Theory Classical

Up to index of Isabelle/FOL/ex

theory Classical
imports FOL
begin

(*  Title:      FOL/ex/Classical
    ID:         $Id: Classical.thy,v 1.2 2005/06/17 14:15:08 haftmann Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge
*)

header{*Classical Predicate Calculus Problems*}

theory Classical imports FOL begin

lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
by blast

text{*If and only if*}

lemma "(P<->Q) <-> (Q<->P)"
by blast

lemma "~ (P <-> ~P)"
by blast


text{*Sample problems from 
  F. J. Pelletier, 
  Seventy-Five Problems for Testing Automatic Theorem Provers,
  J. Automated Reasoning 2 (1986), 191-216.
  Errata, JAR 4 (1988), 236-236.

The hardest problems -- judging by experience with several theorem provers,
including matrix ones -- are 34 and 43.
*}

subsection{*Pelletier's examples*}

text{*1*}
lemma "(P-->Q)  <->  (~Q --> ~P)"
by blast

text{*2*}
lemma "~ ~ P  <->  P"
by blast

text{*3*}
lemma "~(P-->Q) --> (Q-->P)"
by blast

text{*4*}
lemma "(~P-->Q)  <->  (~Q --> P)"
by blast

text{*5*}
lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
by blast

text{*6*}
lemma "P | ~ P"
by blast

text{*7*}
lemma "P | ~ ~ ~ P"
by blast

text{*8.  Peirce's law*}
lemma "((P-->Q) --> P)  -->  P"
by blast

text{*9*}
lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
by blast

text{*10*}
lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
by blast

text{*11.  Proved in each direction (incorrectly, says Pelletier!!)  *}
lemma "P<->P"
by blast

text{*12.  "Dijkstra's law"*}
lemma "((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))"
by blast

text{*13.  Distributive law*}
lemma "P | (Q & R)  <-> (P | Q) & (P | R)"
by blast

text{*14*}
lemma "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"
by blast

text{*15*}
lemma "(P --> Q) <-> (~P | Q)"
by blast

text{*16*}
lemma "(P-->Q) | (Q-->P)"
by blast

text{*17*}
lemma "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
by blast

subsection{*Classical Logic: examples with quantifiers*}

lemma "(∀x. P(x) & Q(x)) <-> (∀x. P(x))  &  (∀x. Q(x))"
by blast

lemma "(∃x. P-->Q(x))  <->  (P --> (∃x. Q(x)))"
by blast

lemma "(∃x. P(x)-->Q)  <->  (∀x. P(x)) --> Q"
by blast

lemma "(∀x. P(x)) | Q  <->  (∀x. P(x) | Q)"
by blast

text{*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux,
  JAR 10 (265-281), 1993.  Proof is trivial!*}
lemma "~((∃x.~P(x)) & ((∃x. P(x)) | (∃x. P(x) & Q(x))) & ~ (∃x. P(x)))"
by blast

subsection{*Problems requiring quantifier duplication*}

text{*Theorem B of Peter Andrews, Theorem Proving via General Matings, 
  JACM 28 (1981).*}
lemma "(∃x. ∀y. P(x) <-> P(y)) --> ((∃x. P(x)) <-> (∀y. P(y)))"
by blast

text{*Needs multiple instantiation of ALL.*}
lemma "(∀x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))"
by blast

text{*Needs double instantiation of the quantifier*}
lemma "∃x. P(x) --> P(a) & P(b)"
by blast

lemma "∃z. P(z) --> (∀x. P(x))"
by blast

lemma "∃x. (∃y. P(y)) --> P(x)"
by blast

text{*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23.  NOT PROVED*}
lemma "∃x x'. ∀y. ∃z z'.  
                (~P(y,y) | P(x,x) | ~S(z,x)) &  
                (S(x,y) | ~S(y,z) | Q(z',z'))  &  
                (Q(x',y) | ~Q(y,z') | S(x',x'))"
oops



subsection{*Hard examples with quantifiers*}

text{*18*}
lemma "∃y. ∀x. P(y)-->P(x)"
by blast

text{*19*}
lemma "∃x. ∀y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
by blast

text{*20*}
lemma "(∀x y. ∃z. ∀w. (P(x)&Q(y)-->R(z)&S(w)))      
    --> (∃x y. P(x) & Q(y)) --> (∃z. R(z))"
by blast

text{*21*}
lemma "(∃x. P-->Q(x)) & (∃x. Q(x)-->P) --> (∃x. P<->Q(x))"
by blast

text{*22*}
lemma "(∀x. P <-> Q(x))  -->  (P <-> (∀x. Q(x)))"
by blast

text{*23*}
lemma "(∀x. P | Q(x))  <->  (P | (∀x. Q(x)))"
by blast

text{*24*}
lemma "~(∃x. S(x)&Q(x)) & (∀x. P(x) --> Q(x)|R(x)) &   
      (~(∃x. P(x)) --> (∃x. Q(x))) & (∀x. Q(x)|R(x) --> S(x))   
    --> (∃x. P(x)&R(x))"
by blast

text{*25*}
lemma "(∃x. P(x)) &   
      (∀x. L(x) --> ~ (M(x) & R(x))) &   
      (∀x. P(x) --> (M(x) & L(x))) &    
      ((∀x. P(x)-->Q(x)) | (∃x. P(x)&R(x)))   
    --> (∃x. Q(x)&P(x))"
by blast

text{*26*}
lemma "((∃x. p(x)) <-> (∃x. q(x))) &  
      (∀x. ∀y. p(x) & q(y) --> (r(x) <-> s(y)))    
  --> ((∀x. p(x)-->r(x)) <-> (∀x. q(x)-->s(x)))"
by blast

text{*27*}
lemma "(∃x. P(x) & ~Q(x)) &    
      (∀x. P(x) --> R(x)) &    
      (∀x. M(x) & L(x) --> P(x)) &    
      ((∃x. R(x) & ~ Q(x)) --> (∀x. L(x) --> ~ R(x)))   
  --> (∀x. M(x) --> ~L(x))"
by blast

text{*28.  AMENDED*}
lemma "(∀x. P(x) --> (∀x. Q(x))) &    
        ((∀x. Q(x)|R(x)) --> (∃x. Q(x)&S(x))) &   
        ((∃x. S(x)) --> (∀x. L(x) --> M(x)))   
    --> (∀x. P(x) & L(x) --> M(x))"
by blast

text{*29.  Essentially the same as Principia Mathematica *11.71*}
lemma "(∃x. P(x)) & (∃y. Q(y))   
    --> ((∀x. P(x)-->R(x)) & (∀y. Q(y)-->S(y))   <->      
         (∀x y. P(x) & Q(y) --> R(x) & S(y)))"
by blast

text{*30*}
lemma "(∀x. P(x) | Q(x) --> ~ R(x)) &  
      (∀x. (Q(x) --> ~ S(x)) --> P(x) & R(x))   
    --> (∀x. S(x))"
by blast

text{*31*}
lemma "~(∃x. P(x) & (Q(x) | R(x))) &  
        (∃x. L(x) & P(x)) &  
        (∀x. ~ R(x) --> M(x))   
    --> (∃x. L(x) & M(x))"
by blast

text{*32*}
lemma "(∀x. P(x) & (Q(x)|R(x))-->S(x)) &  
      (∀x. S(x) & R(x) --> L(x)) &  
      (∀x. M(x) --> R(x))   
      --> (∀x. P(x) & M(x) --> L(x))"
by blast

text{*33*}
lemma "(∀x. P(a) & (P(x)-->P(b))-->P(c))  <->     
      (∀x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
by blast

text{*34  AMENDED (TWICE!!).  Andrews's challenge*}
lemma "((∃x. ∀y. p(x) <-> p(y))  <->                 
       ((∃x. q(x)) <-> (∀y. p(y))))     <->         
      ((∃x. ∀y. q(x) <-> q(y))  <->                 
       ((∃x. p(x)) <-> (∀y. q(y))))"
by blast

text{*35*}
lemma "∃x y. P(x,y) -->  (∀u v. P(u,v))"
by blast

text{*36*}
lemma "(∀x. ∃y. J(x,y)) &  
      (∀x. ∃y. G(x,y)) &  
      (∀x y. J(x,y) | G(x,y) --> (∀z. J(y,z) | G(y,z) --> H(x,z)))    
  --> (∀x. ∃y. H(x,y))"
by blast

text{*37*}
lemma "(∀z. ∃w. ∀x. ∃y.  
           (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (∃u. Q(u,w)))) &  
      (∀x z. ~P(x,z) --> (∃y. Q(y,z))) &  
      ((∃x y. Q(x,y)) --> (∀x. R(x,x)))   
      --> (∀x. ∃y. R(x,y))"
by blast

text{*38*}
lemma "(∀x. p(a) & (p(x) --> (∃y. p(y) & r(x,y))) -->         
             (∃z. ∃w. p(z) & r(x,w) & r(w,z)))  <->          
      (∀x. (~p(a) | p(x) | (∃z. ∃w. p(z) & r(x,w) & r(w,z))) &     
              (~p(a) | ~(∃y. p(y) & r(x,y)) |                           
              (∃z. ∃w. p(z) & r(x,w) & r(w,z))))"
by blast

text{*39*}
lemma "~ (∃x. ∀y. F(y,x) <-> ~F(y,y))"
by blast

text{*40.  AMENDED*}
lemma "(∃y. ∀x. F(x,y) <-> F(x,x)) -->   
              ~(∀x. ∃y. ∀z. F(z,y) <-> ~ F(z,x))"
by blast

text{*41*}
lemma "(∀z. ∃y. ∀x. f(x,y) <-> f(x,z) & ~ f(x,x))         
          --> ~ (∃z. ∀x. f(x,z))"
by blast

text{*42*}
lemma "~ (∃y. ∀x. p(x,y) <-> ~ (∃z. p(x,z) & p(z,x)))"
by blast

text{*43*}
lemma "(∀x. ∀y. q(x,y) <-> (∀z. p(z,x) <-> p(z,y)))      
          --> (∀x. ∀y. q(x,y) <-> q(y,x))"
by blast

(*Other proofs: Can use auto, which cheats by using rewriting!  
  Deepen_tac alone requires 253 secs.  Or
  by (mini_tac 1 THEN Deepen_tac 5 1) *)

text{*44*}
lemma "(∀x. f(x) --> (∃y. g(y) & h(x,y) & (∃y. g(y) & ~ h(x,y)))) &  
      (∃x. j(x) & (∀y. g(y) --> h(x,y)))                    
      --> (∃x. j(x) & ~f(x))"
by blast

text{*45*}
lemma "(∀x. f(x) & (∀y. g(y) & h(x,y) --> j(x,y))   
                      --> (∀y. g(y) & h(x,y) --> k(y))) &     
      ~ (∃y. l(y) & k(y)) &                                    
      (∃x. f(x) & (∀y. h(x,y) --> l(y))                     
                  & (∀y. g(y) & h(x,y) --> j(x,y)))           
      --> (∃x. f(x) & ~ (∃y. g(y) & h(x,y)))"
by blast


text{*46*}
lemma "(∀x. f(x) & (∀y. f(y) & h(y,x) --> g(y)) --> g(x)) &       
      ((∃x. f(x) & ~g(x)) -->                                     
       (∃x. f(x) & ~g(x) & (∀y. f(y) & ~g(y) --> j(x,y)))) &     
      (∀x y. f(x) & f(y) & h(x,y) --> ~j(y,x))                     
       --> (∀x. f(x) --> g(x))"
by blast


subsection{*Problems (mainly) involving equality or functions*}

text{*48*}
lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
by blast

text{*49  NOT PROVED AUTOMATICALLY.  Hard because it involves substitution
  for Vars
  the type constraint ensures that x,y,z have the same type as a,b,u. *}
lemma "(∃x y::'a. ∀z. z=x | z=y) & P(a) & P(b) & a~=b  
                --> (∀u::'a. P(u))"
apply safe
apply (rule_tac x = a in allE, assumption)
apply (rule_tac x = b in allE, assumption, fast)
       --{*blast's treatment of equality can't do it*}
done

text{*50.  (What has this to do with equality?) *}
lemma "(∀x. P(a,x) | (∀y. P(x,y))) --> (∃x. ∀y. P(x,y))"
by blast

text{*51*}
lemma "(∃z w. ∀x y. P(x,y) <->  (x=z & y=w)) -->   
      (∃z. ∀x. ∃w. (∀y. P(x,y) <-> y=w) <-> x=z)"
by blast

text{*52*}
text{*Almost the same as 51. *}
lemma "(∃z w. ∀x y. P(x,y) <->  (x=z & y=w)) -->   
      (∃w. ∀y. ∃z. (∀x. P(x,y) <-> x=z) <-> y=w)"
by blast

text{*55*}

(*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED
Goal "(∃x. lives(x) & killed(x,agatha)) &  
   lives(agatha) & lives(butler) & lives(charles) &  
   (∀x. lives(x) --> x=agatha | x=butler | x=charles) &  
   (∀x y. killed(x,y) --> hates(x,y)) &  
   (∀x y. killed(x,y) --> ~richer(x,y)) &  
   (∀x. hates(agatha,x) --> ~hates(charles,x)) &  
   (∀x. ~ x=butler --> hates(agatha,x)) &  
   (∀x. ~richer(x,agatha) --> hates(butler,x)) &  
   (∀x. hates(agatha,x) --> hates(butler,x)) &  
   (∀x. ∃y. ~hates(x,y)) &  
   ~ agatha=butler -->  
   killed(?who,agatha)"
by Safe_tac;
by (dres_inst_tac [("x1","x")] (spec RS mp) 1);
by (assume_tac 1);
by (etac (spec RS exE) 1);
by (REPEAT (etac allE 1));
by (Blast_tac 1);
result();
****)

text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
  fast DISCOVERS who killed Agatha. *}
lemma "lives(agatha) & lives(butler) & lives(charles) &  
   (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) &  
   (∀x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) &  
   (∀x. hates(agatha,x) --> ~hates(charles,x)) &  
   (hates(agatha,agatha) & hates(agatha,charles)) &  
   (∀x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) &  
   (∀x. hates(agatha,x) --> hates(butler,x)) &  
   (∀x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) -->  
    killed(?who,agatha)"
by fast --{*MUCH faster than blast*}


text{*56*}
lemma "(∀x. (∃y. P(y) & x=f(y)) --> P(x)) <-> (∀x. P(x) --> P(f(x)))"
by blast

text{*57*}
lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &  
     (∀x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))"
by blast

text{*58  NOT PROVED AUTOMATICALLY*}
lemma "(∀x y. f(x)=g(y)) --> (∀x y. f(f(x))=f(g(y)))"
by (slow elim: subst_context)


text{*59*}
lemma "(∀x. P(x) <-> ~P(f(x))) --> (∃x. P(x) & ~P(f(x)))"
by blast

text{*60*}
lemma "∀x. P(x,f(x)) <-> (∃y. (∀z. P(z,y) --> P(z,f(x))) & P(x,y))"
by blast

text{*62 as corrected in JAR 18 (1997), page 135*}
lemma "(∀x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x))))  <->      
      (∀x. (~p(a) | p(x) | p(f(f(x)))) &                       
              (~p(a) | ~p(f(x)) | p(f(f(x)))))"
by blast

text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
  fast indeed copes!*}
lemma "(∀x. F(x) & ~G(x) --> (∃y. H(x,y) & J(y))) &  
              (∃x. K(x) & F(x) & (∀y. H(x,y) --> K(y))) &    
              (∀x. K(x) --> ~G(x))  -->  (∃x. K(x) & J(x))"
by fast

text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.  
  It does seem obvious!*}
lemma "(∀x. F(x) & ~G(x) --> (∃y. H(x,y) & J(y))) &         
      (∃x. K(x) & F(x) & (∀y. H(x,y) --> K(y)))  &         
      (∀x. K(x) --> ~G(x))   -->   (∃x. K(x) --> ~G(x))"
by fast

text{*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
        author U. Egly*}
lemma "((∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z)))) -->                
   (∃w. C(w) & (∀y. C(y) --> (∀z. D(w,y,z)))))                   
  &                                                                      
  (∀w. C(w) & (∀u. C(u) --> (∀v. D(w,u,v))) -->                 
        (∀y z.                                                        
            (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &                    
            (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))                    
  &                                                                      
  (∀w. C(w) &                                                         
    (∀y z.                                                            
        (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &                         
        (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) -->                     
    (∃v. C(v) &                                                        
          (∀y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) &            
                  ((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b)))))  
   -->                   
   ~ (∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z))))"
by (tactic{*Blast.depth_tac (claset ()) 12 1*})
   --{*Needed because the search for depths below 12 is very slow*}


text{*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*}
lemma "((∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z)))) -->        
   (∃w. C(w) & (∀y. C(y) --> (∀z. D(w,y,z)))))           
  &                                                              
  (∀w. C(w) & (∀u. C(u) --> (∀v. D(w,u,v))) -->         
        (∀y z.                                                
            (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &           
            (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))          
  &                                                              
  ((∃w. C(w) & (∀y. (C(y) &  P(y,y) --> Q(w,y,y) & OO(w,g)) & 
                         (C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b))))  
   -->                                                             
   (∃v. C(v) & (∀y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &   
                         (C(y) & ~P(y,y) --> P(v,y) & OO(v,b)))))  
  -->                                                              
  ((∃v. C(v) & (∀y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &   
                         (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))   
   -->                                                             
   (∃u. C(u) & (∀y. (C(y) &  P(y,y) --> ~P(u,y)) &     
                         (C(y) & ~P(y,y) --> P(u,y) & OO(u,b)))))  
   -->                                                             
   ~ (∃x. A(x) & (∀y. C(y) --> (∀z. D(x,y,z))))"
by blast

text{* Challenge found on info-hol *}
lemma "∀x. ∃v w. ∀y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"
by blast

text{*Attributed to Lewis Carroll by S. G. Pulman.  The first or last assumption
can be deleted.*}
lemma "(∀x. honest(x) & industrious(x) --> healthy(x)) &  
      ~ (∃x. grocer(x) & healthy(x)) &  
      (∀x. industrious(x) & grocer(x) --> honest(x)) &  
      (∀x. cyclist(x) --> industrious(x)) &  
      (∀x. ~healthy(x) & cyclist(x) --> ~honest(x))   
      --> (∀x. grocer(x) --> ~cyclist(x))"
by blast


(*Runtimes for old versions of this file:
Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2] 
Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac] 
Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip] 
Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions] 

Further runtimes on a Sun-4
Tue Mar  4 1997: loaded in 93s (version 94-7) 
Tue Mar  4 1997: loaded in 89s
Thu Apr  3 1997: loaded in 44s--using mostly Blast_tac
Thu Apr  3 1997: loaded in 96s--addition of two Halting Probs
Thu Apr  3 1997: loaded in 98s--using lim-1 for all haz rules
Tue Dec  2 1997: loaded in 107s--added 46; new equalSubst
Fri Dec 12 1997: loaded in 91s--faster proof reconstruction
Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??)
*)

end


lemma

  (P --> QR) --> (P --> Q) ∨ (P --> R)

lemma

  (P <-> Q) <-> Q <-> P

lemma

  ¬ (P <-> ¬ P)

Pelletier's examples

lemma

  (P --> Q) <-> ¬ Q --> ¬ P

lemma

  ¬ ¬ P <-> P

lemma

  ¬ (P --> Q) --> Q --> P

lemma

P --> Q) <-> ¬ Q --> P

lemma

  (PQ --> PR) --> P ∨ (Q --> R)

lemma

  P ∨ ¬ P

lemma

  P ∨ ¬ ¬ ¬ P

lemma

  ((P --> Q) --> P) --> P

lemma

  (PQ) ∧ (¬ PQ) ∧ (P ∨ ¬ Q) --> ¬ (¬ P ∨ ¬ Q)

lemma

  (Q --> R) ∧ (R --> PQ) ∧ (P --> QR) --> P <-> Q

lemma

  P <-> P

lemma

  ((P <-> Q) <-> R) <-> P <-> Q <-> R

lemma

  PQR <-> (PQ) ∧ (PR)

lemma

  (P <-> Q) <-> (Q ∨ ¬ P) ∧ (¬ QP)

lemma

  (P --> Q) <-> ¬ PQ

lemma

  (P --> Q) ∨ (Q --> P)

lemma

  (P ∧ (Q --> R) --> S) <-> (¬ PQS) ∧ (¬ P ∨ ¬ RS)

Classical Logic: examples with quantifiers

lemma

  (∀x. P(x) ∧ Q(x)) <-> (∀x. P(x)) ∧ (∀x. Q(x))

lemma

  (∃x. P --> Q(x)) <-> P --> (∃x. Q(x))

lemma

  (∃x. P(x) --> Q) <-> (∀x. P(x)) --> Q

lemma

  (∀x. P(x)) ∨ Q <-> (∀x. P(x) ∨ Q)

lemma

  ¬ ((∃x. ¬ P(x)) ∧ ((∃x. P(x)) ∨ (∃x. P(x) ∧ Q(x))) ∧ ¬ (∃x. P(x)))

Problems requiring quantifier duplication

lemma

  (∃x. ∀y. P(x) <-> P(y)) --> (∃x. P(x)) <-> (∀y. P(y))

lemma

  (∀x. P(x) --> P(f(x))) ∧ P(d) --> P(f(f(f(d))))

lemma

x. P(x) --> P(a) ∧ P(b)

lemma

z. P(z) --> (∀x. P(x))

lemma

x. (∃y. P(y)) --> P(x)

Hard examples with quantifiers

lemma

y. ∀x. P(y) --> P(x)

lemma

x. ∀y z. (P(y) --> Q(z)) --> P(x) --> Q(x)

lemma

  (∀x y. ∃z. ∀w. P(x) ∧ Q(y) --> R(z) ∧ S(w)) -->
  (∃x y. P(x) ∧ Q(y)) --> (∃z. R(z))

lemma

  (∃x. P --> Q(x)) ∧ (∃x. Q(x) --> P) --> (∃x. P <-> Q(x))

lemma

  (∀x. P <-> Q(x)) --> P <-> (∀x. Q(x))

lemma

  (∀x. PQ(x)) <-> P ∨ (∀x. Q(x))

lemma

  ¬ (∃x. S(x) ∧ Q(x)) ∧
  (∀x. P(x) --> Q(x) ∨ R(x)) ∧
  (¬ (∃x. P(x)) --> (∃x. Q(x))) ∧ (∀x. Q(x) ∨ R(x) --> S(x)) -->
  (∃x. P(x) ∧ R(x))

lemma

  (∃x. P(x)) ∧
  (∀x. L(x) --> ¬ (M(x) ∧ R(x))) ∧
  (∀x. P(x) --> M(x) ∧ L(x)) ∧ ((∀x. P(x) --> Q(x)) ∨ (∃x. P(x) ∧ R(x))) -->
  (∃x. Q(x) ∧ P(x))

lemma

  ((∃x. p(x)) <-> (∃x. q(x))) ∧ (∀x y. p(x) ∧ q(y) --> r(x) <-> s(y)) -->
  (∀x. p(x) --> r(x)) <-> (∀x. q(x) --> s(x))

lemma

  (∃x. P(x) ∧ ¬ Q(x)) ∧
  (∀x. P(x) --> R(x)) ∧
  (∀x. M(x) ∧ L(x) --> P(x)) ∧ ((∃x. R(x) ∧ ¬ Q(x)) --> (∀x. L(x) --> ¬ R(x))) -->
  (∀x. M(x) --> ¬ L(x))

lemma

  (∀x. P(x) --> (∀x. Q(x))) ∧
  ((∀x. Q(x) ∨ R(x)) --> (∃x. Q(x) ∧ S(x))) ∧
  ((∃x. S(x)) --> (∀x. L(x) --> M(x))) -->
  (∀x. P(x) ∧ L(x) --> M(x))

lemma

  (∃x. P(x)) ∧ (∃y. Q(y)) -->
  (∀x. P(x) --> R(x)) ∧ (∀y. Q(y) --> S(y)) <->
  (∀x y. P(x) ∧ Q(y) --> R(x) ∧ S(y))

lemma

  (∀x. P(x) ∨ Q(x) --> ¬ R(x)) ∧ (∀x. (Q(x) --> ¬ S(x)) --> P(x) ∧ R(x)) -->
  (∀x. S(x))

lemma

  ¬ (∃x. P(x) ∧ (Q(x) ∨ R(x))) ∧ (∃x. L(x) ∧ P(x)) ∧ (∀x. ¬ R(x) --> M(x)) -->
  (∃x. L(x) ∧ M(x))

lemma

  (∀x. P(x) ∧ (Q(x) ∨ R(x)) --> S(x)) ∧
  (∀x. S(x) ∧ R(x) --> L(x)) ∧ (∀x. M(x) --> R(x)) -->
  (∀x. P(x) ∧ M(x) --> L(x))

lemma

  (∀x. P(a) ∧ (P(x) --> P(b)) --> P(c)) <->
  (∀x. (¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c)))

lemma

  ((∃x. ∀y. p(x) <-> p(y)) <-> (∃x. q(x)) <-> (∀y. p(y))) <->
  (∃x. ∀y. q(x) <-> q(y)) <-> (∃x. p(x)) <-> (∀y. q(y))

lemma

x y. P(x, y) --> (∀u v. P(u, v))

lemma

  (∀x. ∃y. J(x, y)) ∧
  (∀x. ∃y. G(x, y)) ∧
  (∀x y. J(x, y) ∨ G(x, y) --> (∀z. J(y, z) ∨ G(y, z) --> H(x, z))) -->
  (∀x. ∃y. H(x, y))

lemma

  (∀z. ∃w. ∀x. ∃y. (P(x, z) --> P(y, w)) ∧
                   P(y, z) ∧ (P(y, w) --> (∃u. Q(u, w)))) ∧
  (∀x z. ¬ P(x, z) --> (∃y. Q(y, z))) ∧ ((∃x y. Q(x, y)) --> (∀x. R(x, x))) -->
  (∀x. ∃y. R(x, y))

lemma

  (∀x. p(a) ∧ (p(x) --> (∃y. p(y) ∧ r(x, y))) -->
       (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))) <->
  (∀x. (¬ p(a) ∨ p(x) ∨ (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))) ∧
       (¬ p(a) ∨ ¬ (∃y. p(y) ∧ r(x, y)) ∨ (∃z w. p(z) ∧ r(x, w) ∧ r(w, z))))

lemma

  ¬ (∃x. ∀y. F(y, x) <-> ¬ F(y, y))

lemma

  (∃y. ∀x. F(x, y) <-> F(x, x)) --> ¬ (∀x. ∃y. ∀z. F(z, y) <-> ¬ F(z, x))

lemma

  (∀z. ∃y. ∀x. f(x, y) <-> f(x, z) ∧ ¬ f(x, x)) --> ¬ (∃z. ∀x. f(x, z))

lemma

  ¬ (∃y. ∀x. p(x, y) <-> ¬ (∃z. p(x, z) ∧ p(z, x)))

lemma

  (∀x y. q(x, y) <-> (∀z. p(z, x) <-> p(z, y))) --> (∀x y. q(x, y) <-> q(y, x))

lemma

  (∀x. f(x) --> (∃y. g(y) ∧ h(x, y) ∧ (∃y. g(y) ∧ ¬ h(x, y)))) ∧
  (∃x. j(x) ∧ (∀y. g(y) --> h(x, y))) -->
  (∃x. j(x) ∧ ¬ f(x))

lemma

  (∀x. f(x) ∧ (∀y. g(y) ∧ h(x, y) --> j(x, y)) -->
       (∀y. g(y) ∧ h(x, y) --> k(y))) ∧
  ¬ (∃y. l(y) ∧ k(y)) ∧
  (∃x. f(x) ∧ (∀y. h(x, y) --> l(y)) ∧ (∀y. g(y) ∧ h(x, y) --> j(x, y))) -->
  (∃x. f(x) ∧ ¬ (∃y. g(y) ∧ h(x, y)))

lemma

  (∀x. f(x) ∧ (∀y. f(y) ∧ h(y, x) --> g(y)) --> g(x)) ∧
  ((∃x. f(x) ∧ ¬ g(x)) -->
   (∃x. f(x) ∧ ¬ g(x) ∧ (∀y. f(y) ∧ ¬ g(y) --> j(x, y)))) ∧
  (∀x y. f(x) ∧ f(y) ∧ h(x, y) --> ¬ j(y, x)) -->
  (∀x. f(x) --> g(x))

Problems (mainly) involving equality or functions

lemma

  (a = bc = d) ∧ (a = cb = d) --> a = db = c

lemma

  (∃x y. ∀z. z = xz = y) ∧ P(a) ∧ P(b) ∧ ab --> (∀u. P(u))

lemma

  (∀x. P(a, x) ∨ (∀y. P(x, y))) --> (∃x. ∀y. P(x, y))

lemma

  (∃z w. ∀x y. P(x, y) <-> x = zy = w) -->
  (∃z. ∀x. ∃w. (∀y. P(x, y) <-> y = w) <-> x = z)

lemma

  (∃z w. ∀x y. P(x, y) <-> x = zy = w) -->
  (∃w. ∀y. ∃z. (∀x. P(x, y) <-> x = z) <-> y = w)

lemma

  lives(agatha) ∧
  lives(butler) ∧
  lives(charles) ∧
  (killed(agatha, agatha) ∨ killed(butler, agatha) ∨ killed(charles, agatha)) ∧
  (∀x y. killed(x, y) --> hates(x, y) ∧ ¬ richer(x, y)) ∧
  (∀x. hates(agatha, x) --> ¬ hates(charles, x)) ∧
  (hates(agatha, agatha) ∧ hates(agatha, charles)) ∧
  (∀x. lives(x) ∧ ¬ richer(x, agatha) --> hates(butler, x)) ∧
  (∀x. hates(agatha, x) --> hates(butler, x)) ∧
  (∀x. ¬ hates(x, agatha) ∨ ¬ hates(x, butler) ∨ ¬ hates(x, charles)) -->
  killed(agatha, agatha)

lemma

  (∀x. (∃y. P(y) ∧ x = f(y)) --> P(x)) <-> (∀x. P(x) --> P(f(x)))

lemma

  P(f(a, b), f(b, c)) ∧
  P(f(b, c), f(a, c)) ∧ (∀x y z. P(x, y) ∧ P(y, z) --> P(x, z)) -->
  P(f(a, b), f(a, c))

lemma

  (∀x y. f(x) = g(y)) --> (∀x y. f(f(x)) = f(g(y)))

lemma

  (∀x. P(x) <-> ¬ P(f(x))) --> (∃x. P(x) ∧ ¬ P(f(x)))

lemma

x. P(x, f(x)) <-> (∃y. (∀z. P(z, y) --> P(z, f(x))) ∧ P(x, y))

lemma

  (∀x. p(a) ∧ (p(x) --> p(f(x))) --> p(f(f(x)))) <->
  (∀x. (¬ p(a) ∨ p(x) ∨ p(f(f(x)))) ∧ (¬ p(a) ∨ ¬ p(f(x)) ∨ p(f(f(x)))))

lemma

  (∀x. F(x) ∧ ¬ G(x) --> (∃y. H(x, y) ∧ J(y))) ∧
  (∃x. K(x) ∧ F(x) ∧ (∀y. H(x, y) --> K(y))) ∧ (∀x. K(x) --> ¬ G(x)) -->
  (∃x. K(x) ∧ J(x))

lemma

  (∀x. F(x) ∧ ¬ G(x) --> (∃y. H(x, y) ∧ J(y))) ∧
  (∃x. K(x) ∧ F(x) ∧ (∀y. H(x, y) --> K(y))) ∧ (∀x. K(x) --> ¬ G(x)) -->
  (∃x. K(x) --> ¬ G(x))

lemma

  ((∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z)))) -->
   (∃w. C(w) ∧ (∀y. C(y) --> (∀z. D(w, y, z))))) ∧
  (∀w. C(w) ∧ (∀u. C(u) --> (∀v. D(w, u, v))) -->
       (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧
              (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b)))) ∧
  (∀w. C(w) ∧
       (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧
              (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b))) -->
       (∃v. C(v) ∧
            (∀y. ((C(y) ∧ Q(w, y, y)) ∧ OO(w, g) --> ¬ P(v, y)) ∧
                 ((C(y) ∧ Q(w, y, y)) ∧ OO(w, b) --> P(v, y) ∧ OO(v, b))))) -->
  ¬ (∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z))))

lemma

  ((∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z)))) -->
   (∃w. C(w) ∧ (∀y. C(y) --> (∀z. D(w, y, z))))) ∧
  (∀w. C(w) ∧ (∀u. C(u) --> (∀v. D(w, u, v))) -->
       (∀y z. (C(y) ∧ P(y, z) --> Q(w, y, z) ∧ OO(w, g)) ∧
              (C(y) ∧ ¬ P(y, z) --> Q(w, y, z) ∧ OO(w, b)))) ∧
  ((∃w. C(w) ∧
        (∀y. (C(y) ∧ P(y, y) --> Q(w, y, y) ∧ OO(w, g)) ∧
             (C(y) ∧ ¬ P(y, y) --> Q(w, y, y) ∧ OO(w, b)))) -->
   (∃v. C(v) ∧
        (∀y. (C(y) ∧ P(y, y) --> P(v, y) ∧ OO(v, g)) ∧
             (C(y) ∧ ¬ P(y, y) --> P(v, y) ∧ OO(v, b))))) -->
  ((∃v. C(v) ∧
        (∀y. (C(y) ∧ P(y, y) --> P(v, y) ∧ OO(v, g)) ∧
             (C(y) ∧ ¬ P(y, y) --> P(v, y) ∧ OO(v, b)))) -->
   (∃u. C(u) ∧
        (∀y. (C(y) ∧ P(y, y) --> ¬ P(u, y)) ∧
             (C(y) ∧ ¬ P(y, y) --> P(u, y) ∧ OO(u, b))))) -->
  ¬ (∃x. A(x) ∧ (∀y. C(y) --> (∀z. D(x, y, z))))

lemma

x. ∃v w. ∀y z. P(x) ∧ Q(y) --> (P(v) ∨ R(w)) ∧ (R(z) --> Q(v))

lemma

  (∀x. honest(x) ∧ industrious(x) --> healthy(x)) ∧
  ¬ (∃x. grocer(x) ∧ healthy(x)) ∧
  (∀x. industrious(x) ∧ grocer(x) --> honest(x)) ∧
  (∀x. cyclist(x) --> industrious(x)) ∧
  (∀x. ¬ healthy(x) ∧ cyclist(x) --> ¬ honest(x)) -->
  (∀x. grocer(x) --> ¬ cyclist(x))