/* fdtrl.c
*
* F distribution, long double precision
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, y, fdtrl();
*
* y = fdtrl( df1, df2, x );
*
*
*
* DESCRIPTION:
*
* Returns the area from zero to x under the F density
* function (also known as Snedcor's density or the
* variance ratio density). This is the density
* of x = (u1/df1)/(u2/df2), where u1 and u2 are random
* variables having Chi square distributions with df1
* and df2 degrees of freedom, respectively.
*
* The incomplete beta integral is used, according to the
* formula
*
* P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
*
*
* The arguments a and b are greater than zero, and x
* x is nonnegative.
*
* ACCURACY:
*
* Tested at random points (a,b,x) in the indicated intervals.
* x a,b Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0,1 1,100 10000 9.3e-18 2.9e-19
* IEEE 0,1 1,10000 10000 1.9e-14 2.9e-15
* IEEE 1,5 1,10000 10000 5.8e-15 1.4e-16
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtrl domain a<0, b<0, x<0 0.0
*
*/
/* fdtrcl()
*
* Complemented F distribution
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, y, fdtrcl();
*
* y = fdtrcl( df1, df2, x );
*
*
*
* DESCRIPTION:
*
* Returns the area from x to infinity under the F density
* function (also known as Snedcor's density or the
* variance ratio density).
*
*
* inf.
* -
* 1 | | a-1 b-1
* 1-P(x) = ------ | t (1-t) dt
* B(a,b) | |
* -
* x
*
* (See fdtr.c.)
*
* The incomplete beta integral is used, according to the
* formula
*
* P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
*
*
* ACCURACY:
*
* See incbet.c.
* Tested at random points (a,b,x).
*
* x a,b Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0,1 0,100 10000 4.2e-18 3.3e-19
* IEEE 0,1 1,10000 10000 7.2e-15 2.6e-16
* IEEE 1,5 1,10000 10000 1.7e-14 3.0e-15
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtrcl domain a<0, b<0, x<0 0.0
*
*/
/* fdtril()
*
* Inverse of complemented F distribution
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, p, fdtril();
*
* x = fdtril( df1, df2, p );
*
* DESCRIPTION:
*
* Finds the F density argument x such that the integral
* from x to infinity of the F density is equal to the
* given probability p.
*
* This is accomplished using the inverse beta integral
* function and the relations
*
* z = incbi( df2/2, df1/2, p )
* x = df2 (1-z) / (df1 z).
*
* Note: the following relations hold for the inverse of
* the uncomplemented F distribution:
*
* z = incbi( df1/2, df2/2, p )
* x = df2 z / (df1 (1-z)).
*
* ACCURACY:
*
* See incbi.c.
* Tested at random points (a,b,p).
*
* a,b Relative error:
* arithmetic domain # trials peak rms
* For p between .001 and 1:
* IEEE 1,100 40000 4.6e-18 2.7e-19
* IEEE 1,10000 30000 1.7e-14 1.4e-16
* For p between 10^-6 and .001:
* IEEE 1,100 20000 1.9e-15 3.9e-17
* IEEE 1,10000 30000 2.7e-15 4.0e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtril domain p <= 0 or p > 1 0.0
* v < 1
*/
/*
Cephes Math Library Release 2.3: March, 1995
Copyright 1984, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef ANSIPROT
extern long double incbetl ( long double, long double, long double );
extern long double incbil ( long double, long double, long double );
#else
long double incbetl(), incbil();
#endif
long double fdtrcl( ia, ib, x )
int ia, ib;
long double x;
{
long double a, b, w;
if( (ia < 1) || (ib < 1) || (x < 0.0L) )
{
mtherr( "fdtrcl", DOMAIN );
return( 0.0L );
}
a = ia;
b = ib;
w = b / (b + a * x);
return( incbetl( 0.5L*b, 0.5L*a, w ) );
}
long double fdtrl( ia, ib, x )
int ia, ib;
long double x;
{
long double a, b, w;
if( (ia < 1) || (ib < 1) || (x < 0.0L) )
{
mtherr( "fdtrl", DOMAIN );
return( 0.0L );
}
a = ia;
b = ib;
w = a * x;
w = w / (b + w);
return( incbetl(0.5L*a, 0.5L*b, w) );
}
long double fdtril( ia, ib, y )
int ia, ib;
long double y;
{
long double a, b, w, x;
if( (ia < 1) || (ib < 1) || (y <= 0.0L) || (y > 1.0L) )
{
mtherr( "fdtril", DOMAIN );
return( 0.0L );
}
a = ia;
b = ib;
/* Compute probability for x = 0.5. */
w = incbetl( 0.5L*b, 0.5L*a, 0.5L );
/* If that is greater than y, then the solution w < .5.
Otherwise, solve at 1-y to remove cancellation in (b - b*w). */
if( w > y || y < 0.001L)
{
w = incbil( 0.5L*b, 0.5L*a, y );
x = (b - b*w)/(a*w);
}
else
{
w = incbil( 0.5L*a, 0.5L*b, 1.0L - y );
x = b*w/(a*(1.0L-w));
}
return(x);
}
syntax highlighted by Code2HTML, v. 0.9.1