(* Title: FOL/ex/Classical ID: $Id: Classical.thy,v 1.2 2005/06/17 14:15:08 haftmann Exp $ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge *) header{*Classical Predicate Calculus Problems*} theory Classical imports FOL begin lemma "(P --> Q | R) --> (P-->Q) | (P-->R)" by blast text{*If and only if*} lemma "(P<->Q) <-> (Q<->P)" by blast lemma "~ (P <-> ~P)" by blast text{*Sample problems from F. J. Pelletier, Seventy-Five Problems for Testing Automatic Theorem Provers, J. Automated Reasoning 2 (1986), 191-216. Errata, JAR 4 (1988), 236-236. The hardest problems -- judging by experience with several theorem provers, including matrix ones -- are 34 and 43. *} subsection{*Pelletier's examples*} text{*1*} lemma "(P-->Q) <-> (~Q --> ~P)" by blast text{*2*} lemma "~ ~ P <-> P" by blast text{*3*} lemma "~(P-->Q) --> (Q-->P)" by blast text{*4*} lemma "(~P-->Q) <-> (~Q --> P)" by blast text{*5*} lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))" by blast text{*6*} lemma "P | ~ P" by blast text{*7*} lemma "P | ~ ~ ~ P" by blast text{*8. Peirce's law*} lemma "((P-->Q) --> P) --> P" by blast text{*9*} lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)" by blast text{*10*} lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)" by blast text{*11. Proved in each direction (incorrectly, says Pelletier!!) *} lemma "P<->P" by blast text{*12. "Dijkstra's law"*} lemma "((P <-> Q) <-> R) <-> (P <-> (Q <-> R))" by blast text{*13. Distributive law*} lemma "P | (Q & R) <-> (P | Q) & (P | R)" by blast text{*14*} lemma "(P <-> Q) <-> ((Q | ~P) & (~Q|P))" by blast text{*15*} lemma "(P --> Q) <-> (~P | Q)" by blast text{*16*} lemma "(P-->Q) | (Q-->P)" by blast text{*17*} lemma "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))" by blast subsection{*Classical Logic: examples with quantifiers*} lemma "(∀x. P(x) & Q(x)) <-> (∀x. P(x)) & (∀x. Q(x))" by blast lemma "(∃x. P-->Q(x)) <-> (P --> (∃x. Q(x)))" by blast lemma "(∃x. P(x)-->Q) <-> (∀x. P(x)) --> Q" by blast lemma "(∀x. P(x)) | Q <-> (∀x. P(x) | Q)" by blast text{*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR 10 (265-281), 1993. Proof is trivial!*} lemma "~((∃x.~P(x)) & ((∃x. P(x)) | (∃x. P(x) & Q(x))) & ~ (∃x. P(x)))" by blast subsection{*Problems requiring quantifier duplication*} text{*Theorem B of Peter Andrews, Theorem Proving via General Matings, JACM 28 (1981).*} lemma "(∃x. ∀y. P(x) <-> P(y)) --> ((∃x. P(x)) <-> (∀y. P(y)))" by blast text{*Needs multiple instantiation of ALL.*} lemma "(∀x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))" by blast text{*Needs double instantiation of the quantifier*} lemma "∃x. P(x) --> P(a) & P(b)" by blast lemma "∃z. P(z) --> (∀x. P(x))" by blast lemma "∃x. (∃y. P(y)) --> P(x)" by blast text{*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23. NOT PROVED*} lemma "∃x x'. ∀y. ∃z z'. (~P(y,y) | P(x,x) | ~S(z,x)) & (S(x,y) | ~S(y,z) | Q(z',z')) & (Q(x',y) | ~Q(y,z') | S(x',x'))" oops subsection{*Hard examples with quantifiers*} text{*18*} lemma "∃y. ∀x. P(y)-->P(x)" by blast text{*19*} lemma "∃x. ∀y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))" by blast text{*20*} lemma "(∀x y. ∃z. ∀w. (P(x)&Q(y)-->R(z)&S(w))) --> (∃x y. P(x) & Q(y)) --> (∃z. R(z))" by blast text{*21*} lemma "(∃x. P-->Q(x)) & (∃x. Q(x)-->P) --> (∃x. P<->Q(x))" by blast text{*22*} lemma "(∀x. P <-> Q(x)) --> (P <-> (∀x. Q(x)))" by blast text{*23*} lemma "(∀x. P | Q(x)) <-> (P | (∀x. Q(x)))" by blast text{*24*} lemma "~(∃x. S(x)&Q(x)) & (∀x. P(x) --> Q(x)|R(x)) & (~(∃x. P(x)) --> (∃x. Q(x))) & (∀x. Q(x)|R(x) --> S(x)) --> (∃x. P(x)&R(x))" by blast text{*25*} lemma "(∃x. P(x)) & (∀x. L(x) --> ~ (M(x) & R(x))) & (∀x. P(x) --> (M(x) & L(x))) & ((∀x. P(x)-->Q(x)) | (∃x. P(x)&R(x))) --> (∃x. Q(x)&P(x))" by blast text{*26*} lemma "((∃x. p(x)) <-> (∃x. q(x))) & (∀x. ∀y. p(x) & q(y) --> (r(x) <-> s(y))) --> ((∀x. p(x)-->r(x)) <-> (∀x. q(x)-->s(x)))" by blast text{*27*} lemma "(∃x. P(x) & ~Q(x)) & (∀x. P(x) --> R(x)) & (∀x. M(x) & L(x) --> P(x)) & ((∃x. R(x) & ~ Q(x)) --> (∀x. L(x) --> ~ R(x))) --> (∀x. M(x) --> ~L(x))" by blast text{*28. AMENDED*} lemma "(∀x. P(x) --> (∀x. Q(x))) & ((∀x. Q(x)|R(x)) --> (∃x. Q(x)&S(x))) & ((∃x. S(x)) --> (∀x. L(x) --> M(x))) --> (∀x. P(x) & L(x) --> M(x))" by blast text{*29. Essentially the same as Principia Mathematica *11.71*} lemma "(∃x. P(x)) & (∃y. Q(y)) --> ((∀x. P(x)-->R(x)) & (∀y. Q(y)-->S(y)) <-> (∀x y. P(x) & Q(y) --> R(x) & S(y)))" by blast text{*30*} lemma "(∀x. P(x) | Q(x) --> ~ R(x)) & (∀x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) --> (∀x. S(x))" by blast text{*31*} lemma "~(∃x. P(x) & (Q(x) | R(x))) & (∃x. L(x) & P(x)) & (∀x. ~ R(x) --> M(x)) --> (∃x. L(x) & M(x))" by blast text{*32*} lemma "(∀x. P(x) & (Q(x)|R(x))-->S(x)) & (∀x. S(x) & R(x) --> L(x)) & (∀x. M(x) --> R(x)) --> (∀x. P(x) & M(x) --> L(x))" by blast text{*33*} lemma "(∀x. P(a) & (P(x)-->P(b))-->P(c)) <-> (∀x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))" by blast text{*34 AMENDED (TWICE!!). Andrews's challenge*} lemma "((∃x. ∀y. p(x) <-> p(y)) <-> ((∃x. q(x)) <-> (∀y. p(y)))) <-> ((∃x. ∀y. q(x) <-> q(y)) <-> ((∃x. p(x)) <-> (∀y. q(y))))" by blast text{*35*} lemma "∃x y. P(x,y) --> (∀u v. P(u,v))" by blast text{*36*} lemma "(∀x. ∃y. J(x,y)) & (∀x. ∃y. G(x,y)) & (∀x y. J(x,y) | G(x,y) --> (∀z. J(y,z) | G(y,z) --> H(x,z))) --> (∀x. ∃y. H(x,y))" by blast text{*37*} lemma "(∀z. ∃w. ∀x. ∃y. (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (∃u. Q(u,w)))) & (∀x z. ~P(x,z) --> (∃y. Q(y,z))) & ((∃x y. Q(x,y)) --> (∀x. R(x,x))) --> (∀x. ∃y. R(x,y))" by blast text{*38*} lemma "(∀x. p(a) & (p(x) --> (∃y. p(y) & r(x,y))) --> (∃z. ∃w. p(z) & r(x,w) & r(w,z))) <-> (∀x. (~p(a) | p(x) | (∃z. ∃w. p(z) & r(x,w) & r(w,z))) & (~p(a) | ~(∃y. p(y) & r(x,y)) | (∃z. ∃w. p(z) & r(x,w) & r(w,z))))" by blast text{*39*} lemma "~ (∃x. ∀y. F(y,x) <-> ~F(y,y))" by blast text{*40. AMENDED*} lemma "(∃y. ∀x. F(x,y) <-> F(x,x)) --> ~(∀x. ∃y. ∀z. F(z,y) <-> ~ F(z,x))" by blast text{*41*} lemma "(∀z. ∃y. ∀x. f(x,y) <-> f(x,z) & ~ f(x,x)) --> ~ (∃z. ∀x. f(x,z))" by blast text{*42*} lemma "~ (∃y. ∀x. p(x,y) <-> ~ (∃z. p(x,z) & p(z,x)))" by blast text{*43*} lemma "(∀x. ∀y. q(x,y) <-> (∀z. p(z,x) <-> p(z,y))) --> (∀x. ∀y. q(x,y) <-> q(y,x))" by blast (*Other proofs: Can use auto, which cheats by using rewriting! Deepen_tac alone requires 253 secs. Or by (mini_tac 1 THEN Deepen_tac 5 1) *) text{*44*} lemma "(∀x. f(x) --> (∃y. g(y) & h(x,y) & (∃y. g(y) & ~ h(x,y)))) & (∃x. j(x) & (∀y. g(y) --> h(x,y))) --> (∃x. j(x) & ~f(x))" by blast text{*45*} lemma "(∀x. f(x) & (∀y. g(y) & h(x,y) --> j(x,y)) --> (∀y. g(y) & h(x,y) --> k(y))) & ~ (∃y. l(y) & k(y)) & (∃x. f(x) & (∀y. h(x,y) --> l(y)) & (∀y. g(y) & h(x,y) --> j(x,y))) --> (∃x. f(x) & ~ (∃y. g(y) & h(x,y)))" by blast text{*46*} lemma "(∀x. f(x) & (∀y. f(y) & h(y,x) --> g(y)) --> g(x)) & ((∃x. f(x) & ~g(x)) --> (∃x. f(x) & ~g(x) & (∀y. f(y) & ~g(y) --> j(x,y)))) & (∀x y. f(x) & f(y) & h(x,y) --> ~j(y,x)) --> (∀x. f(x) --> g(x))" by blast subsection{*Problems (mainly) involving equality or functions*} text{*48*} lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c" by blast text{*49 NOT PROVED AUTOMATICALLY. Hard because it involves substitution for Vars the type constraint ensures that x,y,z have the same type as a,b,u. *} lemma "(∃x y::'a. ∀z. z=x | z=y) & P(a) & P(b) & a~=b --> (∀u::'a. P(u))" apply safe apply (rule_tac x = a in allE, assumption) apply (rule_tac x = b in allE, assumption, fast) --{*blast's treatment of equality can't do it*} done text{*50. (What has this to do with equality?) *} lemma "(∀x. P(a,x) | (∀y. P(x,y))) --> (∃x. ∀y. P(x,y))" by blast text{*51*} lemma "(∃z w. ∀x y. P(x,y) <-> (x=z & y=w)) --> (∃z. ∀x. ∃w. (∀y. P(x,y) <-> y=w) <-> x=z)" by blast text{*52*} text{*Almost the same as 51. *} lemma "(∃z w. ∀x y. P(x,y) <-> (x=z & y=w)) --> (∃w. ∀y. ∃z. (∀x. P(x,y) <-> x=z) <-> y=w)" by blast text{*55*} (*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED Goal "(∃x. lives(x) & killed(x,agatha)) & lives(agatha) & lives(butler) & lives(charles) & (∀x. lives(x) --> x=agatha | x=butler | x=charles) & (∀x y. killed(x,y) --> hates(x,y)) & (∀x y. killed(x,y) --> ~richer(x,y)) & (∀x. hates(agatha,x) --> ~hates(charles,x)) & (∀x. ~ x=butler --> hates(agatha,x)) & (∀x. ~richer(x,agatha) --> hates(butler,x)) & (∀x. hates(agatha,x) --> hates(butler,x)) & (∀x. ∃y. ~hates(x,y)) & ~ agatha=butler --> killed(?who,agatha)" by Safe_tac; by (dres_inst_tac [("x1","x")] (spec RS mp) 1); by (assume_tac 1); by (etac (spec RS exE) 1); by (REPEAT (etac allE 1)); by (Blast_tac 1); result(); ****) text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988). fast DISCOVERS who killed Agatha. *} lemma "lives(agatha) & lives(butler) & lives(charles) & (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) & (∀x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) & (∀x. hates(agatha,x) --> ~hates(charles,x)) & (hates(agatha,agatha) & hates(agatha,charles)) & (∀x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) & (∀x. hates(agatha,x) --> hates(butler,x)) & (∀x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) --> killed(?who,agatha)" by fast --{*MUCH faster than blast*} text{*56*} lemma "(∀x. (∃y. P(y) & x=f(y)) --> P(x)) <-> (∀x. P(x) --> P(f(x)))" by blast text{*57*} lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & (∀x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))" by blast text{*58 NOT PROVED AUTOMATICALLY*} lemma "(∀x y. f(x)=g(y)) --> (∀x y. f(f(x))=f(g(y)))" by (slow elim: subst_context) text{*59*} lemma "(∀x. P(x) <-> ~P(f(x))) --> (∃x. P(x) & ~P(f(x)))" by blast text{*60*} lemma "∀x. P(x,f(x)) <-> (∃y. (∀z. P(z,y) --> P(z,f(x))) & P(x,y))" by blast text{*62 as corrected in JAR 18 (1997), page 135*} lemma "(∀x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x)))) <-> (∀x. (~p(a) | p(x) | p(f(f(x)))) & (~p(a) | ~p(f(x)) | p(f(f(x)))))" by blast text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531 fast indeed copes!*} lemma "(∀x. F(x) & ~G(x) --> (∃y. H(x,y) & J(y))) & (∃x. K(x) & F(x) & (∀y. H(x,y) --> K(y))) & (∀x. K(x) --> ~G(x)) --> (∃x. K(x) & J(x))" by fast text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem obvious!*} lemma "(∀x. F(x) & ~G(x) --> (∃y. H(x,y) & J(y))) & (∃x. K(x) & F(x) & (∀y. H(x,y) --> K(y))) & (∀x. K(x) --> ~G(x)) --> (∃x. K(x) --> ~G(x))" by fast text{*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.) author U. Egly*} lemma "((∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z)))) --> (∃w. C(w) & (∀y. C(y) --> (∀z. D(w,y,z))))) & (∀w. C(w) & (∀u. C(u) --> (∀v. D(w,u,v))) --> (∀y z. (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) & (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b)))) & (∀w. C(w) & (∀y z. (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) & (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) --> (∃v. C(v) & (∀y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) & ((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b))))) --> ~ (∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z))))" by (tactic{*Blast.depth_tac (claset ()) 12 1*}) --{*Needed because the search for depths below 12 is very slow*} text{*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*} lemma "((∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z)))) --> (∃w. C(w) & (∀y. C(y) --> (∀z. D(w,y,z))))) & (∀w. C(w) & (∀u. C(u) --> (∀v. D(w,u,v))) --> (∀y z. (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) & (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b)))) & ((∃w. C(w) & (∀y. (C(y) & P(y,y) --> Q(w,y,y) & OO(w,g)) & (C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b)))) --> (∃v. C(v) & (∀y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) & (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))) --> ((∃v. C(v) & (∀y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) & (C(y) & ~P(y,y) --> P(v,y) & OO(v,b)))) --> (∃u. C(u) & (∀y. (C(y) & P(y,y) --> ~P(u,y)) & (C(y) & ~P(y,y) --> P(u,y) & OO(u,b))))) --> ~ (∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z))))" by blast text{* Challenge found on info-hol *} lemma "∀x. ∃v w. ∀y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))" by blast text{*Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption can be deleted.*} lemma "(∀x. honest(x) & industrious(x) --> healthy(x)) & ~ (∃x. grocer(x) & healthy(x)) & (∀x. industrious(x) & grocer(x) --> honest(x)) & (∀x. cyclist(x) --> industrious(x)) & (∀x. ~healthy(x) & cyclist(x) --> ~honest(x)) --> (∀x. grocer(x) --> ~cyclist(x))" by blast (*Runtimes for old versions of this file: Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2] Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac] Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip] Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions] Further runtimes on a Sun-4 Tue Mar 4 1997: loaded in 93s (version 94-7) Tue Mar 4 1997: loaded in 89s Thu Apr 3 1997: loaded in 44s--using mostly Blast_tac Thu Apr 3 1997: loaded in 96s--addition of two Halting Probs Thu Apr 3 1997: loaded in 98s--using lim-1 for all haz rules Tue Dec 2 1997: loaded in 107s--added 46; new equalSubst Fri Dec 12 1997: loaded in 91s--faster proof reconstruction Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??) *) end
lemma
(P --> Q ∨ R) --> (P --> Q) ∨ (P --> R)
lemma
(P <-> Q) <-> Q <-> P
lemma
¬ (P <-> ¬ P)
lemma
(P --> Q) <-> ¬ Q --> ¬ P
lemma
¬ ¬ P <-> P
lemma
¬ (P --> Q) --> Q --> P
lemma
(¬ P --> Q) <-> ¬ Q --> P
lemma
(P ∨ Q --> P ∨ R) --> P ∨ (Q --> R)
lemma
P ∨ ¬ P
lemma
P ∨ ¬ ¬ ¬ P
lemma
((P --> Q) --> P) --> P
lemma
(P ∨ Q) ∧ (¬ P ∨ Q) ∧ (P ∨ ¬ Q) --> ¬ (¬ P ∨ ¬ Q)
lemma
(Q --> R) ∧ (R --> P ∧ Q) ∧ (P --> Q ∨ R) --> P <-> Q
lemma
P <-> P
lemma
((P <-> Q) <-> R) <-> P <-> Q <-> R
lemma
P ∨ Q ∧ R <-> (P ∨ Q) ∧ (P ∨ R)
lemma
(P <-> Q) <-> (Q ∨ ¬ P) ∧ (¬ Q ∨ P)
lemma
(P --> Q) <-> ¬ P ∨ Q
lemma
(P --> Q) ∨ (Q --> P)
lemma
(P ∧ (Q --> R) --> S) <-> (¬ P ∨ Q ∨ S) ∧ (¬ P ∨ ¬ R ∨ S)
lemma
(∀x. P(x) ∧ Q(x)) <-> (∀x. P(x)) ∧ (∀x. Q(x))
lemma
(∃x. P --> Q(x)) <-> P --> (∃x. Q(x))
lemma
(∃x. P(x) --> Q) <-> (∀x. P(x)) --> Q
lemma
(∀x. P(x)) ∨ Q <-> (∀x. P(x) ∨ Q)
lemma
¬ ((∃x. ¬ P(x)) ∧ ((∃x. P(x)) ∨ (∃x. P(x) ∧ Q(x))) ∧ ¬ (∃x. P(x)))
lemma
(∃x. ∀y. P(x) <-> P(y)) --> (∃x. P(x)) <-> (∀y. P(y))
lemma
(∀x. P(x) --> P(f(x))) ∧ P(d) --> P(f(f(f(d))))
lemma
∃x. P(x) --> P(a) ∧ P(b)
lemma
∃z. P(z) --> (∀x. P(x))
lemma
∃x. (∃y. P(y)) --> P(x)
lemma
∃y. ∀x. P(y) --> P(x)
lemma
∃x. ∀y z. (P(y) --> Q(z)) --> P(x) --> Q(x)
lemma
(∀x y. ∃z. ∀w. P(x) ∧ Q(y) --> R(z) ∧ S(w)) --> (∃x y. P(x) ∧ Q(y)) --> (∃z. R(z))
lemma
(∃x. P --> Q(x)) ∧ (∃x. Q(x) --> P) --> (∃x. P <-> Q(x))
lemma
(∀x. P <-> Q(x)) --> P <-> (∀x. Q(x))
lemma
(∀x. P ∨ Q(x)) <-> P ∨ (∀x. Q(x))
lemma
¬ (∃x. S(x) ∧ Q(x)) ∧ (∀x. P(x) --> Q(x) ∨ R(x)) ∧ (¬ (∃x. P(x)) --> (∃x. Q(x))) ∧ (∀x. Q(x) ∨ R(x) --> S(x)) --> (∃x. P(x) ∧ R(x))
lemma
(∃x. P(x)) ∧ (∀x. L(x) --> ¬ (M(x) ∧ R(x))) ∧ (∀x. P(x) --> M(x) ∧ L(x)) ∧ ((∀x. P(x) --> Q(x)) ∨ (∃x. P(x) ∧ R(x))) --> (∃x. Q(x) ∧ P(x))
lemma
((∃x. p(x)) <-> (∃x. q(x))) ∧ (∀x y. p(x) ∧ q(y) --> r(x) <-> s(y)) --> (∀x. p(x) --> r(x)) <-> (∀x. q(x) --> s(x))
lemma
(∃x. P(x) ∧ ¬ Q(x)) ∧ (∀x. P(x) --> R(x)) ∧ (∀x. M(x) ∧ L(x) --> P(x)) ∧ ((∃x. R(x) ∧ ¬ Q(x)) --> (∀x. L(x) --> ¬ R(x))) --> (∀x. M(x) --> ¬ L(x))
lemma
(∀x. P(x) --> (∀x. Q(x))) ∧ ((∀x. Q(x) ∨ R(x)) --> (∃x. Q(x) ∧ S(x))) ∧ ((∃x. S(x)) --> (∀x. L(x) --> M(x))) --> (∀x. P(x) ∧ L(x) --> M(x))
lemma
(∃x. P(x)) ∧ (∃y. Q(y)) --> (∀x. P(x) --> R(x)) ∧ (∀y. Q(y) --> S(y)) <-> (∀x y. P(x) ∧ Q(y) --> R(x) ∧ S(y))
lemma
(∀x. P(x) ∨ Q(x) --> ¬ R(x)) ∧ (∀x. (Q(x) --> ¬ S(x)) --> P(x) ∧ R(x)) --> (∀x. S(x))
lemma
¬ (∃x. P(x) ∧ (Q(x) ∨ R(x))) ∧ (∃x. L(x) ∧ P(x)) ∧ (∀x. ¬ R(x) --> M(x)) --> (∃x. L(x) ∧ M(x))
lemma
(∀x. P(x) ∧ (Q(x) ∨ R(x)) --> S(x)) ∧ (∀x. S(x) ∧ R(x) --> L(x)) ∧ (∀x. M(x) --> R(x)) --> (∀x. P(x) ∧ M(x) --> L(x))
lemma
(∀x. P(a) ∧ (P(x) --> P(b)) --> P(c)) <-> (∀x. (¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c)))
lemma
((∃x. ∀y. p(x) <-> p(y)) <-> (∃x. q(x)) <-> (∀y. p(y))) <-> (∃x. ∀y. q(x) <-> q(y)) <-> (∃x. p(x)) <-> (∀y. q(y))
lemma
∃x y. P(x, y) --> (∀u v. P(u, v))
lemma
(∀x. ∃y. J(x, y)) ∧ (∀x. ∃y. G(x, y)) ∧ (∀x y. J(x, y) ∨ G(x, y) --> (∀z. J(y, z) ∨ G(y, z) --> H(x, z))) --> (∀x. ∃y. H(x, y))
lemma
(∀z. ∃w. ∀x. ∃y. (P(x, z) --> P(y, w)) ∧ P(y, z) ∧ (P(y, w) --> (∃u. Q(u, w)))) ∧ (∀x z. ¬ P(x, z) --> (∃y. Q(y, z))) ∧ ((∃x y. Q(x, y)) --> (∀x. R(x, x))) --> (∀x. ∃y. R(x, y))
lemma
(∀x. p(a) ∧ (p(x) --> (∃y. p(y) ∧ r(x, y))) --> (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))) <-> (∀x. (¬ p(a) ∨ p(x) ∨ (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))) ∧ (¬ p(a) ∨ ¬ (∃y. p(y) ∧ r(x, y)) ∨ (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))))
lemma
¬ (∃x. ∀y. F(y, x) <-> ¬ F(y, y))
lemma
(∃y. ∀x. F(x, y) <-> F(x, x)) --> ¬ (∀x. ∃y. ∀z. F(z, y) <-> ¬ F(z, x))
lemma
(∀z. ∃y. ∀x. f(x, y) <-> f(x, z) ∧ ¬ f(x, x)) --> ¬ (∃z. ∀x. f(x, z))
lemma
¬ (∃y. ∀x. p(x, y) <-> ¬ (∃z. p(x, z) ∧ p(z, x)))
lemma
(∀x y. q(x, y) <-> (∀z. p(z, x) <-> p(z, y))) --> (∀x y. q(x, y) <-> q(y, x))
lemma
(∀x. f(x) --> (∃y. g(y) ∧ h(x, y) ∧ (∃y. g(y) ∧ ¬ h(x, y)))) ∧ (∃x. j(x) ∧ (∀y. g(y) --> h(x, y))) --> (∃x. j(x) ∧ ¬ f(x))
lemma
(∀x. f(x) ∧ (∀y. g(y) ∧ h(x, y) --> j(x, y)) --> (∀y. g(y) ∧ h(x, y) --> k(y))) ∧ ¬ (∃y. l(y) ∧ k(y)) ∧ (∃x. f(x) ∧ (∀y. h(x, y) --> l(y)) ∧ (∀y. g(y) ∧ h(x, y) --> j(x, y))) --> (∃x. f(x) ∧ ¬ (∃y. g(y) ∧ h(x, y)))
lemma
(∀x. f(x) ∧ (∀y. f(y) ∧ h(y, x) --> g(y)) --> g(x)) ∧ ((∃x. f(x) ∧ ¬ g(x)) --> (∃x. f(x) ∧ ¬ g(x) ∧ (∀y. f(y) ∧ ¬ g(y) --> j(x, y)))) ∧ (∀x y. f(x) ∧ f(y) ∧ h(x, y) --> ¬ j(y, x)) --> (∀x. f(x) --> g(x))
lemma
(a = b ∨ c = d) ∧ (a = c ∨ b = d) --> a = d ∨ b = c
lemma
(∃x y. ∀z. z = x ∨ z = y) ∧ P(a) ∧ P(b) ∧ a ≠ b --> (∀u. P(u))
lemma
(∀x. P(a, x) ∨ (∀y. P(x, y))) --> (∃x. ∀y. P(x, y))
lemma
(∃z w. ∀x y. P(x, y) <-> x = z ∧ y = w) --> (∃z. ∀x. ∃w. (∀y. P(x, y) <-> y = w) <-> x = z)
lemma
(∃z w. ∀x y. P(x, y) <-> x = z ∧ y = w) --> (∃w. ∀y. ∃z. (∀x. P(x, y) <-> x = z) <-> y = w)
lemma
lives(agatha) ∧ lives(butler) ∧ lives(charles) ∧ (killed(agatha, agatha) ∨ killed(butler, agatha) ∨ killed(charles, agatha)) ∧ (∀x y. killed(x, y) --> hates(x, y) ∧ ¬ richer(x, y)) ∧ (∀x. hates(agatha, x) --> ¬ hates(charles, x)) ∧ (hates(agatha, agatha) ∧ hates(agatha, charles)) ∧ (∀x. lives(x) ∧ ¬ richer(x, agatha) --> hates(butler, x)) ∧ (∀x. hates(agatha, x) --> hates(butler, x)) ∧ (∀x. ¬ hates(x, agatha) ∨ ¬ hates(x, butler) ∨ ¬ hates(x, charles)) --> killed(agatha, agatha)
lemma
(∀x. (∃y. P(y) ∧ x = f(y)) --> P(x)) <-> (∀x. P(x) --> P(f(x)))
lemma
P(f(a, b), f(b, c)) ∧ P(f(b, c), f(a, c)) ∧ (∀x y z. P(x, y) ∧ P(y, z) --> P(x, z)) --> P(f(a, b), f(a, c))
lemma
(∀x y. f(x) = g(y)) --> (∀x y. f(f(x)) = f(g(y)))
lemma
(∀x. P(x) <-> ¬ P(f(x))) --> (∃x. P(x) ∧ ¬ P(f(x)))
lemma
∀x. P(x, f(x)) <-> (∃y. (∀z. P(z, y) --> P(z, f(x))) ∧ P(x, y))
lemma
(∀x. p(a) ∧ (p(x) --> p(f(x))) --> p(f(f(x)))) <-> (∀x. (¬ p(a) ∨ p(x) ∨ p(f(f(x)))) ∧ (¬ p(a) ∨ ¬ p(f(x)) ∨ p(f(f(x)))))
lemma
(∀x. F(x) ∧ ¬ G(x) --> (∃y. H(x, y) ∧ J(y))) ∧ (∃x. K(x) ∧ F(x) ∧ (∀y. H(x, y) --> K(y))) ∧ (∀x. K(x) --> ¬ G(x)) --> (∃x. K(x) ∧ J(x))
lemma
(∀x. F(x) ∧ ¬ G(x) --> (∃y. H(x, y) ∧ J(y))) ∧ (∃x. K(x) ∧ F(x) ∧ (∀y. H(x, y) --> K(y))) ∧ (∀x. K(x) --> ¬ G(x)) --> (∃x. K(x) --> ¬ G(x))
lemma
((∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z)))) --> (∃w. C(w) ∧ (∀y. C(y) --> (∀z. D(w, y, z))))) ∧ (∀w. C(w) ∧ (∀u. C(u) --> (∀v. D(w, u, v))) --> (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧ (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b)))) ∧ (∀w. C(w) ∧ (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧ (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b))) --> (∃v. C(v) ∧ (∀y. ((C(y) ∧ Q(w, y, y)) ∧ OO(w, g) --> ¬ P(v, y)) ∧ ((C(y) ∧ Q(w, y, y)) ∧ OO(w, b) --> P(v, y) ∧ OO(v, b))))) --> ¬ (∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z))))
lemma
((∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z)))) --> (∃w. C(w) ∧ (∀y. C(y) --> (∀z. D(w, y, z))))) ∧ (∀w. C(w) ∧ (∀u. C(u) --> (∀v. D(w, u, v))) --> (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧ (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b)))) ∧ ((∃w. C(w) ∧ (∀y. (C(y) ∧ P(y, y) --> Q(w, y, y) ∧ OO(w, g)) ∧ (C(y) ∧ ¬ P(y, y) --> Q(w, y, y) ∧ OO(w, b)))) --> (∃v. C(v) ∧ (∀y. (C(y) ∧ P(y, y) --> P(v, y) ∧ OO(v, g)) ∧ (C(y) ∧ ¬ P(y, y) --> P(v, y) ∧ OO(v, b))))) --> ((∃v. C(v) ∧ (∀y. (C(y) ∧ P(y, y) --> P(v, y) ∧ OO(v, g)) ∧ (C(y) ∧ ¬ P(y, y) --> P(v, y) ∧ OO(v, b)))) --> (∃u. C(u) ∧ (∀y. (C(y) ∧ P(y, y) --> ¬ P(u, y)) ∧ (C(y) ∧ ¬ P(y, y) --> P(u, y) ∧ OO(u, b))))) --> ¬ (∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z))))
lemma
∀x. ∃v w. ∀y z. P(x) ∧ Q(y) --> (P(v) ∨ R(w)) ∧ (R(z) --> Q(v))
lemma
(∀x. honest(x) ∧ industrious(x) --> healthy(x)) ∧ ¬ (∃x. grocer(x) ∧ healthy(x)) ∧ (∀x. industrious(x) ∧ grocer(x) --> honest(x)) ∧ (∀x. cyclist(x) --> industrious(x)) ∧ (∀x. ¬ healthy(x) ∧ cyclist(x) --> ¬ honest(x)) --> (∀x. grocer(x) --> ¬ cyclist(x))