/* mpz_perfect_power_p(arg) -- Return non-zero if ARG is a perfect power,
   zero otherwise.

Copyright 1998, 1999, 2000, 2001, 2005 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */

/*
  We are to determine if c is a perfect power, c = a ^ b.
  Assume c is divisible by 2^n and that codd = c/2^n is odd.
  Assume a is divisible by 2^m and that aodd = a/2^m is odd.
  It is always true that m divides n.

  * If n is prime, either 1) a is 2*aodd and b = n
		       or 2) a = c and b = 1.
    So for n prime, we readily have a solution.
  * If n is factorable into the non-trivial factors p1,p2,...
    Since m divides n, m has a subset of n's factors and b = n / m.
*/

/* This is a naive approach to recognizing perfect powers.
   Many things can be improved.  In particular, we should use p-adic
   arithmetic for computing possible roots.  */

#include <stdio.h> /* for NULL */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"

static unsigned long int gcd _PROTO ((unsigned long int a, unsigned long int b));
static int isprime _PROTO ((unsigned long int t));

static const unsigned short primes[] =
{  2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
  59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131,
 137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,
 227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,
 313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
 419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,
 509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,
 617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,
 727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,
 829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
 947,953,967,971,977,983,991,997,0
};
#define SMALLEST_OMITTED_PRIME 1009


int
mpz_perfect_power_p (mpz_srcptr u)
{
  unsigned long int prime;
  unsigned long int n, n2;
  int i;
  unsigned long int rem;
  mpz_t u2, q;
  int exact;
  mp_size_t uns;
  mp_size_t usize = SIZ (u);
  TMP_DECL;

  if (usize == 0)
    return 1;			/* consider 0 a perfect power */

  n2 = mpz_scan1 (u, 0);
  if (n2 == 1)
    return 0;			/* 2 divides exactly once.  */

  if (n2 != 0 && (n2 & 1) == 0 && usize < 0)
    return 0;			/* 2 has even multiplicity with negative U */

  TMP_MARK;

  uns = ABS (usize) - n2 / BITS_PER_MP_LIMB;
  MPZ_TMP_INIT (q, uns);
  MPZ_TMP_INIT (u2, uns);

  mpz_tdiv_q_2exp (u2, u, n2);

  if (isprime (n2))
    goto n2prime;

  for (i = 1; primes[i] != 0; i++)
    {
      prime = primes[i];

      if (mpz_divisible_ui_p (u2, prime))	/* divisible by this prime? */
	{
	  rem = mpz_tdiv_q_ui (q, u2, prime * prime);
	  if (rem != 0)
	    {
	      TMP_FREE;
	      return 0;		/* prime divides exactly once, reject */
	    }
	  mpz_swap (q, u2);
	  for (n = 2;;)
	    {
	      rem = mpz_tdiv_q_ui (q, u2, prime);
	      if (rem != 0)
		break;
	      mpz_swap (q, u2);
	      n++;
	    }

	  if ((n & 1) == 0 && usize < 0)
	    {
	      TMP_FREE;
	      return 0;		/* even multiplicity with negative U, reject */
	    }

	  n2 = gcd (n2, n);
	  if (n2 == 1)
	    {
	      TMP_FREE;
	      return 0;		/* we have multiplicity 1 of some factor */
	    }

	  if (mpz_cmpabs_ui (u2, 1) == 0)
	    {
	      TMP_FREE;
	      return 1;		/* factoring completed; consistent power */
	    }

	  /* As soon as n2 becomes a prime number, stop factoring.
	     Either we have u=x^n2 or u is not a perfect power.  */
	  if (isprime (n2))
	    goto n2prime;
	}
    }

  if (n2 == 0)
    {
      /* We found no factors above; have to check all values of n.  */
      unsigned long int nth;
      for (nth = usize < 0 ? 3 : 2;; nth++)
	{
	  if (! isprime (nth))
	    continue;
#if 0
	  exact = mpz_padic_root (q, u2, nth, PTH);
	  if (exact)
#endif
	    exact = mpz_root (q, u2, nth);
	  if (exact)
	    {
	      TMP_FREE;
	      return 1;
	    }
	  if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
	    {
	      TMP_FREE;
	      return 0;
	    }
	}
    }
  else
    {
      unsigned long int nth;
      /* We found some factors above.  We just need to consider values of n
	 that divides n2.  */
      for (nth = 2; nth <= n2; nth++)
	{
	  if (! isprime (nth))
	    continue;
	  if (n2 % nth != 0)
	    continue;
#if 0
	  exact = mpz_padic_root (q, u2, nth, PTH);
	  if (exact)
#endif
	    exact = mpz_root (q, u2, nth);
	  if (exact)
	    {
	      TMP_FREE;
	      return 1;
	    }
	  if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
	    {
	      TMP_FREE;
	      return 0;
	    }
	}

      TMP_FREE;
      return 0;
    }

n2prime:
  exact = mpz_root (NULL, u2, n2);
  TMP_FREE;
  return exact;
}

static unsigned long int
gcd (unsigned long int a, unsigned long int b)
{
  int an2, bn2, n2;

  if (a == 0)
    return b;
  if (b == 0)
    return a;

  count_trailing_zeros (an2, a);
  a >>= an2;

  count_trailing_zeros (bn2, b);
  b >>= bn2;

  n2 = MIN (an2, bn2);

  while (a != b)
    {
      if (a > b)
	{
	  a -= b;
	  do
	    a >>= 1;
	  while ((a & 1) == 0);
	}
      else /*  b > a.  */
	{
	  b -= a;
	  do
	    b >>= 1;
	  while ((b & 1) == 0);
	}
    }

  return a << n2;
}

static int
isprime (unsigned long int t)
{
  unsigned long int q, r, d;

  if (t < 3 || (t & 1) == 0)
    return t == 2;

  for (d = 3, r = 1; r != 0; d += 2)
    {
      q = t / d;
      r = t - q * d;
      if (q < d)
	return 1;
    }
  return 0;
}


syntax highlighted by Code2HTML, v. 0.9.1