dummy_st, 1) Data.local_impI end; (* join multi-rules *) val eq_prems = curry (Term.aconvs o pairself Thm.prems_of); fun join_rules [] = [] | join_rules [th] = [th] | join_rules (rules as r :: rs) = if not (forall (eq_prems r) rs) then [] else let val th :: ths = map Drule.freeze_all rules; val cprems = Drule.cprems_of th; val asms = map Thm.assume cprems; in [foldr1 (fn (x, x') => [x, x'] MRS Data.conjI) (map (fn x => Drule.implies_elim_list x asms) (th :: ths)) |> Drule.implies_intr_list cprems |> Drule.standard' |> RuleCases.save r] end; (* divinate rule instantiation (cannot handle pending goal parameters) *) fun dest_env sign (env as Envir.Envir {iTs, ...}) = let val pairs = Envir.alist_of env; val ts = map (Thm.cterm_of sign o Envir.norm_term env o #2 o #2) pairs; val xs = map2 (Thm.cterm_of sign o Var) (map #1 pairs, map (#T o Thm.rep_cterm) ts); val cert = Thm.ctyp_of sign; in (map (fn (ixn, (S, T)) => (cert (TVar (ixn, S)), cert T)) (Vartab.dest iTs), xs ~~ ts) end; fun divinate_inst rule i st = let val {sign, maxidx, ...} = Thm.rep_thm st; val goal = List.nth (Thm.prems_of st, i - 1); (*exception Subscript*) val params = rev (rename_wrt_term goal (Logic.strip_params goal)); (*as they are printed :-*) in if not (null params) then (warning ("Cannot determine rule instantiation due to pending parameter(s): " ^ commas (map (Sign.string_of_term sign o Syntax.mark_boundT) params)); Seq.single rule) else let val rule' = Thm.incr_indexes (maxidx + 1) rule; val concl = Logic.strip_assums_concl goal; in Unify.smash_unifiers (sign, Envir.empty (#maxidx (Thm.rep_thm rule')), [(Thm.concl_of rule', concl)]) |> Seq.map (fn env => Drule.instantiate (dest_env sign env) rule') end end handle Subscript => Seq.empty; (* compose tactics with cases *) fun internalize k th = if k > 0 then internalize (k - 1) (imp_intr k th) else th; fun resolveq_cases_tac' make is_open ruleq i st = ruleq |> Seq.map (fn (rule, (cases, k, more_facts)) => st |> (Method.insert_tac more_facts THEN' atomize_tac) i |> Seq.map (fn st' => divinate_inst (internalize k rule) i st' |> Seq.map (fn rule' => st' |> Tactic.rtac rule' i |> Seq.map (rpair (make is_open (SOME (Thm.prop_of rule')) (rulified_term rule') cases))) |> Seq.flat) |> Seq.flat) |> Seq.flat; infix 1 THEN_ALL_NEW_CASES; fun (tac1 THEN_ALL_NEW_CASES tac2) i st = st |> Seq.THEN (tac1 i, (fn (st', cases) => Seq.map (rpair cases) (Seq.INTERVAL tac2 i (i + nprems_of st' - nprems_of st) st'))); (* find rules *) (* rename all outermost !!-bound vars of type T in all premises of thm to x, possibly indexed to avoid clashes *) fun rename [[SOME(Free(x,Type(T,_)))]] thm = let fun index i [] = [] | index i (y::ys) = if x=y then x^string_of_int i :: index (i+1) ys else y :: index i ys; fun rename_params [] = [] | rename_params ((y,Type(U,_))::ys) = (if U=T then x else y)::rename_params ys | rename_params ((y,_)::ys) = y::rename_params ys; fun rename_asm (A:term):term = let val xs = rename_params (Logic.strip_params A) val xs' = case List.filter (equal x) xs of [] => xs | [_] => xs | _ => index 1 xs in Logic.list_rename_params (xs',A) end; fun rename_prop (p:term) = let val (As,C) = Logic.strip_horn p in Logic.list_implies(map rename_asm As, C) end; val cp' = cterm_fun rename_prop (cprop_of thm); val thm' = equal_elim (reflexive cp') thm in Thm.put_name_tags (Thm.get_name_tags thm) thm' end | rename _ thm = thm; fun find_inductT ctxt insts = foldr multiply [[]] (insts |> List.mapPartial (fn [] => NONE | ts => List.last ts) |> map (InductAttrib.find_inductT ctxt o fastype_of)) |> map join_rules |> List.concat |> map (rename insts); fun find_inductS ctxt (fact :: _) = InductAttrib.find_inductS ctxt fact | find_inductS _ _ = []; in (* main tactic *) fun induct_tac ctxt is_open insts opt_rule facts = let val sg = ProofContext.sign_of ctxt; val cert = Thm.cterm_of sg; fun rule_versions r = Seq.cons (r, Seq.filter (not o curry Thm.eq_thm r) (Seq.make (fn () => SOME (localize r, Seq.empty)))) |> Seq.map (rpair (RuleCases.get r)); val inst_rule = apfst (fn r => if null insts then r else (align_right "Rule has fewer conclusions than arguments given" (Data.dest_concls (Thm.concl_of r)) insts |> (List.concat o map (prep_inst align_right cert (atomize_term sg))) |> Drule.cterm_instantiate) r); val ruleq = (case opt_rule of NONE => let val rules = find_inductS ctxt facts @ find_inductT ctxt insts in conditional (null rules) (fn () => error "Unable to figure out induct rule"); Method.trace ctxt rules; rules |> Seq.THEN (Seq.of_list, Seq.THEN (rule_versions, Seq.try inst_rule)) end | SOME r => r |> Seq.THEN (rule_versions, Seq.single o inst_rule)); fun prep_rule (th, (cases, n)) = Seq.map (rpair (cases, n - length facts, Library.drop (n, facts))) (Method.multi_resolves (Library.take (n, facts)) [th]); val tac = resolveq_cases_tac' RuleCases.make is_open (Seq.flat (Seq.map prep_rule ruleq)); in tac THEN_ALL_NEW_CASES rulify_tac end; val induct_meth = Method.RAW_METHOD_CASES o ((Seq.DETERM o HEADGOAL) oo (fn (ctxt, (is_open, (insts, opt_rule))) => induct_tac ctxt is_open insts opt_rule)); end; (** concrete syntax **) val openN = "open"; val ruleN = "rule"; val ofN = "of"; local fun named_rule k arg get = Scan.lift (Args.$$$ k -- Args.colon) |-- arg :-- (fn name => Scan.peek (fn ctxt => (case get ctxt name of SOME x => Scan.succeed x | NONE => error ("No rule for " ^ k ^ " " ^ quote name)))) >> #2; fun rule get_type get_set = named_rule InductAttrib.typeN Args.local_tyname get_type || named_rule InductAttrib.setN Args.local_const get_set || Scan.lift (Args.$$$ ruleN -- Args.colon) |-- Attrib.local_thm; val cases_rule = rule InductAttrib.lookup_casesT InductAttrib.lookup_casesS; val induct_rule = rule InductAttrib.lookup_inductT InductAttrib.lookup_inductS; val kind_inst = (Args.$$$ InductAttrib.typeN || Args.$$$ InductAttrib.setN || Args.$$$ ruleN || Args.$$$ ofN) -- Args.colon; val term = Scan.unless (Scan.lift kind_inst) Args.local_term; val term_dummy = Scan.unless (Scan.lift kind_inst) (Scan.lift (Args.$$$ "_") >> K NONE || Args.local_term >> SOME); val instss = Args.and_list (Scan.repeat term_dummy); in val cases_args = Method.syntax (Args.mode openN -- (instss -- Scan.option cases_rule)); val induct_args = Method.syntax (Args.mode openN -- (instss -- Scan.option induct_rule)); end; (** theory setup **) val setup = [Method.add_methods [(InductAttrib.casesN, cases_meth oo cases_args, "case analysis on types or sets"), (InductAttrib.inductN, induct_meth oo induct_args, "induction on types or sets")]]; end;