(* Title: FOL/ex/NatClass.thy ID: $Id: NatClass.thy,v 1.4 2005/09/06 14:59:48 wenzelm Exp $ Author: Markus Wenzel, TU Muenchen *) theory NatClass imports FOL begin text {* This is an abstract version of theory @{text "Nat"}. Instead of axiomatizing a single type @{text nat} we define the class of all these types (up to isomorphism). Note: The @{text rec} operator had to be made \emph{monomorphic}, because class axioms may not contain more than one type variable. *} consts 0 :: 'a ("0") Suc :: "'a => 'a" rec :: "['a, 'a, ['a, 'a] => 'a] => 'a" axclass nat < "term" induct: "[| P(0); !!x. P(x) ==> P(Suc(x)) |] ==> P(n)" Suc_inject: "Suc(m) = Suc(n) ==> m = n" Suc_neq_0: "Suc(m) = 0 ==> R" rec_0: "rec(0, a, f) = a" rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))" constdefs add :: "['a::nat, 'a] => 'a" (infixl "+" 60) "m + n == rec(m, n, %x y. Suc(y))" ML {* use_legacy_bindings (the_context ()) *} ML {* open nat_class *} end
theorem Suc_n_not_n:
Suc(k) ≠ k
theorem add_0:
0 + n = n
theorem add_Suc:
Suc(m) + n = Suc(m + n)
theorem add_assoc:
k + m + n = k + (m + n)
theorem add_0_right:
m + 0 = m
theorem add_Suc_right:
m + Suc(n) = Suc(m + n)