(* Title: Transitivity reasoner for transitive closures of relations Id: $Id: trancl.ML,v 1.6 2005/03/04 14:07:35 skalberg Exp $ Author: Oliver Kutter Copyright: TU Muenchen *) (* The packages provides tactics trancl_tac and rtrancl_tac that prove goals of the form (x,y) : r^+ and (x,y) : r^* (rtrancl_tac only) from premises of the form (x,y) : r, (x,y) : r^+ and (x,y) : r^* (rtrancl_tac only) by reflexivity and transitivity. The relation r is determined by inspecting the conclusion. The package is implemented as an ML functor and thus not limited to particular constructs for transitive and reflexive-transitive closures, neither need relations be represented as sets of pairs. In order to instantiate the package for transitive closure only, supply dummy theorems to the additional rules for reflexive-transitive closures, and don't use rtrancl_tac! *) signature TRANCL_ARITH = sig (* theorems for transitive closure *) val r_into_trancl : thm (* (a,b) : r ==> (a,b) : r^+ *) val trancl_trans : thm (* [| (a,b) : r^+ ; (b,c) : r^+ |] ==> (a,c) : r^+ *) (* additional theorems for reflexive-transitive closure *) val rtrancl_refl : thm (* (a,a): r^* *) val r_into_rtrancl : thm (* (a,b) : r ==> (a,b) : r^* *) val trancl_into_rtrancl : thm (* (a,b) : r^+ ==> (a,b) : r^* *) val rtrancl_trancl_trancl : thm (* [| (a,b) : r^* ; (b,c) : r^+ |] ==> (a,c) : r^+ *) val trancl_rtrancl_trancl : thm (* [| (a,b) : r^+ ; (b,c) : r^* |] ==> (a,c) : r^+ *) val rtrancl_trans : thm (* [| (a,b) : r^* ; (b,c) : r^* |] ==> (a,c) : r^* *) (* decomp: decompose a premise or conclusion Returns one of the following: NONE if not an instance of a relation, SOME (x, y, r, s) if instance of a relation, where x: left hand side argument, y: right hand side argument, r: the relation, s: the kind of closure, one of "r": the relation itself, "r^+": transitive closure of the relation, "r^*": reflexive-transitive closure of the relation *) val decomp: term -> (term * term * term * string) option end; signature TRANCL_TAC = sig val trancl_tac: int -> tactic; val rtrancl_tac: int -> tactic; end; functor Trancl_Tac_Fun (Cls : TRANCL_ARITH): TRANCL_TAC = struct datatype proof = Asm of int | Thm of proof list * thm; exception Cannot; (* internal exception: raised if no proof can be found *) fun prove asms = let fun pr (Asm i) = List.nth (asms, i) | pr (Thm (prfs, thm)) = (map pr prfs) MRS thm in pr end; (* Internal datatype for inequalities *) datatype rel = Trans of term * term * proof (* R^+ *) | RTrans of term * term * proof; (* R^* *) (* Misc functions for datatype rel *) fun lower (Trans (x, _, _)) = x | lower (RTrans (x,_,_)) = x; fun upper (Trans (_, y, _)) = y | upper (RTrans (_,y,_)) = y; fun getprf (Trans (_, _, p)) = p | getprf (RTrans (_,_, p)) = p; (* ************************************************************************ *) (* *) (* mkasm_trancl Rel (t,n): term -> (term , int) -> rel list *) (* *) (* Analyse assumption t with index n with respect to relation Rel: *) (* If t is of the form "(x, y) : Rel" (or Rel^+), translate to *) (* an object (singleton list) of internal datatype rel. *) (* Otherwise return empty list. *) (* *) (* ************************************************************************ *) fun mkasm_trancl Rel (t, n) = case Cls.decomp t of SOME (x, y, rel,r) => if rel aconv Rel then (case r of "r" => [Trans (x,y, Thm([Asm n], Cls.r_into_trancl))] | "r+" => [Trans (x,y, Asm n)] | "r*" => [] | _ => error ("trancl_tac: unknown relation symbol")) else [] | NONE => []; (* ************************************************************************ *) (* *) (* mkasm_rtrancl Rel (t,n): term -> (term , int) -> rel list *) (* *) (* Analyse assumption t with index n with respect to relation Rel: *) (* If t is of the form "(x, y) : Rel" (or Rel^+ or Rel^* ), translate to *) (* an object (singleton list) of internal datatype rel. *) (* Otherwise return empty list. *) (* *) (* ************************************************************************ *) fun mkasm_rtrancl Rel (t, n) = case Cls.decomp t of SOME (x, y, rel, r) => if rel aconv Rel then (case r of "r" => [ Trans (x,y, Thm([Asm n], Cls.r_into_trancl))] | "r+" => [ Trans (x,y, Asm n)] | "r*" => [ RTrans(x,y, Asm n)] | _ => error ("rtrancl_tac: unknown relation symbol" )) else [] | NONE => []; (* ************************************************************************ *) (* *) (* mkconcl_trancl t: term -> (term, rel, proof) *) (* mkconcl_rtrancl t: term -> (term, rel, proof) *) (* *) (* Analyse conclusion t: *) (* - must be of form "(x, y) : r^+ (or r^* for rtrancl) *) (* - returns r *) (* - conclusion in internal form *) (* - proof object *) (* *) (* ************************************************************************ *) fun mkconcl_trancl t = case Cls.decomp t of SOME (x, y, rel, r) => (case r of "r+" => (rel, Trans (x,y, Asm ~1), Asm 0) | _ => raise Cannot) | NONE => raise Cannot; fun mkconcl_rtrancl t = case Cls.decomp t of SOME (x, y, rel,r ) => (case r of "r+" => (rel, Trans (x,y, Asm ~1), Asm 0) | "r*" => (rel, RTrans (x,y, Asm ~1), Asm 0) | _ => raise Cannot) | NONE => raise Cannot; (* ************************************************************************ *) (* *) (* makeStep (r1, r2): rel * rel -> rel *) (* *) (* Apply transitivity to r1 and r2, obtaining a new element of r^+ or r^*, *) (* according the following rules: *) (* *) (* ( (a, b) : r^+ , (b,c) : r^+ ) --> (a,c) : r^+ *) (* ( (a, b) : r^* , (b,c) : r^+ ) --> (a,c) : r^+ *) (* ( (a, b) : r^+ , (b,c) : r^* ) --> (a,c) : r^+ *) (* ( (a, b) : r^* , (b,c) : r^* ) --> (a,c) : r^* *) (* *) (* ************************************************************************ *) fun makeStep (Trans (a,_,p), Trans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.trancl_trans)) (* refl. + trans. cls. rules *) | makeStep (RTrans (a,_,p), Trans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.rtrancl_trancl_trancl)) | makeStep (Trans (a,_,p), RTrans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.trancl_rtrancl_trancl)) | makeStep (RTrans (a,_,p), RTrans(_,c,q)) = RTrans (a,c, Thm ([p,q], Cls.rtrancl_trans)); (* ******************************************************************* *) (* *) (* transPath (Clslist, Cls): (rel list * rel) -> rel *) (* *) (* If a path represented by a list of elements of type rel is found, *) (* this needs to be contracted to a single element of type rel. *) (* Prior to each transitivity step it is checked whether the step is *) (* valid. *) (* *) (* ******************************************************************* *) fun transPath ([],acc) = acc | transPath (x::xs,acc) = transPath (xs, makeStep(acc,x)) (* ********************************************************************* *) (* Graph functions *) (* ********************************************************************* *) (* *********************************************************** *) (* Functions for constructing graphs *) (* *********************************************************** *) fun addEdge (v,d,[]) = [(v,d)] | addEdge (v,d,((u,dl)::el)) = if v aconv u then ((v,d@dl)::el) else (u,dl):: (addEdge(v,d,el)); (* ********************************************************************** *) (* *) (* mkGraph constructs from a list of objects of type rel a graph g *) (* and a list of all edges with label r+. *) (* *) (* ********************************************************************** *) fun mkGraph [] = ([],[]) | mkGraph ys = let fun buildGraph ([],g,zs) = (g,zs) | buildGraph (x::xs, g, zs) = case x of (Trans (_,_,_)) => buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), x::zs) | _ => buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), zs) in buildGraph (ys, [], []) end; (* *********************************************************************** *) (* *) (* adjacent g u : (''a * 'b list ) list -> ''a -> 'b list *) (* *) (* List of successors of u in graph g *) (* *) (* *********************************************************************** *) fun adjacent eq_comp ((v,adj)::el) u = if eq_comp (u, v) then adj else adjacent eq_comp el u | adjacent _ [] _ = [] (* *********************************************************************** *) (* *) (* dfs eq_comp g u v: *) (* ('a * 'a -> bool) -> ('a *( 'a * rel) list) list -> *) (* 'a -> 'a -> (bool * ('a * rel) list) *) (* *) (* Depth first search of v from u. *) (* Returns (true, path(u, v)) if successful, otherwise (false, []). *) (* *) (* *********************************************************************** *) fun dfs eq_comp g u v = let val pred = ref nil; val visited = ref nil; fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited) fun dfs_visit u' = let val _ = visited := u' :: (!visited) fun update (x,l) = let val _ = pred := (x,l) ::(!pred) in () end; in if been_visited v then () else (app (fn (v',l) => if been_visited v' then () else ( update (v',l); dfs_visit v'; ()) )) (adjacent eq_comp g u') end in dfs_visit u; if (been_visited v) then (true, (!pred)) else (false , []) end; (* *********************************************************************** *) (* *) (* transpose g: *) (* (''a * ''a list) list -> (''a * ''a list) list *) (* *) (* Computes transposed graph g' from g *) (* by reversing all edges u -> v to v -> u *) (* *) (* *********************************************************************** *) fun transpose eq_comp g = let (* Compute list of reversed edges for each adjacency list *) fun flip (u,(v,l)::el) = (v,(u,l)) :: flip (u,el) | flip (_,nil) = nil (* Compute adjacency list for node u from the list of edges and return a likewise reduced list of edges. The list of edges is searches for edges starting from u, and these edges are removed. *) fun gather (u,(v,w)::el) = let val (adj,edges) = gather (u,el) in if eq_comp (u, v) then (w::adj,edges) else (adj,(v,w)::edges) end | gather (_,nil) = (nil,nil) (* For every node in the input graph, call gather to find all reachable nodes in the list of edges *) fun assemble ((u,_)::el) edges = let val (adj,edges) = gather (u,edges) in (u,adj) :: assemble el edges end | assemble nil _ = nil (* Compute, for each adjacency list, the list with reversed edges, and concatenate these lists. *) val flipped = foldr (op @) nil (map flip g) in assemble g flipped end (* *********************************************************************** *) (* *) (* dfs_reachable eq_comp g u: *) (* (int * int list) list -> int -> int list *) (* *) (* Computes list of all nodes reachable from u in g. *) (* *) (* *********************************************************************** *) fun dfs_reachable eq_comp g u = let (* List of vertices which have been visited. *) val visited = ref nil; fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited) fun dfs_visit g u = let val _ = visited := u :: !visited val descendents = foldr (fn ((v,l),ds) => if been_visited v then ds else v :: dfs_visit g v @ ds) nil (adjacent eq_comp g u) in descendents end in u :: dfs_visit g u end; (* *********************************************************************** *) (* *) (* dfs_term_reachable g u: *) (* (term * term list) list -> term -> term list *) (* *) (* Computes list of all nodes reachable from u in g. *) (* *) (* *********************************************************************** *) fun dfs_term_reachable g u = dfs_reachable (op aconv) g u; (* ************************************************************************ *) (* *) (* findPath x y g: Term.term -> Term.term -> *) (* (Term.term * (Term.term * rel list) list) -> *) (* (bool, rel list) *) (* *) (* Searches a path from vertex x to vertex y in Graph g, returns true and *) (* the list of edges if path is found, otherwise false and nil. *) (* *) (* ************************************************************************ *) fun findPath x y g = let val (found, tmp) = dfs (op aconv) g x y ; val pred = map snd tmp; fun path x y = let (* find predecessor u of node v and the edge u -> v *) fun lookup v [] = raise Cannot | lookup v (e::es) = if (upper e) aconv v then e else lookup v es; (* traverse path backwards and return list of visited edges *) fun rev_path v = let val l = lookup v pred val u = lower l; in if u aconv x then [l] else (rev_path u) @ [l] end in rev_path y end; in if found then ( (found, (path x y) )) else (found,[]) end; (* ************************************************************************ *) (* *) (* findRtranclProof g tranclEdges subgoal: *) (* (Term.term * (Term.term * rel list) list) -> rel -> proof list *) (* *) (* Searches in graph g a proof for subgoal. *) (* *) (* ************************************************************************ *) fun findRtranclProof g tranclEdges subgoal = case subgoal of (RTrans (x,y,_)) => if x aconv y then [Thm ([], Cls.rtrancl_refl)] else ( let val (found, path) = findPath (lower subgoal) (upper subgoal) g in if found then ( let val path' = (transPath (tl path, hd path)) in case path' of (Trans (_,_,p)) => [Thm ([p], Cls.trancl_into_rtrancl )] | _ => [getprf path'] end ) else raise Cannot end ) | (Trans (x,y,_)) => ( let val Vx = dfs_term_reachable g x; val g' = transpose (op aconv) g; val Vy = dfs_term_reachable g' y; fun processTranclEdges [] = raise Cannot | processTranclEdges (e::es) = if (upper e) mem Vx andalso (lower e) mem Vx andalso (upper e) mem Vy andalso (lower e) mem Vy then ( if (lower e) aconv x then ( if (upper e) aconv y then ( [(getprf e)] ) else ( let val (found,path) = findPath (upper e) y g in if found then ( [getprf (transPath (path, e))] ) else processTranclEdges es end ) ) else if (upper e) aconv y then ( let val (xufound,xupath) = findPath x (lower e) g in if xufound then ( let val xuRTranclEdge = transPath (tl xupath, hd xupath) val xyTranclEdge = makeStep(xuRTranclEdge,e) in [getprf xyTranclEdge] end ) else processTranclEdges es end ) else ( let val (xufound,xupath) = findPath x (lower e) g val (vyfound,vypath) = findPath (upper e) y g in if xufound then ( if vyfound then ( let val xuRTranclEdge = transPath (tl xupath, hd xupath) val vyRTranclEdge = transPath (tl vypath, hd vypath) val xyTranclEdge = makeStep (makeStep(xuRTranclEdge,e),vyRTranclEdge) in [getprf xyTranclEdge] end ) else processTranclEdges es ) else processTranclEdges es end ) ) else processTranclEdges es; in processTranclEdges tranclEdges end ) | _ => raise Cannot fun solveTrancl (asms, concl) = let val (g,_) = mkGraph asms in let val (_, subgoal, _) = mkconcl_trancl concl val (found, path) = findPath (lower subgoal) (upper subgoal) g in if found then [getprf (transPath (tl path, hd path))] else raise Cannot end end; fun solveRtrancl (asms, concl) = let val (g,tranclEdges) = mkGraph asms val (_, subgoal, _) = mkconcl_rtrancl concl in findRtranclProof g tranclEdges subgoal end; val trancl_tac = SUBGOAL (fn (A, n) => let val Hs = Logic.strip_assums_hyp A; val C = Logic.strip_assums_concl A; val (rel,subgoals, prf) = mkconcl_trancl C; val prems = List.concat (ListPair.map (mkasm_trancl rel) (Hs, 0 upto (length Hs - 1))) val prfs = solveTrancl (prems, C); in METAHYPS (fn asms => let val thms = map (prove asms) prfs in rtac (prove thms prf) 1 end) n end handle Cannot => no_tac); val rtrancl_tac = SUBGOAL (fn (A, n) => let val Hs = Logic.strip_assums_hyp A; val C = Logic.strip_assums_concl A; val (rel,subgoals, prf) = mkconcl_rtrancl C; val prems = List.concat (ListPair.map (mkasm_rtrancl rel) (Hs, 0 upto (length Hs - 1))) val prfs = solveRtrancl (prems, C); in METAHYPS (fn asms => let val thms = map (prove asms) prfs in rtac (prove thms prf) 1 end) n end handle Cannot => no_tac); end;