/// \ingroup newmat
///@{
/// \file tmt1.cpp
/// Part of matrix library test program.
#define WANT_STREAM
#include "include.h"
#include "newmat.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
/**************************** test program ******************************/
void trymat1()
{
// cout << "\nFirst test of Matrix package\n\n";
Tracer et("First test of Matrix package");
Tracer::PrintTrace();
{
Tracer et1("Stage 1");
int i,j;
LowerTriangularMatrix L(10);
for (i=1;i<=10;i++) for (j=1;j<=i;j++) L(i,j)=2.0+i*i+j;
SymmetricMatrix S(10);
for (i=1;i<=10;i++) for (j=1;j<=i;j++) S(i,j)=i*j+1.0;
SymmetricMatrix S1 = S / 2.0;
S = S1 * 2.0;
UpperTriangularMatrix U=L.t()*2.0;
Print(LowerTriangularMatrix(L-U.t()*0.5));
DiagonalMatrix D(10);
for (i=1;i<=10;i++) D(i,i)=(i-4)*(i-5)*(i-6);
Matrix M=(S+U-D+L)*(L+U-D+S);
DiagonalMatrix DD=D*D;
LowerTriangularMatrix LD=L*D;
// expressions split for Turbo C
Matrix M1 = S*L + U*L - D*L + L*L + 10.0;
{ M1 = M1 + S*U + U*U - D*U + L*U - S*D; }
{ M1 = M1 - U*D + DD - LD + S*S; }
{ M1 = M1 + U*S - D*S + L*S - 10.0; }
M=M1-M;
Print(M);
}
{
Tracer et1("Stage 2");
int i,j;
LowerTriangularMatrix L(9);
for (i=1;i<=9;i++) for (j=1;j<=i;j++) L(i,j)=1.0+j;
UpperTriangularMatrix U1(9);
for (j=1;j<=9;j++) for (i=1;i<=j;i++) U1(i,j)=1.0+i;
LowerTriangularMatrix LX(9);
for (i=1;i<=9;i++) for (j=1;j<=i;j++) LX(i,j)=1.0+i*i;
UpperTriangularMatrix UX(9);
for (j=1;j<=9;j++) for (i=1;i<=j;i++) UX(i,j)=1.0+j*j;
{
L=L+LX/0.5; L=L-LX*3.0; L=LX*2.0+L;
U1=U1+UX*2.0; U1=U1-UX*3.0; U1=UX*2.0+U1;
}
SymmetricMatrix S(9);
for (i=1;i<=9;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j;
{
SymmetricMatrix S1 = S;
S=S1+5.0;
S=S-3.0;
}
DiagonalMatrix D(9);
for (i=1;i<=9;i++) D(i,i)=S(i,i);
UpperTriangularMatrix U=L.t()*2.0;
{
U1=U1*2.0 - U; Print(U1);
L=L*2.0-D; U=U-D;
}
Matrix M=U+L; S=S*2.0; M=S-M; Print(M);
}
{
Tracer et1("Stage 3");
int i,j;
Matrix M(10,3), N(10,3);
for (i = 1; i<=10; i++) for (j = 1; j<=3; j++)
{ M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
Matrix MN = M + N, M1;
M1 = M; M1 += N; M1 -= MN; Print(M1);
M1 = M; M1 += M1; M1 = M1 - M * 2; Print(M1);
M1 = M; M1 += N * 2; M1 -= (MN + N); Print(M1);
M1 = M; M1 -= M1; Print(M1);
M1 = M; M1 -= MN + M1; M1 += N + M; Print(M1);
M1 = M; M1 -= 5; M1 -= M; M1 *= 0.2; M1 = M1 + 1; Print(M1);
Matrix NT = N.t();
M1 = M; M1 *= NT; M1 -= M * N.t(); Print(M1);
M = M * M.t();
DiagonalMatrix D(10); D = 2;
M1 = M; M1 += D; M1 -= M; M1 = M1 - D; Print(M1);
M1 = M; M1 -= D; M1 -= M; M1 = M1 + D; Print(M1);
M1 = M; M1 *= D; M1 /= 2; M1 -= M; Print(M1);
SymmetricMatrix SM; SM << M;
// UpperTriangularMatrix SM; SM << M;
SM += 10; M1 = SM - M; M1 /=10; M1 = M1 - 1; Print(M1);
}
{
Tracer et1("Stage 4");
int i,j;
Matrix M(10,3), N(10,5);
for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) M(i,j) = 2*i-j;
for (i = 1; i<=10; i++) for (j = 1; j<=5; j++) N(i,j) = i*j + 20;
Matrix M1;
M1 = M; M1 |= N; M1 &= N | M;
M1 -= (M | N) & (N | M); Print(M1);
M1 = M; M1 |= M1; M1 &= M1;
M1 -= (M | M) & (M | M); Print(M1);
}
{
Tracer et1("Stage 5");
int i,j;
BandMatrix BM1(10,2,3), BM2(10,4,1); Matrix M1(10,10), M2(10,10);
for (i=1;i<=10;i++) for (j=1;j<=10;j++)
{ M1(i,j) = 0.5*i+j*j-50; M2(i,j) = (i*101 + j*103) % 13; }
BM1.Inject(M1); BM2.Inject(M2);
BandMatrix BM = BM1; BM += BM2;
Matrix M1X = BM1; Matrix M2X = BM2; Matrix MX = BM;
MX -= M1X + M2X; Print(MX);
MX = BM1; MX += BM2; MX -= M1X; MX -= M2X; Print(MX);
SymmetricBandMatrix SM1; SM1 << BM1 * BM1.t();
SymmetricBandMatrix SM2; SM2 << BM2 * BM2.t();
SM1 *= 5.5;
M1X *= M1X.t(); M1X *= 5.5; M2X *= M2X.t();
SM1 -= SM2; M1 = SM1 - M1X + M2X; Print(M1);
M1 = BM1; BM1 *= SM1; M1 = M1 * SM1 - BM1; Print(M1);
M1 = BM1; BM1 -= SM1; M1 = M1 - SM1 - BM1; Print(M1);
M1 = BM1; BM1 += SM1; M1 = M1 + SM1 - BM1; Print(M1);
}
{
Tracer et1("Stage 6");
int i,j;
Matrix M(10,10), N(10,10);
for (i = 1; i<=10; i++) for (j = 1; j<=10; j++)
{ M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
GenericMatrix GM = M;
GM += N; Matrix M1 = GM - N - M; Print(M1);
DiagonalMatrix D(10); D = 3;
GM = D; GM += N; GM += M; GM += D;
M1 = D*2 - GM + M + N; Print(M1);
GM = D; GM *= 4; GM += 16; GM /= 8; GM -= 2;
GM -= D / 2; M1 = GM; Print(M1);
GM = D; GM *= M; GM *= N; GM /= 3; M1 = M*N - GM; Print(M1);
GM = D; GM |= M; GM &= N | D; M1 = GM - ((D | M) & (N | D));
Print(M1);
GM = M; M1 = M; GM += 5; GM *= 3; M *= 3; M += 15; M1 = GM - M;
Print(M1);
D.ReSize(10); for (i = 1; i<=10; i++) D(i) = i;
M1 = D + 10; GM = D; GM += 10; M1 -= GM; Print(M1);
GM = M; GM -= D; M1 = GM; GM = D; GM -= M; M1 += GM; Print(M1);
GM = M; GM *= D; M1 = GM; GM = D; GM *= M.t();
M1 -= GM.t(); Print(M1);
GM = M; GM += 2 * GM; GM -= 3 * M; M1 = GM; Print(M1);
GM = M; GM |= GM; GM -= (M | M); M1 = GM; Print(M1);
GM = M; GM &= GM; GM -= (M & M); M1 = GM; Print(M1);
M1 = M; M1 = (M1.t() & M.t()) - (M | M).t(); Print(M1);
M1 = M; M1 = (M1.t() | M.t()) - (M & M).t(); Print(M1);
}
{
Tracer et1("Stage 7");
// test for bug in MS VC5
int n = 3;
int k; int j;
Matrix A(n,n), B(n,n);
//first version - MS VC++ 5 mis-compiles if optimisation is on
for (k=1; k<=n; k++)
{
for (j = 1; j <= n; j++) A(k,j) = ((k-1) * (2*j-1));
}
//second version
for (k=1; k<=n; k++)
{
const int k1 = k-1; // otherwise Visual C++ 5 fails
for (j = 1; j <= n; j++) B(k,j) = (k1 * (2*j-1));
}
if (A != B)
{
cout << "\nVisual C++ version 5 compiler error?";
cout << "\nTurn off optimisation";
}
A -= B; Print(A);
}
{
Tracer et1("Stage 8");
// Cross product
ColumnVector i(3); i << 1 << 0 << 0;
ColumnVector j(3); j << 0 << 1 << 0;
ColumnVector k(3); k << 0 << 0 << 1;
ColumnVector X;
X = CrossProduct(i,j) - k; Print(X);
X = CrossProduct(j,k) - i; Print(X);
X = CrossProduct(k,i) - j; Print(X);
X = CrossProduct(j,i) + k; Print(X);
X = CrossProduct(k,j) + i; Print(X);
X = CrossProduct(i,k) + j; Print(X);
X = CrossProduct(i,i); Print(X);
X = CrossProduct(j,j); Print(X);
X = CrossProduct(k,k); Print(X);
ColumnVector A(3); A << 2.25 << 1.75 << -7.5;
ColumnVector B(3); B << -0.5 << 4.75 << 3.25;
ColumnVector C(3); C << 9.25 << 3.5 << 1.25;
Real d0 = (A | B | C).Determinant(); // Vector triple product
Real d1 = DotProduct(CrossProduct(A, B), C);
Real d2 = DotProduct(CrossProduct(B, C), A);
Real d3 = DotProduct(CrossProduct(C, A), B);
X << (d1 - d0) << (d2 - d0) << (d3 - d0);
Clean(X, 0.000000001); Print(X);
X = CrossProduct(A, CrossProduct(B, C))
+ CrossProduct(B, CrossProduct(C, A))
+ CrossProduct(C, CrossProduct(A, B));
Print(X);
RowVector XT = CrossProduct(A.AsRow(), B.AsRow());
XT -= CrossProduct(A, B).AsRow();
Print(XT);
}
{
Tracer et1("Stage 9");
// More cross product
int i, j;
Matrix M(10,3), N(10,3);
for (i = 1; i<=10; i++) for (j = 1; j<=3; j++)
{ M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
Matrix CP1 = CrossProductRows(M, N);
Matrix CP2(10,3);
for (i = 1; i<=10; i++)
CP2.Row(i) = CrossProduct(M.Row(i), N.Row(i));
CP2 -= CP1; Print(CP2);
CP2 = CrossProductColumns(M.t(), N.t());
CP2 -= CP1.t(); Print(CP2);
}
{
Tracer et1("Stage 10");
// Make sure RNG works
MultWithCarry mwc;
ColumnVector cv(10);
for (int i = 1; i <= 10; ++i) cv(i) = mwc.Next();
cv *= 100.0;
cv(1) -= 6.27874;
cv(2) -= 42.1718;
cv(3) -= 80.2854;
cv(4) -= 12.961;
cv(5) -= 17.7499;
cv(6) -= 13.2657;
cv(7) -= 50.4923;
cv(8) -= 26.095;
cv(9) -= 57.9147;
cv(10) -= 30.1778;
Clean(cv, 0.0001); Print(cv);
}
// cout << "\nEnd of first test\n";
}
///@}
syntax highlighted by Code2HTML, v. 0.9.1