(* Title: Reasoner for simple transitivity and quasi orders. Id: $Id: quasi.ML,v 1.3 2005/03/03 11:43:46 skalberg Exp $ Author: Oliver Kutter Copyright: TU Muenchen *) (* The package provides tactics trans_tac and quasi_tac that use premises of the form t = u, t ~= u, t < u and t <= u to - either derive a contradiction, in which case the conclusion can be any term, - or prove the concluson, which must be of the form t ~= u, t < u or t <= u. Details: 1. trans_tac: Only premises of form t <= u are used and the conclusion must be of the same form. The conclusion is proved, if possible, by a chain of transitivity from the assumptions. 2. quasi_tac: <= is assumed to be a quasi order and < its strict relative, defined as t < u == t <= u & t ~= u. Again, the conclusion is proved from the assumptions. Note that the presence of a strict relation is not necessary for quasi_tac. Configure decomp_quasi to ignore < and ~=. A list of required theorems for both situations is given below. *) signature LESS_ARITH = sig (* Transitivity of <= Note that transitivities for < hold for partial orders only. *) val le_trans: thm (* [| x <= y; y <= z |] ==> x <= z *) (* Additional theorem for quasi orders *) val le_refl: thm (* x <= x *) val eqD1: thm (* x = y ==> x <= y *) val eqD2: thm (* x = y ==> y <= x *) (* Additional theorems for premises of the form x < y *) val less_reflE: thm (* x < x ==> P *) val less_imp_le : thm (* x < y ==> x <= y *) (* Additional theorems for premises of the form x ~= y *) val le_neq_trans : thm (* [| x <= y ; x ~= y |] ==> x < y *) val neq_le_trans : thm (* [| x ~= y ; x <= y |] ==> x < y *) (* Additional theorem for goals of form x ~= y *) val less_imp_neq : thm (* x < y ==> x ~= y *) (* Analysis of premises and conclusion *) (* decomp_x (`x Rel y') should yield SOME (x, Rel, y) where Rel is one of "<", "<=", "=" and "~=", other relation symbols cause an error message *) (* decomp_trans is used by trans_tac, it may only return Rel = "<=" *) val decomp_trans: Sign.sg -> term -> (term * string * term) option (* decomp_quasi is used by quasi_tac *) val decomp_quasi: Sign.sg -> term -> (term * string * term) option end; signature QUASI_TAC = sig val trans_tac: int -> tactic val quasi_tac: int -> tactic end; functor Quasi_Tac_Fun (Less: LESS_ARITH): QUASI_TAC = struct (* Extract subgoal with signature *) fun SUBGOAL goalfun i st = goalfun (List.nth(prems_of st, i-1), i, sign_of_thm st) st handle Subscript => Seq.empty; (* Internal datatype for the proof *) datatype proof = Asm of int | Thm of proof list * thm; exception Cannot; (* Internal exception, raised if conclusion cannot be derived from assumptions. *) exception Contr of proof; (* Internal exception, raised if contradiction ( x < x ) was derived *) fun prove asms = let fun pr (Asm i) = List.nth (asms, i) | pr (Thm (prfs, thm)) = (map pr prfs) MRS thm in pr end; (* Internal datatype for inequalities *) datatype less = Less of term * term * proof | Le of term * term * proof | NotEq of term * term * proof; (* Misc functions for datatype less *) fun lower (Less (x, _, _)) = x | lower (Le (x, _, _)) = x | lower (NotEq (x,_,_)) = x; fun upper (Less (_, y, _)) = y | upper (Le (_, y, _)) = y | upper (NotEq (_,y,_)) = y; fun getprf (Less (_, _, p)) = p | getprf (Le (_, _, p)) = p | getprf (NotEq (_,_, p)) = p; (* ************************************************************************ *) (* *) (* mkasm_trans sign (t, n) : Sign.sg -> (Term.term * int) -> less *) (* *) (* Tuple (t, n) (t an assumption, n its index in the assumptions) is *) (* translated to an element of type less. *) (* Only assumptions of form x <= y are used, all others are ignored *) (* *) (* ************************************************************************ *) fun mkasm_trans sign (t, n) = case Less.decomp_trans sign t of SOME (x, rel, y) => (case rel of "<=" => [Le (x, y, Asm n)] | _ => error ("trans_tac: unknown relation symbol ``" ^ rel ^ "''returned by decomp_trans.")) | NONE => []; (* ************************************************************************ *) (* *) (* mkasm_quasi sign (t, n) : Sign.sg -> (Term.term * int) -> less *) (* *) (* Tuple (t, n) (t an assumption, n its index in the assumptions) is *) (* translated to an element of type less. *) (* Quasi orders only. *) (* *) (* ************************************************************************ *) fun mkasm_quasi sign (t, n) = case Less.decomp_quasi sign t of SOME (x, rel, y) => (case rel of "<" => if (x aconv y) then raise Contr (Thm ([Asm n], Less.less_reflE)) else [Less (x, y, Asm n)] | "<=" => [Le (x, y, Asm n)] | "=" => [Le (x, y, Thm ([Asm n], Less.eqD1)), Le (y, x, Thm ([Asm n], Less.eqD2))] | "~=" => if (x aconv y) then raise Contr (Thm ([(Thm ([(Thm ([], Less.le_refl)) ,(Asm n)], Less.le_neq_trans))], Less.less_reflE)) else [ NotEq (x, y, Asm n), NotEq (y, x,Thm ( [Asm n], thm "not_sym"))] | _ => error ("quasi_tac: unknown relation symbol ``" ^ rel ^ "''returned by decomp_quasi.")) | NONE => []; (* ************************************************************************ *) (* *) (* mkconcl_trans sign t : Sign.sg -> Term.term -> less *) (* *) (* Translates conclusion t to an element of type less. *) (* Only for Conclusions of form x <= y or x < y. *) (* *) (* ************************************************************************ *) fun mkconcl_trans sign t = case Less.decomp_trans sign t of SOME (x, rel, y) => (case rel of "<=" => (Le (x, y, Asm ~1), Asm 0) | _ => raise Cannot) | NONE => raise Cannot; (* ************************************************************************ *) (* *) (* mkconcl_quasi sign t : Sign.sg -> Term.term -> less *) (* *) (* Translates conclusion t to an element of type less. *) (* Quasi orders only. *) (* *) (* ************************************************************************ *) fun mkconcl_quasi sign t = case Less.decomp_quasi sign t of SOME (x, rel, y) => (case rel of "<" => ([Less (x, y, Asm ~1)], Asm 0) | "<=" => ([Le (x, y, Asm ~1)], Asm 0) | "~=" => ([NotEq (x,y, Asm ~1)], Asm 0) | _ => raise Cannot) | NONE => raise Cannot; (* ******************************************************************* *) (* *) (* mergeLess (less1,less2): less * less -> less *) (* *) (* Merge to elements of type less according to the following rules *) (* *) (* x <= y && y <= z ==> x <= z *) (* x <= y && x ~= y ==> x < y *) (* x ~= y && x <= y ==> x < y *) (* *) (* ******************************************************************* *) fun mergeLess (Le (x, _, p) , Le (_ , z, q)) = Le (x, z, Thm ([p,q] , Less.le_trans)) | mergeLess (Le (x, z, p) , NotEq (x', z', q)) = if (x aconv x' andalso z aconv z' ) then Less (x, z, Thm ([p,q] , Less.le_neq_trans)) else error "quasi_tac: internal error le_neq_trans" | mergeLess (NotEq (x, z, p) , Le (x' , z', q)) = if (x aconv x' andalso z aconv z') then Less (x, z, Thm ([p,q] , Less.neq_le_trans)) else error "quasi_tac: internal error neq_le_trans" | mergeLess (_, _) = error "quasi_tac: internal error: undefined case"; (* ******************************************************************** *) (* tr checks for valid transitivity step *) (* ******************************************************************** *) infix tr; fun (Le (_, y, _)) tr (Le (x', _, _)) = ( y aconv x' ) | _ tr _ = false; (* ******************************************************************* *) (* *) (* transPath (Lesslist, Less): (less list * less) -> less *) (* *) (* If a path represented by a list of elements of type less is found, *) (* this needs to be contracted to a single element of type less. *) (* Prior to each transitivity step it is checked whether the step is *) (* valid. *) (* *) (* ******************************************************************* *) fun transPath ([],lesss) = lesss | transPath (x::xs,lesss) = if lesss tr x then transPath (xs, mergeLess(lesss,x)) else error "trans/quasi_tac: internal error transpath"; (* ******************************************************************* *) (* *) (* less1 subsumes less2 : less -> less -> bool *) (* *) (* subsumes checks whether less1 implies less2 *) (* *) (* ******************************************************************* *) infix subsumes; fun (Le (x, y, _)) subsumes (Le (x', y', _)) = (x aconv x' andalso y aconv y') | (Le _) subsumes (Less _) = error "trans/quasi_tac: internal error: Le cannot subsume Less" | (NotEq(x,y,_)) subsumes (NotEq(x',y',_)) = x aconv x' andalso y aconv y' orelse x aconv y' andalso y aconv x' | _ subsumes _ = false; (* ******************************************************************* *) (* *) (* triv_solv less1 : less -> proof option *) (* *) (* Solves trivial goal x <= x. *) (* *) (* ******************************************************************* *) fun triv_solv (Le (x, x', _)) = if x aconv x' then SOME (Thm ([], Less.le_refl)) else NONE | triv_solv _ = NONE; (* ********************************************************************* *) (* Graph functions *) (* ********************************************************************* *) (* *********************************************************** *) (* Functions for constructing graphs *) (* *********************************************************** *) fun addEdge (v,d,[]) = [(v,d)] | addEdge (v,d,((u,dl)::el)) = if v aconv u then ((v,d@dl)::el) else (u,dl):: (addEdge(v,d,el)); (* ********************************************************************** *) (* *) (* mkQuasiGraph constructs from a list of objects of type less a graph g, *) (* by taking all edges that are candidate for a <=, and a list neqE, by *) (* taking all edges that are candiate for a ~= *) (* *) (* ********************************************************************** *) fun mkQuasiGraph [] = ([],[]) | mkQuasiGraph lessList = let fun buildGraphs ([],leG, neqE) = (leG, neqE) | buildGraphs (l::ls, leG, neqE) = case l of (Less (x,y,p)) => let val leEdge = Le (x,y, Thm ([p], Less.less_imp_le)) val neqEdges = [ NotEq (x,y, Thm ([p], Less.less_imp_neq)), NotEq (y,x, Thm ( [Thm ([p], Less.less_imp_neq)], thm "not_sym"))] in buildGraphs (ls, addEdge(y,[],(addEdge (x,[(y,leEdge)],leG))), neqEdges@neqE) end | (Le (x,y,p)) => buildGraphs (ls, addEdge(y,[],(addEdge (x,[(y,l)],leG))), neqE) | _ => buildGraphs (ls, leG, l::neqE) ; in buildGraphs (lessList, [], []) end; (* ********************************************************************** *) (* *) (* mkGraph constructs from a list of objects of type less a graph g *) (* Used for plain transitivity chain reasoning. *) (* *) (* ********************************************************************** *) fun mkGraph [] = [] | mkGraph lessList = let fun buildGraph ([],g) = g | buildGraph (l::ls, g) = buildGraph (ls, (addEdge ((lower l),[((upper l),l)],g))) in buildGraph (lessList, []) end; (* *********************************************************************** *) (* *) (* adjacent g u : (''a * 'b list ) list -> ''a -> 'b list *) (* *) (* List of successors of u in graph g *) (* *) (* *********************************************************************** *) fun adjacent eq_comp ((v,adj)::el) u = if eq_comp (u, v) then adj else adjacent eq_comp el u | adjacent _ [] _ = [] (* *********************************************************************** *) (* *) (* dfs eq_comp g u v: *) (* ('a * 'a -> bool) -> ('a *( 'a * less) list) list -> *) (* 'a -> 'a -> (bool * ('a * less) list) *) (* *) (* Depth first search of v from u. *) (* Returns (true, path(u, v)) if successful, otherwise (false, []). *) (* *) (* *********************************************************************** *) fun dfs eq_comp g u v = let val pred = ref nil; val visited = ref nil; fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited) fun dfs_visit u' = let val _ = visited := u' :: (!visited) fun update (x,l) = let val _ = pred := (x,l) ::(!pred) in () end; in if been_visited v then () else (app (fn (v',l) => if been_visited v' then () else ( update (v',l); dfs_visit v'; ()) )) (adjacent eq_comp g u') end in dfs_visit u; if (been_visited v) then (true, (!pred)) else (false , []) end; (* ************************************************************************ *) (* *) (* Begin: Quasi Order relevant functions *) (* *) (* *) (* ************************************************************************ *) (* ************************************************************************ *) (* *) (* findPath x y g: Term.term -> Term.term -> *) (* (Term.term * (Term.term * less list) list) -> *) (* (bool, less list) *) (* *) (* Searches a path from vertex x to vertex y in Graph g, returns true and *) (* the list of edges forming the path, if a path is found, otherwise false *) (* and nil. *) (* *) (* ************************************************************************ *) fun findPath x y g = let val (found, tmp) = dfs (op aconv) g x y ; val pred = map snd tmp; fun path x y = let (* find predecessor u of node v and the edge u -> v *) fun lookup v [] = raise Cannot | lookup v (e::es) = if (upper e) aconv v then e else lookup v es; (* traverse path backwards and return list of visited edges *) fun rev_path v = let val l = lookup v pred val u = lower l; in if u aconv x then [l] else (rev_path u) @ [l] end in rev_path y end; in if found then ( if x aconv y then (found,[(Le (x, y, (Thm ([], Less.le_refl))))]) else (found, (path x y) )) else (found,[]) end; (* ************************************************************************ *) (* *) (* findQuasiProof (leqG, neqE) subgoal: *) (* (Term.term * (Term.term * less list) list) * less list -> less -> proof *) (* *) (* Constructs a proof for subgoal by searching a special path in leqG and *) (* neqE. Raises Cannot if construction of the proof fails. *) (* *) (* ************************************************************************ *) (* As the conlusion can be either of form x <= y, x < y or x ~= y we have *) (* three cases to deal with. Finding a transitivity path from x to y with label *) (* 1. <= *) (* This is simply done by searching any path from x to y in the graph leG. *) (* The graph leG contains only edges with label <=. *) (* *) (* 2. < *) (* A path from x to y with label < can be found by searching a path with *) (* label <= from x to y in the graph leG and merging the path x <= y with *) (* a parallel edge x ~= y resp. y ~= x to x < y. *) (* *) (* 3. ~= *) (* If the conclusion is of form x ~= y, we can find a proof either directly, *) (* if x ~= y or y ~= x are among the assumptions, or by constructing x ~= y if *) (* x < y or y < x follows from the assumptions. *) fun findQuasiProof (leG, neqE) subgoal = case subgoal of (Le (x,y, _)) => ( let val (xyLefound,xyLePath) = findPath x y leG in if xyLefound then ( let val Le_x_y = (transPath (tl xyLePath, hd xyLePath)) in getprf Le_x_y end ) else raise Cannot end ) | (Less (x,y,_)) => ( let fun findParallelNeq [] = NONE | findParallelNeq (e::es) = if (x aconv (lower e) andalso y aconv (upper e)) then SOME e else if (y aconv (lower e) andalso x aconv (upper e)) then SOME (NotEq (x,y, (Thm ([getprf e], thm "not_sym")))) else findParallelNeq es ; in (* test if there is a edge x ~= y respectivly y ~= x and *) (* if it possible to find a path x <= y in leG, thus we can conclude x < y *) (case findParallelNeq neqE of (SOME e) => let val (xyLeFound,xyLePath) = findPath x y leG in if xyLeFound then ( let val Le_x_y = (transPath (tl xyLePath, hd xyLePath)) val Less_x_y = mergeLess (e, Le_x_y) in getprf Less_x_y end ) else raise Cannot end | _ => raise Cannot) end ) | (NotEq (x,y,_)) => (* First check if a single premiss is sufficient *) (case (Library.find_first (fn fact => fact subsumes subgoal) neqE, subgoal) of (SOME (NotEq (x, y, p)), NotEq (x', y', _)) => if (x aconv x' andalso y aconv y') then p else Thm ([p], thm "not_sym") | _ => raise Cannot ) (* ************************************************************************ *) (* *) (* End: Quasi Order relevant functions *) (* *) (* *) (* ************************************************************************ *) (* *********************************************************************** *) (* *) (* solveLeTrans sign (asms,concl) : *) (* Sign.sg -> less list * Term.term -> proof list *) (* *) (* Solves *) (* *) (* *********************************************************************** *) fun solveLeTrans sign (asms, concl) = let val g = mkGraph asms in let val (subgoal, prf) = mkconcl_trans sign concl val (found, path) = findPath (lower subgoal) (upper subgoal) g in if found then [getprf (transPath (tl path, hd path))] else raise Cannot end end; (* *********************************************************************** *) (* *) (* solveQuasiOrder sign (asms,concl) : *) (* Sign.sg -> less list * Term.term -> proof list *) (* *) (* Find proof if possible for quasi order. *) (* *) (* *********************************************************************** *) fun solveQuasiOrder sign (asms, concl) = let val (leG, neqE) = mkQuasiGraph asms in let val (subgoals, prf) = mkconcl_quasi sign concl fun solve facts less = (case triv_solv less of NONE => findQuasiProof (leG, neqE) less | SOME prf => prf ) in map (solve asms) subgoals end end; (* ************************************************************************ *) (* *) (* Tactics *) (* *) (* - trans_tac *) (* - quasi_tac, solves quasi orders *) (* ************************************************************************ *) (* trans_tac - solves transitivity chains over <= *) val trans_tac = SUBGOAL (fn (A, n, sign) => let val rfrees = map Free (rename_wrt_term A (Logic.strip_params A)) val Hs = map (fn H => subst_bounds (rfrees, H)) (Logic.strip_assums_hyp A) val C = subst_bounds (rfrees, Logic.strip_assums_concl A) val lesss = List.concat (ListPair.map (mkasm_trans sign) (Hs, 0 upto (length Hs - 1))) val prfs = solveLeTrans sign (lesss, C); val (subgoal, prf) = mkconcl_trans sign C; in METAHYPS (fn asms => let val thms = map (prove asms) prfs in rtac (prove thms prf) 1 end) n end handle Contr p => METAHYPS (fn asms => rtac (prove asms p) 1) n | Cannot => no_tac ); (* quasi_tac - solves quasi orders *) val quasi_tac = SUBGOAL (fn (A, n, sign) => let val rfrees = map Free (rename_wrt_term A (Logic.strip_params A)) val Hs = map (fn H => subst_bounds (rfrees, H)) (Logic.strip_assums_hyp A) val C = subst_bounds (rfrees, Logic.strip_assums_concl A) val lesss = List.concat (ListPair.map (mkasm_quasi sign) (Hs, 0 upto (length Hs - 1))) val prfs = solveQuasiOrder sign (lesss, C); val (subgoals, prf) = mkconcl_quasi sign C; in METAHYPS (fn asms => let val thms = map (prove asms) prfs in rtac (prove thms prf) 1 end) n end handle Contr p => METAHYPS (fn asms => rtac (prove asms p) 1) n | Cannot => no_tac ); end;