/// \ingroup newmat
///@{
/// \file newmat6.cpp
/// Operators, element access.
// Copyright (C) 1991,2,3,4: R B Davies
#include "include.h"
#include "newmat.h"
#include "newmatrc.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,6); ++ExeCount; }
#else
#define REPORT {}
#endif
/*************************** general utilities *************************/
static int tristore(int n) // els in triangular matrix
{ return (n*(n+1))/2; }
/****************************** operators *******************************/
Real& Matrix::operator()(int m, int n)
{
REPORT
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[(m-1)*ncols_val+n-1];
}
Real& SymmetricMatrix::operator()(int m, int n)
{
REPORT
if (m<=0 || n<=0 || m>nrows_val || n>ncols_val)
Throw(IndexException(m,n,*this));
if (m>=n) return store[tristore(m-1)+n-1];
else return store[tristore(n-1)+m-1];
}
Real& UpperTriangularMatrix::operator()(int m, int n)
{
REPORT
if (m<=0 || n<m || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[(m-1)*ncols_val+n-1-tristore(m-1)];
}
Real& LowerTriangularMatrix::operator()(int m, int n)
{
REPORT
if (n<=0 || m<n || m>nrows_val)
Throw(IndexException(m,n,*this));
return store[tristore(m-1)+n-1];
}
Real& DiagonalMatrix::operator()(int m, int n)
{
REPORT
if (n<=0 || m!=n || m>nrows_val || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[n-1];
}
Real& DiagonalMatrix::operator()(int m)
{
REPORT
if (m<=0 || m>nrows_val) Throw(IndexException(m,*this));
return store[m-1];
}
Real& ColumnVector::operator()(int m)
{
REPORT
if (m<=0 || m> nrows_val) Throw(IndexException(m,*this));
return store[m-1];
}
Real& RowVector::operator()(int n)
{
REPORT
if (n<=0 || n> ncols_val) Throw(IndexException(n,*this));
return store[n-1];
}
Real& BandMatrix::operator()(int m, int n)
{
REPORT
int w = upper_val+lower_val+1; int i = lower_val+n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real& UpperBandMatrix::operator()(int m, int n)
{
REPORT
int w = upper_val+1; int i = n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real& LowerBandMatrix::operator()(int m, int n)
{
REPORT
int w = lower_val+1; int i = lower_val+n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real& SymmetricBandMatrix::operator()(int m, int n)
{
REPORT
int w = lower_val+1;
if (m>=n)
{
REPORT
int i = lower_val+n-m;
if ( m>nrows_val || n<=0 || i<0 )
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
else
{
REPORT
int i = lower_val+m-n;
if ( n>nrows_val || m<=0 || i<0 )
Throw(IndexException(m,n,*this));
return store[w*(n-1)+i];
}
}
Real Matrix::operator()(int m, int n) const
{
REPORT
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[(m-1)*ncols_val+n-1];
}
Real SymmetricMatrix::operator()(int m, int n) const
{
REPORT
if (m<=0 || n<=0 || m>nrows_val || n>ncols_val)
Throw(IndexException(m,n,*this));
if (m>=n) return store[tristore(m-1)+n-1];
else return store[tristore(n-1)+m-1];
}
Real UpperTriangularMatrix::operator()(int m, int n) const
{
REPORT
if (m<=0 || n<m || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[(m-1)*ncols_val+n-1-tristore(m-1)];
}
Real LowerTriangularMatrix::operator()(int m, int n) const
{
REPORT
if (n<=0 || m<n || m>nrows_val)
Throw(IndexException(m,n,*this));
return store[tristore(m-1)+n-1];
}
Real DiagonalMatrix::operator()(int m, int n) const
{
REPORT
if (n<=0 || m!=n || m>nrows_val || n>ncols_val)
Throw(IndexException(m,n,*this));
return store[n-1];
}
Real DiagonalMatrix::operator()(int m) const
{
REPORT
if (m<=0 || m>nrows_val) Throw(IndexException(m,*this));
return store[m-1];
}
Real ColumnVector::operator()(int m) const
{
REPORT
if (m<=0 || m> nrows_val) Throw(IndexException(m,*this));
return store[m-1];
}
Real RowVector::operator()(int n) const
{
REPORT
if (n<=0 || n> ncols_val) Throw(IndexException(n,*this));
return store[n-1];
}
Real BandMatrix::operator()(int m, int n) const
{
REPORT
int w = upper_val+lower_val+1; int i = lower_val+n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real UpperBandMatrix::operator()(int m, int n) const
{
REPORT
int w = upper_val+1; int i = n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real LowerBandMatrix::operator()(int m, int n) const
{
REPORT
int w = lower_val+1; int i = lower_val+n-m;
if (m<=0 || m>nrows_val || n<=0 || n>ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
Real SymmetricBandMatrix::operator()(int m, int n) const
{
REPORT
int w = lower_val+1;
if (m>=n)
{
REPORT
int i = lower_val+n-m;
if ( m>nrows_val || n<=0 || i<0 )
Throw(IndexException(m,n,*this));
return store[w*(m-1)+i];
}
else
{
REPORT
int i = lower_val+m-n;
if ( n>nrows_val || m<=0 || i<0 )
Throw(IndexException(m,n,*this));
return store[w*(n-1)+i];
}
}
Real BaseMatrix::as_scalar() const
{
REPORT
GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
if (gm->nrows_val!=1 || gm->ncols_val!=1)
{
Tracer tr("as_scalar");
Try
{ Throw(ProgramException("Cannot convert to scalar", *gm)); }
CatchAll { gm->tDelete(); ReThrow; }
}
Real x = *(gm->store); gm->tDelete(); return x;
}
AddedMatrix BaseMatrix::operator+(const BaseMatrix& bm) const
{ REPORT return AddedMatrix(this, &bm); }
SPMatrix SP(const BaseMatrix& bm1,const BaseMatrix& bm2)
{ REPORT return SPMatrix(&bm1, &bm2); }
KPMatrix KP(const BaseMatrix& bm1,const BaseMatrix& bm2)
{ REPORT return KPMatrix(&bm1, &bm2); }
MultipliedMatrix BaseMatrix::operator*(const BaseMatrix& bm) const
{ REPORT return MultipliedMatrix(this, &bm); }
ConcatenatedMatrix BaseMatrix::operator|(const BaseMatrix& bm) const
{ REPORT return ConcatenatedMatrix(this, &bm); }
StackedMatrix BaseMatrix::operator&(const BaseMatrix& bm) const
{ REPORT return StackedMatrix(this, &bm); }
SolvedMatrix InvertedMatrix::operator*(const BaseMatrix& bmx) const
{ REPORT return SolvedMatrix(bm, &bmx); }
SubtractedMatrix BaseMatrix::operator-(const BaseMatrix& bm) const
{ REPORT return SubtractedMatrix(this, &bm); }
ShiftedMatrix BaseMatrix::operator+(Real f) const
{ REPORT return ShiftedMatrix(this, f); }
ShiftedMatrix operator+(Real f, const BaseMatrix& BM)
{ REPORT return ShiftedMatrix(&BM, f); }
NegShiftedMatrix operator-(Real f, const BaseMatrix& bm)
{ REPORT return NegShiftedMatrix(f, &bm); }
ScaledMatrix BaseMatrix::operator*(Real f) const
{ REPORT return ScaledMatrix(this, f); }
ScaledMatrix BaseMatrix::operator/(Real f) const
{ REPORT return ScaledMatrix(this, 1.0/f); }
ScaledMatrix operator*(Real f, const BaseMatrix& BM)
{ REPORT return ScaledMatrix(&BM, f); }
ShiftedMatrix BaseMatrix::operator-(Real f) const
{ REPORT return ShiftedMatrix(this, -f); }
TransposedMatrix BaseMatrix::t() const
{ REPORT return TransposedMatrix(this); }
NegatedMatrix BaseMatrix::operator-() const
{ REPORT return NegatedMatrix(this); }
ReversedMatrix BaseMatrix::reverse() const
{ REPORT return ReversedMatrix(this); }
InvertedMatrix BaseMatrix::i() const
{ REPORT return InvertedMatrix(this); }
RowedMatrix BaseMatrix::as_row() const
{ REPORT return RowedMatrix(this); }
ColedMatrix BaseMatrix::as_column() const
{ REPORT return ColedMatrix(this); }
DiagedMatrix BaseMatrix::as_diagonal() const
{ REPORT return DiagedMatrix(this); }
MatedMatrix BaseMatrix::as_matrix(int nrx, int ncx) const
{ REPORT return MatedMatrix(this,nrx,ncx); }
void GeneralMatrix::operator=(Real f)
{ REPORT int i=storage; Real* s=store; while (i--) { *s++ = f; } }
void Matrix::operator=(const BaseMatrix& X)
{
REPORT //CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::Rt);
}
void SquareMatrix::operator=(const BaseMatrix& X)
{
REPORT //CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::Rt);
if (nrows_val != ncols_val)
{ Tracer tr("SquareMatrix(=)"); Throw(NotSquareException(*this)); }
}
void SquareMatrix::operator=(const Matrix& m)
{
REPORT
if (m.nrows_val != m.ncols_val)
{ Tracer tr("SquareMatrix(=Matrix)"); Throw(NotSquareException(*this)); }
Eq(m);
}
void RowVector::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::RV);
if (nrows_val!=1)
{ Tracer tr("RowVector(=)"); Throw(VectorException(*this)); }
}
void ColumnVector::operator=(const BaseMatrix& X)
{
REPORT //CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::CV);
if (ncols_val!=1)
{ Tracer tr("ColumnVector(=)"); Throw(VectorException(*this)); }
}
void SymmetricMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::Sm);
}
void UpperTriangularMatrix::operator=(const BaseMatrix& X)
{
REPORT //CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::UT);
}
void LowerTriangularMatrix::operator=(const BaseMatrix& X)
{
REPORT //CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::LT);
}
void DiagonalMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::Dg);
}
void IdentityMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::Id);
}
void CroutMatrix::operator=(const CroutMatrix& gm)
{
if (&gm == this) { REPORT tag_val = -1; return; }
REPORT
if (indx > 0) { delete [] indx; indx = 0; }
((CroutMatrix&)gm).get_aux(*this);
Eq(gm);
}
void GeneralMatrix::operator<<(const double* r)
{
REPORT
int i = storage; Real* s=store;
while(i--) *s++ = (Real)*r++;
}
void GeneralMatrix::operator<<(const float* r)
{
REPORT
int i = storage; Real* s=store;
while(i--) *s++ = (Real)*r++;
}
void GeneralMatrix::operator<<(const int* r)
{
REPORT
int i = storage; Real* s=store;
while(i--) *s++ = (Real)*r++;
}
void GenericMatrix::operator=(const GenericMatrix& bmx)
{
if (&bmx != this) { REPORT if (gm) delete gm; gm = bmx.gm->Image();}
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator=(const BaseMatrix& bmx)
{
if (gm)
{
int counter=bmx.search(gm);
if (counter==0) { REPORT delete gm; gm=0; }
else { REPORT gm->Release(counter); }
}
else { REPORT }
GeneralMatrix* gmx = ((BaseMatrix&)bmx).Evaluate();
if (gmx != gm) { REPORT if (gm) delete gm; gm = gmx->Image(); }
else { REPORT }
gm->Protect();
}
/*************************** += etc ***************************************/
// GeneralMatrix operators
void GeneralMatrix::operator+=(const BaseMatrix& X)
{
REPORT
Tracer tr("GeneralMatrix::operator+=");
// MatrixConversionCheck mcc;
Protect(); // so it cannot get deleted
// during Evaluate
GeneralMatrix* gm = ((BaseMatrix&)X).Evaluate();
AddedMatrix am(this,gm);
if (gm==this) Release(2); else Release();
Eq2(am,type());
}
void GeneralMatrix::operator-=(const BaseMatrix& X)
{
REPORT
Tracer tr("GeneralMatrix::operator-=");
// MatrixConversionCheck mcc;
Protect(); // so it cannot get deleted
// during Evaluate
GeneralMatrix* gm = ((BaseMatrix&)X).Evaluate();
SubtractedMatrix am(this,gm);
if (gm==this) Release(2); else Release();
Eq2(am,type());
}
void GeneralMatrix::operator*=(const BaseMatrix& X)
{
REPORT
Tracer tr("GeneralMatrix::operator*=");
// MatrixConversionCheck mcc;
Protect(); // so it cannot get deleted
// during Evaluate
GeneralMatrix* gm = ((BaseMatrix&)X).Evaluate();
MultipliedMatrix am(this,gm);
if (gm==this) Release(2); else Release();
Eq2(am,type());
}
void GeneralMatrix::operator|=(const BaseMatrix& X)
{
REPORT
Tracer tr("GeneralMatrix::operator|=");
// MatrixConversionCheck mcc;
Protect(); // so it cannot get deleted
// during Evaluate
GeneralMatrix* gm = ((BaseMatrix&)X).Evaluate();
ConcatenatedMatrix am(this,gm);
if (gm==this) Release(2); else Release();
Eq2(am,type());
}
void GeneralMatrix::operator&=(const BaseMatrix& X)
{
REPORT
Tracer tr("GeneralMatrix::operator&=");
// MatrixConversionCheck mcc;
Protect(); // so it cannot get deleted
// during Evaluate
GeneralMatrix* gm = ((BaseMatrix&)X).Evaluate();
StackedMatrix am(this,gm);
if (gm==this) Release(2); else Release();
Eq2(am,type());
}
void GeneralMatrix::operator+=(Real r)
{
REPORT
Tracer tr("GeneralMatrix::operator+=(Real)");
// MatrixConversionCheck mcc;
ShiftedMatrix am(this,r);
Release(); Eq2(am,type());
}
void GeneralMatrix::operator*=(Real r)
{
REPORT
Tracer tr("GeneralMatrix::operator*=(Real)");
// MatrixConversionCheck mcc;
ScaledMatrix am(this,r);
Release(); Eq2(am,type());
}
// Generic matrix operators
void GenericMatrix::operator+=(const BaseMatrix& X)
{
REPORT
Tracer tr("GenericMatrix::operator+=");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
gm->Protect(); // so it cannot get deleted during Evaluate
GeneralMatrix* gmx = ((BaseMatrix&)X).Evaluate();
AddedMatrix am(gm,gmx);
if (gmx==gm) gm->Release(2); else gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator-=(const BaseMatrix& X)
{
REPORT
Tracer tr("GenericMatrix::operator-=");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
gm->Protect(); // so it cannot get deleted during Evaluate
GeneralMatrix* gmx = ((BaseMatrix&)X).Evaluate();
SubtractedMatrix am(gm,gmx);
if (gmx==gm) gm->Release(2); else gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator*=(const BaseMatrix& X)
{
REPORT
Tracer tr("GenericMatrix::operator*=");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
gm->Protect(); // so it cannot get deleted during Evaluate
GeneralMatrix* gmx = ((BaseMatrix&)X).Evaluate();
MultipliedMatrix am(gm,gmx);
if (gmx==gm) gm->Release(2); else gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator|=(const BaseMatrix& X)
{
REPORT
Tracer tr("GenericMatrix::operator|=");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
gm->Protect(); // so it cannot get deleted during Evaluate
GeneralMatrix* gmx = ((BaseMatrix&)X).Evaluate();
ConcatenatedMatrix am(gm,gmx);
if (gmx==gm) gm->Release(2); else gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator&=(const BaseMatrix& X)
{
REPORT
Tracer tr("GenericMatrix::operator&=");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
gm->Protect(); // so it cannot get deleted during Evaluate
GeneralMatrix* gmx = ((BaseMatrix&)X).Evaluate();
StackedMatrix am(gm,gmx);
if (gmx==gm) gm->Release(2); else gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator+=(Real r)
{
REPORT
Tracer tr("GenericMatrix::operator+= (Real)");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
ShiftedMatrix am(gm,r);
gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
void GenericMatrix::operator*=(Real r)
{
REPORT
Tracer tr("GenericMatrix::operator*= (Real)");
if (!gm) Throw(ProgramException("GenericMatrix is null"));
ScaledMatrix am(gm,r);
gm->Release();
GeneralMatrix* gmy = am.Evaluate();
if (gmy != gm) { REPORT delete gm; gm = gmy->Image(); }
else { REPORT }
gm->Protect();
}
/************************* element access *********************************/
Real& Matrix::element(int m, int n)
{
REPORT
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val)
Throw(IndexException(m,n,*this,true));
return store[m*ncols_val+n];
}
Real Matrix::element(int m, int n) const
{
REPORT
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val)
Throw(IndexException(m,n,*this,true));
return store[m*ncols_val+n];
}
Real& SymmetricMatrix::element(int m, int n)
{
REPORT
if (m<0 || n<0 || m >= nrows_val || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
if (m>=n) return store[tristore(m)+n];
else return store[tristore(n)+m];
}
Real SymmetricMatrix::element(int m, int n) const
{
REPORT
if (m<0 || n<0 || m >= nrows_val || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
if (m>=n) return store[tristore(m)+n];
else return store[tristore(n)+m];
}
Real& UpperTriangularMatrix::element(int m, int n)
{
REPORT
if (m<0 || n<m || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
return store[m*ncols_val+n-tristore(m)];
}
Real UpperTriangularMatrix::element(int m, int n) const
{
REPORT
if (m<0 || n<m || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
return store[m*ncols_val+n-tristore(m)];
}
Real& LowerTriangularMatrix::element(int m, int n)
{
REPORT
if (n<0 || m<n || m>=nrows_val)
Throw(IndexException(m,n,*this,true));
return store[tristore(m)+n];
}
Real LowerTriangularMatrix::element(int m, int n) const
{
REPORT
if (n<0 || m<n || m>=nrows_val)
Throw(IndexException(m,n,*this,true));
return store[tristore(m)+n];
}
Real& DiagonalMatrix::element(int m, int n)
{
REPORT
if (n<0 || m!=n || m>=nrows_val || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
return store[n];
}
Real DiagonalMatrix::element(int m, int n) const
{
REPORT
if (n<0 || m!=n || m>=nrows_val || n>=ncols_val)
Throw(IndexException(m,n,*this,true));
return store[n];
}
Real& DiagonalMatrix::element(int m)
{
REPORT
if (m<0 || m>=nrows_val) Throw(IndexException(m,*this,true));
return store[m];
}
Real DiagonalMatrix::element(int m) const
{
REPORT
if (m<0 || m>=nrows_val) Throw(IndexException(m,*this,true));
return store[m];
}
Real& ColumnVector::element(int m)
{
REPORT
if (m<0 || m>= nrows_val) Throw(IndexException(m,*this,true));
return store[m];
}
Real ColumnVector::element(int m) const
{
REPORT
if (m<0 || m>= nrows_val) Throw(IndexException(m,*this,true));
return store[m];
}
Real& RowVector::element(int n)
{
REPORT
if (n<0 || n>= ncols_val) Throw(IndexException(n,*this,true));
return store[n];
}
Real RowVector::element(int n) const
{
REPORT
if (n<0 || n>= ncols_val) Throw(IndexException(n,*this,true));
return store[n];
}
Real& BandMatrix::element(int m, int n)
{
REPORT
int w = upper_val+lower_val+1; int i = lower_val+n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real BandMatrix::element(int m, int n) const
{
REPORT
int w = upper_val+lower_val+1; int i = lower_val+n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real& UpperBandMatrix::element(int m, int n)
{
REPORT
int w = upper_val+1; int i = n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real UpperBandMatrix::element(int m, int n) const
{
REPORT
int w = upper_val+1; int i = n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real& LowerBandMatrix::element(int m, int n)
{
REPORT
int w = lower_val+1; int i = lower_val+n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real LowerBandMatrix::element(int m, int n) const
{
REPORT
int w = lower_val+1; int i = lower_val+n-m;
if (m<0 || m>= nrows_val || n<0 || n>= ncols_val || i<0 || i>=w)
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
Real& SymmetricBandMatrix::element(int m, int n)
{
REPORT
int w = lower_val+1;
if (m>=n)
{
REPORT
int i = lower_val+n-m;
if ( m>=nrows_val || n<0 || i<0 )
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
else
{
REPORT
int i = lower_val+m-n;
if ( n>=nrows_val || m<0 || i<0 )
Throw(IndexException(m,n,*this,true));
return store[w*n+i];
}
}
Real SymmetricBandMatrix::element(int m, int n) const
{
REPORT
int w = lower_val+1;
if (m>=n)
{
REPORT
int i = lower_val+n-m;
if ( m>=nrows_val || n<0 || i<0 )
Throw(IndexException(m,n,*this,true));
return store[w*m+i];
}
else
{
REPORT
int i = lower_val+m-n;
if ( n>=nrows_val || m<0 || i<0 )
Throw(IndexException(m,n,*this,true));
return store[w*n+i];
}
}
#ifdef use_namespace
}
#endif
///}
syntax highlighted by Code2HTML, v. 0.9.1