dnl  Intel P6 mpn_mul_basecase -- multiply two mpn numbers.

dnl  Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
dnl
dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or
dnl  modify it under the terms of the GNU Lesser General Public License as
dnl  published by the Free Software Foundation; either version 3 of the
dnl  License, or (at your option) any later version.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful,
dnl  but WITHOUT ANY WARRANTY; without even the implied warranty of
dnl  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
dnl  Lesser General Public License for more details.
dnl
dnl  You should have received a copy of the GNU Lesser General Public License
dnl  along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.

include(`../config.m4')


C P6: approx 6.5 cycles per cross product (16 limbs/loop unrolling).


dnl  P6 UNROLL_COUNT cycles/product (approx)
dnl           8           7
dnl          16           6.5
dnl          32           6.4
dnl  Maximum possible with the current code is 32.

deflit(UNROLL_COUNT, 16)


C void mpn_mul_basecase (mp_ptr wp,
C                        mp_srcptr xp, mp_size_t xsize,
C                        mp_srcptr yp, mp_size_t ysize);
C
C This routine is essentially the same as mpn/generic/mul_basecase.c, but
C it's faster because it does most of the mpn_addmul_1() startup
C calculations only once.

ifdef(`PIC',`
deflit(UNROLL_THRESHOLD, 5)
',`
deflit(UNROLL_THRESHOLD, 5)
')

defframe(PARAM_YSIZE,20)
defframe(PARAM_YP,   16)
defframe(PARAM_XSIZE,12)
defframe(PARAM_XP,   8)
defframe(PARAM_WP,   4)

	TEXT
	ALIGN(16)

PROLOGUE(mpn_mul_basecase)
deflit(`FRAME',0)

	movl	PARAM_XSIZE, %ecx

	movl	PARAM_YP, %eax

	movl	PARAM_XP, %edx

	movl	(%eax), %eax		C yp[0]
	cmpl	$2, %ecx
	ja	L(xsize_more_than_two)
	je	L(two_by_something)


	C one limb by one limb

	mull	(%edx)

	movl	PARAM_WP, %ecx
	movl	%eax, (%ecx)
	movl	%edx, 4(%ecx)
	ret


C -----------------------------------------------------------------------------
L(two_by_something):
deflit(`FRAME',0)

dnl  re-use parameter space
define(SAVE_EBX, `PARAM_XSIZE')
define(SAVE_ESI, `PARAM_YSIZE')

	movl	%ebx, SAVE_EBX
	cmpl	$1, PARAM_YSIZE
	movl	%eax, %ecx		C yp[0]

	movl	%esi, SAVE_ESI		C save esi
	movl	PARAM_WP, %ebx
	movl	%edx, %esi		C xp

	movl	(%edx), %eax		C xp[0]
	jne	L(two_by_two)


	C two limbs by one limb
	C
	C eax	xp[0]
	C ebx	wp
	C ecx	yp[0]
	C edx
	C esi	xp

	mull	%ecx

	movl	%eax, (%ebx)
	movl	4(%esi), %eax
	movl	%edx, %esi		C carry

	mull	%ecx

	addl	%eax, %esi

	movl	%esi, 4(%ebx)
	movl	SAVE_ESI, %esi

	adcl	$0, %edx

	movl	%edx, 8(%ebx)
	movl	SAVE_EBX, %ebx

	ret



C -----------------------------------------------------------------------------

	ALIGN(16)
L(two_by_two):
	C eax	xp[0]
	C ebx	wp
	C ecx	yp[0]
	C edx
	C esi	xp
	C edi
	C ebp

dnl  more parameter space re-use
define(SAVE_EDI, `PARAM_WP')

	mull	%ecx		C xp[0] * yp[0]

	movl	%edi, SAVE_EDI
	movl	%edx, %edi	C carry, for wp[1]

	movl	%eax, (%ebx)
	movl	4(%esi), %eax

	mull	%ecx		C xp[1] * yp[0]

	addl	%eax, %edi
	movl	PARAM_YP, %ecx

	adcl	$0, %edx
	movl	4(%ecx), %ecx	C yp[1]

	movl	%edi, 4(%ebx)
	movl	4(%esi), %eax	C xp[1]
	movl	%edx, %edi	C carry, for wp[2]

	mull	%ecx		C xp[1] * yp[1]

	addl	%eax, %edi
	movl	(%esi), %eax	C xp[0]

	adcl	$0, %edx
	movl	%edx, %esi	C carry, for wp[3]

	mull	%ecx		C xp[0] * yp[1]

	addl	%eax, 4(%ebx)
	movl	%esi, %eax

	adcl	%edx, %edi
	movl	SAVE_ESI, %esi

	movl	%edi, 8(%ebx)

	adcl	$0, %eax
	movl	SAVE_EDI, %edi

	movl	%eax, 12(%ebx)
	movl	SAVE_EBX, %ebx

	ret


C -----------------------------------------------------------------------------
	ALIGN(16)
L(xsize_more_than_two):

C The first limb of yp is processed with a simple mpn_mul_1 loop running at
C about 6.2 c/l.  Unrolling this doesn't seem worthwhile since it's only run
C once (whereas the addmul_1 below is run ysize-1 many times).  A call to
C mpn_mul_1 would be slowed down by the parameter pushing and popping etc,
C and doesn't seem likely to be worthwhile on the typical sizes reaching
C here from the Karatsuba code.

	C eax	yp[0]
	C ebx
	C ecx	xsize
	C edx	xp
	C esi
	C edi
	C ebp

defframe(`SAVE_EBX',    -4)
defframe(`SAVE_ESI',    -8)
defframe(`SAVE_EDI',   -12)
defframe(`SAVE_EBP',   -16)
defframe(VAR_COUNTER,  -20)  dnl for use in the unroll case
defframe(VAR_ADJUST,   -24)
defframe(VAR_JMP,      -28)
defframe(VAR_SWAP,     -32)
defframe(VAR_XP_LOW,   -36)
deflit(STACK_SPACE, 36)

	subl	$STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)

	movl	%edi, SAVE_EDI
	movl	PARAM_WP, %edi

	movl	%ebx, SAVE_EBX

	movl	%ebp, SAVE_EBP
	movl	%eax, %ebp

	movl	%esi, SAVE_ESI
	xorl	%ebx, %ebx
	leal	(%edx,%ecx,4), %esi	C xp end

	leal	(%edi,%ecx,4), %edi	C wp end of mul1
	negl	%ecx


L(mul1):
	C eax	scratch
	C ebx	carry
	C ecx	counter, negative
	C edx	scratch
	C esi	xp end
	C edi	wp end of mul1
	C ebp	multiplier

	movl	(%esi,%ecx,4), %eax

	mull	%ebp

	addl	%ebx, %eax
	movl	%eax, (%edi,%ecx,4)
	movl	$0, %ebx

	adcl	%edx, %ebx
	incl	%ecx
	jnz	L(mul1)


	movl	PARAM_YSIZE, %edx

	movl	%ebx, (%edi)		C final carry
	movl	PARAM_XSIZE, %ecx
	decl	%edx

	jz	L(done)			C if ysize==1

	cmpl	$UNROLL_THRESHOLD, %ecx
	movl	PARAM_YP, %eax
	jae	L(unroll)


C -----------------------------------------------------------------------------
	C simple addmul looping
	C
	C eax	yp
	C ebx
	C ecx	xsize
	C edx	ysize-1
	C esi	xp end
	C edi	wp end of mul1
	C ebp

	leal	4(%eax,%edx,4), %ebp	C yp end
	negl	%ecx
	negl	%edx

	movl	%edx, PARAM_YSIZE	C -(ysize-1)
	movl	(%esi,%ecx,4), %eax	C xp low limb
	incl	%ecx

	movl	%ecx, PARAM_XSIZE	C -(xsize-1)
	xorl	%ebx, %ebx		C initial carry

	movl	%ebp, PARAM_YP
	movl	(%ebp,%edx,4), %ebp	C yp second lowest limb - multiplier
	jmp	L(simple_outer_entry)


L(simple_outer_top):
	C ebp	ysize counter, negative

	movl	PARAM_YP, %edx

	movl	PARAM_XSIZE, %ecx	C -(xsize-1)
	xorl	%ebx, %ebx		C carry

	movl	%ebp, PARAM_YSIZE
	addl	$4, %edi		C next position in wp

	movl	(%edx,%ebp,4), %ebp	C yp limb - multiplier

	movl	-4(%esi,%ecx,4), %eax	C xp low limb


L(simple_outer_entry):

L(simple_inner_top):
	C eax	xp limb
	C ebx	carry limb
	C ecx	loop counter (negative)
	C edx	scratch
	C esi	xp end
	C edi	wp end
	C ebp	multiplier

	mull	%ebp

	addl	%eax, %ebx
	adcl	$0, %edx

	addl	%ebx, (%edi,%ecx,4)
	movl	(%esi,%ecx,4), %eax
	adcl	$0, %edx

	incl	%ecx
	movl	%edx, %ebx
	jnz	L(simple_inner_top)


	C separate code for last limb so outer loop counter handling can be
	C interleaved

	mull	%ebp

	movl	PARAM_YSIZE, %ebp
	addl	%eax, %ebx

	adcl	$0, %edx

	addl	%ebx, (%edi)

	adcl	$0, %edx
	incl	%ebp

	movl	%edx, 4(%edi)
	jnz	L(simple_outer_top)


L(done):
	movl	SAVE_EBX, %ebx

	movl	SAVE_ESI, %esi

	movl	SAVE_EDI, %edi

	movl	SAVE_EBP, %ebp
	addl	$FRAME, %esp

	ret



C -----------------------------------------------------------------------------
C
C The unrolled loop is the same as in mpn_addmul_1, see that code for some
C comments.
C
C VAR_ADJUST is the negative of how many limbs the leals in the inner loop
C increment xp and wp.  This is used to adjust xp and wp, and is rshifted to
C given an initial VAR_COUNTER at the top of the outer loop.
C
C VAR_COUNTER is for the unrolled loop, running from VAR_ADJUST/UNROLL_COUNT
C up to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled loop.
C
C VAR_SWAP is 0 if xsize odd or 0xFFFFFFFF if xsize even, used to swap the
C initial ebx and ecx on entry to the unrolling.
C
C VAR_XP_LOW is the least significant limb of xp, which is needed at the
C start of the unrolled loop.
C
C PARAM_YSIZE is the outer loop counter, going from -(ysize-1) up to -1,
C inclusive.
C
C PARAM_YP is offset appropriately so that the PARAM_YSIZE counter can be
C added to give the location of the next limb of yp, which is the multiplier
C in the unrolled loop.
C
C The trick with the VAR_ADJUST value means it's only necessary to do one
C fetch in the outer loop to take care of xp, wp and the inner loop counter.


L(unroll):
	C eax	yp
	C ebx
	C ecx	xsize
	C edx	ysize-1
	C esi	xp end
	C edi	wp end of mul1
	C ebp

	movl	PARAM_XP, %esi

	movl	4(%eax), %ebp		C multiplier (yp second limb)
	leal	4(%eax,%edx,4), %eax	C yp adjust for ysize indexing

	movl	%eax, PARAM_YP
	movl	PARAM_WP, %edi
	negl	%edx

	movl	%edx, PARAM_YSIZE
	leal	UNROLL_COUNT-2(%ecx), %ebx	C (xsize-1)+UNROLL_COUNT-1
	decl	%ecx				C xsize-1

	movl	(%esi), %eax		C xp low limb
	andl	$-UNROLL_MASK-1, %ebx
	negl	%ecx			C -(xsize-1)

	negl	%ebx
	andl	$UNROLL_MASK, %ecx

	movl	%ebx, VAR_ADJUST
	movl	%ecx, %edx
	shll	$4, %ecx

	movl	%eax, VAR_XP_LOW
	sarl	$UNROLL_LOG2, %ebx
	negl	%edx

	C 15 code bytes per limb
ifdef(`PIC',`
	call	L(pic_calc)
L(unroll_here):
',`
	leal	L(unroll_inner_entry) (%ecx,%edx,1), %ecx
')

	movl	%ecx, VAR_JMP
	movl	%edx, %ecx
	shll	$31, %edx

	sarl	$31, %edx		C 0 or -1 as xsize odd or even
	leal	4(%edi,%ecx,4), %edi	C wp and xp, adjust for unrolling,
	leal	4(%esi,%ecx,4), %esi	C  and start at second limb

	movl	%edx, VAR_SWAP
	jmp	L(unroll_outer_entry)


ifdef(`PIC',`
L(pic_calc):
	C See mpn/x86/README about old gas bugs
	leal	(%ecx,%edx,1), %ecx
	addl	$L(unroll_inner_entry)-L(unroll_here), %ecx
	addl	(%esp), %ecx
	ret_internal
')


C --------------------------------------------------------------------------
	ALIGN(16)
L(unroll_outer_top):
	C eax
	C ebx
	C ecx
	C edx
	C esi	xp + offset
	C edi	wp + offset
	C ebp	ysize counter, negative

	movl	VAR_ADJUST, %ebx
	movl	PARAM_YP, %edx

	movl	VAR_XP_LOW, %eax
	movl	%ebp, PARAM_YSIZE	C store incremented ysize counter

	leal	eval(UNROLL_BYTES + 4) (%edi,%ebx,4), %edi
	leal	(%esi,%ebx,4), %esi
	sarl	$UNROLL_LOG2, %ebx

	movl	(%edx,%ebp,4), %ebp	C yp next multiplier

L(unroll_outer_entry):
	mull	%ebp

	movl	%ebx, VAR_COUNTER
	movl	%edx, %ebx		C carry high
	movl	%eax, %ecx		C carry low

	xorl	%edx, %eax
	movl	VAR_JMP, %edx

	andl	VAR_SWAP, %eax

	xorl	%eax, %ebx		C carries other way for odd index
	xorl	%eax, %ecx

	jmp	*%edx


C -----------------------------------------------------------------------------

L(unroll_inner_top):
	C eax	xp limb
	C ebx	carry high
	C ecx	carry low
	C edx	scratch
	C esi	xp+8
	C edi	wp
	C ebp	yp multiplier limb
	C
	C VAR_COUNTER  loop counter, negative
	C
	C 15 bytes each limb

	addl	$UNROLL_BYTES, %edi

L(unroll_inner_entry):

deflit(CHUNK_COUNT,2)
forloop(`i', 0, UNROLL_COUNT/CHUNK_COUNT-1, `
	deflit(`disp0', eval(i*CHUNK_COUNT*4 ifelse(UNROLL_BYTES,256,-128)))
	deflit(`disp1', eval(disp0 + 4))

Zdisp(	movl,	disp0,(%esi), %eax)
	mull	%ebp
Zdisp(	addl,	%ecx, disp0,(%edi))
	adcl	%eax, %ebx		C new carry low
	movl	%edx, %ecx
	adcl	$0, %ecx		C new carry high

	movl	disp1(%esi), %eax
	mull	%ebp
	addl	%ebx, disp1(%edi)
	adcl	%eax, %ecx		C new carry low
	movl	%edx, %ebx
	adcl	$0, %ebx		C new carry high
')


	incl	VAR_COUNTER
	leal	UNROLL_BYTES(%esi), %esi
	jnz	L(unroll_inner_top)


	C eax
	C ebx	carry high
	C ecx	carry low
	C edx
	C esi
	C edi	wp, pointing at second last limb)
	C ebp

deflit(`disp0',	eval(UNROLL_BYTES ifelse(UNROLL_BYTES,256,-128)))
deflit(`disp1', eval(disp0 + 4))

	movl	PARAM_YSIZE, %ebp
	addl	%ecx, disp0(%edi)	C carry low

	adcl	$0, %ebx
	incl	%ebp

	movl	%ebx, disp1(%edi)	C carry high
	jnz	L(unroll_outer_top)


	movl	SAVE_ESI, %esi

	movl	SAVE_EBP, %ebp

	movl	SAVE_EDI, %edi

	movl	SAVE_EBX, %ebx
	addl	$FRAME, %esp

	ret

EPILOGUE()


syntax highlighted by Code2HTML, v. 0.9.1