(* Title: FOL/ex/list ID: $Id: List.thy,v 1.7 2005/09/03 15:15:51 wenzelm Exp $ Author: Tobias Nipkow Copyright 1991 University of Cambridge *) header {* Examples of simplification and induction on lists *} theory List imports Nat2 begin typedecl 'a list arities list :: ("term") "term" consts hd :: "'a list => 'a" tl :: "'a list => 'a list" forall :: "['a list, 'a => o] => o" len :: "'a list => nat" at :: "['a list, nat] => 'a" Nil :: "'a list" ("[]") Cons :: "['a, 'a list] => 'a list" (infixr "." 80) app :: "['a list, 'a list] => 'a list" (infixr "++" 70) axioms list_ind: "[| P([]); ALL x l. P(l)-->P(x . l) |] ==> All(P)" forall_cong: "[| l = l'; !!x. P(x)<->P'(x) |] ==> forall(l,P) <-> forall(l',P')" list_distinct1: "~[] = x . l" list_distinct2: "~x . l = []" list_free: "x . l = x' . l' <-> x=x' & l=l'" app_nil: "[]++l = l" app_cons: "(x . l)++l' = x .(l++l')" tl_eq: "tl(m . q) = q" hd_eq: "hd(m . q) = m" forall_nil: "forall([],P)" forall_cons: "forall(x . l,P) <-> P(x) & forall(l,P)" len_nil: "len([]) = 0" len_cons: "len(m . q) = succ(len(q))" at_0: "at(m . q,0) = m" at_succ: "at(m . q,succ(n)) = at(q,n)" ML {* use_legacy_bindings (the_context ()) *} end
theorem list_exh:
[| P([]); !!x l. P(x . l) |] ==> All(P)
theorem append_assoc:
(l1.0 ++ l2.0) ++ l3.0 = l1.0 ++ l2.0 ++ l3.0
theorem app_nil_right:
l ++ [] = l
theorem app_eq_nil_iff:
l1.0 ++ l2.0 = [] <-> l1.0 = [] ∧ l2.0 = []
theorem forall_app:
forall(l ++ l', P) <-> forall(l, P) ∧ forall(l', P)
theorem forall_conj:
forall(l, %x. P(x) ∧ Q(x)) <-> forall(l, P) ∧ forall(l, Q)
theorem forall_ne:
l ≠ [] --> forall(l, P) <-> P(hd(l)) ∧ forall(tl(l), P)
theorem len_app:
len(l1.0 ++ l2.0) = len(l1.0) + len(l2.0)
theorem at_app1:
i < len(l1.0) --> at(l1.0 ++ l2.0, i) = at(l1.0, i)
theorem at_app_hd2:
at(l1.0 ++ x . l2.0, len(l1.0)) = x