! #1/20 1200774289 0 0 100644 52924 ` __.SYMDEF SORTEDSEp!;w8>Gw8>N%k8l8l8!z'hfZ2*kZ2*SSSS2SS.S6S 0 0SX%( 0 0) 04 0@ 0R 0^ 0i 0v 0 0 0 0 0 0 0 0 0 0 0 0 01 0> 0rK#J 0:Sb|V 0_ 0m 0z 0 0 0 0 0 0 0 0 0 0 0 0 0K#K#, 05 0F 0S 0b 0k 0v 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0; 0O 0l 0x 0 0 0 0 0 0 0 0 000)040>0SX%(L0V0`0m0&3SX%(SX%(?SX%(LXcn}SX%(SX%(SX%( TX%(TX%($TX%(0TX%(=TX%(KTX%(YTX%(oTX%(zTX%(TX%(TX%(TX%(TX%(TX%(TX%('hTX%(TX%(TX%(TX%(UX%(UX%(UX%()UX%(3UX%(?UX%(KUX%(YUX%(dUX%(nUX%(xUX%(UX%(K#UX%(UX%(UX%(UX%(UX%(UX%(UX%(UX%(K#K#VX%(VX%((VX%(4VX%(>VX%(K#K#JVX%(^VX%(oVX%({VX%(VX%(K#K#L#VX%(L#(L#VX%(VX%(5L#DL#VX%(VX%(VX%(NL#YL#VX%(VX%(VX%(c$p2 VX%('h?GS[d'hmv WX%(WX%(%WX%(.WX%(@WX%(nL#MWX%(L#YWX%(bWX%(nWX%(L#L#L#xWX%(L#L#WX%(L#WX%(WX%(L#L#L#M# M#WX%(WX%(WX%(WX%(WX%(WX%(WX%(WX%(WX%(WX%(f`L6f`L6f`L6f`L6f`L6l8N%'hN%A(6 N%^XY/\-]- ]-WX%(N%O%O%O%/O%>O%PO%\O%k2XX%(*O\iu'hXX%( 5)6@LYgt.lO%xO%O%!.9LUXX%((XX%(6XX%(bnBXX%(LXX%(VXX%(f`L6f`L6f`L6f`L6f`L6 ? ? $l8+l8@yDbXX%(vXX%(Iw0S22]gox4@i4@i0000O%XX%(XX%(XX%(XX%(XX%(XX%(1M#XX%(XX%(zDXX%(XX%(YX%(;M#YX%(YX%(+YX%(9YX%(O%KYX%(0?*SYX%(dYX%(zYX%(} } YX%(} #?*+?*6?*F?*N?*0QM#aM#oM#~M# GpZ#=GSY?*g?*Qw8>pah1S]SiSSS{} uSSSS^XY/SSS$S+S]-Yw8>222'h'h'hyah1l$p2 ah17l8`w8>gw8>nw8>vw8>vؾ=:,pD,pN,p'h'h} Hl8u$p2 {$p2 (h(h^XY/_E0^XY/_E0^XY/Nl8O%2S} ~w8>Xl8} 4@i} GpZ#)GpZ#7GpZ#CGpZ#SGpZ#7 7 zgHzgH;;7 7 ;9}z$FZ-99999::':1:A:8 z$Fz$Fbl8} ah1YX%(g`L6 g`L6g`L6g`L68 8 ]7Q:g7]:f:s:q7tZ2*A(6 A(6 A(6 A(6 O%O%O%:gl89S@SGSSSv?*?*ZSah1ah1rl8X,p ? !? %8 =8 $1;1T8 {7#g`L6h,p#(hkk k !? w8>!? #!? -!? 9!? C!? O%w8>I<PS<PP!? $p2 Y!? b!? m!? }!? w8>!? R1w8>O%i8  Z2*0(hP%M#M#4@i5@i5@iaShSoSM#E(hV(hP%}l8k)kA(6 $p2 $p2 6k?kIk  P%(:`GpZ#kGpZ#vGpZ#wS]-"]--]-/P%!5@iw8>v,pl8l8} } } } } } } *} VkbkGpZ#Sl8l8?*?*_XY/GpZ#GpZ#GpZ#GpZ#)5@i_E0_XY/2_XY/7Z2*_XY/l81g`L6:Jd5?g`L6Kg`L6l8Td58P%A(6 A(6 A(6 Wg`L6fg`L6ah1ah1A(6 3A(6 A(6 A(6 ;@F`(hh(hp(hLT^GpZ#ah1l8_E0$p2 05@iu =u =85@i!? l8m8$p2 $p2 :::::; ;IP%_XY/QP%gP%A(6 '.57} @KS B(6 W^Se%_XY/lSSsSSSu =._XY/ah1SSSSzSSSS SSSj_E0z(h,p(h(h,p(h(h(h(h,p,p(h(h)h)h,p,p0)h=)hK)hw8>vz>vz>vz>w8>w8>Ep!vz>w8>w8>w8> wz>w8>x8>x8> x8>,x8>=x8>Gx8>wz>#wz>Rx8>\x8>ix8>sx8>{x8>^1X)hj)hk1sg`L6|g`L6m8m8'm84m8@m8fxB6g`L6_E0_E0g`L6$S.S6S6]-A]-ed5g`L6@Sqzy8 |P%M#M#M#P%P%Ep!,pP%P%P%P%P%P%,p$p2 $p2 !? !? M#A} M#M#M#M#L} U} P% -p-p(-p3-p>-pL-p[-p~)hh-p$p2 ah1ah1bh1)h>!$p2 YX%(YX%(YX%(!g`L6g`L6Im8g`L62g`L6$p2 _<Pr<P<P<P<Pg`L6u =Um8fm8zm8m8m83wz>7u =u =u =\-u =u =g`L6FSbh1 bh1YX%(m8m8m8m8'?*5_XY/;_XY/>!>!?*?*!? <P!? 6yqA<P<P<P<P=P=PZ-=P*=P<=PL=PX=Pi=PZ-z=P=PB(6 B_XY/1?H_XY/N_XY/PU_XY/\_XY/8 P%b} m} v} } } } } ^} Q%%p2 B(6 hmb_XY/m8m8?*?*?*?*?*n8 n8n8I]-O]-B(6 ?*Q%>!'B(6 0B(6 ;B(6 Q%>!GB(6 PB(6 N#n8&n8-n8 %p2 4n8g`L6@5@iL5@i\5@ij5@it5@i5@iszx8>o8B(6 B(6 "Q%+Q%} !>"? ;Q%AQ%B(6 ?*v_XY/o8]]-B(6 @*@*-@*@*B(6 B(6 B(6 B(6 B(6 } >!>!>!B(6 @*$@*;%o8&B(6 } } ,@*4@*B(6 +o8d5d5qC;g`L67bh1h`L66o8Ibh1h`L6Ybh1 h`L60h`L6Ah`L6} Io8No8H"? B(6 `E0 `E0c]-i]-fbh1Xo85@i5@i5@iB(6 G_XY/Th`L6S2C(6 >!>!>!=@*\C(6 C(6 GpZ#GpZ#GpZ# HpZ#HpZ#%HpZ#7HpZ#`yBmyB|yBKHpZ#YHpZ#jHpZ#{HpZ#HpZ#HpZ#HpZ#HpZ#HpZ#HpZ#yBco8po8{o8o82 _XY/C(6 E@*q]-w]-/7>!]-]->!'C(6 /C(6 =Ph`L6 } ' } "? h`L6|bh1+*hqC;qC;C(6 rC;rC;rC;+rC;:rC;GrC;TrC;=PbrC;qrC;rC;rC;rC;rC;rC;rC;rC;rC;rC;rC;sC;sC;C(6 e`E0~Fp!bh1bh1bh1bh1Fp!Fp!C(6 C(6 C(6 /p/pC(6 C(6 D(6 +;D(6 8*h=Pvؾ=8 8 8 8 8 9  9 7;G;Z2*D(6 4 } 59 SSSh`L6SSv`E0`E0`E0`E0`E0`E0`E023bh1bh1h`L6o8 5@iSZQ%iQ%}Q%Q%5@if@*5@i !D(6 'D(6 yB.D(6 D*hh`L6 333n@*z@*@*@*@*@*=P#3(343<3J3R3[3g3s3333333333344#4Q*h]-e*hs*h]-]-o8Q%Z2*]-o8o8bh10pbh1*h*hh`L6h`L6=Px8>6@i'046@iQ%u ==P3=HS@*^ /;%p2 B } L } S`s0<ks0<vs0<s0<s0<s0<s0<s0<s0<s0<s0<s0<s0<s0<s0< t0<t0<&t0<3t0<@t0<bh1Jt0<Vt0<`t0<kt0<xt0<t0<t0<t0<t0<t0<t0<t0<t0<t0<t0<t0< u0<u0<!u0</u0<`gnbh1`E0h`L6-S"? o8h`L6Q% ch1Fp!*h"? "? "? w%p2 %p2 "? "? %p2 %p2 *0p%p2 *h*hzDzD"? Q%"? 40p?0p;;; #? *zD#? #? 6zD%p2 M0p*h%p2 '#? 2#? *h*h*h%p2 %p2 AzDQ%JzDY0pb0p?#? k;@*@*@*@*okwk` } >PszEzD(6 ,6@iko8x8>$x8>M#? p8h`L6h`L6h`L6i`L6i`L6i`L6&i`L63i`L6=i`L6Ei`L6Mi`L6Ui`L6]i`L68Sei`L6^- ^-^-+^-@*A*!N#D(6 ,N#>^-pi`L6yi`L6i`L6i`L6i`L6i`L6p8(p89p8Ep876@iH6@iVp8i`L6dp8i`L6i`L6np8p8p8p8E^-p8i`L6ui`L6p8 j`L6j`L6p81j`L6>j`L6Lj`L6]j`L6sj`L6p8j`L6j`L6j`L6j`L6ch1AyqAX4HpZ# IpZ#IpZ#"IpZ#1IpZ#@IpZ#JIpZ#TIpZ#`IpZ#jIpZ#yIpZ#+h[6@ip } p0p^4Fp!+x8>x8>x8>p8U#? p8D(6 D(6 %p2 Q%Q%D(6 Q%P R%R%f6@in6@i*ZX%(Fp!D(6 $R%x6@i6@i~#? #? #? #? #? #? #? #? 0R%Z-?R%GR%%p2 "+hD(6 A*A*p80`E0`E0`E0`E0`E0`E06@iu =u =q8q8%ch1.ch1j`L6x8>W^-k^^-kke^-o^-z^-0pq8D(6 D(6 Fp!&q8u } 0p&p2 &p2 kk| } } 0q8SR%#? cR%0p0pj`L6j`L6j`L6@ch1Tch1j`L6j`L6kch1{ch1j`L6k`L6 k`L6v = v =1v ="v =,v =6v =mR%xR%g4m44A*:q8ch1D(6 kk1D(6 kkkkD(6 kku4}44kk!k+k5k?kLkWkbklkvkkkk4; <p7>k7z$Fkk7>A*z;#? IpZ#IpZ#IpZ#HBS@x8>OSWS`ShSpSk`L6ch1ch1d5k`L6ch1ch1ch1ch1xSSSSE(6 S E(6 Fq8=9 kkkkkkR%.+h<+hQ+hPL9 #? SS } SSOq8'&p2 R%R%ch1R%E(6 k kb+h.&p2 :&p2 q+h]zD;D&p2 Q&p2 Y&p2 b&p2 k&p2 1111u&p2 &p2 &p2 &p2 &p2 1122&272H2Z2n2z2&p2 <"<yB&p2 ;&p2 &p2 &p2 &p2 'p2 WN#`N#jN#tN#N#Z2*Z2*N#R%6@i6@i6@i$? ^-^-N#E(6 %E(6 FKR[gt~^-SR%-E(6 8E(6 d5d5d5d5e5 e5e5(e51e5Ge5Te5_e5he5ue5e5e5e5e5e5e5e5e5e5e5f5f5#f5*f55f5If5Vf5ff5SSSXCE(6 NE(6 ch1%k`L6 } +hpf56@i6@i6@i|f56@i6@iXq8SS S S S } eq8W9 N#[E(6 eE(6 7@i7@iGA*'p2 b9 $'p2 } x8>$? $?  S$ SFp!?v =5k`L6:k`L6$7@iR%R%R% S%S%0'p2 (S%q9 k%k4k@k+h4^-^-4Fp!7S%, S48 S7ZX%(@ZX%(> SD Sdh1 dh1dh1>S%[- [-#[-;[-L[-][-m[- y8>zGzG\-\-;N SU S\ Sc SIS%TS%$k Sr Sy S.Fv =Nv =Wv = } } `v =hv =sC;'sC;0sC;;sC;GsC;SsC;qv =yv =v =!>PMZX%(qq8@k`L6Jk`L6_S%pS%*>P>>PaE0*7@iq8q8qE(6 77@i^-Uk`L6ak`L6qk`L6~k`L69 k`L6k`L6aE0aE0zgHzgHq8q80pXZX%(0p0pq8y8>wE(6 _XY/^-zGq8q8N#E(6 5AaE0E(6 9 Mk`L6-$? #aE0dh1k`L6E(6 RA*ZA*$dh1eA*UGp!b[ S0pjzD0p^-c S S S SJ'p2 0p SnK>P_>Pv>P-dh1q8 SIpZ#IpZ#IpZ#IpZ#IpZ#IpZ#S%S%?7@i1p5aE0yByB 1ppA*xA*+h1pJpZ#1p JpZ#1JpZ#GJpZ#XJpZ#gJpZ#{JpZ#JpZ#JpZ#JpZ#JpZ#JpZ#JpZ#JpZ#KpZ#KpZ#&KpZ#J7@iS7@iv =v =?aE05KpZ#LKpZ#`KpZ#k`L6k`L6v =NaE0VaE0^aE0gaE0y8>&y8>q8q87k`L6k`L6k`L6k`L6k`L6k`L6t|A*+hv =v =0y8>0 S S S S S S S:$? G$? T$? +h+h+h+h+hT'p2 ^'p2 m'p2 +h,h,h4#,hpy}[-[-[-[-[-[-[-[- \-\-'\->\-S\-n\-\-\-\-1<<<N#9 *,h2,h9 {_AGM_ATAN_LIMIT_DIVRR_GMP_LIMIT_EXPNEWTON_LIMIT_Fl_inv_Flx_INVMONTGOMERY_LIMIT_Flx_MUL_LIMIT_Flx_POW_MONTGOMERY_LIMIT_Flx_SQR_LIMIT_INVMOD_GMP_LIMIT_KARATSUBA_MULI_LIMIT_KARATSUBA_MULR_LIMIT_KARATSUBA_SQRI_LIMIT_LOGAGMCX_LIMIT_LOGAGM_LIMIT_MONTGOMERY_LIMIT_REMIIMUL_LIMIT_RgX_MUL_LIMIT_RgX_SQR_LIMIT_absi_cmp_absi_equal_absr_cmp_addii_sign_addir_sign_addrex01_addrr_sign_addsi_sign_addsr_addss_addumului_affir_affrr_bezout_cbezout_cgcd_cgiv_clcm_cmpii_cmprr_cmpsi_cmpui_dblexpo_dblmantissa_dbltor_diviiexact_divir_divis_divis_rem_diviu_rem_diviuexact_divri_divrr_divrs_divsi_divsr_dvmdii_equalii_equalsi_equalui_floorr_gcdii_getrand_icopy_spec_incloop_int2n_int2u_int_normalize_invmod_invrev_ishiftr_ishiftr_lg_lgcdii_modii_modiiz_mpdivz_mulii_muliispec_mulir_mulrr_mulsi_mulsr_mulss_mului_mulur_muluu_pari_kernel_init_pari_rand31_randomi_ratlift_red_montgomery_remiimul_resetloop_resmod2n_rgcduu_rtodbl_setloop_setrand_shifti_sqri_sqrispec_sqrtr_abs_sqrtremi_subrex01_subsr_truedvmdii_truedvmdis_truncr_ugcd_umodiu_usqrtsafe_vals_xgcduu_xxgcduu_Fl_add_Fl_add_noofl_Fl_center_Fl_div_Fl_mul_Fl_neg_Fl_sqr_Fl_sub_addii_addir_addll_addllx_addmul_addrr_addsi_affii_affiz_affsi_affsr_affsz_affui_affur_bfffo_cgetc_cgetg_cgetg_copy_cgeti_cgetr_cmpir_cmpsr_col_ei_constant_term_ctofp_divll_divrrz_divsi_rem_divsiz_divss_divss_rem_divssz_dvdii_dvdiiz_dvdisz_dvdiuz_dvmdiiz_dvmdis_dvmdisz_dvmdsi_dvmdsiz_dvmdss_dvmdssz_evalexpo_evallg_evalvalp_expi_fractor_gtodouble_hiremainder_icopy_icopy_av_init_gen_op_itor_itos_itos_or_0_itou_itou_or_0_leading_term_maxss_minss_mkcol_mkcol2_mkcolcopy_mkcomplex_mkfrac_mkintmod_mkintmodu_mkmat_mkmat2_mkmatcopy_mkpolmod_mkrfrac_mkvec_mkvec2_mkvec2copy_mkvec2s_mkvec3_mkvec3s_mkvec4_mkveccopy_mkvecs_mkvecsmall_mkvecsmall2_mkvecsmall3_modis_modsi_modss_mpabs_mpadd_mpaff_mpceil_mpcmp_mpcopy_mpdiv_mpfloor_mpmul_mpneg_mpround_mpsub_mptrunc_mulll_new_chunk_overflow_random_bits_rdivii_rdiviiz_rdivis_rdivsi_rdivss_real2n_real_0_real_0_bit_real_1_real_m1_remiiz_remis_remsi_remss_rtor_sdivsi_sdivsi_rem_sdivss_rem_shift_left2_shift_right2_shiftl_shiftlr_shiftr_smodis_smodss_stackdummy_stoi_stor_stosmall_subii_subir_subll_subllx_subri_subrr_subsi_umodui_utoi_utoineg_utoipos_utor_vali_vec_ei_zerocol_zeromat_zeromatcopy_zeropadic_zeropol_zeroser_zerovec_Fl_to_Flx_Flc_to_ZC_Flm_to_FlxV_Flm_to_FlxX_Flm_to_ZM_Flv_polint_Flv_roots_to_pol_Flv_to_Flx_Flv_to_ZV_FlxC_to_ZXC_FlxM_to_ZXM_FlxV_Flc_mul_FlxV_to_Flm_FlxX_add_FlxX_recipspec_FlxX_renormalize_FlxX_shift_FlxX_sub_FlxX_subspec_FlxX_swap_FlxX_to_Flm_FlxX_to_Kronecker_FlxX_to_Kronecker_spec_FlxX_to_ZXX_FlxYqQ_pow_Flx_Fl_mul_Flx_add_Flx_addshift_Flx_addspec_Flx_deriv_Flx_div_by_X_x_Flx_divrem_Flx_eval_Flx_even_odd_comb_Flx_extgcd_Flx_extresultant_Flx_gcd_Flx_gcd_i_Flx_invmontgomery_Flx_is_squarefree_Flx_mul_Flx_mulspec_Flx_neg_Flx_neg_inplace_Flx_negspec_Flx_normalize_Flx_pow_Flx_recip_Flx_recipspec_Flx_red_Flx_rem_Flx_rem_montgomery_Flx_renormalize_Flx_resultant_Flx_shift_Flx_sqr_Flx_sqrspec_Flx_sub_Flx_subspec_Flx_to_Flv_Flx_to_ZX_Flx_to_ZX_inplace_Flx_valuation_FlxqV_roots_to_pol_FlxqXQ_POW_MONTGOMERY_LIMIT_FlxqXQ_pow_FlxqXV_prod_FlxqX_Flxq_mul_FlxqX_divrem_FlxqX_from_Kronecker_FlxqX_invmontgomery_FlxqX_mul_FlxqX_mulspec_FlxqX_normalize_FlxqX_red_FlxqX_rem_montgomery_FlxqX_safegcd_FlxqX_sqr_Flxq_inv_Flxq_invsafe_Flxq_mul_Flxq_pow_Flxq_powers_Flxq_sqr_ZM_to_Flm_ZV_to_Flv_ZXV_to_FlxV_ZXXV_to_FlxXV_ZXX_to_FlxX_ZX_to_Flx_Z_to_Flx_polx_Flx_zero_Flx_Qfb0_check_quaddisc_check_quaddisc_imag_check_quaddisc_real_compimag_compimagraw_compraw_compreal_comprealraw_cornacchia_cornacchia2_nucomp_nudupl_nupow_powimagraw_powraw_powrealraw_primeform_primeform_u_qf_disc_qfb_comp_qfbimagsolvep_qfbrealsolvep_qfbred0_qfbsolve_qfi_qfi_unit_qfr_qfr3_comp_qfr3_pow_qfr3_red_qfr3_rho_qfr3_to_qfr_qfr5_comp_qfr5_dist_qfr5_pow_qfr5_red_qfr5_rho_qfr_pow_qfr_to_qfr5_qfr_unit_quadgen_quadpoly_quadpoly0_redimag_redimagsl2_redreal_redrealnod_redrealsl2_redrealsl2step_rhoreal_rhorealnod_sqcompimag_sqcompimagraw_sqcompreal_sqcomprealraw_RgM_to_RgXV_RgM_to_RgXX_RgM_zc_mul_RgM_zm_mul_RgV_to_RgX_RgV_zc_mul_RgV_zm_mul_RgXQC_red_RgXQV_red_RgXQX_RgXQ_mul_RgXQX_divrem_RgXQX_mul_RgXQX_red_RgXQX_sqr_RgXQ_matrix_pow_RgXQ_minpoly_naive_RgXQ_mul_RgXQ_powers_RgXQ_sqr_RgXQ_u_pow_RgXV_to_RgM_RgXV_unscale_RgXX_to_RgM_RgXY_swap_RgX_RgXQ_compo_RgX_Rg_div_RgX_Rg_mul_RgX_copy_spec_RgX_div_by_X_x_RgX_divrem_RgX_is_rational_RgX_mul_RgX_mulXn_RgX_mulspec_RgX_powers_RgX_renormalize_RgX_rescale_RgX_shift_RgX_shift_shallow_RgX_sqr_RgX_sqrspec_RgX_to_RgV_RgX_unscale_addmulXn_addshiftpol_is_rational_zx_copy_spec_Flm_Fl_mul_inplace_Flm_Flc_mul_Flm_deplin_Flm_gauss_Flm_indexrank_Flm_inv_Flm_ker_Flm_ker_sp_Flm_mul_FlxqM_ker_FpC_FpV_mul_FpC_Fp_mul_FpM_FpC_mul_FpM_deplin_FpM_gauss_FpM_image_FpM_indexrank_FpM_intersect_FpM_inv_FpM_invimage_FpM_ker_FpM_mul_FpM_rank_FpM_suppl_FpV_FpC_mul_FqM_gauss_FqM_ker_FqM_suppl_QM_inv_ZM_inv_appendL_approx_0_cget1_concat_concatsp3_deplin_det_det0_det2_detint_diagonal_diagonal_i_eigen_extract_extract0_gaddmat_gaddmat_i_gauss_gauss_get_col_gauss_intern_gauss_triangle_i_gaussmodulo_gaussmodulo2_gscalcol_gscalcol_i_gscalmat_gscalsmat_gtomat_gtrans_hnf_gauss_hnf_invimage_hnfdivide_image_image2_imagecompl_imagecomplspec_indexrank_inverseimage_isdiagonal_isscalarmat_ker_keri_matextract_matid_matid_Flm_matid_intern_matimage0_matker0_matmuldiagonal_matmultodiagonal_matsolvemod0_mattodiagonal_mattodiagonal_i_rank_row_row_i_rowcopy_rowpermute_rowselect_p_rowslice_rowslicepermute_shallowconcat_shallowtrans_sindexrank_sum_suppl_vconcat_vecpermute_vecselect_p_vecslice_vecslicepermute_Frobeniusform_QuickNormL1_QuickNormL2_RgM_ishnf_RgXQ_norm_ZM_copy_ZM_ishnf_ZM_to_zm_ZV_Z_mul_ZV_add_ZV_copy_ZV_lincomb_ZV_neg_ip_ZV_sub_ZV_to_nv_adj_assmat_caract_caract2_caractducos_caradj_caradj0_carhess_charpoly0_conjvec_cxnorm_extendedgcd_gconj_gnorm_gnorml1_gnorml2_gsmith_gsmith2_gtrace_hess_hnf_hnf0_hnf_special_hnfadd_hnfadd_i_hnfall_hnfall0_hnfall_i_hnflll_hnflll_i_hnfmerge_get_1_hnfmod_hnfmodid_hnfmodidpart_hnfperm_hnfperm_i_hnfspec_hnfspec_i_intersect_jacobi_matfrobenius_mathnf0_mathnfspec_matrixqz_matrixqz0_matrixqz2_matrixqz3_matsnf0_minpoly_quad_polmod_conj_quad_polmod_norm_quadnorm_signat_smith_smith2_smithall_smithclean_smithrel_sqred_sqred1_sqred1intern_sqred3_zm_to_ZM_zx_to_ZX_BSW_isprime_BSW_isprime_small_Fl_pow_Fl_sqrt_Fp_inv_Fp_invsafe_Fp_pow_Fp_pows_Fp_powu_Fp_sqrt_Fp_sqrtn_Z_chinese_coprime_Z_issquarerem_arith_proto_arith_proto2_arith_proto2gs_bestappr_bestappr0_bestappr_mod_chinese_chinese1_classno_classno2_contfrac0_fibo_fundunit_garith_proto_garith_proto2gs_gassoc_proto_gboundcf_gcf_gcf2_gener_gener_Fl_gener_Fl_local_gener_Fp_gener_Fp_local_gfundunit_ggener_gisanypower_gisfundamental_gisprime_gispseudoprime_gispsp_gissquare_gissquarerem_gkrogs_gkronecker_gmillerrabin_gnextprime_gprecprime_gracine_gregula_hclassno_hil_hil0_hilii_init_remiimul_isanypower_isfundamental_ispower_isprime_isprimeSelfridge_ispseudoprime_ispsp_krois_kronecker_krosi_kross_krouu_krouu_s_lcmii_mpfact_order_pnqn_qfbclassno0_quaddisc_racine_regula_seq_umul_uissquarerem_znorder_znstar_Z_factor_Z_factor_limit_Z_issquarefree_addprimes_auxdecomp_bigomega_binaire_bittest_boundfact_core_core0_core2_core2partial_coredisc_coredisc0_coredisc2_corepartial_divisors_factorint_factoru_factoru_pow_gbigomega_gbitand_gbitneg_gbitnegimply_gbitor_gbittest_gbitxor_gboundfact_gissquarefree_gmu_gnumbdiv_gomega_gphi_gsumdiv_gsumdivk_ibitand_ibitnegimply_ibitor_ibitxor_initprimes_initprimes0_issquarefree_maxprime_maxprime_check_mu_numbdiv_omega_phi_prime_primepi_primes_removeprimes_set_optimize_sieve_chunk_p_smallfact_sumdiv_sumdivk_T2_from_embed_T2_from_embed_norm_check_ZX_check_ZXY_check_units_checkbid_checkbnf_checkbnf_i_checkbnr_checkbnrgen_checkid_checknf_checknf_i_checknfelt_mod_checkprimeid_checkrnf_dirzetak_factoredpolred_factoredpolred2_galois_galoisapply_get_bas_den_get_bnf_get_bnfpol_get_mul_table_get_nf_get_nfindex_get_nfpol_get_primeid_get_roots_glambdak_gpolcomp_gzetak_gzetakall_initalg_initalg_i_initalgred_initalgred2_initzeta_new_galois_format_nf_get_r1_nf_get_r2_nf_get_sign_nfbasic_init_nfbasic_to_nf_nffromhnfbasis_nfgetprec_nfinit0_nfisincl_nfisisom_nfnewprec_nfnewprec_i_nftohnfbasis_ordred_pol_to_monic_polgalois_polgaloisnames_polred_polred0_polred2_polredabs_polredabs0_polredabs2_polredabsall_polredfirstpol_primitive_pol_to_monic_quicktrace_remake_GM_rootsof1_smallpolred_smallpolred2_tschirnhaus_zeta_get_N0_zeta_get_i0_zeta_get_limx_FpX_val_allbase_base_base2_checkmodpr_compositum_compositum2_dim1proj_discf_discf2_factoredbase_factoreddiscf_fast_respm_ff_to_nf_fix_relative_pol_gcdpm_gen_if_principal_get_proj_modT_indexpartial_maxord_i_modprM_modprM_lift_modprV_modprX_modprX_lift_nf_to_ff_nf_to_ff_init_nfbasis_nfbasis0_nfdiscf0_nfissquarefree_nfmodprinit_nfreducemodpr_nfreducemodpr_i_polcompositum0_polsymmodp_primedec_primedec_apply_kummer_respm_rnfallbase_rnfbasis_rnfdedekind_rnfdet_rnfdet0_rnfdet2_rnfdiscf_rnfequation_rnfequation0_rnfequation2_rnfequation_i_rnfhnfbasis_rnfisfree_rnflllgram_rnfpolred_rnfpolredabs_rnfpseudobasis_rnfsimplifybasis_rnfsteinitz_smallbase_smalldiscf_special_anti_uniformizer_val_fact_zk_to_ff_zk_to_ff_init_zkmodprinit_F2V_red_ip_FpXQ_gener_Fp_PHlog_Fp_shanks_Idealstar_RgV_isscalar_algtobasis_algtobasis_cp_algtobasis_i_arch_to_perm_archstar_full_rk_basistoalg_basistoalg_i_check_nfelt_close_modinvertible_colreducemodHNF_coltoalg_detcyc_dethnf_dethnf_i_element_div_element_inv_element_invmodideal_element_mul_element_muli_element_mulid_element_mulidid_element_pow_element_powid_mod_p_element_powmodideal_element_powmodidele_element_sqr_element_sqri_element_val_eltmul_get_table_eltmulid_get_table_famat_to_nf_modideal_coprime_ff_PHlog_ideallist_ideallist0_ideallistarch_ideallistunit_ideallistunitgen_ideallistzstar_ideallistzstargen_idealstar0_init_zlog_bid_int_elt_val_isnfscalar_lift_to_pol_lllreducemodmatrix_log_gen_arch_log_gen_pr_matalgtobasis_matbasistoalg_mulmat_pol_nf_PHlog_nfdiveuc_nfdivrem_nfmod_nfreducemodideal_nfreducemodideal_i_nfreducemodidele_perm_to_arch_polegal_spec_poltobasis_reducemodHNF_reducemodinvertible_reducemodmatrix_rnfalgtobasis_rnfbasistoalg_set_sign_mod_idele_sqr_by_tab_vecmodii_zarchstar_zideallog_zideallog_sgn_zidealstar_zidealstarinit_zidealstarinitgen_zlog_zlog_units_zlog_units_noarch_znlog_zsigne_zsigns_arch_inv_arch_mul_arch_pow_check_ZKmodule_check_listpr_coprime_part_element_divmodpr_element_invmodpr_element_mulmodpr_element_mulvec_element_powmodpr_element_reduce_factor_norm_factorbackprime_famat_inv_famat_makecoprime_famat_mul_famat_pow_famat_reduce_famat_to_arch_famat_to_nf_famat_to_nf_modidele_get_arch_get_arch_real_get_hnfid_ideal_two_elt_ideal_two_elt0_ideal_two_elt2_idealadd_idealaddmultoone_idealaddtoone_idealaddtoone0_idealaddtoone_i_idealappr_idealappr0_idealapprfact_idealchinese_idealcoprime_idealcoprime_fact_idealdiv_idealdiv0_idealdivexact_idealdivpowprime_idealfactor_idealhermite_idealhermite_aux_idealhnf0_idealintersect_idealinv_ideallllred_ideallllred_elt_idealmul_idealmul0_idealmulh_idealmulpowprime_idealmulprime_idealmulred_idealnorm_idealpow_idealpow0_idealpowred_idealpows_idealprodprime_idealred_elt_idealtyp_idealval_ideleaddone_init_unif_mod_fZ_isideal_isidentity_make_integral_minideal_mul_content_nfdetint_nfhermite_nfhermitemod_nfkermodpr_nfsmith_nfsolvemodpr_pidealprimeinv_pr_norm_prime_to_ideal_principalideal_principalidele_to_Fp_simple_to_famat_to_famat_all_unif_mod_fZ_unnf_minus_x_val_norm_vecdiv_vecinv_vecmul_vecpow_check_and_build_nfabs_check_and_build_norms_checkrnfeq_eltabstorel_eltreltoabs_get_theta_abstorel_hnfcenter_ip_prodid_rnfelementabstorel_rnfelementdown_rnfelementreltoabs_rnfelementup_rnfidealabstorel_rnfidealdown_rnfidealhermite_rnfidealmul_rnfidealnormabs_rnfidealnormrel_rnfidealreltoabs_rnfidealtwoelement_rnfidealup_rnfinitalg_R_from_QR_ZM_zc_mul_ZM_zm_mul_algdep_algdep0_algdep2_dalloc_fincke_pohst_gram_matrix_gscal_init_dalloc_kerint_kerint1_lindep_lindep0_lindep2_lll_lll_scaled_lllall_lllfp_marked_lllgen_lllgram_lllgramgen_lllgramint_lllgramintern_lllgramkerim_lllgramkerimgen_lllint_lllint_fp_ip_lllint_i_lllint_ip_lllint_marked_lllintern_lllintpartial_lllintpartial_ip_lllintpartialall_lllkerim_lllkerimgen_matkerint0_minim_minim2_minim_alloc_perf_plindep_pslq_pslqL2_qflll0_qflllgram0_qfminim0_qfrep0_sqred1_from_QR_sqscal_stackmalloc_zncoppersmith_ZV_search_ZV_sort_uniq_binomial_cmp_prime_ideal_cmp_prime_over_p_cmp_vecint_convol_cyclo_dirdiv_dirmul_gen_search_gen_search_aux_gen_setminus_gen_sort_gen_sort_aux_gen_vecsort_genrand_getstack_gettime_gprec_gprec_w_gprec_wtrunc_gtoset_indexlexsort_indexsort_laplace_legendre_lexsort_mathilbert_matqpascal_modreverse_i_numtoperm_pari_compare_lg_pari_compare_long_permtonum_polint_polint_i_polrecip_polrecip_i_polymodrecip_roots_to_pol_roots_to_pol_intern_roots_to_pol_r1r2_setintersect_setisset_setminus_setsearch_setunion_sindexlexsort_sindexsort_sort_tablesearch_tchebi_vecbinome_vecsort_vecsort0_buchimag_buchquad_buchreal_check_bach_dbg_rel_form_to_ideal_getallforms_quadclassunit0_quadhilbert_quadray_wr_rel_bnfclassunit0_bnfinit0_bnfmake_bnfnewprec_bnrnewprec_buchall_buchfu_check_and_build_cycgen_check_and_build_matal_check_and_build_obj_classgrouponly_extract_full_lattice_gauss_realimag_init_red_mod_units_init_units_isprincipal_isprincipalall_isprincipalarch_isprincipalfact_isprincipalforce_isprincipalgen_isprincipalgenforce_isunit_red_mod_units_regulator_signunits_smallbuchinit_split_realimag_testprimes_trunc_error_zsign_from_logarch_zsignunits_bnrGetSurj_bnrclass0_bnrclassno_bnrclassnolist_bnrconductor_bnrconductorofchar_bnrdisc0_bnrdisclist0_bnrinit0_bnrisconductor_bnrisprincipal_buchnarrow_buchray_buchrayinit_buchrayinitgen_certifybuchall_conductor_decodemodule_discrayabs_discrayabscond_discrayabslist_discrayabslistarch_discrayabslistlong_discrayrel_discrayrelcond_idealmodidele_isinvector_isprincipalray_isprincipalraygen_minkowski_bound_norm_by_embed_quick_isprincipalgen_rnfconductor_rnfnormgroup_subgrouplist0_bnfisnorm_bnfissunit_bnfsunit_nfhilbert_nfhilbert0_nfhilbertp_qpsoluble_qpsolublenf_rnfisnorm_rnfisnorminit_zpsoluble_zpsolublenf_checkgal_checkgroup_fixedfieldfactmod_fixedfieldfactor_fixedfieldinclusion_fixedfieldorbits_fixedfieldsympol_galois_group_galoisconj_galoisconj0_galoisconj2_galoisconj2pol_galoisconj4_galoiscosets_galoisexport_galoisfixedfield_galoisidentify_galoisinit_galoisisabelian_galoispermtopol_galoissubfields_galoissubgroups_initgaloisborne_intheadlong_isomborne_listznstarelts_matheadlong_matrixnorm_monomorphismlift_numberofconjugates_polheadlong_supnorm_sympol_aut_evalmod_sympol_eval_vandermondeinverse_vandermondeinversemod_vandermondeinverseprep_ff_poltype_gadd_gaddsg_gdiv_gdivgs_gmul_gmul2n_gmulsg_gred_frac2_gred_rfrac2_gred_rfrac_simple_gsqr_gsub_mulcxI_mulcxmI_ZX_valuation_Z_lval_Z_lvalrem_Z_lvalrem_stop_Z_pval_Z_pvalrem_absrnz_egal1_absrnz_egal2n_cgetimag_cgetp_cvtop_cvtop2_gabs_gaffect_gaffsg_gcmp_gcmp0_gcmp1_gcmp_1_gcmpsg_gcvtop_gequal_gequalsg_gexpo_ggval_glength_gmax_gmaxgs_gmin_gmings_gneg_gneg_i_gopsg2_gopsg2z_greffe_gsigne_gtofp_gtolist_gtolong_lexcmp_listconcat_listcreate_listinsert_listkill_listput_listsort_matsize_normalize_normalizepol_normalizepol_approx_normalizepol_i_padic_to_Fl_padic_to_Fp_polvaluation_polvaluation_inexact_pureimag_quadtoc_sizedigit_u_lval_u_lvalrem_u_pvalrem_vecmax_vecmin_z_pval_Mod0_ceil_safe_ceilr_centerlift_centerlift0_compo_deg1pol_deg1pol_i_degree_denom_deriv_derivpol_derivser_diviiround_divrem_gand_gceil_gcvtoi_gdivent_gdiventgs_gdiventres_gdivmod_gdivround_geq_geval_gfloor_gfloor2n_gfrac_gge_ggprecision_ggrando_ggt_gimag_ginv_gle_glt_gmod_gmodgs_gmodulo_gmodulsg_gmodulss_gne_gnot_gor_gpolvar_gprecision_greal_grndtoi_ground_gshift_gsubst_gsubst_expr_gsubstpol_gsubstvec_gtocol_gtopoly_gtopolyrev_gtoser_gtovec_gtovecsmall_gtrunc_gvar_gvar2_hqfeval_imag_i_integ_inv_ser_iscomplex_isexactzero_isexactzeroscalar_isinexact_isinexactreal_isint_ismonome_issmall_lift_lift0_lift_intern0_mkcoln_mkintn_mkpoln_mkvecn_mpinv_mul_real_mulmat_real_numer_padicprec_polcoeff0_polcoeff_i_poldegree_poleval_pollead_poltoser_precision_precision0_qf_base_change_qfbeval_qfeval_real_i_recip_rfractoser_round0_roundr_scalarpol_scalarser_ser2pol_i_ser2rfrac_i_simplify_simplify_i_tayl_toser_i_truecoeff_trunc0_u2toi_BSW_psp_ellfacteur_factor_add_primes_ifac_bigomega_ifac_decomp_ifac_decomp_break_ifac_issquarefree_ifac_moebius_ifac_numdiv_ifac_omega_ifac_primary_factor_ifac_realloc_ifac_start_ifac_sumdiv_ifac_sumdivk_ifac_totient_is_357_power_is_kth_power_is_odd_power_miller_millerrabin_nextprime_plisprime_pollardbrent_precprime_snextpr_squfof_uisprime_abelian_group_bitvec_alloc_bitvec_clear_bitvec_set_bitvec_shorten_bitvec_test_const_col_const_vec_const_vecsmall_cosets_perm_search_cyc_pow_cyc_pow_perm_cyclicgroup_cyclicperm_dicyclicgroup_group_abelianHNF_group_abelianSNF_group_domain_group_elts_group_export_group_export_GAP_group_export_MAGMA_group_isA4S4_group_isabelian_group_leftcoset_group_order_group_perm_normalize_group_quotient_group_rightcoset_group_subgroups_groupelts_abelian_group_groupelts_center_perm_commute_perm_conj_perm_cycles_perm_generate_perm_identity_perm_inv_perm_mul_perm_order_perm_pow_perm_relorder_perm_to_GAP_quotient_group_quotient_perm_quotient_subgroup_lift_vec_is1to1_vec_isconst_vec_lengthen_vec_setconst_vec_shorten_vec_to_vecsmall_vecperm_orbits_vecsmall_append_vecsmall_coincidence_vecsmall_concat_vecsmall_copy_vecsmall_indexsort_vecsmall_isin_vecsmall_lengthen_vecsmall_lexcmp_vecsmall_pack_vecsmall_prefixcmp_vecsmall_prepend_vecsmall_shorten_vecsmall_sort_vecsmall_to_col_vecsmall_to_vec_vecsmall_uniq_vecvecsmall_indexsort_vecvecsmall_search_vecvecsmall_sort_Flx_Berlekamp_ker_Flx_nbfact_Flx_nbroots_FpX_Berlekamp_ker_FpX_degfact_FpX_deriv_FpX_factcantor_FpX_factor_FpX_is_irred_FpX_is_squarefree_FpX_is_totally_split_FpX_nbfact_FpX_nbroots_FpX_quad_root_FpX_rand_FpX_roots_FpX_split_Berlekamp_FqX_Berlekamp_ker_FqX_deriv_FqX_factor_FqX_gcd_FqX_is_squarefree_FqX_nbfact_FqX_nbroots_FqX_rand_FqX_split_Berlekamp_FqX_split_all_FqX_split_by_degree_FqX_split_deg1_FqX_split_roots_ZX_deriv_ZX_monic_factorpadic_ZpXQX_liftroot_ZpX_liftroot_ZpX_liftroots_Zp_appr_cmp_padic_cmp_pol_col_to_ff_factcantor_factcantor0_factmod_factorff_factormod0_factorpadic0_factorpadic2_factorpadic4_gdvd_hensel_lift_accel_padicappr_padicsqrtnlift_poldivrem_poldvd_polfnf_rootmod_rootmod0_rootmod2_rootpadic_rootpadicfast_roots2_rootsold_simplefactmod_trivfact_zrhqr_DDF_roots_GS_norms_LLL_check_progress_Newton_exponents_Q_content_Q_denom_Q_div_to_int_Q_divmuli_to_int_Q_muli_to_int_Q_primitive_part_Q_primpart_Q_remove_denom_RgX_extgcd_RgX_extgcd_simple_RgX_gcd_simple_ZX_DDF_ZX_squff_bezout_lift_fact_centermod_centermod_i_centermodii_checkdeflate_chk_factors_get_cmbf_precs_combine_factors_concat_factor_content_deg1_from_roots_discsr_divide_conquer_assoc_divide_conquer_prod_fact_from_DDF_factor_factor0_factor_quad_factorback_factorback0_factorback_aux_factorback_i_factorbackelt_factpol_gbezout_gcd0_gdeflate_gdivexact_ggcd_ginvmod_gisirreducible_glcm_glcm0_hensel_lift_fact_leftright_pow_leftright_pow_fold_leftright_pow_u_leftright_pow_u_fold_logint_matratlift_merge_factor_i_newtonpoly_nfgcd_nfrootsQ_poldeflate_poldeflate_i_poldisc0_polhensellift_polinflate_polratlift_polresultant0_polsym_polsym_gen_primitive_part_primpart_pseudodiv_pseudorem_reduceddiscsmith_resultant2_resultantducos_revpol_roots_from_deg1_s_centermod_sort_factor_sort_factor_gen_sort_factor_gen_aux_sort_vecpol_sort_vecpol_gen_special_pivot_srgcd_sturmpart_subresall_subresext_sylvestermatrix_sylvestermatrix_i_vecbezout_vecbezoutres_Flm_Frobenius_pow_Flxq_matrix_pow_FpC_red_FpC_to_mod_FpM_Frobenius_pow_FpM_red_FpM_to_mod_FpV_polint_FpV_red_FpV_roots_to_pol_FpV_to_mod_FpXQXV_prod_FpXQX_divrem_FpXQX_extgcd_FpXQX_from_Kronecker_FpXQX_gcd_FpXQX_mul_FpXQX_red_FpXQX_sqr_FpXQYQ_pow_FpXQ_charpoly_FpXQ_div_FpXQ_ffisom_inv_FpXQ_inv_FpXQ_invsafe_FpXQ_matrix_pow_FpXQ_minpoly_FpXQ_mul_FpXQ_pow_FpXQ_powers_FpXQ_sqr_FpXQ_sqrtl_FpXQ_sqrtn_FpXV_FpC_mul_FpXV_prod_FpXV_red_FpXX_add_FpXX_red_FpXYQQ_pow_FpX_FpXQV_compo_FpX_FpXQ_compo_FpX_Fp_add_FpX_Fp_mul_FpX_add_FpX_center_FpX_chinese_coprime_FpX_compositum_FpX_direct_compositum_FpX_div_by_X_x_FpX_divrem_FpX_eval_FpX_extgcd_FpX_factorff_irred_FpX_ffintersect_FpX_ffisom_FpX_gcd_FpX_gcd_check_FpX_mul_FpX_neg_FpX_normalize_FpX_red_FpX_rescale_FpX_resultant_FpX_sqr_FpX_sub_FpX_to_mod_FpY_FpXY_resultant_FqC_to_FlxC_FqM_to_FlxM_FqV_red_FqV_roots_to_pol_FqV_to_FlxV_FqX_Fq_mul_FqX_div_FqX_divrem_FqX_eval_FqX_mul_FqX_normalize_FqX_red_FqX_rem_FqX_sqr_Fq_add_Fq_inv_Fq_invsafe_Fq_mul_Fq_neg_Fq_neg_inv_Fq_pow_Fq_red_Fq_sub_QXQ_inv_RgC_to_FpC_RgV_to_FpV_RgX_to_FpX_RgX_to_FpXQX_RgX_to_FqX_Rg_to_Fl_Rg_to_Fp_Rg_to_FpXQ_ZM_incremental_CRT_ZM_init_CRT_ZX_QX_resultant_ZX_Z_add_ZX_Z_mul_ZX_add_ZX_caract_ZX_caract_sqf_ZX_disc_ZX_disc_all_ZX_incremental_CRT_ZX_init_CRT_ZX_is_squarefree_ZX_neg_ZX_renormalize_ZX_resultant_ZX_resultant_all_ZX_sub_ZY_ZXY_ResBound_ZY_ZXY_resultant_all_ZY_ZXY_rnfequation_Z_incremental_CRT_brent_kung_optpow_ffinit_ffinit_Artin_Shreier_ffinit_rand_from_Kronecker_init_Fq_init_modular_modulargcd_monomial_monomialcopy_polint_triv_stopoly_stopoly_gen_swap_vars_to_Kronecker_FFT_FFTinit_cauchy_bound_cleanroots_dbllog2_isrealappr_logmax_modulus_bound_roots_roots0_bnr_to_znstar_galoiscyclo_galoissubcyclo_polsubcyclo_subcyclo_subcyclo_complex_bound_subcyclo_complex_roots_subcyclo_cyclic_subcyclo_orbits_subcyclo_roots_subcyclo_start_znstar_bits_znstar_conductor_znstar_coset_bits_znstar_coset_bits_inplace_znstar_coset_func_znstar_cosets_znstar_elts_znstar_generate_znstar_hnf_znstar_hnf_elts_znstar_hnf_generators_znstar_partial_bits_znstar_partial_coset_bits_znstar_partial_coset_bits_inplace_znstar_partial_coset_func_znstar_reduce_modulus_znstar_small_forsubgroup_subgroupcondlist_subgrouplist_Pi2n_PiI2_PiI2n_agm_consteuler_constlog2_constpi_exp1r_abs_exp_Ir_gcos_gcotan_gexp_glog_gpow_gpowgs_gsin_gsincos_gsqrt_gsqrtn_gtan_log0_logagmcx_logagmr_abs_logr_abs_mpcos_mpeuler_mpexp_mpexp1_mplog_mplog2_mppi_mpsin_mpsincos_padic_sqrt_padic_sqrtn_padic_sqrtn_ram_padic_sqrtn_unram_palog_pari_init_floats_powgi_powiu_powrfrac_powrshalf_powuu_rootsof1complex_rootsof1padic_rpowuu_sqrtnr_sqrtr_teich_transc_upowuu_OK_bern_affr_fixlg_bernfrac_bernreal_bernvec_cxpsi_dabs_darg_dcxlog_divgsns_divrsns_dnorm_gach_gacos_garg_gash_gasin_gatan_gath_gch_ggamd_ggamma_glngamma_gpsi_gsh_gth_mpbern_mpfactr_trans_fix_arg_bernfrac_using_zeta_bernreal_using_zeta_czeta_dilog_eint1_eta_eta0_gerfc_gpolylog_gpolylogz_gzeta_hbessel1_hbessel2_hyperu_ibessel_incgam_incgam0_incgam2_incgamc_inv_szeta_euler_jbessel_jbesselh_jell_kbessel_kbessel0_kbessel2_kbesselnew_nbessel_polylog_polylog0_polylogd_polylogd0_polylogdold_polylogp_szeta_theta_thetanullk_trueeta_twistpartialzeta_veceint1_vecthetanullk_weber0_weberf_weberf1_weberf2_addhelp_alias0_allocatemem0_break0_changevalue_changevalue_p_delete_named_var_delete_var_did_break_do_alias_fetch_named_var_fetch_user_var_fetch_var_free_ep_args_freeep_get_analyseur_gp_function_name_gp_member_list_gp_read_str_gpreadseq_hashvalue_install_is_entry_is_entry_intern_is_identifier_is_keyword_char_kill0_kill_from_hashlist_loop_break_manage_var_member_err_name_var_next0_parse_option_string_pop_val_pop_val_if_newer_print_all_user_fun_print_all_user_member_print_user_fun_print_user_member_push_val_readexpr_readexpr_nobreak_readseq_readseq_nobreak_readseq_void_readstring_return0_set_analyseur_strtoGENstr_strtoi_strtor_type0_u_pow10_var_make_safe_oldfonctions_default0_default_gp_data_expand_prompt_get_int_get_sep_get_uint_getrealprecision_gp_default_gp_default_list_readline_state_sd_TeXstyle_sd_colors_sd_compatible_sd_datadir_sd_debug_sd_debugfiles_sd_debugmem_sd_echo_sd_factor_add_primes_sd_filename_sd_format_sd_help_sd_histsize_sd_lines_sd_log_sd_logfile_sd_new_galois_format_sd_output_sd_parisize_sd_path_sd_prettyprinter_sd_primelimit_sd_prompt_sd_prompt_cont_sd_psfile_sd_realprecision_sd_rl_sd_secure_sd_seriesprecision_sd_simplify_sd_strictmatch_sd_timer_setdefault_setrealprecision_errmessage_GENtoGENstr_GENtoTeXstr_GENtocanonicalstr_GENtostr_GENtostr0_Str_Str0_Strchr_Strexpand_Strtex_brute_bruteall_bruterr_bruti_check_filtre_decode_color_defaultErr_defaultOut_delete_buffer_delete_dirs_eng_ord_env_ok_error0_etatpile_expand_tilde_file_input_file_is_binary_filtre_fix_buffer_flusherr_fprintferr_gen_output_gp_expand_path_gp_history_gp_read_file_gp_read_stream_gp_readvec_file_gp_readvec_stream_gpwritebin_hit_return_init80col_init_filtre_initout_input_loop_itostr_killallfiles_lim_lines_output_matbrute_matbruti_new_buffer_newfile_os_close_os_getenv_os_open_os_read_os_signal_outbeaut_outbeauterr_outbrute_outerr_outmat_output_outsor_outtex_pGENtostr_pariErr_pariErr2Str_pariOut_pariOut2Str_pariOut80_pariOut_lim_lines_pari_default_path_pari_fclose_pari_fopen_pari_is_dir_pari_last_was_newline_pari_safefopen_pari_set_last_newline_pari_strdup_pari_strndup_pari_unique_dir_pari_unique_filename_pari_unlink_pariflush_pariprintf_pariputc_pariputs_popinfile_print_print0_print1_print_functions_hash_print_prefixed_text_printp_printp1_printtex_readbin_readobj_set_hist_entry_sor_sori_switchin_switchout_term_color_term_get_color_term_height_term_width_texe_texi_try_pipe_type_name_voir_vpariputs_write0_write1_writeGEN_writebin_writenamedGEN_writetex_DEBUGFILES_DEBUGLEVEL_DEBUGMEM_GP_DATA_TIMER_TIMERstart_allocatemoremem_avma_bernzone_bin_copy_bot_cgetalloc_changevar_compatible_copy_bin_copy_bin_canon_current_logfile_current_psfile_debug_stack_default_exception_handler_diffptr_disable_color_disable_dbg_err_catch_err_leave_err_recover_errcontext_errfile_fill_stack_foreignAutoload_foreignExprHandler_foreignExprSwitch_foreignFuncFree_foreignHandler_funct_old_hash_functions_basic_functions_hash_functions_tblsz_gclone_gclone_refc_gcopy_gcopy_av_gcopy_i_gen_0_gen_1_gen_2_gen_m1_geni_gerepile_gerepileall_gerepileallsp_gerepilecoeffs_gerepilecoeffs2_gerepilecoeffssp_gerepilecopy_gerepilemany_gerepilemanysp_gerepileupto_gerepileuptoint_gerepileuptoleaf_getheap_geuler_ghalf_gi_global_err_data_gnil_gp_colors_gp_init_functions_gpi_gpmalloc_gprealloc_grow_append_grow_copy_grow_init_grow_kill_gunclone_infile_killbloc_logfile_logstyle_lontyp_members_hash_memused_msgTIMER_msgtimer_newbloc_ok_gerepileupto_ordvar_pari_add_function_pari_add_module_pari_close_pari_close_opts_pari_datadir_pari_err_pari_get_modules_pari_get_oldmodules_pari_init_pari_init_defaults_pari_init_opts_pari_outfile_pari_sig_init_pari_warn_pol_1_pol_x_polvar_pop_entree_bloc_pop_stack_precdl_precreal_primetab_push_stack_recover_reorder_shallowcopy_sigint_fun_switch_stack_taille_taille2_timer_timer2_top_trap0_traverseheap_varentries_whatnow_fun_whatnow_new_syntax_gp_eval_intcirc_intcirc0_intfourcos0_intfourexp0_intfouriercos_intfouriersin_intfoursin0_intfuncinit_intfuncinit0_intlaplaceinv_intlaplaceinv0_intmellininv_intmellininv0_intmellininvshort_intnum_intnum0_intnuminit_intnuminit0_intnuminitgen_intnuminitgen0_intnumromb_intnumromb0_intnumstep_sumnum_sumnum0_sumnumalt_sumnumalt0_sumnuminit_sumnuminit0_member_a1_member_a2_member_a3_member_a4_member_a6_member_area_member_b2_member_b4_member_b6_member_b8_member_bid_member_bnf_member_c4_member_c6_member_clgp_member_codiff_member_cyc_member_diff_member_disc_member_e_member_eta_member_f_member_fu_member_futu_member_gen_member_group_member_index_member_j_member_mod_member_nf_member_no_member_omega_member_orders_member_p_member_pol_member_r1_member_r2_member_reg_member_roots_member_sign_member_t2_member_tate_member_tu_member_tufu_member_w_member_zk_member_zkst_direuler_direuler0_divsum_fordiv_forpari_forprime_forstep_forvec_forvec_start_matrice_polzag_polzagreel_prodeuler_prodeuler0_prodinf_prodinf0_prodinf1_produit_somme_sumalt_sumalt0_sumalt2_suminf_suminf0_sumpos_sumpos0_sumpos2_vecteur_vecteursmall_vvecteur_zbrent_zbrent0_aprcl_isprimeAPRCL_ellcondfile_ellcondlist_ellconvertname_ellgenerators_ellidentify_ellsearch_ellsearchcurve_forell_CM_CardEFp_CM_ellap_addell_akell_anell_apell_apell1_apell2_bilhell_checkbell_checkell_checkpt_checksell_coordch_ellap0_elleisnum_elleta_ellglobalred_ellheight0_ellheightoo_ellinit0_ellisoncurve_elllocalred_elllseries_ellminimalmodel_ellprint_ellrootno_ellsigma_elltaniyama_elltors0_ellwp0_ellzeta_ghell_ghell2_initell_mathell_multi_invmod_oncurve_ordell_orderell_pointch_pointchinv_pointell_powell_ratroot_smallinitell_subell_torsell_weipell_weipell0_zell_galoisbig_partitions_polgaloisnamesbig_group_ident_group_ident_i_group_ident_trans_groupelts_sumorders_vecgroup_idxlist_vecgroup_sumorders_idealsqrtn_lift_if_rational_rnfkummer_mpqs_ZM_get_prec_ZX_get_prec_nffactor_nffactormod_nfisgalois_nfissplit_nfroots_nfrootsall_and_pr_rnfcharpoly_unifpol_numbpart_bnrL1_bnrrootnumber_bnrstark_quadhilbertreal_subfields_subfields0_translate_pol_bnfisintnorm_bnfisintnormabs_thue_thueinit#1/12 1200773929 0 0 100644 99420 ` mp.o # # __text__TEXT &5 __data__DATA @ __cstring__TEXT @!__const__TEXT @#__literal4__TEXT $__picsymbolstub2__TEXT &$dp__la_sym_ptr2__DATA#X6&t__nl_symbol_ptr__DATAp#&,__textcoal_nt__TEXT#& @v} Pt4u3 1 Ð<\$,t$0|$4l$8|$@t$Do9}V#v u'9|G\$,t$0|$4l$8<Ã.t|$DL$; t_D$~u?L$,D$L$)u@o$ "$"볉:UWVS,"l$@8E%p")щ+L$9wiL$"uG,D$0u)эV~Dȉ1,[^_]$]!$O!뉃|$l$t$T$ l$$MB%)ȍ< 9t#u%9|#t Dut$|$l$$ ϐWVL$AtouA@Aȃ^_ÉƉρV~u)y@QwG뮉ƉρVtu܋AuՍyAGV~uyցqW눐UWV@L$PT$TA*u2Uڍ uD$Tp@^_]$%D$8Fuo\$,t$0|$4l$8<$i$[봉%*tEŋL$@݅ $NʼnD$롋EyދT$@2Ǎ)׉|$+9D$L$׉T$)lj+9wg8uI7,$|$D$@|$$l$$l$8D$D$$I$;$-;$.U UWVS $$@$A$u<$$!Ȩtļ[^_]$.$u$v̋$뿋$$Gǁ$N)ω$$ $؃$}O$$$$v $$)Ƌ$t$t+9$/ D$t$ED$|z)D$pD$l L$t)D$l$)D$t+L$h9$D$h$t$hE$$<19T$Lv,D$LL$pD$L ׉L$l9l$LwԋL$LL$p 1l$h$$$$уt$t9L$Lv,D$LL$pD$L ׉L$l9l$LwԋL$LL$p $L$l|$tBG$$$y$j DŽ$9$$$D$`D$|$P9T$\T$|1ɋBT$\$׉D$duul$|1D$d$T$,+E 1)҉D$(!Ȩt=1D$(l$d+$ɉD$()$҅҉!Ȩuŋl$`D$,~Q1D$|$D$u#$$.0T$D$d1ɋl$|}$nt$tF;$.V$|$t;$|4$$$N1$P9vփ$$M$)Nj+9$}DŽ$$9$}4$$$փ$$9|̃$$$ $$O$$$.u$(ED$x+vD$,$HuD+)9w.H8~DR$X$JE1t$DD$D$~LHD}w+9wuGF@l$nK$ӋHD}w+9wuGF$߉ƋH)NjD+9w.H8~D$@ĐUWVS7|$$@D$XAD$TD$Xu|[^_]Ë$A%D$l$Pt;$1ɍ,EUtΉ$#ƋD$PD$ll$P)ŋD$P+9D$ld* $p+))98/~$쉼$|$P8$pt$hl$h$D$SD$`D$LD$h9D$`}$$A9FD$h9D$`t|$`$$D9hD$l+D$hD$d>D$d)‹+8T$D9|$dD$Dl$hL$d$DL$`$D$lD$\~XT$l<@+T$d|$,T$0T$4D$L|$\$DL$`t$DD$Hl$`l$\l$,|$`D$`D$D@uD$`t$DL$`EG@GL$|O $E$$:뼋$tH(}+v8EG@w$׋|$$.^$$Dy?$||$$D$$D$`r$$)Ս$T$Tl$Pt$l$<$D$\$h@%D$<D$@D$PNjL$@D$TtT$8+)98@wOT$<x DyT$TD$@L҉T$ xl$8Dy<$D$cŋD$\$D$$JD$|$,$$D$X$h@%D$0D$4$D$PT$44D$Tt$,t+)98{@OwT$0x DyT$ D$4ҍLxl$,Dy<$D$[ƋL$XD$T|$\L$D$<$D$\D$X$9Ɖ@T$؉D$ F4$D$C$pxT$`D$\)D$\D$$Թ$wt$ H|$$L$GhD$$l$T$\$BT$$D$D$\$U:$ t$O$C$$$$T$t$$袽$D$L9w+0GF@nt$Hl$Lti$|$D}w+v0uGF@FD$DF t$`D$Ha$‹$tH8w+v0GF@n$׋$D$HUWVSw$(M$@%?)$+9 $ ꋌ$ @$py$ɉ+)99$:x y$D$$x y$$$]$$$L$<$)ʼn$$l$虿$$p$$@T$t%D$xtD$|E+)9(@MuUT$xx$y$D$|L҉T$xt$ty,$D$.ŋ$D$$$L$,$D$$$h@%D$lD$p$$L$p4$t$htǍ+)9r8M@OwT$lx DyT$D$pҍLxl$hDy<$D$!Ƌ$$$L$D$<$趶$$$?9Ɖ@T$؉D$ F4$D$$P$$$T$$Ox y$|$$A~T$$u3uAA%?x@u( $p$8[^_]$ʋ$D$$β$wt$ H|$$L$AhD$$l$$$Ft$$D$x$$w$$}$c$>$$<$T$t$蝶$$18w+0GF@n$$tu$$}w+v9uGF@F$F $$l$빋$tH9w+v0GF@n$׋$|$$W$|6)щL$d+9T$d$ 81t9v Չ9w $|$dF$TD$ $x y$|$ L$`D$ l$ $t$dL$)ʼn4$D$Tl$Pl$D$\$|$Ph@L$T%D$<D$@D$dD$@t+T$8)9T8/@OwT$<x DyT$TD$@L҉T$(xl$8Dy<$D$舨ŋD$\$D$$oD$|$,$;L$dD$X$h@%D$0D$4D$ D$PT$44D$Tt$,t+)9)8@OwT$0x DyT$(D$4ҍLxl$,Dy<$D$膧ƋL$XD$T|$\L$D$<$$D$\D$X$9Ɖd@T$؉D$ F4$D$n$pT$`|$\$$Ox y$Dx'=$|$$.$$.uMD$\D$$v$wt$ H|$$L$hD$$l$HT$\$BT$$D$#D$\$$$$$l$d$$,$|$T$G$D$L 8w+2GF@nt$Ht$Ltj$l$D}w+v1uGF@F|$D~ l$`E|$H$$tH8w+v2GF@n$R׋$:D$H$$$ 4$|$l$l$|$1MG%9t|$4$l$ ÁQ~ 9Dt ̓.~9DtᐐVL$t$uFƒ^Å~ V~ t19NыFy%uN뻐Vt$T$uBƒ^ËB1%t9rD t$t$|$|$uWډЋt$|$ Å~9O.~܁.ˋG19.t9ɃQ뵋G.y%G19.t9҃낐Vt$L$Vu1^Ã.t.V19.t9ϐ l$4$|$D$l$xu9|YR1tLȁ98~T9} Et$9Ft(19tD|$;4$|$l$ Ã9.}ЋDt$9t9} Et$9Ft19tDl$;D맃9.}ڋDt$9t˃t$|$l$D$ l$$HEω9|-&1t ?%?- 9}މ|$t$l$ËD$ L$ ʋE%9ȹD$N9}*Et$ 9F9}DT$ ݉9F똋D$9D$ |4;L$ } t$ u;L$ } l$ Dt1;L$ EZ;L$}Du;L$}Dt1;L$σ9.}Dt$ 9te |$l$4$|$l$wuEщЋ4$|$l$ ËM1҉t%9uЍP~ D9t봃.~D9t琐 |$l$4$l$|$MuG҉Ћ4$|$l$ Ëwtމ%9ͺ.|ź9}G9Et19t;D뛃9.}ߋ9DtԐ|$l$t$l$ |$$MuG҉Ћt$|$l$Ëwt݁?? 9.|E%D$ 79N9} G9Etn9};DPu9t$ |.;T$ }Du;T$ }tt;T$ A9}u9}t19뢃9.}9Dt|VL$t$ɉutt~9tx9w<1txtu ttB9t<9rĉ1t5ʉLutt 9t9w댃^))돐t$t$ |$|$$l$1)օtM1)ׅt>9~kօt- $Ͼƒ Шtt$|$l$t|$4$։t$<$듐1t$t$ |$u t$|$ËD$$4$D$tD$$љϋD$$U1WVL$$t$ D$D$ vB)9 1Ń)91ǃwD$(D$ ƒ!Шt?D$׋D$4D$,(D$08D$u Eƃ^_]ËD$ ƒ!ШtD$ D$ՋD$ tD$4D$,8D$0(D$uE6D$ .U1WV t$4|$0D$ D$D$D$D$v\)91HD$D$L$P)951HD$L$D$̓wD$8D$!ȨtdD$D$ D$D$ŋD$LD$L$<D$@(D$Dl$(D$HL$D$ u Eǃ ^_]ËD$!Ȩt$D$D$D$ D$T$D$sD$LD$<(l$D$@(D$DL$D$Hl$(D$ zEjD$l$D$D$D$l$D$UWV l$8t$4|$0D$D$DD$ D$D$D$D$vt)91HD$L$D$L$9l$|)9]1HD$L$D$L$9l$'wD$T$ !ȨtjD$D$D$D$D$D$Ll$D$<(L$D$@D$Dl$(D$HL$D$u Eǃ ^_]Ël$ !Ȩt&D$D$ D$D$D$D$D$ mD$LD$l$D$<$EtT$,t$TэPD$(D$@D$(ыl$8T$, ʉT$,(D$@L$x|$(t$|>D$8$$(L$4L$\|$Dl$x}t$@T$|2D$<$L$8$1t$XhD$@D$DD$(d$8ыl$<1 ʉT$,t$DL$x1|$@D$|8됋D$Xl$XD$H )D$X)T$HL$Hl$PL$Hl$Ld$TT$LL$PT$T<T$X|$Tt%D$D|$@t$8D$@D$<|$Dt$w+\0GF@nt$ |$T\X8w+)\0GF@|$T~\8Xw+vm\Z0Gnl$ nt$T$$$讬1ҋD$(t$TD$,T$$xЋ\$G%? G$.l$Lu׍)Nj+9w58~D$8$9$+*$Wt$D$0T$D$X$ 1҅#$t|D$XD$$pׁ)Nj+98~L$$$݉8G%? G$.l$Pu׍)Nj+9w18.D$$Ң,D$X$D$脡ƋD$TD$D$h$n9Ɖ@T$؉D$ F4$D$迡D$\D$XD$D$d$*ƋD$TD$D$l$9Ɖ&@T$؉D$ F4$D$eD$TD$\D$XD$PD$D$`$ȠNjD$LD$D$h$負pD$t$ G<$D$D$\D$PD$D$d$zNjD$LD$D$l$dHD$L$ G<$D$‰D$LD$\D$PD$Hx*t$TF%? ȉFT$LlD$X݋Hρ? ωx׋t$XL$TD$LT$\9ΉD$PT$Lt;AL$؉D$ F4$D$ L$TT$LD$\L$XD$T勃t$D0L$T"$L$ L$TAut$\D$XL$t$$%|$TT$\L$LT$TL$|$X$|$P1pD$t$ G<$D$AL$LD$\ƉD$L$L$P4$D$b$D$D$T$L$D$D$TD$(P։ϋ)׋)98~L$($>G%? G$.1l$Lu׍)Nj+9w18.VDC$芞$|.$[T$DL$D$D$TD$,P֋|$D)L$Dl$D);t$D8~L$,$>G%? G$.l$Lu׍)Nj+9w18.D$.$ .$[|$D$8T$D$X$1҅$t|D$XD$0pׁ)Nj+98~L$0$݉8G%? G$.|l$Pu׍)Nj+9w18.D$՛$Ǜ,@t$XL$TD$LT$\9ΉD$PT$Lt;AL$؉D$ F4$D$ȚL$TT$LD$\L$XD$TCD$XD$D$`$ƋD$TD$D$h$9Ɖ@T$؉D$ F4$D$OD$\D$XD$D$d$躙ƋD$TD$D$l$褙9Ɖ&@T$؉D$ F4$D$D$TD$\D$XD$PD$D$`$XƋD$LD$D$h$BHD$L$ F4$D$蟙D$\D$PD$D$d$ ƋD$LD$D$l$HD$L$ F4$D$Q‰D$LD$\D$Pt'D$X݋H΁? ΉpT$Lt$TF%? ȉFԋl$D($i'$t\w+)9wX(M~D$.$.($E$ʘ뚉L$$L$讘T$ߨ$T$菘UWVSu$M $!Y$P$ 0M+)9we}$E%~$싔$rx$81Č[^_]ËG%? @G$蟗덉֋ 8|$D<l$DD$D))9T $.)Ջ0 )9 $8E%~$싔$B$|$T|$$WT$TD$PD$L( l$HD$@0D$D)<0|$<׋B%AD$hl$dT$`L$\D$,l$0T$4L$8l$,D$0L$4T$8<$D$l$D$L$ T$t$i ȨT$hD$Pt$T$D$襔9Ɖ@T$؉D$ F4$D$t$PD$XD$PD$Ht$Tt$LD$D$h$Q9Ɖu@T$؉D$ F4$D$袔‹D$HT$HD$L t$<90sKl$TT$P|$LL$H8l$pT$t|$xL$|RL$pD$@D$L$$脓T$TB%L$PAqA\l$l|$ht$dl$|$l$`|$\t$l$|$ D$AD$B$&t\D$D T$DƉE+ v&T$DuBF@~$0H$̋D$LD$D$`$ĒƋD$HD$D$h$讒9Ɖt}@T$؉D$ F4$D$D$lL$L~A%? Ɖq |$D8$D$LT$$$띋D$D ED$D$T$7.ul$T u׍)Nj+9w1 8.D$跒L$Pn$t$QL$PADT$XD$TL$T$$V|$Ht$L$|$r9ƉtE@T$؉D$ F4$D$|‹D$Hl$PT$HD$LD$Xl$TD$PՋ?T$TL$P9t{AL$؉D$ B$D$L$PL$TT$HL$L9щD$XD$Pt3BT$؉D$ A $D$ɐT$HT$LD$H$鋃롋D$TD$D$\$ƋD$PD$D$d$9Ɖ@T$؉D$ F4$D$ND$XD$LD$D$\$蹏ƋD$HD$D$d$裏9Ɖ@T$؉D$ F4$D$ŋD$TD$D$`$aƋD$PD$D$h$K9Ɖ@T$؉D$ F4$D$蜏D$PD$XD$TD$LD$D$`$ƋD$HD$D$h$9Ɖ@T$؉D$ F4$D$:D$Hl$Lt;t$TF%؁? ʼnnl$LE%? M[L$PAt%? ЉAD$HH΁? Ήpj(/G%? @G2$ $$$A,$D$%z$x$ 0/+()9wC $8%~$D닄$pr$=믋L$h|$dl$l|$ $l$L$D$D$B$oT$DNj tO+ 9w+D$D .@E@}$($蘍Nj$D$hr1D$lՉT$dxT 8w+v' 2GF@n$0$$)։t$d뢋$UWVSi\l$p|$t|$,$u)Nj{+9wJ8E%~DEx \[^_]ËG%? @G$K먋Wuju)Nj{+9w18E%.zDg$ՋE%D$0gΉL$8)Ɖȋ{+9*0D$|$,$VD$4@L$8{͋7))9wG)%E~DGxE%? @E$Ҋ뫋WD$$t91ɍ|wW@tω$&lj|$$D$$,$‰D$<ډT$wmŋ@%? @ED$4Pt8D$41ɍ4~VtΉ$諉ƉD$4ى$L$ mNj@%? @G|$,$;t$$Mt$D+$ށË낋D$dD$lD$hu+)9v8E%~DEw%? Ɖw|$pL$\D$X)4L$`t$TϋA%T$xB$$$D$$D$|T$(l$,D$0D$$L$(l$,D$D$0<$D$L$l$ D$t$  Ȩ; $O D$xt$`$D$+9Ɖ$ @T$؉D$ F4$D$|t$xD$tD$xD$ht$`t$dD$$$~9Ɖ@T$؉D$ F4$D$%‹D$ht$lT$hD$dD$pD$$$~9Ɖ^@T$؉D$ F4$D$~‹D$pT$pD$l9t$T90sS{8|$pl$lL$h|$l$t$dT$x|$`l$XL$t$T$ |$D$,$~L$`A%T$xBBD$\t$4$tqD$Pl$d|$\u)D$\ l$\);t$\D$48~D$/$tpD$Ll$lu+)98~D$}l$`u+)9w18.D$\}$N}Pl$lu+)9wD:E%~DEw%? Ɖw$|$|Dl$d|$\u)D$\l$\);t$\wD8E%~DEw%? Ɖw$6|뮍$$$l$t$$t$||$l$t$ D$BD$A$襾D$HD$dD$D$|$zƋD$hD$$$z9ƉJ@T$؉D$ F4$D$zD$dD$lD$D$|$EzƋD$pD$$$,z9Ɖ@T$؉D$ F4$D$}zD$l$$T$\ɉtr|$Pl$d|$\u)L$\l$\);t$\8~D$}$trL$Ll$lu׍)Nj+98~D$E|$Htk|$HtWu~+v)}F|$tG@D$tL$HHD$t$yɋw$yBl$lu׍)Nj+9wD8E%~DEw%? Ɖw$ y$x5l$d׋u )ϋ)9wD8E%~DEw%? Ɖw$}x\$P\$LU5T$xn$L$vT$xBD$`|$tT$|$$rŋD$ht$dD$,$w9Ɖ@T$؉D$ F4$D$w‹D$ht$lT$hD$dD$p,$D$v9ƉtE@T$؉D$ F4$D$v‹D$pT$pT$xD$lD$tT$`D$xՋ끋WL$`T$x9BT$؉D$ A $D$;vT$xT$`L$dT$h9щD$tD$xtwBT$؉D$ A $D$uT$hT$dL$lT$p9щD$ht3BT$؉D$ A $D$uT$pT$lD$p鋃륋ZD$`D$D$|$uƋD$xD$$$t9Ɖ@T$؉D$ F4$D$8uD$tD$`D$$$tƋD$xD$$$t9Ɖ|@T$؉D$ F4$D$tD$xD$dT$tD$D$|T$`$;tƋD$hD$$$"t9Ɖ @T$؉D$ F4$D$stŋD$dD$$$sƋD$hD$$$s9Ɖ@T$؉D$ F4$D$tD$hD$ll$dD$D$|$|sƋD$pD$$$cs9Ɖ1@T$؉D$ F4$D$sŋD$lD$$$sƋD$pD$$$s9Ɖ@T$؉D$ F4$D$VsD$pl$ltVt$`F%؁? ʼnnl$dE%? ML$lA%? ʼni.L$xAt%? ЉAt$hF%? NL$p릋O(v( ,$syE%? @E*$rl$@E%? @E$rH7T$D)L$Dl$D);t$DT$8D$8L$8%~T$8GD$8D$`u+)9wi:E%~DEx)|$x(l$pl$dD$lD$hzG%? @G$q뉋|$8G%? @G=${q$jq$$$t$T$$T$|L$t$T$ D$ED$G$ԳD$H$\$L$tD$|?$E$.$tcu~+v5}F$8d$LL$Ll$Lo0$FH$Op뽋T$Lx ww(u+)9w18E%.D$o|$Lx tit`u~+v2}F$8d$PL$Pt$PwD$|As$A"T$@Bua\$,t$0|$4l$8<ËD$Daa0+,)9Ɖ|$D$al$Ua/ +)9wga8uI7|$t$@4$r@D$DD$<$vPL$$L$a.D$!$`$_$_>$._UWVS<,S`|$Dl$HD$D$@7ƒ!ШL$@|$ $ONjEtdtL9t&wE%9|%t DuS`t$0,[^_]$ _$.^릉l$<$e‹D$@|$$WltD$@|$$RD$@D$|$$Y5<\$,t$0|$4l$8L$D;AD$@u_\$,t$0|$4l$8<ËD$D __0+,)9Ɖ|$D$ _l$U_/ +)9wg _8uI7|$t$@4$0D$DD$<$ML$$L$ _.D$!$x]$j]$\]>$.K],\$t$ |$$l$(t$0,:FD$4]P9] )͉+9](l$44$D$l$WƋ]];0:tJF|$4N%D$ GL$4$%D$24\$t$ |$$l$(,É$O\mD$4D$4$D$!W뽋]볐<\$,9|$4l$8t$0\l$HD$D$DD$D$@$9t&pE%9|1t Du􋃤\L$\$,t$0|$4l$8<$[UWVS8LD$`t$d@D$8D$8u|L$`y)?,8\0 \~+v5\:Fuu wL[^_]$Z$Z뽅&l$`\E%͉D$<)ŋ \+9L$<YD$+8)9|$T$D$D$t$ t$D$ @F|$;l$|$L$@D$@|$|$pti;l$}9uL;l$|tD$(֋T$2t D$,[^_]ËD$D$$+D$9v % Ɖ7;l$|J$1N$+L$ ZLt$f.ʉ|$ztL$D$ %-t$|$Ð1\$*L$ ZKt$|$f.ztL$|$T$  \$t$|$Ð)ƋD+9T$DD$0ujL$L$t$D$@$!D$Ll$l$D4$l$D$ k?0ŁtDuD8$ Љ;t$r,[^_]$J>rUWVS?Lt$`>.э)>+L$<9VD$t$uF$%? $F$:$:똋$$$$=$%9O苃=+)9wU7u=>t$uF$%? $.$:$9띋=8=o+v=*G$9ދ$ $$7$0$DŽ$9 $)==M+)9wN}$VE%҉~$G$%? $G]$8뤋$;$${ $DŽ$l8$B=$$DŽ$ $$$)$=t$+<$)9Ɖ$ $=$$$<$|$|x D$<$q΋D$| 9D$;$$$9=u)щL$l=+9lD$l=CL$l$|$$$$$1$+$|$$~S1ɋ$$$T$(<ȃ$|$4+D$T$4D$l|$$L$t $|$lt~$L$l狴$$D$lT$l1$Bu$t|$l)$$HD$h)L$h$ t$h)$H|$h)$$!Ȩ$D$d$,L$hd$dD$dxr$$ uE $ru#$(=$(i$H4$:4뭍u$u!~$uM$$F2$D$` $Bt$h<)t$`D$\$L$`|$dD$\T$<9v0D$<L$hD$< ׉L$`D$\9D$0[^_]$9+؃$ +SUWVSL|$ht$lD$`T$d9D$0,[^_]$j(؋.ut$G(NUWVS;L|$lD$`T$dD$ &FpdWZ      @truncr (precision loss in truncation)floorr (precision loss in truncation)%Zratlift: must have 2*amax*bmax < m, found amax=%Z bmax=%Z m=%Z ratlift: must have 0 <= x < m, found x=%Z m=%Z ratlift failed to catch d1 == 0 ratliftratilft: amax must be >= 0, found amax=%Z ratlift: bmax must be > 0, found bmax=%Z invmodbezoutNaN or Infinity in dbltorrtodbl !⍀!P ⍀ P⍀P⍀P⍀P⍀Pzu⍀Pa\⍀PHCy⍀yP/*d⍀dPO⍀OP:⍀:P%⍀%P⍀P⍀P⍀P{⍀Pgb⍀PNI⍀P50⍀P}⍀}Ph⍀hP !/!H!a!z!!!!!!")"B"["t"""""" #$Ë$Ë $Ë$####0 %##0 8#)##0  0 p##S(0 ##0 N##0 m#Z8e.0 #y yi#y a@#y )#y !#y #y #y #y h#y `#y  u 0 U # J : # 2  #  #  #  #  #  # C  0    m #a #"   c #W ###0 v####0 ####0 `#]T#]H #]#]q#]#]#]Y0 H3#E#Ek#EJ#EA0 1#|#|#|#|#|#|#|}#|E#|?#|+#|#|x0 \E#$###0 o####0 gM#\#;#%#0 #7###0 *#m#m#m#m#m#mu#m#m#m1##m#m#m#mS#m<#m"#m#m#m#mm#m"#m#mB(#m#m #m#mn#m9+#m#mg#mP#mH#m5'#m#m#mi0 X##0 2# ##0 9#*##0 |9#*##0 #e;#$#####wU#####H###0 9J#x>#x(#x #x#x#xt0 Q1####t7#####:#&# #0 T#J#@####0   0 hWG @## ### 0 < 2.0 2 ~##0 zxt2 f`\2 N8:842 '#0 pA#-###u#i#[B #0 J#0,0 #L|#L^x#LH0 1#`)#`#`zx#`\0 H5#0#0#0#0#0#0~G#0?#0#0#0#0#0#0#0\:#0,0 qE7 #|0 [B#y#yL#y1#y#y#y#yu0 hB##0 #J#D#<"###0 j#|dTD"#|#|#|#|#|#|x0 T7 #5:#510 ##s#^#,#&##0 o#i#a>#'###0 XT1 G9&#Lܿ#LͿ#L#L#L#Lk#L]O(#L#L#LX#LH0  ٽ#мȽ#м#мn`$#м #м#м̼0 y#j#N#C,##ػ##0 r;#,#####zVH!# ###0 }D#($0 #0 t/# # ##ܷ0 #so0 S7-)0 Ե##_#P#4#"|#Դ###x#r|#gx#W ##޳#سp#ͳp#k#e#L|#Ax#1#Ӳ#Ͳ#Dzp#p#U#O##~W"#x####}#B߯#ү#ů####ȮjQ5 ׭rF-ͬ###M֫#ɫ####W5 Ī##|2####{#l^x#Qp#I#####C# ##ͧpD+æy#L#=/###k#A#7# #ݤ#Ӥ#[#0#t##zN%΢^##v#Cx#7#1#+##|#נ#x##h#N ##ן##G#.####w#f|#S# ##ݝx##g#/#0 ؜K# '# # # \# N# F# # # q# ZH# (# # q.o'ڗ# # # |# i# P# $# ޖ# –# ^# O# 3# 0 Օ#}#}#}a4#}#} #}Ĕ#}s#}S#}I#}#Ɠ#}#}#}#}ΒlV*Б#}#}C#}#}#}ΐcS}B#}#}#}яx#}#}#}r#}G #}#}ҍt#}č#}|T(_#}O#}Gx#};#}+ԋ#}#}#}d#}Zϊ#}Ċ#}y0 jZvK;v/x#v։#v#v#vy#vl#v_#vوÈuU)χ#v=#v2$#vކ#v†#vn#vV#v6#v#v#vم˅#v#vi#v#v#v#v#v#v}o=#v)#v #v#v#v[#vM. Âavj#v`#vA#v#viS;_I2#v'#v#v#vc#vK#v+#v ~#v~#v~~~#vv~#vZ~#v~#v}#v}#v}}@vg}H}!}}||~||{y{4{t#v&{#v{zzzzVzzyyy!y#vy#vxx#vx#vx#vx#vx#vlx)xx#v x#vwwvwwwvwywiw(wv#vv0 v#,uvv#,uvvKv$v,uv#,u v#,uv#,uu#,uu#,uu#,uu#,u}u#,uwu#,u`u(u0 jUd dc\[[[#N[[#N[[#No[#Ng[#NT[[#NZ#NZ#NZ#NZ#NZjZYZHZ7Z$Z#NZYYYIYXXXXX#NW#NW#NWWWW#NV#NV#NVU#NU#NU#NUU#N}UmU#NeUDU#N+U#N%U#NUT#NT#NzT#N_T#NWT#N;TTTSSS#NSSwS>S%SS#NRPR$RRQ~Q#N`Q#NPQ#N QPPaP#N@P#NP#NOcO#NAO#N4O#NN#NN#NN#NN0 nN#@cNSN#@KN*N#@N#@ N#@MM#@M#@rM#@UM#@OM#@6M MLLLL#@LLqL8LLKKKDK#@K#@J#@JJJ5J#@J#@J#@I}I8I#@-II#@IH#@H#@H#@H_H#@YH#@.H#@H#@ H#@GGGGGG#@fG>G$GFFF#@FMF3F FEEEsEGE1E ED#@yD#@3D#@&DDCC#@fC#@UC#@C B#@A#@A#@ArAVA#@8A#@@0 @@#)?@@w@]@+@????P?#)?:? )?%?0 ??>#t=>#t=u>#t=e>#t=>=#t==#t==#t=p=0 Q=#=<<<<#:<s<S<9< <;;u;U;:g:#:Y:$:=:#::0 999#39#39P9#3J9#39888u88(777#35#35#3[5!5#34#34#34#34#3}4#3r43#330 33#@1v3#@1]3#@1S3!3#@13#@132#@12#@122r2#@1K2#@1B2#@172'2#@121#@1111#@11#@11#@1P1#@1<10 00#-0#-l0^0J0#-/#-r-#-S-#--0 -,#,#,:,#2,#,+#+#+#+z+#t+#0+#**C*#+*# **)#)#)#)#(#w(&(''#&&#%#K%:%)%%#%#V##N##*##x#]D#0 #oQ#/####Z#A#7#0 se#I#Ix#IU#I#I#IE0 6##p#]#0  #Y#Y#Y#YU0 D(###D#0 @+# i # ; # # #  #   # # 0 [ # U # M # # #  # # 0 c # G # A # 9  # # # # 0 h |#] M `B   v #p #m#V#0 #` `#`#`#`\0 ?/\x'?###0 >#2.0 " j##j##/  f#"f#"/  b#"b#"/  ^#"^#"/  Z#"Z#"/  V#"V#"/  R#l"~R#l"x/ s mN#S"eN#S"_/ Z TJ#:"LJ#:"F/ A ;F#!"3F#!"-/ ( "B#"B#"/  >#!>#!/ :#!:#!/ 6#!6#!/ 2#!2#!/ .#!.#!/ *#r!*#r!~/ y s&#Y!k&#Y!e/ ` Z"#@!R"#@!L/ G A#'!9#'!3/ . (#! #!/  # # / TPLHD@<840,($  9C`hrEk:6d?T9C`hrEk:6d?T`T<  p  + 5ELU_fDm|Xw8Lu<H@De4$-( TPS0C,'`\ #W #v # #`\`ahd|u ,*tixc(d^_(]]OX$e'3P$1@p`g \p\y\=p:̷0P<H t"1\8Tk,39i0bM Tt F[x 60Fv  -x>X=gmto4XxH ?\NR@d$DbLpPtde+&`G7m~U1_KARATSUBA_SQRI_LIMIT_KARATSUBA_MULI_LIMIT_KARATSUBA_MULR_LIMIT_REMIIMUL_LIMIT_MONTGOMERY_LIMIT_INVMOD_GMP_LIMIT_DIVRR_GMP_LIMIT_Flx_INVMONTGOMERY_LIMIT_Flx_POW_MONTGOMERY_LIMIT_Flx_SQR_LIMIT_Flx_MUL_LIMIT_EXPNEWTON_LIMIT_LOGAGM_LIMIT_LOGAGMCX_LIMIT_AGM_ATAN_LIMIT_RgX_SQR_LIMIT_RgX_MUL_LIMIT_pari_kernel_init_int_normalize___i686.get_pc_thunk.bx_setloop_resetloop_incloop_affir_shifti_ishiftr_lg_truncr_floorr_mulss_muluu_addumului_umodiu_diviu_rem_divis_rem_divis_divrr_divri_dvmdii_red_montgomery_diviuexact_diviiexact_muliispec_resmod2n_sqrispec_sqrtremi_sqrtr_abs_equalii_equalsi_equalui_cmpsi_cmpui_cmpii_cmprr_absi_equal_absi_cmp_absr_cmp_ugcd_cgcd_clcm_xgcduu_xxgcduu_rgcduu_cbezout_lgcdii_Fl_inv_ratlift_invmod_gcdii_bezout_invrev_affrr_ishiftr_icopy_spec_mului_mulsi_mulsr_mulur_mulrr_mulir_vals___i686.get_pc_thunk.cx_divsi_divir_mpdivz_divsr_modii_modiiz_divrs_truedvmdii_truedvmdis_int2n_int2u_mulii_remiimul_sqri_cgiv_usqrtsafe_pari_rand31___i686.get_pc_thunk.dx_setrand_getrand_randomi_dblexpo_dblmantissa_dbltor_rtodbl_addss_addsi_sign_addii_sign_addir_sign_addsr_subsr_addrex01_subrex01_addrr_sign___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_2_DEBUGMEM_gen_1_gen_m1_gen_0_bot_avma_sqrt_gerepilemanysp_gerepilemany_pari_warn_gerepileall_gerepileuptoint_pari_err_shifti_spec_diviuexact_i_addiispec_subiispec_addshiftw_muliispec_basecase_muluispec_sqrispec_basecase_approx_tab_sqrtispec1_sh_sqrtispec2_sh_sqrtispec_p_sqrtu2_gcd_plus_minus_tab.0_mulur_2_mulrrz_i_tab.1_affsr_pari_randseed_pos_s_neg_s_subisspec_addsispec_reel4.2_p_sqrtu1_catii_sqrtispec2_utoi #1/12 1200773930 0 0 100644 22620 ` mpinl.o X//__text__TEXT+2__data__DATA+P.__cstring__TEXT,.__common__DATA/__picsymbolstub2__TEXT',/?__la_sym_ptr2__DATA./| 2E__nl_symbol_ptr__DATA/ 2>__textcoal_nt__TEXT/ 2 @GT$l$DD$@T$l$$_ >T$xЋ\$,t$0|$4l$8<É1)͍*ܐVD$t$҉x^É1)֍ 1됐$I@L$ HÐ$%@@L$ HÐSD$ u [É$SD$ u j [Å~ $؉$ZVD$$TƋD$ $F^VD$$$ƋD$ $rFD$$$cF^ÐVD$$ƋD$ $2FD$$$#FD$($F ^ÐVD$$ƋD$$$FD$ $F^ÐL$ ș1)Щ@u  É $1|$t$T$ Jt#r1҃ u؅OƋt$|$$ ݃ L$Q%t1 ËI.x؅O搐 1ҋL$A%tЃ ËQD$$D$D$ $9$ÐD$ |$$$Ã|$l$|$$l$ t$9t%u%9|!t Dut$|$l$$ѐ D$T$u B Å~ B@BB𐐐t$l$|$l$$t$ }tdxF4$ ) @E9u}D9|t$|$l$މ4$\ ) 붍Wډ$E|$l$t$l$$|$ uu#Vډ$LEt$|$l$É<$ ) @}E9.}D9|뷃T$$L$ tT$ $QÉT$ $T$$L$ tT$ $ÉT$ $CT$ L$$tL$$ÉL$$gV$lƋD$ $FF^ÃD$ ؉$ÐVt$ 4$(9@`@}9|^ÐVt$ 4$9@@}9|^ÐD$$t$|$$qƋxD$ $z lj~t$|$ÐVD$$$lƉD$D$ $"^ÐVD$$$@ƉD$D$ $^ÐVD$$$ƉD$D$ $\^ÐVD$$$ƉD$D$ $^Ð|$|$$t$l$D$l$ $%|$ƋE$F|$E$Ft$|$l$Ð\$t$|$t$ F%?D$$- $4$uF% F\$t$|$Í$T$Ƀ,\$l$(t$ |$$L$0`Al$4uUډЋ\$t$ |$$l$(,ËEtE%> $D$Z>l$$벃,D$0\$l$(t$ |$$l$4uE؋\$t$ |$$l$(,Ë>D$$>l$$ă D$L$9M à D$L$9N SfL$ T$$9t'BT$؉D$ A $D$[Ë&񐐃T$$L$ BT$D$ A $D$_ÐT$$L$ BT$D$ A $D$ÐT$$L$ BT$؉D$ A $D$ÐT$$L$ BT$D$ A $D$ÐT$$L$ BT$؉D$ A $D$gÐT$ L$$BT$D$ A $؉D$3ÐL$$AL$D$D$ $ÐL$$AL$؉D$D$ $ÐVt$ Vt11ɍpPu#tΉ$f 0^Ë吐D$ |$$$Ã,t$ t$4\$$|$$l$(|$0taE1)љL$1)щ $=x)ʋD$8ڃu0Nʉȋ\$t$ |$$l$(,]$.두D$(D$D$$D$D$ $M$ÐV(D$4T$D$D$0T$$ƋD$$L$8(^Ð,\$t$ |$$l$(t$4 F|$0tyF%lFxeFD$1)щ $&x/ϋT$8߃ENNj\$t$ |$$l$(,ËŋD$881$.ht$|$l$t$$|$ FtLtDF%7Nx01)ЙكOȉ؃Ot$|$l$1$.릐V(t$4T$D$0T$t$$D$x $(^D$t$$吃D$(D$D$$D$D$ $Q$ÐV(D$4T$D$D$0T$$ƋD$$L$8(^ÐV(D$4T$D$D$0T$$ƋD$$fL$8(^Ð,\$ t$$D$4|$(>T$D$D$0T$$,L$8L$$>D$T$D$D$0T$$L$8L$$>D$T$D$D$0T$$L$8L$$8>D$T$D$D$0T$$iL$8L$$D$\$ t$$|$(,ÐD$$D$D$ $y$yÐ,\$|$$l$(t$ l$4E|$0tFt E%~\$t$ |$$l$(,ËE<$D$ $.묐,\$ t$$D$4T|$(>T$D$D$0T$$>D$$\$ t$$|$(,Ð,\$ @t$$D$4|$(>T$D$D$0T$$>D$$V\$ t$$|$(,Ð,\$t$ t$8|$$l$(4$@ŋ8D$0t$$L$4L$$v $l$K8\$t$ |$$l$(,Ã,D$4T$D$D$0T$$!L$8L$$M,ÐD$ T$(L$$T$$*Ð,\$t$ t$8|$$l$(4$pŋ8D$4t$$2D$D$0$ l$${ 8\$t$ |$$l$(,Ã,\$t$ t$8|$$l$(4$ŋX8D$0t$$bL$4L$$. $l$ X8\$t$ |$$l$(,Ã<\$,(t$0|$4l$8 t$H|$DD$D$@.$t$ G%it]GD$4$ $t$t Gx" L$\$,t$0|$4l$8<ËF%? NŋGyl$<$D$4$ $t$ 똃D$($D$D$$D$D$ $ÐD$$L$ D$AD$A$Ð\$t$D$$ |$>D$D$ $n L$(L$$q >\$t$|$Ð\$t$D$$\ |$>D$D$ D$$] L$($L$>\$t$|$Ð\$Dt$D$$ |$>D$D$ D$$  >;\$t$‹|$ÃL$ T$$t*tT$ $L ÉL$$AtT$ $'ԉT$ $ ƐT$ t $É$T$ t $É$T$ t $aÉ${T$ t $ É$SL$ T$$t(tT$ $ÉL$$%t T$ $T$ $p͐L$ T$$t(tT$ $ÉT$ $)tT$ $։T$ $ȐL$ T$$t(tT$ $ÉL$$t T$ $T$ $͐L$ T$$t(tT$ $?ÉT$ $5tT$ $6D$T$ $L,\$ Tt$$D$4|$( >T$D$D$0T$$‹D$@t>1\$ t$$|$(,ËD$8$D$>א k+L$ ÐV1Ƀt$ Vt N^$萐 T$D$u @ @@P𐐃,\$ `t$$D$4|$(>T$D$D$0T$$>‹D$t1\$ t$$|$(,ËD$8$D$ِ,\$ t$$D$4|$(>T$D$D$0T$$6>‹D$t1\$ t$$|$(,ËD$8$D$6ِ\$t$T$ vt&v$t$4$\$t$É$ꐐ D$T$D$)9C VT$t$D$99 ʉ)E^Ð 1L$T$)ʅEƒ à T$+D$L$9G à D$+L$;D$G SD$$D$D$ ${L$(L$$f[ÐSfD$ D$$CL$$$L$*[ÐVt$(D$$t$$CD$D$ t$$`^ÐVL$ QtrA$)ƍF^ÐUWVT$$D$(|$0,D$,t$ L$89T$ v,D$ L$4D$ ׉L$89l$ wԋL$ L$4 ^_]ÐUWVl$$L$(D$,T<)T$ l$ 7L$4L$8d$0 T$0U;|$ s%L$87L$4 ЉE;|$ rۃ^_]Ð t$D$t$)‰\$ыu \$t$ Ð t$D$t$)‰\$qы5 \$t$ overflow in real shift⍀P⍀P⍀P⍀Pup⍀P\W⍀PC>⍀P*%o⍀oP Z⍀ZPE⍀EP0⍀0P⍀P⍀P⍀P{v⍀Pb]⍀PID⍀P0+⍀P⍀Ps⍀sP^⍀^PI⍀IP4⍀4P⍀P| ⍀ Phc⍀POJ⍀P61⍀P⍀P⍀P⍀P4,M,f,,,,,,,-.-G-`-y------.(.A.Z.s...... /"/$Ë $Ë$Ó+/++ S+/O+K+ (*)))/)))) )/^))q)Z) (((,(( f(8((/( ( '''/'' c'''&&/&& &&k&[&,& &%%%%%h%G%7% %$$$$$$$g$Y$?$/$#/###/## ##j#/`#\# <#,##/ ## """"""F"/!9"-""!/!! !/d!!!!|!/d!t!`! 8!/ 2!&!!!/    h / b V F 4 / ,  / r/hd TD// |^/TP 2 / ~/tp R<,/ woM4$e/A/* / wU/ O%e3/ fXF/ / ~n, ?5 jX>,D/u#dwyj\8) vc/VR J;/.* ^/TP   y @  /  /   N @  /  /  c 0     / / / /  j \ /      i Z L  W+_3UK/ kZ1//  / / }Q#/` /`/`n/`\ L+ // Q/:6 / /~z C/73 /  ////  ////  /./.  /./.  /./.  /.x/.r m g/._/.Y T N/k.F/k.@ ; 5/R.-/R.' " /9./9.  ~/ .~/ .  z/.z/.  v/-v/-  r/-r/-  n/-n/-  j/-~j/-x s mf/-ef/-_ Z Tb/q-Lb/q-F A ;^/X-3^/X-- ( "Z/?-Z/?-  V/&-V/&- R/ -R/ - N/,N/, J/,J/, F/,F/, B/,B/,~ y s>/,k>/,e ` Z:/w,R:/w,L G A6/^,96/^,3 . (2/E, 2/E,  ./,,./,, xtplhd`\XTPLHD@<840,($  >t+ ,!((9@)T)DX)) )L)1$)//M/\qp (>tc X8l'F `8p9@ *eTy#T? \G #&'(Hh~Xlt,\*p"t(/`  L 0'@GlN}x   LuH  H   x!Yq8 cali Nt[(4ADd&%$$$ 4&$% $p%p$7/'h"_!7 O WT! 8tT#0)\$xb8*o*},+l+1-H5UPUx(x/j<0!O(=F X p ( p x H   Xo4-v}_IB; P g_addll___i686.get_pc_thunk.bx_addllx_subll_subllx_mulll_addmul_bfffo___i686.get_pc_thunk.cx_divll_evallg_evalvalp_evalexpo_constant_term_leading_term_stackdummy_new_chunk_cgetg_copy_init_gen_op_cgetg_cgeti_cgetr_cgetc_mkintmod_mkpolmod_mkfrac_mkrfrac_mkcomplex_mkvec_mkvecsmall_mkvecsmall2_mkvecsmall3_mkveccopy_mkvec2_mkvec3_mkvec4_mkvec2copy_mkcol_mkcol2_mkcolcopy_mkmat_mkmat2_mkmatcopy_zeropadic_zeroser_zeropol_zerocol_zerovec_zeromat_zeromatcopy_col_ei_vec_ei_mpcopy_icopy_icopy_av_mpneg_mpabs_smodis_smodss_utoineg_utoipos_utoi_stoi_mkvecs_mkvec2s_mkvec3s_mkintmodu_stosmall_itos_itos_or_0_itou_or_0_modss_remss_affii_affsi_affsr_affur_affiz_affsz_mpaff_real_0_bit_real_0_real_1_real_m1_real2n_stor_utor_itor_rtor_ctofp_shiftr_cmpir_cmpsr_maxss_minss_subii_addii_addrr_subrr_addir_subir_subri_addsi_subsi_vali_divss_sdivss_rem_divss_rem_dvmdss_sdivsi_rem_sdivsi_modsi_divsi_rem_dvmdsi_dvmdis_dvmdssz_dvmdsiz_dvmdisz_dvmdiiz_modis_umodui_remsi_remis_rdivis_divsiz_divssz_rdivsi_rdivss_rdiviiz_rdivii_fractor_divrrz_remiiz_dvdii_mpcmp_mptrunc_mpfloor_mpceil_mpround_mpadd_mpsub_mpmul_mpdiv_dvdiiz_random_bits_itou_affui_dvdisz_dvdiuz_gtodouble_Fl_add_noofl_Fl_add_Fl_neg_Fl_sub_Fl_center_Fl_mul_Fl_sqr_Fl_div_expi_shift_left2_shift_right2_shiftl_shiftlr_overflow_hiremainder___i686.get_pc_thunk.axdyld_stub_binding_helper_top_gen_1_lontyp_bot_avma_gen_0_Fl_inv_gaffect_rtodbl_diviu_rem_pari_rand31_divri_divir_mulrr_mulir_mulii_roundr_ceilr_floorr_truncr_cmpii_divrr_divsr_divrs_dvmdii_vals_addsi_sign_addir_sign_addrr_sign_addii_sign_cmprr_gtofp_affrr_affir_divis_rem_gcopy_pari_err_tabshi.0_reel4.1#1/12 1200773932 0 0 100644 48804 ` Flx.o| __text__TEXTЀD<__data__DATAЀ<h$ __cstring__TEXT T__picsymbolstub2__TEXTt t__la_sym_ptr2__DATAl__nl_symbol_ptr__DATA 6__textcoal_nt__TEXT< @T P_n \>UWVS,D$@ljL$)ω|$+9D$D$D$t$ ;l$}e|$T$@D$L$8w+9wY0GF@|$~L$;l$|T$@l$Bǁ@|$EljED$,[^_]$뙋$(UWVS,D$@{ljL$)ω|$w+9D$D$D$t$ ";l$}a|$T$@D$th{L$8w+9w;{0GF@|$~L$;l$|D$,[^_]$뷋s$JUWVS,D$@ljL$)ω|${+9D$D$D$t$ $;l$}a|$T$@D$thL$8w+9w;0GF@|$~L$;l$|D$,[^_]$ 뷋w$J,\$t$ l$(|$$D$08|+)9wH.&9M|\$t$ |$$l$(,ËL$0$D9|$PUWVSG,l$@ED$9L$L$}nD$DD$>w+9wf0GF@|$~t$DD$t$9|E% EEǁ@|$EljE,[^_]$z댋߀UWVSg|$4l$0)Ƌ+90uq,>Ut|$T$~UJ9}D9|;T$4;T$4~[^_]$~$~`UWVSl$0'#E%p+)9w]'8u?,D$49G}D9|t$<$}[^_]$}$}UWVSD$0~8{~+)9wD."9M| [^_]ËD$4L$0D$$D9|$\}뮃,\$Pt$ l$(|$$D$0}8}+)9wH.$9M|\$t$ |$$l$(,ËL$0$D9|$|몃,\$t$ l$(|$$D$0T}8P}+)9wH.&9M|\$t$ |$$l$(,ËL$0$D9|$$|몃,\$|$$l$(t$ |u|~+v'}F,D$0G\$t$ |$$l$(,${ː,\$t$ l$(|$$H|}D|w+v5uG,D$0FF F\$t$ |$$l$(,$9{뽐,D$0\$(t$ |$$l$(t\{{}w+v.uG,D$4FD$0F\$t$ |$$l$(,$zċD$4$А,\$t$ l$(|$$@{8<{l$8w+vb@{0G,nD$4D$D$0$zFt\$t$ |$$l$(,ËG@{%,$$y됐UWVSD$0z8z+)9w].,uL$0A%?9E||$,$vy[^_]ËD$4L$0D$$>yD9|$Wy땐UWVSKD$0y8y+)9wD.,9M| [^_]ËD$4L$0D$$xD9|$x뮃,\$t$ l$(|$$D$0\y8Xy+)9wU.&Mt 9|\$t$ |$$l$(,ËD$4L$0D$$D9|$x띐UWV t$4l$0~DuUс|LL$)~u?,D$xU׃u } ^_]$w$~w볐UWVSsl$0xu׍)Njx+9wIx,98}D1t$49|EGt$<$[^_]$v멐UWVS,D$Ll$@9D$P~D$LL$Pl$DL$LT$DD$PL$Lwȉ։L$)Ƌ{w+9D$7uyD$~ ,1;t$P}2DL$D;T$H9 ȉ+L$HEщ;t$P|;t$L}D;t$L|D$<$D$,[^_]$uv$uYUWVS,D$@T$D8 9L$~T$@D$DωT$svov+)9.,Mt$@FE;t$}6T$@L$D;T$H9 ȉ+L$HEщT;t$|9}L$@D9||$,$,[^_]$tmUWVS,D$L9D$P{uŋwu+)97ul~,1;t$P}'L$@L$D+L$H9Gщ;t$P|;t$L}L$@;t$L|wl$4$,[^_]$t$ tk{ul$Pwu+)97uj,>~1;t$L}'T$@L$D+L$H9Gщ;t$L|;t$P.LL$DL$H)E;t$P|)$[s$MsmUWVS? ,|$$;t$(}'L$PL$T+L$X9Gщ;t$(|9}L$P9||$Pt$$GF4$D$,D$c<[^_]$irqL$(sȉL$,)Njs+9wm>D$, ,9|$$}%L$PL$T+L$X9Gщ9|;t$(.WL$Tl$X)ŅEʼn;t$(|4$q념UWVSWrl$8u)NjSr+9wXWr8u:,719}L$01ҋL$4)Eщ9|G[^_]$3q$%q뚐Vt$ V%$D$D$$D$;NH^UWVL$|$19}t)ʼn,9|^_]ÐUWVS,l$D|$HD$@Oq0э)Kq+L$9T$Oq, L$@AB t.9}T$@D$9|D$,[^_]ù9.}T$@1D$9|$onL$@A$뮐UWVSD$0(D$4Wp4()NjSp+9wwWp8uY,7L$0A1ɉG;L$4}D;L$4|9}D$4Tt$09|[^_]$n$nx$nσt$|$t$ |$$%Tt|$$MnD$|$4$t$|$ÐUWVSLD$d+oT$`>L$4͋%D$0BD$dD$,T$`+D$lD$<l$l'o)T$$+9L$lD$$l$dL$0ƋD$9;t$,!Шt7)T$dLT$8;t$(;t$,!ШuԋT$(D$`t$4 1t$h)ЋT$h9ȍ<GNj|$(D$0|$(9ZD$0D$(x!|$4ul$(xl$(T$4tꋃg`L$<D$(D$D$4$L[^_]É1t$h71t$hhD$$t$`L$,$t$hD$8T$l$09T$(RD$D$(|$hl$`+|+D$0p;t$(;t$,!Ȩt^D$ T$dD$()ȍ,L$8et$h:;T$h9 ȉ+L$hE;t$(;t$,!ȨuL$(1+L$0tD$h)d$$t$h|$8l$(D$0l$9D$(9;t$,!Шt7T$(*LT$<;t$(;t$,!ШuԋT$(D$`t$( 1t$h)׋T$h9ύ:T$4G<|$0t$(9ZD$0D$(x"|$4ul$(xt$(l$4DtD$(D$D$4$XL$l1t$h?D$(D$09D$(.}D$L$<l$dL$(dt$h9Ή;t$,!ШtTD$ȋL$dlT$<et$h:;T$h9 ȉ+L$hE;t$(;t$,!ȨuT$(l$`L$hDt$4)9ō)D$(G,|$0D$D$(9>$jU$YU1t$ht$`D$$L$,$t$hD$<t$0l$(9.TmT$T$(D$`|$h+<+l$0u;t$(;t$,!Ȩt^D$,L$dD$(),T$<et$h:;T$h9 ȉ+L$hE;t$(;t$,!ȨuL$(1+L$0tD$h)d$$t$hD$<l$(D$0l$9D$(;A$9T$(T|$ <$D$8D$l.@4$S-D$dL$hD$D$`L$$ L$t9}yu 9}<t UWVS,3T|$H(/TW+(T$)9l$3TD$1uaD$1 ,;L$D}l$@)ʋDD;L$D|9})̓9D|D$~<$D$,[^_]$R$RnVt$ V%$D$D$ NH^Ã<\$,t$0l$8|$40St$@l$DD$S;}||D$t"l$<$QD$4$l$D$lƉl$4$FtL$l$$L$ED$D$$#Q\$,t$0|$4l$8<Él$4$}H΋F$ѐUWVS%9~ʉ:ցt t$ $l$Ƌ%u^_]Ð\$t$0O0D$(D$D$$D$D$ $h4$D$M\$t$Ã,\$Dt$ |$$t$4|$0l$(N(t$<$t$<$D$ N)%\$t$ |$$l$(ƒ,UWV D$0t$4D$@$L$ŋA$D$rL$4Nj%tlT$T$D$8L$t$D$D$L$ $(L$8t$L$t$|$$L$8,$D$L$D$Nj%uD$8l$D$D$4$@t$8D$D$t$$|$0L$8|$D$D$ L$$t$<D$@(D$ ^_]ÐUWVSD$l|$0L$p׉D$pD$0L$lD$`L$h!Ѓ֨|$dDL$(L$(1D$$]$D$8D$D$1D$4T$t$H:;T$H9+l$H ȨEg$B$BUWVS˾,D$@kC(>gC+8 )9T$wD$,t$9|$@GF}|$8D$(D$D$$D$D$ $\tt$<$|<\$t$|$Í:$T$=̐<\$,t$0|$4l$8=l$D=+)9>k"7L$HA$D$pGD$Du\$,t$0|$4l$8<ËD$@$.<G|$DtԋD$LT$@D$D$H$D$G D$@t L$H%9}MD$9l$}D$LT$@L$D$ D$HT$D$D$Bt$9t$|FD$9l$.3D$t:t$HD$Lt$t$D$$'T$9t$|D$Ht$LT$D$D$@t$ D$D$L$q$P;$?;eUWVS.,;L$Dl$@D$D$HD$AD$E$ENjE%9|D$|$$:,[^_]ËD$HL$DD$D$D$L$H<$L$D$NjE%9|뢐UWVS臶D$0';8#;+)9wD."9M| [^_]ËD$4L$0D$$#D9|$:UWVSD$0:8:+)9wD.&9M| [^_]ËD$4L$0D$$#D9|$x9UWV t$4l$0~D%uUс|LL$)~u],D$xUFׁD$u)E |$%?}ǁ@EljE ^_]$8$8UWVS諴D$0K98G9+)9wZ.9M}&D$0%t'$ID9|ڋt$0FE[^_]ËC9$8또UWVSD$0888+)9.uL$0A%? @9E}D$0t6 t9||$,$[^_]ËD$4$D$kDϋD$8$D$D$4D$蝼$97dUWVS+D$0787+)9wL."9M| [^_]ËD$8L$0D$D$4D$$D9|$6UWVS藲t$077%x )͋37+9w_.uG&UD$09| [^_]ËD$4L$0D$$谶D9|$6$5듐UWVS,D$@66͉L$+)9w}7ue>L$D@D$DF;t$|l$<$,[^_]ËD$HL$@D$$;t$|$45$&5rUWVSu >,[^_]$2$27$v2UWVSg,D$@D$DL$t$%|ol$3wE )ϋ3+9},7t$@FGD$;t$}kD$D$L$D$@,M9}D9|D$9D$t(;T$};T$|D$D$9D$|/u /,[^_]$<1$.13$1UWVS,D$@T$D8%9D$~D$@T$@D$D|$T$11+)9.Mt$@FE;t$|49||$,$,[^_]ËL$@$0D9|ЋD$HL$DD$L$@D$$]D;t$|$0hUWVSD$<9D$@0ŋ0+)97u~1;t$@|:;t$<|wl$4$'[^_]ËL$0$;/;t$<|̋D$8L$4D$L$0D$$;t$@|$~1;t$<|2;t$@$D$8L$0D$$藽;t$@|D$8L$4D$L$0D$$@;t$<|$l.x$[.]UWVSO,D$@L$D.(%9‰D$.L+T$)9L$D$> |$;l$ t$@FG;t$9;l$t{L$t D$,[^_]ËD$.4D$@7~h.+?9w.8Fo|$$E-׋l$<$l$D$lL$@$,9|HD$HL$DT$@D$D$$褹;t$| L$Dt$AF9|3;t$D$Hl$DD$D$~;t$|D$HL$DT$@D$D$$'9|$U,P<\$,t$0|$4l$8D$@4(@T$@B,,@D$D$D4(+)9,8uq71L$@AG;t$D|<9}D$DTL$@9|Ћ\$,t$0|$4l$8<ËT$$MD;t$D|$T+$F+`UWVS7,+l$H+U+T$)9L$D$7utD$~ 1;t$D|<9|D$w4$D$T,[^_]ËD$L$蔮)9D|ȋL$@$K*)D;t$D|$w*{$f*^UWVSWLL$d*l$`%T։T$8* L$4+)9*8,L$dAGET$8%љD$0*D$,D$(‹)щL$$*+9D$(0D$$*D$(L$(T$$D$(EBD$<D$,9D$7L$09AG|<$%D$L[^_]ËD$8L$0D$D$4D$$9|$'덐,\$tt$ |$$(l$((D$@t$8D$D$0t$$t$NjD$DD$D$4$zL$7L$09AG|<$%D$[^_]ËD$t$4Fo$+#كSD$tTt$H!$$!ȨtP$%0%~+%8Fo$}%D$|l$x7D$D$pt$4l$$UL$|T$xD$p%8D$pL$T$$!t$4D$|$4$` $*"g%%7~+v %8Q$!勫%ED$4D$L+D$HD$D%t$|D$x$t$D$$D$$l$4%%/t$D+( )9v%8Q7|$,t$pFGt$pD$tD$,D$L,%D$0D$$L$|T$xD$$,$L$ T$D$;l$0D$,$t$D|$,L$LD$H9L$@%Il$ D$|$@%t$pD$0+T$H,r9;t$D!ȨteD$<L$tD$@)<D$|L$,D$D$$oT$|,$T$D$;t$@;t$D!ȨuD$$D$ L$x8D$|L$,$D$T$0|$D$$|$@+|$Hl$,Dl$@D$Hl$9D$@$S%|$L%.l$( T$()+l$9 D$D$<t$@vD$L$@1D$p9΋,;t$D!ШtZD$ȋL$t<D$|L$,D$D$$/T$|,$T$D$觫;t$@;t$D!Ȩu%D$|L$x7,$D$L$ŋ%8D$@tl$l$@/l$8$D$@D$8)D$(D$8D$8|$( T$,BGt$<$l$VD$(Ƌ|$(D$@4D$@,@l$%t$pD$0D$@,19;t$D!Ȩt\D$L$tD$@<D$|L$,D$D$$ܷT$|,$T$D$T;t$@;t$D!ȨuL$|%t$x8L$,$t$薽|$D$D$0$u|$@l$(Dl$|$@'D$$l$(uZD$1L$L9T$<.DL$t1)D$<Eщ9|D$ D$D$(D$D$$$ǠÐVt$ FD$D$$$ NL$ L$N$L$衴^Vt$ FD$D$(D$D$$$aNL$ L$N$L$]^ÃL$ AD$D$D$$$xÃL$ AD$ D$D$(D$D$$$Ã<\$,t$0|$4l$8|$@訁G D$D$D$D$?oW H7T$t$yu|$$T$0L$L$l$$ |$t$$ D$D$$\$,t$0|$4l$8<Ð<\$,t$0|$4l$8|$@G D$ D$D$HD$D$D$oW 7T$t$yu|$$T$hL$L$l$$A|$t$$AD$D$$\$,t$0|$4l$8<ÐV(t$0F D$D$8D$D$4$EN L$$L$D$F D$ D$F $D$VD$ $^(^ÐV(t$0F D$D$4$AN L$$L$8D$F D$ D$F $D$D$ $(^ÐL$ D$ AD$D$(D$D$$$T8<~~}~l}}D}Flx_to_Flvnon invertible polynomial in Flxq_invFlxqX_safegcd~⍀Ps~n~⍀PZ~U~t⍀tPA~<~_⍀_P(~#~J⍀JP~ ~5⍀5P}} ⍀ P}} ⍀ P}}⍀P}}⍀P}}⍀Py}t}⍀P`}[}⍀PG}B}⍀P.})}x⍀xP}}c⍀cP||N⍀NP||9⍀9P||$⍀$P||⍀P||⍀P|z|⍀Pf|a|⍀PM|H|⍀P4|/|⍀P||⍀P|{|⍀|P{́0Ib{Ƃ߂*C\uك $Ë$ȀdO.tC5k ~~~~{~X~m~T~k 4~~}}}}a}|||>|z|C{${z{{zzk zzy yxxxxk xxx,ututtttk ttnq-qmmlillilnlilelk Wl;llkkhk@kjjjk jjjjwjOjjiiiiYhfiOihYhhh^hYhUhk Fh3h_hhgggggrg_dg_Ig;g-ggfff_`fLfe_eCe)e_ edhd_^d_!d dccVc_Ac_c cb_b_lb_fb_XbPbb_ ba_a_a_aaaa_aaa_Ea_'a_a_``_u`P`_9`_1`_`__}_k m_^I_5_^k ^^^@^-^6^-^)^k ^^]]]]]k ]]v]b]P]6],](]k ]\\\\\\\k w\_\8\[[[[[k [[[[}[`[H[ZZpZYWZY7ZYYYYYYYYk YYdYDY0YXXXXXk XXXXWWWWWWk WWZWWVVVVUzVUcVUUUUUUk UUtUAUTSTSTTTtT]T TSTSSk SSS}S1SR+SRRk RRRQQQQQk QsQeQPYPbPYPUPk GP6P%PPOtONONNNNk NNNN&NNNNNk NMMMiMtMiMeMk ZMAMLLLLLk LLL}L LKLKKk KKUKKhKUK^KUKQKk FK8KJiJJJJJJk IIIyIIyIuIk [IGIIHHHHk HHHYHHGGTG GFFFFk FF@|FFFF|FxFk cFOF0FEEEDEDEErEZEDLED:ED EDDDk DDxDdD=D,DDCBCEC5CCBBBBBBBBBk AAHA5A>A5A1Ak !AA???????k }?d?S?B?4? ? ?Y=>Y=>Y=>Y==Y=w=Y=U=k 8=<|<9<;8y;i;A;-;;:8::::g:::99{9888k 8I78z8I7J877I7E7k $776666R6965555555k 55v5p5l5k F5444Q44:44 443k 333~3M2x3F3"322M22M2R2M2I2k <2/2211111p1~1p1l1k U1(1110m0~0m0r0m0i0k 0////..-.,)$,) ,**)*)w*)L*.***)k ))))r)_'?'9$2%9$$9$$9$$9$$9$$5$k ($$###|#n# #""T"D" ""!!!f!S!%!!  w S @  |C k j }yYyFyyyyy|pXJyyyZ/yyfyFyza8!y yuk iu$u~uqk YI I}IgIEk 7#QQjQMk wIhINIEk 7}k %%@%8%!k h-b-)k  j ! R !  k    k | n   ^ D V D @ k 2   k  k   k   `  ` v ` n ` \ k L > k oXfXTk Ck fL^LHk :!k 4!*!k yyyuk dV k k : 2 k !!!I!*!k %%%M%.%!k   } 1  k 840,($  j  {x{rj m gwу_wуYj T NsFs@j ; 5o-o'j " kkj  gmgmj  cTcTj  _;_;j  ["["j  W W j  S~Sxj s mOׂeOׂ_j Z TKLKFj A ;G3G-j ( "CCj  ?s?sj ;Z;Zj 7A7Aj 3(3(j //j ++~j y s'݁k'݁ej ` Z#āR#āLj G A93j . ( j  yyj hd`\XTPLHD@<840,($  y|{~]zpuxF7oCy|{~]zpuxF7oCnsqtr}wv$qtxzԀD}!l}2}C}N~Y<~e~q}8/py N:AP=dp$}@ H$IRX1JWUSNl`MQPPCLKnNH$tl 3?){;,AN 6i82d5'5d1;5,p4='@e#41d0 0$D2 Z@7Z@#|XE(0pЀ8oo@$^ax_YoPh* ]\P^[j`l5]pFFHDDFD8  pI]LPK T  L0$T|:m,>Xju|N_Flx_to_ZX___i686.get_pc_thunk.bx_Flv_to_ZV_Flc_to_ZC_Flm_to_ZM_Flx_to_ZX_inplace_Flx_to_Flv_Flv_to_Flx_Flm_to_FlxV_FlxC_to_ZXC_FlxM_to_ZXM_zero_Flx_polx_Flx_Fl_to_Flx_Z_to_Flx_ZX_to_Flx_ZV_to_Flv_ZM_to_Flm_Flx_renormalize_Flx_red_Flx_addspec_Flx_add_Flx_subspec_Flx_sub_Flx_negspec_Flx_neg_Flx_neg_inplace_Flx_Fl_mul_Flx_shift_Flx_normalize_Flx_addshift_Flx_mulspec_Flx_mul_Flx_sqrspec_Flx_sqr_Flx_pow_Flx_rem_Flx_divrem_Flx_valuation_Flx_recipspec_Flx_recip_Flx_invmontgomery_Flx_rem_montgomery_Flx_deriv_Flx_gcd_i_Flx_gcd_Flx_is_squarefree_Flx_extgcd_Flx_resultant_Flx_extresultant_Flx_eval_Flv_roots_to_pol_Flx_div_by_X_x_Flx_even_odd_comb_Flv_polint_Flxq_mul_Flxq_sqr_Flxq_pow_Flxq_invsafe_Flxq_inv_Flxq_powers_FlxV_Flc_mul_ZXV_to_FlxV_FlxV_to_Flm_FlxX_renormalize_FlxX_to_ZXX_ZXX_to_FlxX_ZXXV_to_FlxXV_FlxX_to_Flm_Flm_to_FlxX_FlxX_swap_FlxX_to_Kronecker_spec_FlxX_to_Kronecker_FlxX_add_FlxX_subspec_FlxX_sub_FlxX_shift_FlxX_recipspec_FlxqX_from_Kronecker_FlxqX_red_FlxqX_mulspec_FlxqX_mul_FlxqX_sqr_FlxqX_Flxq_mul_FlxqX_normalize_FlxqX_divrem_FlxqX_invmontgomery_FlxqX_rem_montgomery_FlxqX_safegcd_FlxYqQ_pow_FlxqXQ_POW_MONTGOMERY_LIMIT_FlxqXQ_pow_FlxqXV_prod_FlxqV_roots_to_pol___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGMEM_Flx_POW_MONTGOMERY_LIMIT_Flx_INVMONTGOMERY_LIMIT_Flx_SQR_LIMIT_Flx_MUL_LIMIT_gen_0_bot_avma_gerepilecopy_deg1pol_i_gerepileall_pari_warn_gunclone_gcopy_gclone_gerepile_gerepileupto_leftright_pow_divide_conquer_assoc_Fl_pow_Newton_exponents_const_vecsmall_sqrispec_gerepileuptoleaf_muliispec_mulsi_muluu_Fl_inv_vecsmall_copy_umodiu_pari_err_Flx_mulspec_basecase_Flx_sqrspec_basecase_Flx_invmontgomery_basecase_Flx_invmontgomery_newton_reel4.0__Flx_mul__sqr_montgomery__mul_montgomery__Flxq_sqr__Flxq_mul_FlxYqQ_sqr_FlxYqQ_mul_FlxqXQ_mul_FlxqXQ_sqr__FlxqX_mul #1/12 1200773935 0 0 100644 70980 ` Qfb.o| __text__TEXT<7__data__DATA__cstring__TEXT@sخ__picsymbolstub2__TEXTKh__la_sym_ptr2__DATA'D<<__nl_symbol_ptr__DATAx__textcoal_nt__TEXT4 @ ~, P:??$,\$t$ |$$l$(t$0|$8l$<t $!<FL$4D$4$u_F%TD$4x5?\$t$ |$$l$(,Í$l$$t$ƴЅtǸ)Љ뼍Rl$$L$蛴녍ll$$T$R,D$4\$$t$(t$8D$T$D$0t$ $T$D$x \$$t$(,Ít$$L$؃,D$4\$$t$(t$8D$T$D$0t$ $T$lD$~Ht$$L$\$$t$(,ÐUWVS3,D$@N׋˴U)ŋǴ+9wM˴ (ul$9| D$,[^_]ËD$DT$@D$$rD9|$ 륋D$D |$t$ID$Dl$ |$D$DD$@t$$Y˴uǴ~+}F|$d$DL$D@T$DWD$D$@$C@%؁? ‰QD$u"ôl$E OGl$xL$$T$t$D$4$藱$;D$ D$$Ð,\$H|$$l$(t$ uܲ~+vE}FD$0$GزGвG \$t$ |$$l$(,$A뭐,\$l$(t$ |$$D$0Hxp $蔰t$ʼn<$m$D$9ʼnt6@T$؉D$ E,$D$\$t$ |$$l$(,Ë<␐UWVS+,ñl$@0N+L$|$ñ8F ENñƋ+)9ñ8~DD$xl$DuñE+ )9}~L$Dt$~D$HpEǍ )ϋ+9w8}/~T$HD$x D$,[^_]$-$S$ $T$E$߮eUWVS[,uV+T$D$EFL$Lt[$t$vD$@pEǍ )ϋ+9{}/~L$@D$x|$DEwǁ )ϋ+9 }~L$DD$xD$HpEǍ )ϋ+9}~L$HD$x |$LE7ǁ )ϋ+9w<}l$LE%~L$LD$xD$,[^_]$$P$Ҭ$t$谬UWVS+íL$0l$<8S$T$jD$4$ƋD$8D$D$0$貫D$$9Ɖ#@T$؉D$ F4$D$]@íƉ9t8t$@,$t$D$ D$4|$8D$D$0|$$[^_]Ëí|$@0n+߉v2í(F uu$W$ID$8l$4D$D$0l$$lW$|$L$4lt$8ZkUWVSS4$l$kL$AHL$D$4$D$ lD$|$$k‹@D$T$4$؉D$ `lnD$;$xlt$DD$ t$D$$&lD$$llj<$l$kD$n8nw+v*n0G"nD$FD$F ,[^_]$^lȋD$DD$$lǁHwf$T$$lUWVS蟶iOD$TD$$hǁHSe$T$i*UWVS{jl$40j~+j9F"t$0FGFGF G jG)֋j+9wZj0u<F`9F}9|w[^_]$%h$h$ h;,\$耲t$ l$(|$$i8il$0w+v>i0GEFEFE F D$4F\$t$ |$$l$(,$}g봐UWV|$ woF~D$,4$D$e~$D$,<$D$ D$(D$D$$D$븉,$D$fD$D$,D$ D$$IfʼnD$4$(e uEy^_]UWV|$ woF~D$(4$D$d~D$(<$D$D$$D$,$D$FfD$D$(D$ D$$eʼnD$4$d uEy^_]UWVS賰\D$pD$LD$HD$@D$DKgL$@T$@D$D$X뙍@$T$@`cH_HuV+T$HD$HcHcHEF_H$T$HFBnu+)9wicH8E%~DEw%? ƉwD$Hx$|$HA G AG$$?$?%yq~$$L=$$];UWVS׉,o@k@l$@7VT$+]D$F M?tº)E|$DD$D,$D$:L$DL$$:D$OL$D$D+D$9DD$D$D$$0:9El$؉D$ B$D$=D$$>t$D$t$9<$D$=|$G l$o@k@}w+vruGF@D$Ft$Fk@}w+v+uGF@D$DFl$uD$,[^_]$=$u=뀋g@o@늋g@$3J=D$t.D$r!D$t$3=D$El$4$؉D$<D$$<9$L$<$<UWVS/|$PGm|$\l$XE;t$PGL$PAL$؉D$ F4$D$8D$,1ɋ@x#u)T$t$\<[^_]Ét$$ D$,D$$P$t$~2T$,9Ft$؉D$ B$D$D$,t$(D$4$T$,D$D$8D$),8ϋD$$D$1~D$,D$D$D$($L$,D$$L$(D$,9/s8w*T$,L$(D$T$ L$D$$T$,녍$T$뾋D$,$9Ɖi@T$؉D$ F4$D$‹t$Pl$$T$($l$t$D$ ‹9D$$tL$1?|$ $|$tًD$|$l$,u)D$l$);t$8~DD$X8l$ u+)9w28~DD$\8W$$Sl$($L$xBSUWVS`Ll$`D$,E$T$ME|$lt$hE%DD$tD$dD$$l$D$ $&7t$d$t$"tgL$,E%t 1҃L[^_]ËEt$u狓l$hEl$lEʋ|$hڋu)Nj+9x8E%~DEw%? Ɖw<$D$dD$e‰D$<@%Dd$;D$t.9T$dًt$dT$L$ F4$D$D$s8w*T$l$0u+)9w28~DD$l8$6$(SL$,T$ T$,$Jt W|$d,$|$)1҅$wl$,($T$q$L$g#L$dUWV T$L$L$ T$L$4AD$A$=ƋD$4h D$D$,$oNjF%LL$4t$A$l$D$4$D$D$$),$D$t$ŋG%؁? O<$t$t$ZƋD$4$D$NjD$4HG|$D$ A $D$4$D$HD$L$ E,$D$pŋD$D$D$$st$0FD$4p<$D$HD$L$ F4$D$t$0F,$D$D$ |$0G ^_]Ã~t$4FD$D$D$ D$D$(D$D$$$]vÐD$ D$D$$$=ÐUWVSX T$,9G؉D$ |$B$D$ D$,|$,L$G|$D$ A $D$~ D$$ 4$D${ 9D$@t$T$؉D$ F4$D$0 D$_D$ l$,D$(p[D$ +|$ )9_8~L$(t$ [~_u+)9_8~DL$ y_D$pǍ,)[+E9w>_8~l$Dt$ ~ D$P<[^_]$ $ E$s WWT$(D$,T$$~.Ft$$D$ T$,ƋG$ $ h$ D$(l$$.L$$D$(l$L$$XD$P Ȩ|$PWB%? @Bdiscriminant not congruent to 0,1 mod 4 in %ssquare discriminant in %szero discriminant in %snegative discriminant in %spositive discriminant in %squadpolynegative definite t_QFIShanks distance must be a t_REAL in qfrQfbzero discriminant in Qfbdifferent discriminants in qfb_compcompositionoverflow in real shiftqfr_unitqfr_unit_by_discnot a t_REAL in 4th component of a t_QFRqfi_unitqfi_unit_by_discnot a t_QFR in powrealrawnot a t_QFI in powimagnot a t_QFI in nucompnot a t_QFI in nuduplnot an integer exponent in nupowredimagsl2redimagreducible form in qfr_rhonot a real quadratic form in redrealreducible form in qfr_initqfbreddiscriminant not congruent to 0,1 mod 4 in primeformqfbsolvecornacchiad must be positived must be 0 or 3 mod 4HP⍀P4P/P⍀PPP⍀PPO⍀POO⍀POOn⍀nPOOY⍀YPOOD⍀DPOO/⍀/PlOgO⍀PSONO⍀P:O5O⍀P!OO⍀POO⍀PNN⍀PNN⍀PNN⍀PNNr⍀rPNN]⍀]PrNmNH⍀HPYNTN3⍀3P@N;N⍀P'N"N ⍀ PN N⍀PMM⍀PMM⍀PMM⍀PMM⍀PMM⍀PxMsMv⍀vP_MZMa⍀aPFMAML⍀LP-M(M7⍀7PMM"⍀"PLL ⍀ PLL⍀PLL⍀PLL⍀PLL⍀P~LyL⍀PeL`L⍀PLLGLz⍀zP3L.Le⍀ePLLP⍀PPLK;⍀;PKK&⍀&PKK⍀PKK⍀PKK⍀PKK⍀PkKfK⍀PRKMK⍀P9K4K⍀P KK~⍀~PKKi⍀iPJJT⍀TPJJ?⍀?PJJ*⍀*PJJ⍀PJJ⍀PqJٯ $=VoӰ7Piͱ1Jc|Dz+D]vڳ %>WpԴ8Qj$Ë$ΫrU29 999l9C99 9999aUE˨999֧999u9m9]5 ' iS3'åmT ϤĤobUJ< ۣӣseJ<0֢Ƣ~uU6"F3 z9%~ ɟ|n; ߞrdX:~`LF.ԜL4$~ ݛ͛u|u|x XI8(ݚŚhI.&ՙ™i=%iQE+fXL2" ِږɖ_ِ*ِ$ِِِݕِِِlِQِKِ ِِϔِِxِnِcِ͓kQ= oOِِِΑِِِwِmU) ِՐ z.ޏ͏wS82Ď[A ލʍn<0 Ԍn[U= }lI}2}*}}ϊ9}&} }}ډ}}}y}n^R<}2}(}}}}WG}:}}n}f}?ʆs}]}7}ޅ}ԅfQD6 }}}Є}ƄS}%}} }}}}q}g@}ǂ}}}y kZI9x."xفxxmxgx\Ix>-xxvxIx xxxxx}KAx2&~~x~~x~x~xy~xQ~A~x6~(~}x}x}xc}x:}x4}x)}} }}|x|x|x|z|G|xA|x%|||{{@x{{{x{x{{e{U{E{5{{zxzzzpzx3zx zxzxyxyxyxvyxpyxx xxx@)vxx`x(xx)v x)vx)vwww)vmw)vgw)vNwBw2w"wvvv4v)v.v)v%v vvuu^u5n%u5nu5nu5nt5nt5ntt5nttt]t-ttts5nsssssjsUsHssrrrr5nrEr5n2r5nr5nqqqqkqIqp5np5np5nppEp5n?p5n"ppooooSo5n?o5non:n5n1n nmYmmllvlCl,l:l,l(l llkkkksk7kkjjjjjj jxjbjQjAjuc9jjjiiiiiuc~iucgiucAiihhhuchzhTh&hhggggTg/ggggucffucfucgfuc]}Z"]}Z\\\\w\U\\}Z[}Z[}Z[[b[}Z\[}Z:["[ZZZ}ZZ}ZyZ eZTZDZT9ZZ ZYYYYYSY.YYYXTXXTXTfXT;XWWWWWFWT3WTWTWVVTVTV\V1V)VUTUTUU?U/UT UTT TTTMOTTqTZTGT"T TTSSSwSgSMOXSRMORMORMORdRTR?R#RRQMOQMOxQMOmQYQQMOQMOPPPPYPMOEPMOPOOOMOrOMOIO (OONNNNzNZNFN"NMMMMMMM|M iM[MMMLLLLLLLLLLLLL qLaLaIML4L!LaIL LLKKcKRKFK>KKJJaIsJaIkJaIaJSJCJ#JJaI JIIIIaII]I NI>IG*IIHGHGHGHHH}HiHGcHAH-HHGGGG GGsGeGGFFFFF?F?hF@F4F$FEEEEkE>ED?D?D?DDD`D?2D?)D?D?C?C?C?C?hC?FC)CCB?B?BB?BB?B?iB=B1B!BAAA~AdAA?@?@?@@@?@?????? ????g?A2]?A2N?&??>>>>b>D>> >=A2=A2==A2=<A2<A2<A2<<A2}<h<A2b<M<A2G<6<#<A2<A2 <A2;;A2;;;;:A29A299999a9I999886A26A266r6O646A2'6A26A266A255A25A25n5N5"555444c4M4k3A2K3A2)3 32A22A2L2A2F2A2=2 21111 11$1111h1Z11<101(1111 00q)00s0I0000 0q)/q)/////b/6/ //....o.H.(..-----x-b- -q),q),q),q)l,q)b,q);,q),q),q),++++]+>+q)+q)+**z*q)T*q)J*q)D*&**)))jq)v)q)m) _))u)(u(u(u(`(K(3(('u'u'u'l'Y'uL'uA'0''&&&&&uq&Y&I&:&&&%%%%g%L%,%%%$$$$s$A$)$$######.#u#u"u"u"u"u^"u;"u5"u"!!!!u]!uF!8!!      p ' u uucK3uRTuuq eU- {kQ:.= 6@0#  |RL<  {m4 ZA; rfVF TkTbTP ?.~uRB2 a}m$aaaaalafa] QA 0z0[0>0,  $q$T$2$   Z > .  N2"    ` b B $       ` G ; #        n /     m b R ,G )       o f : *   ( 0}Y odSEzT)! ToaP 1  wgN6$sجgN tp ZF,  n@Z6 } {{{{ } wbwb } sIsI } o0o0y t} nkfk` [} UgMgG B} <c4c. )} #_̴_̴ } [[ } WW } SS } OhOh } KOKO } G6G6 z} tClCf a} [?S?M H} B;:;4 /} )7ҳ!7ҳ } 33 } // } ++ } 'n'n } #U#U } << } z#r#l g} a Y S N} H@: 5} /ز'ز! }    }  }  } tt } [[ } BB } )x)r m} g_Y T} NF@ ;} 5ޱ-ޱ' "} űű } ߵߵ } ۵۵ } ׵z׵z } ӵaӵa } ϵHϵH } ˵/~˵/x s} mǵeǵ_ Z} TõLõF A} ;3- (} "˰˰ }  }  }  } gg } NN } 55~ y} ske `} ZRL G} A93 .} (ѯ ѯ }  |xtplhd`\XTPLHD@<840,($  MU]`pdTPeuhAQq@|c{xIoROfFnlj^sDiWzXyt3Ca5_GSkVNKgEmwbHvBrMU]`pdTPeuhAQq@|c{xIoROfFnlj^sDiWzXyt3Ca5_GSkVNKgEmwbHvBr[?Z\YLJ,0 >`)$$p|5l=h)E0!-8!x vq8 ,tWlcfdz  l|mNlGtMjaGlMvXI ,n|Lh^SX?L82DOtZKА;T^HXnR=c([o~!UG3Gwg29(w_check_quaddisc___i686.get_pc_thunk.bx_check_quaddisc_real_check_quaddisc_imag_quadpoly0_quadpoly_quadgen_qf_disc_qfi_qfr_Qfb0_qfb_comp_compreal_comprealraw_compimag_compimagraw_compraw_sqcompreal_sqcomprealraw_sqcompimag_sqcompimagraw_qfr_unit_qfi_unit_powrealraw_powimagraw_powraw_nucomp_nudupl_nupow_redimagsl2_redimag_qfr5_dist_qfr3_rho_qfr5_rho_qfr_to_qfr5_qfr3_to_qfr_qfr5_red_qfr3_red_redreal_rhoreal_redrealnod_rhorealnod_qfbred0_qfr5_comp_qfr3_comp_qfr5_pow_qfr3_pow_qfr_pow_primeform_u_primeform_qfbimagsolvep_redrealsl2step_redrealsl2_qfbrealsolvep_qfbsolve_cornacchia_cornacchia2___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_2_DEBUGMEM_gen_1_gen_m1_gen_0_bot_avma_cmpii_equalui_gequal_gerepilemany_mulsi_gmax_equalii_divis_rem_gmul_shallowtrans_kronecker_Fp_sqrt_diviuexact_muluu_Fl_sqrt_umodiu_ginv_truncr_sqrtr_affir_mulrr_divri_divir_gsqr_addir_sign_mulir_mplog2_logr_abs_gerepileall_pari_warn_absi_equal_leftright_pow_gcmp1_truedvmdii_gcopy_sqrtremi_precision_absi_cmp_gerepileupto_gerepilecopy_addrr_sign_dvmdii_modii_gcdii_diviiexact_bezout_gtofp_addii_sign_mulii_sqri_gerepileuptoint_addsi_sign_shifti_Z_issquarerem_pari_err_qfb_sqr_rhoimag_reel4.0_mul_nucomp_mul_nudupl #1/12 1200773937 0 0 100644 31460 ` RgX.o| NN__text__TEXT\JpQ__data__DATA\JLi__cstring__TEXTJMM__picsymbolstub2__TEXTJReMi__la_sym_ptr2__DATANPpo""__nl_symbol_ptr__DATAN(@QD__textcoal_nt__TEXTNhQ @qc\v| P18+pN D$ ȃÐWV|$ %p ^_Ë$1҅.tאUWVSD$$)‹J+8T$ 9|$$D$ |$ D$$ "D$,D$$9D$,}Vt$D$,t$TJ,D$;t$(:D$|6D$|$$Hl$,|$ D$$l$,9|D$ <[^_]ËL$PD$D$H<$D$H;t$(|$H6UWVS,L$@I( t $NH,[^_]ÉсqD$@'H"7Gt1D$0L$40%9}RL$09O| [^_]ËT$0T$D$)FL$4D$L$$E9|뾋D$0D$L$$ED$0$XFD$GF%UWVS3,D$@FF8L$)͋F+9D$woD$. Et$@FEF$rEE;t$| ,[^_]ËD$D<$D$6EL$@D$Nj$!ED;t$|$E냐,L$4\$hɉt$ |$$l$(D$0tM4F0FljƋE+)9wS4F (u9|\$t$ |$$l$(,ËD$4T$0D$$D9|$D럐UWVSD$0E0E+)9wr/}L$0|$4DDt$0FE[^_]É|$L$0$CD.tϋD$4<$D$C$D뀐UWV l$0Uсqс|LL$)~u],D$xUFׁD$u)E |$%?}ǁ@EljE ^_]$fC$XC땋D$BtUMUWVS',|$@7$BBunC)C+L$9wgD$uKt$d$DL$D@T$DV9}L$9|D$,[^_]$xB$jB닋CCu~+v}Fd$DD$DG$"BؐUWVSB|$4l$0)ƋB+9B0$>U t,n;T$4B;T$4~[^_]ÁJ9}D9|;T$4.̋B;T$4~$@An$/AIUWVSD$0A8A+)9wD."9M| [^_]ËD$4L$0D$$D9|$@UWVSD$0[A8WA+)9wD.&9M| [^_]ËD$4L$0D$$D9|$@UWVS,D$@@@͉L$+)97uj>d$DL$D@D$DF;t$|l$<$>,[^_]ËD$HL$@D$$/;t$|$K?$=?mUWVS't$0?%x )͋?+9w_.uG&UD$09| [^_]ËD$4L$0D$$D9|$>$>듐UWVS{}|$0D9|F@\$t$ |$$l$(,$4$3뗐UWVSL$,l$X4)T$+9L$XD$l$TL$$T$PƋD$,L$l$D$ $'D$PD$ D$(D$$9D$,T$P%D$XD$(D$PD$P9D$v;t$Pw;l$TvE;l$Tw@D$(uL$(l$(/<[^_]$2$2&T$XDT$$9щOD$ ‰D$()щL$4+9D$(wXD$L$PD$$4D$T9΍,v;t$PwL$,49t$P.#4;|$Pw $1뚐VL$ D$(qD$D$$ $D$?@% A^ÐUWVS$D$x$t,$$0t$$D$xɅt'$$/t$D$x9$},$$$$$$ŅuLW2S2u~+v}FGĜ[^_]$0ԋD$xtCW2D$x)ƋS2+9L$x~D$x7]D$x ,C2;(i$W2HD$hL$l)΋S2+9D$lD$l7D$l ,$t$dy.D$p9l$pD$`|$PT$p$$b.|$`D$p8D$Xt$p$L$P9t$\|$T1t$\9%ƋD$`<";|$\||$XD$Xt$TD$4$.L$p|$dD$\9D$pP$9D$pT$p4Rt$0W2D$0D$L9D$p|$H1$9;ƋD$`<89||$LD$Lt$HD$4$?.|$pt$d$D$0|$p9sD$h9D$pD$p|$p+$T$4D$8؉D$,W2D$4D$DD$pt$8$9L$@.|$,NjD$`<'9|D$DD$D|$@D$<$x-|$pT$dD$hD$4D$8l$,9lj|$pfD$`$,l$dt$dF4$D$lD$,l$xtxtkV,$>9,$D$ptl$HD$+)9w].UL$0AE.t9||$,$kwL$0D$D$4$D9|$땐D$$D$D$ $L$(L$$)ÐD$ $ L$$L$$ÐD$$D$D$ $L$(D$L$$ÐD$ $L$$D$L$$Ð,T$4\$$L҉t$(L$0u"A%?\$$t$(,Ãt>0 T$D$ $D$ D$8D$ 4$D$ 뱉 $u 말<\$,Ŀt$0|$4l$8l$D+)9m>N"7D$HHl?GD$Du\$,t$0|$4l$8<ËD$@$ G|$Dtԋt$HD$@t$$G T$@L$H%t%9}ED$9l$}D$HT$D$D$@D$D$L$9L$|WD$9l$.DD$t2t$Ht$t$$T$9t$| D$HT$D$D$@D$D$|L$q$) $ D$,D$D$(D$D$ $L$$L$$BÐ\$Ƚt$|$t$$ 8t$ %D$D$D$ $$pF%? $D$M$6<$D$ \$t$|$ÐUWVSC,D$Hl$@9D$L~D$HL$Ll$DL$HT$DD$LD$H D$)Ƌ +9L$D$7uoD$~ 1;t$L|4;t$H} DG<$D$D$ ,[^_]ËL$DD$D$P ;t$L|$h $Z fUWVSC<[^_]$ ڋL$P%D$Xr$D$$l$XL L$(+)͉9L$(we/D$$l$P|L$TD$ ;|$P,w,D$,9։T$P.% ;t$Pw $;|$Pw$E덋D$T$UWVS#LD$duIu~+v}FGL[^_]$׋D$dhD$4Ɖl$8)΋+9D$87xD$8 D$dt$,$D$<D$(D$d9D$<|$$T$KWKpKKKKKKLL8LQLjLLLLLLMM2MKMdM}MMMMMMN$Ë$SJBJ(J JIIN]IIN]IYI3 KI'I IHHHHHH}HjH^HDH8HHGGNEGNEWG*GFNEFFXFNE7FNE+FENEENEE3 EEEENC4ENCEDDhD-DNCCNCC3 CCCaCCNBBNBB3 BBBrBjBFBN8B4B3 "BBAAAAAA@@@N<@V@N<@J@N<@8@3 )@@@?lJ??pJ??N??N??3 ??o?W?;?+???>>>f>N=^>N=R>!>N=>N==N===3 ====N4q=i=M=<=+== =<<<<N4<N4r<d<V<=<;;;N4;z;+;N4:u:X:N4<:0:9N49N4[9G9988N48N4\8L8187N47N47N47N4u7W7N4J7N4?7.77666N4666N4o6N4g6N4 6N455N45N45N4v5V5N443 4444JM*w4g4A4"44NM*4NM*333333m3Z3033NM*3NM*222NM*2222R211NM*_1S11NM*0NM*0d0NM* 0///y/NM*/NM*.NM*.e.Y..NM*-NM*-NM*-NM*$-NM*,NM*,NM*,NM*,g,NM*7,NM*(,NM*,,+++NM*U+NM*O+NM*G+0++NM**NM**NM**I*3 8*'***))R)N%).)N%)!)3 )(((N((N((3 Y(('''N9%@'2'&N9%&&n&V&F&&&&%%N9%%N9%%N9%%N9%v%N9%W%5%3 '%%%$$Nu1$!$#####u#T#'#"""<"Nu*"""!!Nu!!!Nun!T!5!Nu-! Nu x ? NuxNu[+NuNuNuNu{Nuk-Nu'Nuq3 IN!N!{mN!BN!3 NxNxNxt3 `OA NNNsNNN3 `NMVNMI3 >%NN3 8N%.N%!3 NlNlh3 N=/N5N5rN5RN5CN53"N5|N5iN513 &N@N@N@lN@LN@AN@1 N@N@N@qN@<3  NNNNNN3 seLNN3 ~N N 3   Nq z Nq m 3 b I  N N 3   N ^ N ' N  N N 3  N N   N  N  3      \ NI R NI E 3 9  NNN3 dO,NNN3 t\NNNJ3 bN1GN13N1J1N1yN1P:N1-3 NDN,N 3 NN3 n[ONNN3 sg5 NqNqm3 PNb HN N@N N:2 5b /NM'NM!2 b NMNM2 b NMNM2 b NMNM2 b NMNM2 b NuMNuM2 b N\MN\M2 b NCMxNCMr2 mb gN*M_N*MY2 Tb N{NMF{NM@2 ;b 5wNL-wNL'2 "b sNLsNL2 b oNLoNL2 b kNLkNL2 b gNLgNL2 b cN{LcN{L2 b _NbL_NbL2 b [NIL~[NILx2 sb mWN0LeWN0L_2 Zb TSNLLSNLF2 Ab ;ONK3ONK-2 (b "KNKKNK2 b GNKGNK2 b CNKCNK2 b ?NK?NK2 b ;NK;NK2 b 7NhK7NhK2 b 3NOK3NOK~2 yb s/N6Kk/N6Ke2 `b Z+NKR+NKL2 Gb A'NK9'NK32 .b (#NJ #NJ2 b NJNJ2 |xtplhd`\XTPLHD@<840,($  =YZVU@GKHXBLJDNTSP>QWR[a\A^`MCI?O]=YZVU@GKHXBLJDNTSP>QWR[a\A^`MCI?O]_DM:9F8E<;;BCCQEY\JbTInIt0I  hC O[<G >4=RD ?RAc,B%D?E0@/x?9?h |g(|(=kl)D*$'1Xlw @ &,$<(0% wN+Nz$]#+e3Fu=l{)%V 1_is_rational_RgX_is_rational_RgM_zc_mul___i686.get_pc_thunk.bx_RgM_zm_mul_RgV_zc_mul_RgV_zm_mul_RgX_RgXQ_compo_RgX_powers_RgX_unscale_RgXV_unscale_RgX_rescale_RgX_renormalize_RgV_to_RgX_RgX_to_RgV_RgM_to_RgXV_RgXV_to_RgM_RgM_to_RgXX_RgXX_to_RgM_RgXY_swap_RgX_shift_shallow_RgX_shift_RgX_mulXn_RgXQC_red_RgXQV_red_RgXQX_red_zx_copy_spec_RgX_copy_spec_addmulXn_addshiftpol_RgX_mulspec_RgX_sqrspec_RgX_mul_RgX_sqr_RgX_Rg_div_RgX_div_by_X_x_RgX_divrem_RgXQX_divrem_RgXQX_mul_RgX_Rg_mul_RgXQX_RgXQ_mul_RgXQX_sqr_RgXQ_mul_RgXQ_sqr_RgXQ_u_pow_RgXQ_powers_RgXQ_matrix_pow_RgXQ_minpoly_naive___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_1_gdiv_gmul_RgX_SQR_LIMIT_RgX_MUL_LIMIT_gen_1_DEBUGMEM_gen_0_bot_avma_content_ker_leftright_pow_u_gunclone_gsub_gclone_gerepile_ginvmod_gerepilemanysp_isinexactreal_gcmp1_gmodulo_ginv_gmul2n_gsqr_gshift_gneg_i_free_gpmalloc_isexactzero_gred_rfrac_simple_monomial_polvaluation_normalizepol_i_gcmp0_pari_warn_poldivrem_gcopy_gerepileupto_gadd_gmulsg_pari_err_addpol_addmulXncopy_sqrpol_reel4.0_addpolcopy__sqr__mul#1/20 1200773944 0 0 100644 108284 ` alglin1.o| ''__text__TEXTY*; __data__DATA\X|__cstring__TEXT__picsymbolstub2__TEXT~ h|__la_sym_ptr2__DATAH&h(HZZ__nl_symbol_ptr__DATA'0H*__textcoal_nt__TEXT'x* @h Pg}_L\$<|$Dt$@l$H|$P7V?t|$$D$$\$\$t$ |$$l$(,$ѐ|$l$t$l$ D$$MDyuu ut$|$l$$BݐUWVS\D$pT$tD$LT$HD$LL$H0T$Dt$@%|$DD$<ƒ Ш |$D ȨS |$D|$@!Ȩ|$< Ȩ D$H$t$HD$8$yNjD$L$L$LƋ$XT$8T$|$t$ D$T$$(|$<!Ȩ|$D|$@ ȨlD$H$ t$HD$4$NjD$L$L$LƋ$T$4|$T$t$ D$|$$D$D)M9l$Db|$D|$DT|$DuS|$@#|$@tD$L@D$LD$H\[^_]Ã|$<|$<t |$HWD$L؋T$H$|$Hŋ$NjD$L$L$LƋ$t$ D$l$|$t$$1kuD$<)Nj+9L$ &D$<9D$@O;t$@|L$Hl$LD$D$;t$<|$뜃|$D|$LG%9D$<t$@M+)9wR}u9&7l$@D$H9.7L$L;t$@|$K$=렋D$@)Nj+9L$@wTD$@> &L$@9L$<9l$HT$LDD$$;t$@|$랃nt$HF%9D$@t$<M+)9wQ}u8&7D$LG;t$<.l$HD;t$<~$$롃t$@D$t$DuR 7;t$@}l$LD;t$@|;t$<.Ol$@T$HD;t$<|0$\$N끋t$LL$HF(A%9. $>|$Hŋ$ƋD$L$L$LNj$l$t$|$ D$L$$|$@4)+91t$D( u|$DT$Ht.;t$@}|$LD;t$@|D$@T|$LG%tl|$H<$:t$HD$,$ ƋD$L$L$LNj$T$,T$t$|$ D$L$$0~+v:F$D$HG$u$g$V}vM}w+vuG"l$LnD$HF$Ӌ|$<ƍ)։t$0+90D$0 D$00T$Lt4;t$<|$Hl$0DD;t$<~D$0PD$0ML$HA%tb $mt$Hŋ$AT$LƉ$LL$LNj$ |$ l$t$D$|$$7~+(v:F$D$LG$$$D$L$]D$H|$Ht$L|$tt$p\[^_]tD$LL$$&UWVS\D$pD$LD$tD$HD$LD$HT$D |$H7|$Dƒ Шx |$Dƒ ШG |$DƒL$@t$ &L$<9L$@O;t$@|T$Hl$LD$D$;t$<|$뜃|$D|$LG%9D$<t$@M+)9wa}uH&7D$H$1l$@90T$L$;t$@|$($둋D$@.)Nj+(9l$@wkD$@>uQD$@ &L$@9L$<9L$HT$LD$$i;t$@|s$$}뇃uN|$@|$@t D$L@T$89|$0|$49~[^_]$^$P뢐UWVSD$48D$0(֍)Ƌ+9w< 90.}l$4Dl$0D9|[^_]$붐UWVSL$0_[ljƋE+)9wG_ (u9| [^_]ËD$4T$0D$$D9|$&뫐UWVl$$|$0uu- uT$,9}t$(t$ D9|^_]$ŐUWV0D$@l$LD$HL$,89}D$D % 9|;t$,|0^_]ËD$H|$l$ D$L$DL$@D$$";t$,|ĐUWVS|$$7%D$Xl$\dN ȉՉL$@)ŋ+l$<9d$\l$@D$< l$\t$\09}s1ɋBl$8t)%jщ ujD$8څNʉ;L$X Ȩu/$$l$t$\uq 7|$Tt$X;t$d4t$h.$$$$;t$d$$_T$dD$h9)Ћx.+( )9T$HwlD$Ht$\uI D$H0D$Tt$d;t$hJ$$|$H;t$h~ $0$"놋)‹z+,)9ωT$DwlD$Dt$\uI D$D0D$Tt$d;t$h$$z|$D;t$h}{$$}놋$ $:X`$t$QGuL8o+9w d$\L$\.D$\G$ҋD$`D$X$sD$TOtʁDu0<$D$+Hljt߉ʁDtЉʉL$P;t$X!ШtZd$PL$PDt$L$T<$D$HljʉL$P;t$X!ШuuXt$\u;T$T 2t$`0$$D$T$2$$뷍{$|$됍$T$,\$t$ |$$l$(|$00 .t$T$7D$8<$D$$L$4L$$6$D$t$,$e\$t$ |$$l$(,ÐD$(L$ T$$tD$T$ $AÉT$ $q,t$ |$$t$4|$8\$\9l$(l$0~,\$t$ |$$l$(,ËE%9*T9~΋D$D$9~ፓ$T$뾐UWVSʉL$<+8)9|$&79| [^_]ËL$0L$4D$$9|$뭐UWVS,D$@8D$D|$0t$ $L$@D$$T$|$L$tL$@A|$D$tt$DF%9D$9L$ Шuv;l$}&;t$8|t$<;l$|ڋD$,[^_]ËL$DL$@D$$<$D$2;t$|먍$|$ol$DE,\$|$$l$(t$ Tl$00u)Nj,+9wB0"89}D9|\$t$ |$$l$(,$밐UWVS˿D$08+)9wc."uL$0t?$T$9| [^_]ËL$0$AD9|$Z돐UWVS$U$D$3h $2#l$$l$$$t$LD$D$PT$ D$4$踻$$$L$T$聻D$LD$$;D$dD$X~~D$XD$T9D$X*L$X$$4$T$D$$uD$D$L$VD$$蒽D$XT$T9T$X~$L$X4$D$$D$$ D$L$L $D$$*D$Xt$X;t$d~$$D$$D$0D$$D$D$D$ $ÐUWV0L$@|$HA%D$,%D$(D$D tT;l$(}>;t$,}*L$@D$ d$DD$D$ ;t$,|փ;l$(|‹D$@0^_]ý;l$(.};t$,})L$@1ҋL$DD$ D$;t$,|׃;l$(|몐UWVSg\Cl$pD$$D$8?8L$8')׉|$48ED$(%D$tt$@D$LǸ D$,9kt$ j<HЃT$,D$,D$D$t$ktNjt$,D$pt$$KƋ%$L$,L$D$4$`D$0tD$,l$l$0D$,$D$0D$Lpt$0D$,4$D$˷D$LC(?u+9 C0EF@l$,nt$|$89wD$8>@&$Jސ<\$, t$0l$8|$48T$D$@l$DT$$ƋD$u l$4$Z\$,t$0|$4l$8<ÉD$,$OD$4$.D$<$UWVS臓cD$H$t$T${$T$4uSČ[^_]Ë$G%D$,9D$4D$0}Wɋ_D$HL$,),l$@))9D$,l$(D$(D$<t$09t$<T$tD$t$ |$$l$(,É,$j<$`)ŋ%9~D$뽉l$1G$ru먉l$G$[EᐐUWVSۋ$t$T$۱$ցL$xuEu~+r}F&Ĭ[^_]$|ۋ$U$A8$DŽ$OL$t )ʋ+T$p9 T$p$U2$$$ $E+)9ljt$l ,D$lE8DŽ$|$t9$$$L$ll$t$9~܋D$xD$hŋ)|$d+9D$h D$dD$h D$hl$d ,EDŽ$t$x׉$)9$ $DŽ$L$t9$et$lF@ $D$t9$A$D$luً$$@tT$t9$0$D$d$DŽ$9$}.$t$d$$9$|ҋ$4$褩$|$pBD$4|$4D$x9lj$$uP$$+(7r$7B&$~ۋ$$,$$+)ՉL$D9D$D&L$D1DŽ$DŽ$$9$|$<|$h|$8T$<+E+t$89D$ht$@L$@D$D$T$|$P%D$LA%h8nt$|9t$0QD$(D$$$;r|$;v$轨$$9~|$4D$L9_D$,9CT$,T$H$;rL$H;v$T$9~Ń;|$L~t$P$D$<$t$躦T$0)9|$5$$ ;$s;rD$9~ˋt$4D$L9@9.$ ;$s;rD$9~҃;t$L~D$TpEǍ )ϋ+9}/~T$T$|$T<$סD$XpM+)9w:}/~L$Xt$X|$`4$r8$٦$˦?L$L$L$ t$T$$}d1N$$@@$Q$@$/d$UWVS\t$pD$L tЛ$T$ҥ4$跳D$;T$D;T$D~\[^_]$衣$蓣먋t$D9t$Hj|$H.|$DM+)9u$>|$l$0GDFD$(;l$H@D$4|UL$4 $n;l$D;l$D~4$-4$D$At$LD$4$D$4|$L$0D$$褠T$(D$D$4$臠;l$HD$4|a$` $O|$L8D$DD$$ClL$0$79T$0$.9|}D$+89wD$D$<@&D$$šۋD$<D$$Ϙ1ɅmL$ $D$% T$(<$T$l$D$D$ $ɘ$F$5c$$t$`D$0.|$0u )ϋL$0+9f8A&1Ƀ7|$,tuT$`L$dr%9tΒ$t$胙L$dD$,9 }t$`9|<$1ɉD$,%ƒuOɉ+L$<Ή+̓r7|$l$@T$T$,$T$I>D$,$D$D$D$P\$,t$0|$4l$8<Ð<\$,qt$0l$8|$4T$>l$@D$DT$ T$T$D$,$詑>,$D$D$D$D$*P\$,t$0|$4l$8<ÐL\$l$@T$T$,$T$E>D$u#E\$,t$0%|$4l$8+D$<É$ӐUWVSon,Kl$@0E%TD$ )ϋG+9KL$8D$DL$D$,$KD$D$7+D$D$G7V+T$TD$KEF"t$Eō<)G+9K(,KGuT$jt$+)9K8us,7L$yD$tP1;T$t$t D;T$~⋃#uD$D$ D$4$D$訌D$,[^_]$|$ؒ[$ǒ $趒$襒$蔒3D$ D$D$$MMÐD$ D$D$$)MÐD$$D$D$D$ $MÐUWVSkD$0Ǔ8Ó+)9wT.$9M| [^_]ËD$4L$0D$$襏L$8L$$0D9|$艑UWVSOkLD$`T$dL$4%D$0xL$dA%9D$4t"D$`{L$ D$t$$,+l$0)|$,'+9D$0D$,L$,D$0 &|$4l$`ED$<%D$8D$09D$<L$8t$ |$L$T$ |$++t$9D$8D$ 0D$8 $l$,D$D$Dl$@T$ T$D$T$,$8>D$u#E\$,t$0%|$4l$8+D$<É$ oӐUWVSgI,CqT$@D$D$D0tve$T$Zo tve$T$6ol$DCq?qu+n)9&Cq879BD$?qL$D$D$HL$DT$@D$$D$8t9~Ӊ,[^_]ËD$CqǸl$+}9wD$t$F&D$$Wn$InDD$HL$Dt$@D$L$4$8ul$Cq(?q+(rCq0D$@&D$mؐD$(D$ D$D$$D$D$ $I:ÐD$(D$ D$D$$D$D$ $EÐUWVSGGLD$`|$d0%D$$#oD$ tc$T$4m|$$t*L$`A%9D$$tc$t$m|$$E#oL$$WD$())T$(l$o+E9D$$D$D$$t$ &D$D$D$`$d|$$ud;|$$D$8},D$8,UBnEl$8D;|$$|D$,D$0T$8|$T$@:^ 1.։$_ŋ+b@D5@ʅt-€+ Шtсw +bD5u€+bD5@uD$Dt$@(l$DE~@;D$:T$@ Ѐ.t1u|$DT$H,[^_]ÃT$@x.t1փT$@N+bD5@uҀ:t։$]ŋ+bD5@ʅt-€+ Шtсw +bD5u€uZ+bD5@u‹L$Ht$@)x,l$HE.$;D$D$@8D$P4(1D$@$\D$@$\.D$@ $\‹T$@D$Pt$D<(>TD$@$\!D$@$\T$@a<\$,t$0|$4l$8t$@d7l$D|$Ht]T$T$i]Jɉu?Et"%t]T$t$/]1\$,t$0|$4l$8<ËFL$L%; D$PU trtO]T$T$\El$L@%;Et]T$|$\\1K$W\E멋D$PE$=\D$@_0<_~+v@_8F&t$w}S$ \ԋL$L$gE^]T$|$[U1WVS5|$$ƒT$HL$TuBu]q]u~+r}F&|[^_]$[[ދ$$F%D$\E‰|$Xt$lt?u]q]u~+ }F&$G$D$hT$TD$L9T$hD$P|$HtJD$`D$h9D$`}8$|$h1ҋ,D$`L$D$`Tl$hD$`9|ȋl$hT$\9Չl$`@D$h$1ҋ,D$`t$D$`҉TT$Pu|$\9D$`~l$P1.$T$Pt$$VD$LD$h9D$`L$TD$d9H|$d$T$`Dt$h|$h , t$d$|$`,D$dD$T9D$d~D$dD$X9D$dGl$d$L$hT$`<,L$h<|$d$t$`,D$dT$X9T$d~D$T9D$htiD$h|$\9D$`D$ >T$h$4D$`1ҋ $D$`҉ID$`D$\9D$`~‹l$ |$T9l$ht$Xu]ō )͉l$Dq]+E9D$D&L$D1D$HD$dt$X9t$dBT$TD$T|$8l$0T$D$T$4|$d$t$8|$0D$@++l$49D$l$<aL$;T$, I;T$,~IL$$T$(4m$E$E돋D$T$ED$(<[^_]Ë|$($JEL$(9~$]E`L$T $Dt$P4$E뫍`>$T$(EUWVS%WT$ D$$+D$,D$,F}+pt$ uG"|$,E|$X)уL$F+9D$E D$0|$ G|$,E|$X)уL$F+9T$Uq D$0l$ EL$(tc1;T$$%tt$D$L$(;T$$~ۉ $CFD$ D$,D$D$D$$&=D$X;l$,t$FF<|$8w+9FF0GF@L$N|$4D$D$F8w+9w=F2GF@D$FD$4;l$,OD$ <[^_]$B$BT$|B~$kBW$ZB$IB$8BUWVSCE$$t69$T$A$T$|u?uC~+r}F&Ĭ[^_]$Aۋ$A% $G0<$DŽ$F<D$x0A$E)C+L$t9 D$tDŽ$El$x9$$$L$tT$x$9~܋D$|CD$p))9D$pl$l D$lDŽ$ʼnt$|)9$|$DŽ$D$x9$+$t$tZ$T$x9$~Ջ$:$l$l$DDŽ$H9$L$@}5΋$l$lT$$t$@9$|͋L$@T$|9щ$,$ZC$$$$)Չl$PC+E9D$P&D$P0DŽ$DŽ$$9$(|$L|$pl$D|$Hl$Lt$DE++|$H9D$pdD$LD$p8?D$p $D$P$<$T$lt$l$l$Du;$}.CT$8L$lt$8;$|܋C$EՉD$|l$@9C;l$|~$$D$@9$$T$P$$T$t$ $0<$$4$D$4$"74$87$x=$g=$V=$E=C$01}$$$7$L$CD$p)ƋC+9L$pD$p7L$p$D$p;$|I$CՉ;l$|C;l$|~t$$4$9$|$l$D$$$59|z$ <M$;,$$|$$D$[5$LD@[l$x9$_$$T$t l$l|$$$D$$7C0NjE)щL$hC+9}D$hL$hE%~l$hDGl$hu%؁? ƋCu$$<$D$|l$@9DŽ$|$x9$.CCD$0l$,$$9$D$ $;t$||$|$<$H1ƒ,[^_]ËD$HL$D$$o-;t$|$3뙉|$L$$1l$D;t$|L$3$3$n3UWVS/ $$$$$$$$ $t*$T$2T$puE 55u~+r}F&Ĭ[^_]$2ۋ$A% $ 5B0D$t$$=2$n)щL$l5+9 D$xt$l9l$x7D$xL$l9D$x~D$p 5D$h)ω|$d5)9D$h1 D$dD$x)Ћt$p9t$x<$D$|9l$|t$|T$lD$|9l$|~⋔$D$xt$dD$tD$|H9D$|L$8}(΋L$|D$d{D$|D$xt$89D$||ڋL$8t$p9L$x`$/ 5t$t$,)鋄$5+EL$H9D$H&L$H1D$|D$xD$t9D$| |$D|$hl$<|$@T$Dt$<++l$@9D$hPD$DD$h(+D$h $ED$|T$H,D$xL$d)t$p)$ $)+ET$@9D$@&L$@1D$xD$tD$p9D$x)|$<|$`l$4|$8l$;D$|$X<;D$~t$X$$먋T$4$T$g6UWVL$ l$(D$,9t39}Dt9|^_]ËL$ $Iu9}܋l$ D$-.tǃ9|뾐UWV D$L$0|$81D$<9D$}tP9|D$u ^_]ËD$t$0L$4<44$@<$Et$4t$bD$EL$0$R;D$~D$l$9D$}|$0$);D$~D$l$9|vUWVS$$t $T$$T$du`$E$u~+r}F&Č[^_]$^ۋ$GD$h<$%D$`D$|t6D$`9D$dtI $T$ D$lL$d9L$lL$|11t$XA%9D$T}G;t$T}3L$| $E;t$T|̓;|$X|]KD$\t$`+,)9ΉT$PD$P,D$P0D$l|$`9|$lt$lL$PD$`t$l9~t$dō )͉l$L+E9oD$LL,D$L0D$lET$dΉL$x)9T$l<|$tl$PD$ $l$l$l|$|D$$T$\T$`9ЉD$pD$LD$hUD$pT$89l$p}$֋D$p|$LuJD$pD$lt$89D$p|ދD$8l$d9D$lct$L$2$L$hD$|Dl$lL$|$D T$p l$||$lT눋t$lL$pT$P4D$L l$||$pDD$$T$|ŋD$lL$p4t$lD$d9Ɖt$8;|$`.%t$,o;|$pl$4L$ll$|D, t$8D$d9t$tWT$49D$HL$|%D$DA%h8hw9t$4E|$,|$T$lL$|;rL$;v$L$l|$|9~Ë|$8D$D9Yt$09=D$0D$@L$|;rL$@;v$L$|9~˃;|$D~|$HD$xD$|$$t$xT$4)9t$<,D$||$l ;D$xs ;rD$<9~ڋt$8|$D9:9(D$| ;D$xs ;rD$<9~ރ;t$D~Ƌ|$4;|$`%D$D $D$ D$lL$D$ m1WL$|T$p,$D$ L$|D$$ L$|;t$d~|$|T$p,$D$ L$||$p;t$d~@$Y$H$7$&GT$\t$l$l|$|$5L$lT$|<D$dL$l9~8shallowtransgtransimpossible concatenation: %s %Z . %s %Ztrying to concat elements of an empty vectorconcatno such component in vecextractincorrect mask in vecextractincorrect range in extractmask too large in vecextractextractmatextractincorrect length in sumnegative size in fill_scalmatnegative size in fill_scalcolisdiagonalincorrect object in diagonalmatmuldiagonalincorrect vector in matmuldiagonalmatmultodiagonalmattodiagonalgaddmathnfdividehnf_invimageSolving the triangular system gauss. i=%ldEntering gauss with inexact=%ld negative size in matid_FlmFpM_gauss. i=%ldZM_invZM_inv doneinverse mod %ld (stable=%ld)detintnot an integer matrix in detintdetint. k=%ldkerigauss_pivot_ker. k=%ld, n=%lddeplinempty matrix in deplininverseimageimage2matimage* [mod p]FpM_gauss_pivotFqM_gauss_pivoteigenmissing eigenspace. Compute the matrix to higher accuracy, then restart eigen at the current precisionmatdetdet2detdet, col %ld / %lddet. col = %ldgaussgauss_pivot. k=%ld, n=%ldgauss_pivotempty matrix in supplFpM_kerFpM_invimageFqM_kerFlxqM_kergaussmodulogauss_pivot_ker}⍀Pid⍀PPK⍀P72⍀Pq⍀qP\⍀\PG⍀GP2⍀2P⍀P⍀P⍀Poj⍀PVQ⍀P=8⍀P$⍀P ⍀Pu⍀uP`⍀`PK⍀KP6⍀6P!⍀!Pup ⍀ P\W⍀PC>⍀P*%⍀P ⍀P⍀P⍀Py⍀yPd⍀dPO⍀OP{v:⍀:Pb]%⍀%PID⍀P0+⍀P⍀P⍀P⍀P⍀P⍀P}⍀}P|h⍀hPhcS⍀SPOJ>⍀>P61)⍀)P⍀P⍀P⍀P⍀P⍀P⍀P⍀Pni⍀PUPl⍀lP<7W⍀WP#B⍀BP -⍀-P⍀P⍀P⍀P⍀P⍀Pto⍀P[V⍀PB=⍀P)$p⍀pP [⍀[PF⍀FP1⍀1P⍀P⍀P⍀Pzu⍀Pa\⍀PHC⍀P/*⍀P⍀Pt⍀tP_⍀_PJ⍀JP5⍀5P ⍀ P{ ⍀ Pgb⍀PNI⍀P50⍀P⍀P⍀P⍀Px⍀xP!:Sl4Mf . G ` y      !(!A!Z!s!!!!!! """;"T"m""""""##5#N#g#######$/$H$a$z$$$$$$%)%B%[%t%%%%%% &#&<&$Ë$3l%xb< %'%'%I/'%'%'%'%a'%?'%'%'%Z'%@'%'%'%p%n%'%|'%WG%!5 #S' D' *' w '  '  '  ' z ' p ' ] M 9 !  b    b z ' t d b 8 ( b  '  5  t Y 4        g 'E 5   ~ p 'E d 'E A 5 2  6MQ'M'M'M'MD'M"'M'M:'Ms;*I'M6'M'Mp_'M'M'M'MO'M4'M'M'MxhXMI5 ?'+l+'~'f"''''N' '''n[:''''|'q`O>-!'~'R's'M']'A'''Y'S'<,P5 ydJ''-'-p'-]'-A'-1C-S'-2'-)5 mZ!w>''I'''''p'!''W'''^1 ''S'@''k'''''T''a'@0; '5 M'7'''''' ''f'A'5 %xT'@'''''b"''5 }qV'A'A'AK'A'A'ApF'A=5 ,l\*''P'$'B'6'$''t]7p '}'9) 5 '2'''}m'G''''5 udG+'g'g'gk'g'gD#'g'g'g'gc5 P@2"'''iY5 `I'o'!''l'P''5 |n`R,'U'UQ5 C' ' i' R' J' 5 7+b6 h'.''ڿwcؾm5'('''bR(' 5 ҼN>'ݻ5 ѻŻ5 sVLB.ܺ{[`6b'9'(VVٸ'5 {P0'''Է'xN'7'''Ѷ'5 T*' 5 ڵĵ'ȴb'ȴZ'ȴ<  'ȴδ'ȴĴ5 8'-'->'-  '-'- ű'-'-SCF-)5 wS(د''X'ޮ'Ǯ''Vʭ''j'O'I65 sbB'O'3 '٩'5 w_K'' ֨' ue.' 5 V'cu'cjYH75'c'cȢ'c'c}'c_5 Q'i'i'iş'i,ie5 Z('9"'9 '9'9~,955 *'i'iΛrb@ǚ'i'i,ie5 X'eJ*ՙ,ej'ea5 U&' '͘z''ʗ'5 \'V'K=ٖC3'+'',5 y(''5 ߓudSB* ''''h'U'0' ''Ց'‘''5 L*' 5 #ΐʐ5 f%'A'A'AЏrbAF'A=5 0Ǝ'5 tJ'@<5 ލ'ԍЍ5 u'A`N6'A'AՌAS'A"'A'Aҋ'Ai6'A0'AA'Aɉ'A'AAyiAF'A=5 -'Q'Q'Q~hZ'QM5 >- ć'''"''5 Ն]':'2''ԅ'5 kOB2!'ׄ˄B'!'!܃˃p`T>'!,Â'!'!f'!+'! '!J'!'!܀'!'!'!aYI!&'!5 '%tv%t`RA~'%t~'%t~~'%tz~'%tU~'%t~'%t}}}'%ti}'%t<}"}'%t|'%t||h|'%tC|7|'|{{{'%tZ{'%tzzzztzczTz2z!zy'%tyRy'%t?y'%t y'%tx'%tYx'%tw'%tw'%tw{w'%tew'%t(wu'%tu'%t=u'%t0u'%t*ut'%tt'%ttxt'%trt'%tPt@t%t!t5 tssss]sLs;s*ssrrNr.rrqqqqqylwqTqq'yl q'ylp'ylpp'ylyp'ylo'ylo'ylo'yln'yln'yln'yln'ylznBnyln'ylm'ylxm'yl m'ylm'yll'ylll}yll'ylul5 jl^lRl2llk'kk5 kkkck9k kkj`hjjThjj'hjjMhjtj'hZj'hPj@jj'hi'hi'hi'hiiipi\iBih'hh'hh'hh5 ggXgIg6gfffwfYf*ff<9` ff9`eeeeeeLedddddd'9`FdWc'9`=c'9`*c'9`cb'9`b'9`b'9`bada``'9```'9``>`'9`5`5 *`` `_____d_0__^^$^ ^]]<YW]]YW]]]]e]]]\\\\x\=\'YW3\'YW\\%['YW ['YWZ'YWZZ'YWZ'YWiZ'YWXZY'YWY'YWXX$XW'YWWW'YWWaW'YWUW5 DW0WW WVVVVVV!VVKV'V8V'VV'V V5 UUUUUPUqUOUUUTTTTdTBT.TUPTTUP TSSSRS'UPHS'UP9S'UP!SR'UPR'UPRQQ'UPnQPPP'UPP`P'UPZP'UPQP5 BP1PPPOOOOjOO'OO'ON5 NNNVN'B-BBADA'@-A'@@5 @@@@t5@H@'5@>@'5@1@5 %@?'??'??'??5 p?`?cE>P?D?>'E>>>cE>q>A>5 5>>='a=='a===@a===$a=]=5 L=>=='E<<'E<s<'E<N<'E<A<5 3<<<:;;;;;;':>;'::'::'::5 :::995 99*99 995 8',48',48888<8',468',4777',47',47',47',4 7',476',46',4666!6',45',45',45o5E5',4?5',4 54444',4_4',4Y4',4(45 4433X33'X33'X33'X3f3'X3T35 C353'33t22't222't22't22't2p25 ]2K2':2?2':2625 (2221011a1'00'00'005 0000'.]0'.U0D0'.#0'. 0'.//.//z/'.a/'.[/'./'..'..'..'..5 ..w.g.)-_.Q.-')--')--R-')-2-')-%-5 --,,,',,5 ,o,6,&,, ,,++++'++5 ++#++x#{+c+P+@+'#**Z*;*'#3**'#)'#)'#))]#)))))'#)'# )((y('#n('#Q(C()((''#''#'o'Q'-'&'#&'#s&A&1&@#&&&%% #%'#l%'#V%H%:%*% #%r$'#W$'##5 #`##""'}""'}""'}"y"5 k"1"'!"'!!'!!5 !!!'Q!`!'Q!Z!'Q!M!5 A!(! ' ' 5 w 'A f 'A J 'A = 5 1  '''5 x7' ''5 'M\'MV'MI5 >0'''5 t l\J+'xjV@')'#'i?'&''''{gR'='5'/xO'8''x]9''r4'*',''''C)''xjW m_J 5 }Z'C'='7l'S'5'-'''~'v'pPF3%''u'fF@-   J 'D ''   ' 't W  ' '  v 'l '/   ' '  w d V C   w d V A  5 V',:',(5 '}'}y5 iX'Y'Y'YU5 G74 '4'4'4'4'4`05 ''''''`5  '4&'4&4  '&'&4  '&'&4 { u'%m'%g4 b \'%T'%N4 I C'%;'%54 0 *'%"'%4  '% '%4  'l%'l%4  'S%'S%4  ':%':%4  '!%'!%4  |'%|'%4  {x'$sx'$m4 h bt'$Zt'$T4 O Ip'$Ap'$;4 6 0l'$(l'$"4  h'$h'$ 4  d'r$d'r$4  `'Y$`'Y$4  \'@$\'@$4  X''$X''$4  T'$T'$4  P'#yP'#s4 n hL'#`L'#Z4 U OH'#GH'#A4 < 6D'#.D'#(4 # @'#@'#4  <'x#<'x#4  8'_#8'_#4  4'F#4'F#4  0'-#0'-#4  ,'#,'#4  ('"('"y4 t n$'"f$'"`4 [ U '"M '"G4 B <'"4'".4 ) #'"'"4  '~"'~"4  'e"'e"4   'L" 'L"4  '3"'3"4  '"'"4  '"'"4 z t&!l&!f4 a [&!S&!M4 H B&!:&!44 / )&!!&!4  &!&!4  &k!&k!4  &R!&R!4  &9!&9!4  & !& !4  &!&!4  z& r& l4 g a& Y& S4 N H& @& :4 5 /& '& !4  & & 4  &q &q 4  &X &X 4  &? &? 4  && && 4  & & 4  &x&r4 m g&_&Y4 T N&F&@4 ; 5&-&'4 " &&4  &w&w4  &^&^4  &E&E4  &,&,4  &&4  &~&x4 s m&e&_4 Z T|&L|&F4 A ;x&3x&-4 ( "t&t&4  p&}p&}4 l&dl&d4 h&Kh&K4 d&2d&24 `&`&4 \&\&~4 y sX&kX&e4 ` ZT&RT&L4 G AP&9P&34 . (L& L&4  H&H&4 d`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  >* <Q>* <Q~}JLU`l\z8 $$  D < +  ; \D U i 8pg`=V)HWTX0!s^ `0QPWOgg  j4\\0`Xkhm''JhsC b/P?ܼ39ػpll:v<<,#P,@B+UNLP\D` R5h2?L3  -.K4' NJG8H88`9S8Xt+.422V 0ȐtX=<>D,@?#8 H! t"h#SCē,ȍ:t! #jtD_r{h"H,reW]* A,8,W ZAq#OG ""4h@6P3?_shallowtrans___i686.get_pc_thunk.bx_gtrans_concatsp3_vconcat_cget1_appendL_shallowconcat_concat_vecslice_vecslicepermute_rowslicepermute_rowslice_row_rowcopy_row_i_vecpermute_rowpermute_vecselect_p_rowselect_p_extract_matextract_extract0_sum_gscalmat_gscalsmat_matid_intern_matid_gscalcol_gscalcol_i_gtomat_isscalarmat_isdiagonal_diagonal_diagonal_i_matmuldiagonal_matmultodiagonal_mattodiagonal_i_mattodiagonal_gaddmat_gaddmat_i_gauss_triangle_i_hnfdivide_hnf_invimage_hnf_gauss_gauss_get_col_gauss_intern_gauss_matid_Flm_Flm_gauss_Flm_inv_FpM_gauss_FqM_gauss_FpM_inv_Flm_Fl_mul_inplace_ZM_inv_QM_inv_detint_approx_0_keri_deplin_ker_matker0_image_imagecompl_imagecomplspec_inverseimage_suppl_FpM_suppl_FqM_suppl_image2_matimage0_rank_Flm_indexrank_indexrank_sindexrank_FpM_indexrank_FpC_Fp_mul_FpM_mul_FpC_FpV_mul_FpV_FpC_mul_FpM_FpC_mul_Flm_mul_Flm_Flc_mul_Flm_ker_sp_FpM_intersect_FpM_ker_FpM_deplin_Flm_ker_Flm_deplin_FpM_image_FpM_rank_FpM_invimage_FqM_ker_FlxqM_ker_eigen_det0_det2_det_matsolvemod0_gaussmodulo2_gaussmodulo___i686.get_pc_thunk.axdyld_stub_binding_helper_top_pari_compare_long_gen_m1_gi_diffptr_DEBUGMEM_DEBUGLEVEL_gen_1_gen_0__DefaultRuneLocale_bot_avma_lllreducemodmatrix_hnfall_i_RgX_divrem_gcmp1_timer2_grndtoi_roots_caradj_Flx_add_Flxq_mul_Flx_neg_Flxq_inv_zero_Flx_Flx_rem_Fl_to_Flx_Fq_add_Fq_neg_inv_FlxM_to_ZXM_ZX_to_Flx_FqM_to_FlxM_modii_qsort_vecsmall_indexsort_isinexactreal_gsub_content_gneg_gunclone_gclone_isexactzero_gcdii_Q_primitive_part_gerepilemany_msgtimer_ZM_incremental_CRT_mului_ZM_init_CRT_umodiu_Fq_sub_Fq_neg_Fq_mul_Fq_inv_Fq_red_Fp_inv_Flm_to_ZM_Flc_to_ZC_ZM_to_Flm_const_vecsmall_Fl_inv_gerepileall_pari_warn_gexpo_fprintferr_precision_gerepileupto_gneg_i_gdiv_dvmdii_addii_sign_gerepileuptoint_diviiexact_mulii_gmul_gcmp0_gequal_gadd_gerepile_shifti_gpmalloc___maskrune_atol_gerepilecopy_type_name_matsize_listconcat_free_strcat_strcpy_GENtostr_gcopy_shallowcopy_pari_err_strconcat_get_range_init_gauss_Flm_gauss_sp_ker0_gauss_pivot_get_suppl_indexrank0_FpM_ker_i_Flm_gauss_pivot_FpM_gauss_pivot_gerepile_gauss_FqM_gauss_pivot_sFpM_invimage_FqM_ker_i_FlxqM_ker_i_det_simple_gauss_gaussmoduloall_reel4.0_gauss_pivot_ker_gauss_get_pivot_NZ_gauss_get_pivot_max#1/20 1200773951 0 0 100644 149140 ` alglin2.o   __text__TEXTz __data__DATAz$} __cstring__TEXT z@}__literal4__TEXT̄__literal8__TEXTЄ__picsymbolstub2__TEXT[؄ r__la_sym_ptr2__DATAL3(__nl_symbol_ptr__DATA`0&__textcoal_nt__TEXT @1=h PQc(-2T$$\$L$(҉t$HЃt$ tV~7t$z$ T$诏1\$t$ÉT$4$JuD$T$4$b̉T$4$;뾐SjD$ D$(D$D$$D$D$ $ [S6D$ D$(D$D$$D$D$ $u [Ã\\$Lt$P|$Tl$Xt$dD$D$4D$`t$$ t\$Lt$P|$Tl$X\Ë|/L$0L$(L$`t$D$$T$8衍D$<D$,D$89D$<p|$ D$T$<ډT$$L$ t$,F$|$`|$k$JT$0$D$!L$($L$t$,lj,$t$|$$QŋD$89D$w+9w$0GF@T$$V$΋L$8w+9w0GFT$<$蜌փD$$D$D$D$ $bÐUWVSsl$D$$D$$$ D$Lt D$Ll[^_]Ë$/l$XΉL$PD$X+)9Ɖl$H\D$H9D$H0D$L$t$L @FL$PD/$l$\8A+@@$$D$D$\$蜊t$PǃD$H<|$P$,$D$\);t$PD$PD$T9D$TD$t$$l$$,$D$8Ł@@$8‹D$T$؉D$%;t$P,$<$T$\D$$蠉t$P|$H+t$TDD$|$TD$\-D$T|$9|$T@;t$P8<$賈T$\$D$9t$HF4$6;$t{;$|:$tD$Pt,$f$,$X,$/$D$D$H$譆D$D$X$誈D$L뎍v$|$=jE$D$@$;<$D$荈;t$P|D$$$g|$D$\L;t$P|S#9D$ EP|L$ T$ $݇D$D$9|͉|$D$هL;t$P|C$$wFD$DGPT$@NL$<@D$80~+(9l$Pf:F&D$8$l|$<<$D$4uD$0>w+9L$P2G$D$4F|$0~ut$@4$#D$,D$D$9D$(w+9T$P0G$L$,ND$(Fu$(L$$x$xV$x1<\$,t$0|$4l$8L{D$D$@8           &&&D$DD$D$@$s\$,t$0|$4l$8<Éվ@{89|D$|$$2wD$DL$@D$$Gs<$D$$RsD$D$$rL$L$$KsD$D$$s<$D$sEt$4$sE $6tq<\$,t$0|$4l$8t$@|$D t4$p\$,t$0|$4l$8<ËnG?%?9uρQ.~GD$Fn O D$v $D$SrL$L$$qƉl$<$qt$$r,$D$qƋD$$Art-D$$\o4$D$rt$D$4$yr)|$4$|$q뿐<\$,t$0|$4l$8D$@lllllNNNNNND$@$q\$,t$0|$4l$8<Ëuluu~+v@}F |$l$@E$p|$GL$@A$pt$FD$$q벋uluu~+v{}F|$l$@E$]pt$FT$@B@ $nt)L$@A$1pGt$@F $8pG iT$@B D$B$p$QqtL$@q%t{]$l$q1u8luo+v7u(G4$|oEt$t$@F$^E@$p뻉 $%Ջu)Njlu+9wjuL$@8%`u<tT$@BG9|$.*rL$@$9Dv|$p눃\\$LD$`t$P|$Tl$Xhhh-xr`ru~+v/}F$D$`$mG\$Lt$P|$Tl$X\$#oËxr`ru~+v:}F$|$0l$`,$m|$0GT$`$t$0FD$0$n븋|$`o}=xr`ru~+r}F$0$in㋃xrD$(9D$<ZL$ T!Ȩ9|ыD$(xrwU)ŋ`r+9wzxr(u\$ul$0L$` $Qlt$0F9D$dD$D$(D$D$hD9~$cm$Umut$d,$t$hxrD$,D$`U@wՉD$``r T$8+)͉9xr*un$u|$9~D$8l$D$D$<$hxD$,D$D$l|$L$t $1D$x<;$|;$Y$CN$5N$'N$N$NF$M\$t$|$t$$ܽ|$ tJ9$T$MFxt$<$G\$t$|$Ét$$XGt <$3G҉t$$:Gt <$F봍T9$ T$=M1뚐UWVS3LOED$1҅~'9|';|$|ًE@$P>1҅ƒ ^_]ËD$?1҅.t9|뺐UWVt$.9};1@~=9}1@u"9|9|ŋF@@^_]ÐUWVS,D$@E(>gE+8 )9T$whD$,t$>9}1D$@1ɋ|$>UWVS诮D$0;A8#A+)9w[.$9M| [^_]ËD$0 D$4BT$D$ A $D$5D9|$>뗐UWVS D$0@8@+)9wi.$9M}?D$0 D$49t7BT$؉D$ A $D$=5D9|[^_]Ë@$_=뉐UWVSW|$P$Gp%u$?%D$hNj)?+l$$9D$hD$$L$$D$h $L$`$$uBD$l%ƋD$h9D$lt$d|$l$l$<$W4N?T$d(ʉ)L$ L$+9L$ ?|$$<$3t$Nj$$3?(AL$D$ G<$D$T3t$ll$$DD$lT$h9T$lD$`|[^_]$j;f$|$$3L$lt$$밋$t$<$2$$;T$y~.$$$T$D$,$D$`Z$?%D$8)ω|$4?+9D$8D$4L$4D$8 $$ED$@%D$$l$(7L$pl$t8D$ t$`D$D$4$)l$XT$H9T$X$t]D$XD$4D$T9D$X$l$X7 t$X7|$|7 t$X780D$@tL$@$L$$/$D$|$$k/l$hD$|D$(|$hD$lD$dD$ $l$t$'$T$8BD$|BD$82$$^$^0I$M0$l$T$,u0t$T$|$XDDt$|T$T|$X|$XD$TD$49D$T|D$X`"$D$|$,&$/$i.|$L$$L$XD$DD$|$7.t$|l$L\D$HD$H9D$X)|$Hul$L|$TD$0l$PtT$PT$0l$P|$X$$,D$UWVS?$$$PDŽ$%$L$$L0,$$|~I*Z*Yf.v/Y,‰$|>$- $|>.?|,..$|+)9$|$H6,$|$H.0,$|$H.&0$X.+)9$|$D+$D.8+$D0DŽ$p$|9$p$$Pt$P$@$8$p$.<.E++$@9$P*.0<$t$$@L$ $D$p..4++$89D$P$<w*$<.2D$PI*D$P$< $$p$H4$D$,DŽ$t9$t$`Q$t$$`41).$t$<$$t9~$p$|9$p..$|E+)9$|$4($4.$|o($|$4. ,.*$PƉ$$|)$hD$L$<.$d$T$D$t$lu*$%'B%'t$L4$%$$9$d~v$D$T$t$14;$h^%$DDt1)uD$TŃ$t$l9$t.?y$$l19$d#$t$<$d$l9$t~yT$݉w+9w .0GFn?$|$n$]x$L $;m$*E$$;,$+$.%)4$D$D$ƉD$$?w .*#$t$$[$:<$D$$gL\$<\nt$@|$Dl$H(D$dt$\D$D$X|$`D$D$T|$D$D$Pt$ $T$,D$,D$Xt$D$ |$,$T$D$D$,\$L$4$$<4t)ȉu냄$$9$|$4$$$1t$$$3$E+ )9}"7$E$+)9$K$u1 &$$;$}+$;$|;$$xD$p$ $D$l$3t$t++t$p9$309D$l'9~T$t4;$|DŽ$$$9$|$@$$$$D$8t$L$4D$XT$P<4t)ȉuD$XD$T9D$X|$l$Pl$4$t|;$T$4<79}ы@u 9|1Ʌu ;$|$L$4)<$ub&7$$t$@D$$$t$ |$$t $E$[^_]$됋$D$4^$$$$$L$4qT$`>9}ы@u 9|1Ʌ@z4$:t E$+|$`%D$\9}zD$`,uVu*'D;|$\|ҋ$l$4 %tف? ʉV뾃~u~ 몋+렋$T$4$$it$|$D$ $~$|$0t$,L$d$$|$D$$T$D$$t$D$$l$ $萕$39su$$D$dup$D$@$D$T$$ҍ$D$$L$ $T$U$$*$l$$L$Zq$t1J3$$D$hD$D$$Nj$D$HD$L$ G<$D$8$$NjD$O$D$e|$$S$t$L$h3)$b$ $[$;$]$<\$,J|$4l$8t$0Du,~+vF}F"T$D$@D$T$$GD$G\$,t$0|$4l$8<$4UWVS*J$$9͉$}6$tt$$;$|Ћ$$$$<$X$$E)L$|)9$ D$|E)D$xD$|)9$m $T$x &U1;$}t$|;$|;$$$ $L$tD$p++t$t9$ 09D$p9~T$x4;$|DŽ$$9$Gl$<$$BT$$$$}PƉ]D$x$<|$lׁD$hlف? ʉVt$d$$4D$D$d$]HD$L$ F4$D$$$$$4$t$`D$\D$dPс|$`%ǃtD$\BuD$lT$|4D$D$d$HD$L$ F4$D$u|$l9}t$hB9|䋴$$D@u1ҋ@JD$|L$x$D$$$L$ t$T$$茗$~$$9$$$lUxg8w+v:0G"n$Nt$$<$.Ĝ[^_]$븉ׁtNف? ʉV$$D$D$b$$l>}u봋$D$'$E$t$T$X$%D$x$t/u~+}F&$:$t|'u~+rP}F"$:u~+r}F&ļ[^_]$$~뢋'$hMB0D$VT$|$$D$xD$$ $E)ω|$t+9 D$t,E0Mω$)$$$$$1t D$x$bDŽ$T$x$9$DŽ$DŽ$$9$}5$$,l$p$$9$|ˋ|$|3$4$$u鋌$@t҅$$$t)$,Et $׋$$$<$L$t<$4$@DŽ$$9$};D$0$$$$9$|ϋ'$98sE8$$$$|$ l$ $t$$D$x9$T$|9$}G$;t$|$.$u$l$t$t;t$|~ҋ'$M+)9}&7$D$|D$|9#NjT$|l$t)LDDL9~ߋ$'t$x+)9C/$&uDŽ$T$x$9׉$Y֋$+$T4$$uy$$D$D$x9$~$$*$D$tt$T$ $|$D$,$苿$$$D$tD$$$追$$$O$$DŽ$L$x$9$$*$$$(t9ת0~+)ת8F&$(:$$ת $(}$(o+rת(w [^_]$֦$Ȧo$跦}$$ADŽ$%9$$$˗DŽ$$9$O$$tt$$$ $$9$~$$9$z$$1tϪ$($1tϪ$DŽ$ $趤$9$$ B$ $j$@$$9$g$$1퍄$$(E苄$ |$l$$dlj<$$$ $$ %҉$t{$($9$$t[ω$D$+$|$u$$|$D$$$M$ת$$E$$ $˗_t$D$ $蘗ת$NjE+)9Jת(%&uDŽ$$9$$$ $c$$ L$$;Nj$$ >$$It$<>D$<$D$L$$T$`t$PL$HD$@D$D|$`DŽ$$~WD$H|$PD$Tl$Dl$,$ $$ $A) $$|$L? D$`$~fl$@4@l$\t$X$ $$$@]$l$X$$$$  $Q;$}6DŽ$$9$h$9$u9|;$cDŽ$$9$$ת$9?8wp$ $$t$$$t$$$T$l$ $$T$Ĝu$D$$ߟ$$&$ $4$ BT$D$ A $D$踗$9͉$~D$`$~ >;$$$ @;$~܋$$$ %9$$$ת)NjM|$lσ+)9wu}u\"7;T$l˪E;T$l~$ <$D$ $ $L$,$<$薞$舞z $-$ $$ת+$ljD$hEƍ )Ήt$d+9 T$dU&D$d8$Eƍ )΋+9u$>;$˪E;$~;D$h|$d4;D$h~$ t$dD$4$謕$ $$$ ҹ$t$$$t$$$L$t$$[$$t$$$E$(t$$($ $Z‰$$9$D$$$Б‰$D$$$脔$$#[$;$$$תT$tD$p0E+)9wWתL$p(%E~T$pDT$puB?% ƉuD$t,$@뛋$$$ AY$EI$D$$D$$ $@.Z$9ʼn$|@y $$$|$ $$t$L$$]9$%$ $D$$$$ŋ$ D$$$ΑpD$t$ E,$D$蕑$$$ ,DD$$$$Ƌ$ D$$$V9Ɖ@T$؉D$ F4$D$$D$ $$9׉ $ $˪ $$ $,$R$$$$$$,D$X$$$‰T$|ut$ $裖ƋD$|L$<$聖D$xtt$xtD$4$×D$x$|$|E$L$,$2Nj$$蘗$2st$ $ttD$<$Bt$x T$x$l$|Mת$90ss8wx$$ $t$$$t|$\$$D$l$ $蒎DŽ$$$D$L$*bD$|09.*˪E9|$879.˪E9|Q1nydf4$ѕYU1t$L$$}u $膕W1y^TV $FIQ1y4$˪ $而$ $D$$$D$ l$t$T$2$ת9?wj$$ 퉔$tD$T$$tt$,D$$$l$$l$$t$躐w$)|$,$舋G4$u$ |$$ D$$$9$|$$p$|$$X$^|$$$ 4$,$D$$9~$臓$v$$#$.$תu~+9}F&$ $t-u~+9w=}F&$$I$4${‰$$$蠒$蒒l$ $I$$$(T$$t$$ $9$!ШuV$u$$$U$(E$ƅD$$$ $뵉 $袅$ 뙋$D$$ $螫D$Nj$ $胅$($D$$ $ap$$$$ Eщ$T$$(T$I$M$ $1$҉$"$$跎$(D$ D$D$$yÐ,\$|$$l$(t$ Hu0~+v=}F"NVD$0L$T$$G \$t$ |$$l$(,$A뵐UWVS;Lt$`t6$T$ ׁFD$8t69|l$4$?L[^_]Ë$貎.u܃9|Ӌu~|$4n l$0}95ǒ0N+L$,L$,ǒF"+)9ǒ&0D$,pD$<9|$<bt$4l$4$]|$,Gǒ<+)9ʼnT$(D$(L$(&D$,H D$<9l$<t$$|$ D$|$$t$++|$ 9D$$8uj$9L$w+M9w߀2GFD$4$@z$2zT$D$dL$$vT$PT$XD$T$P$xL$hL$$xD$$L$TT$X$udD$hT$TD$T$P$px$It~ D$L|D$HrD$P9l$P.LL$P|$l$σ9D$lu苌$T$P$uuދ$t$PD$hD$lD$XD$LD$Hl$D9l$XӀL$0D$Xt$ltWD$T9l$TID$0D$@&$sUWVSLD$dvljL$8)ω|$4gv+9D$8D$4D$8t$4 $L$`AT$0D$ t5%l$`uщ t$ څOT$ T$ D$<D$89D$<gvD$|$UWVS$$$$$$$%$%$F$%$GKr%D$|$?D$x $4$D$T$=f$ŋ%+$tF$$D$t D$t &F$D$|+$$ wrL$tE)Ήt$p_r)9D$tu D$p$‰E$)ꉌ$7|$p)9$# } $7$$$0l$l t$l$2$$D$ lDŽ$$$9$0$$ $ $$9~Ћ$9$}'$$,$,$ɋKr8 $DŽ$&krt$$$D$hD$d<|$`<$kL$ptD$`$T$l$9‰$}mD$||$ (kr|$L$ D$T$$t$ +$<|$\ $A$$9$|wr$98s9Wr8$$T$p|$ L$D$$cwrD$t/)Ƌ_r+(9l$tD$t7L$t"D$tDŽ$$|$|$+$;$$0|$p$$;$~Ћ$;$;$~Kr8$wr_r)$)D$x)$$D$Pŋ+)9D$PT$LD$Pt$L%7D$Ht$PL$L&1)ꋫ_r+ET$D9D$PJl$D/D$H'D$D0$+$ō )͋_r+l$@9T$@D$@&0$$6i$$DŽ$$9$DŽ$DŽ$|$$aD$xt$|D$_rt$4D$8$$L$p$T$<,E$ŋ$$$$$wrl$l$)΋L$8+97D$L$$D$$L$@4;l$| $$;l$|~t$4$;$+D$puL$<$;$~Ճ$D$$9$$$+$9lj$D$xD$D$,D$|D$($$wr+$_r +EL$0+t$,9D$xwr0D$QD$ $$D$@4;l$|L$0;l$|~T$(T$0;$$+D$puL$0$;$~Ջ$$+$9$Kr>wvD$|u.D$@$`D$D$Lt$ D$$]{D$D`D$,$]$xf$gfw$Vf9$Ef$$$$$$$_rwrL$P+E)9D$Pw^D$P7uDD$P $$D$L$4$$$t$D$e$ye$ke4$Ze$Ie$8e$'ed$e:`4$9\$$|$d$d`l$$t$`bD$`tD$` $D$[$;|$|eD$D$XD$\L$h$4$D$\9Ɖ@T$؉D$ F4$D$[T$\;|$|~;|$xcD$\T$d+L$|4D$$$[9Ɖt.@T$؉D$ F4$D$r[T$\럋t$T싄$ ($D$$$a$D$$$_$$t$X"`$nZ$'c$c$cx$D$$$ aNj$ $$ba,$Y?iD$|u0#at$<$Y$-aD$ $Y1$`D$$Y뵐<\$,|$4t$0l$8L$D8A|$@uNl$HL$P|$TDtDtD$LtD$Ll$L4Dt\$,t$0|$4l$8<ÍL$T$D$DL$ T$D$<$|ZƋD$@D$@F%<$t$ ZNjD$Dt$$ZD$Dt$TT$HdUD$Ջ7)ŋd+9d(%E~DGM%? Mt$|$Pt$ t$HD$D$D$D$$[#T$TL$P|$D|$,$D$ D$D$1#|$PL$HD$L.t$LT$TD$D$ D$D$D$D$$"T$TL$P|$,$|$D$ D$DD$"T$Pl$LD $_~p|$|$D<$X0ŋdd+)9d8E%~DEO%? O|$l$Ht$PT$TDdD$ D|$D$$!|$Tl$HD|$PLDD$TLD$L. l$LL$D|$TD$ DL$D$$!l$Lt$TDT$P|DD$T|$^D$D<$D$GWd0Ł׍)Njd+9d8E%~DEO%? O|$l$Ht$TT$PDdD$ D|$D$$ L$Pl$HDD$L.l$LL$TT$PDD$ DD$D$D$$V l$P|$L$]%UWVS$$$tN$T$G]$G$tN$T$ ]$$cA%$`$_8$ $)lj$[$9$$DŽ$~$)$$$$$w$$9ʼn$$l$4k$|$D$$$$Q$$$,D$|$@$$$D$D$$$P$4$$$ʋ<$Gl$,T$,҉$x$$$@{$`$)ŋ_+9$A$.$ &E;$$D;$~扴$$`$$׃)Nj_+9$`8$ $;T$4 `;T$4~$$$|;$$DD;$~僬$$I$鉬$$$$l$@$$D$@9$$~ $<$)$$ $$ `_/ +()9$ $ &$7t$4$9Ɖ$~0$$$$$9Ћ$`$$)Ƌ_+9$wR$7 $;T$4 `;T$4~$,$4$n$W렋l$4$퉌$$l $$T$8t$w($$D$$M$ $N$D$|$M뵋$|$L$`$ET$`9~hD$dT$hD$${EL$h9~ۋ$$T$<$#HL$t$L$>ET$x~G9.L$x@u 9~D$tD$$DL$xؾ9.T$x L$pA9`)щL$l_+9D$l`T$lL$p%~L$pT$lT$pL$lzA%? |$lG<$D$tD$D|$x96$Nk$|$$G4$D$LD$|$$$$$C$$$9|$pN@$$$$$$$$|$0VՁtk;$.-$Bu;$~$T$4$E$$L$B$D뼃~u~T;|$0.$@u;$~뉋$l$$FB$п;$.a$ L$|A`1_E+)9w}`*L$|%E~T$|DT$|EJ%? ȉE,$$D$A$;$A$`Lr$$CLa$2L;$l$4$$퍄$$D$8t$<.9D$<|$8$D$$|$ D$$D$D$X$l$X,$$$<D$TUс;t$TBuS;t$T~ꃼ$ D$T$.$6t$X$t$<$C$T$,$B$$L$?뉃}g~F;t$T.q@u;t$T~V$L$$?׾;t$T.+ L$PA)`)щL$L_+9D$L`T$LL$P%~L$PT$LT$PL$LjA%? l$LE,$$D$>;t$T9_$Ij$I`$I$uI$$D$,t$t$,$D$$D$$J>$L$t$D$ $D$$D$<$D$$$<,;$}9@%;$D@%;$;$|Nj$`9sV_8w($$D$,$D$$N$D$t$bD뵋$$D$D$D$=DY$D$D$$<$$T O$L$G"`_u~+9w}F&$MGዄ$$ aUWVS.Lt$`D$l 19}׋@u 9|1tPD$p8D$h|$` 19}׋@u 9|1thnD$t8l$pUD$|$`t$lL$hD$$g;PƉl$x|$hDD$$D$lDՁD$ cف? ʉVt$t$ptW|$`D$lt$h,D$T$PсPE%ǃtt$BuD$dtWt$dD$lL$h<,|$|$WցE%ǃtL$Bu|$ll$|T$$Dl$4D$,$<xD$|$ F4$D$<L$lt$$Uׁtk;|$l}D$ Bu;|$l|L[^_]Ël$$D$tT$$o<HD$L$ F4$D$6<D뱃}u~N;|$l.}D$ Au ;|$l|녋t$$T$ L$H$L$;Ͽ;|$l.OID$ Bt0l$$L9t2؉T$D$ A $D$;l$$D;|$l|D$tT$$s;HD$L$ F4$D$:;D3~SE%ǃ.D$ Au uDT$ L$p$t$:DҋE%ǃ.ID$Bt(L9t*؉T$D$ A $D$:DuyD$tT$$s:HD$L$ F4$D$::DD$x~SE%ǃ.T$ Au uDT$ L$H$L$9DҋE%ǃ.]ID$Bt(L9t*؉T$D$ A $D$|9Du~~ID$ID$t$hl$xDL$l$6T$lt$|<$|$5.L$l|$hD$D$5 $HD$dtt$hT$d$-L$x%;l$hD$0}8t$hT$xD$,4VIT$,;l$h|ȋl$h;l$0. D$xD$hT$(4Vu!It$hT$(;l$0|%tف? ʉVǃ~u~ I볋I멉%tف? ʉVB~u~ I+I $D$dtt$ll$dD$L$x%;l$lD$<}8t$lT$xD$84VIT$8;l$l|ȋl$l;l$<.yD$xD$lT$44Vu!It$lT$4;l$<|<%tف? ʉVǃ~u~ I볋I멉%tف? ʉVB~u~ I+IUWVS蛮,D$@|$Ht$D(l$,L lt DLt%D$Ll$LTD D uۍGt$9D$T$L,L$PD$ED$5T$LƋDD$E$59Ɖ?@T$؉D$ F4$D$b5D$t$PDD$E$]5T$LƋDD$ED$=5@L$D$ F4$D$5T$Pt$t$5uDL$PDD$D$$5uD$D$9D$t$PD$D$4T$LŋD$8@L$D$ E,$D$e4t$Pl$l$K5D,[^_]ËA,\$t$ |$$l$(D$0l8D$4t$<(<$l$}0-OE>9ȉtc~9>l$8Et$0>L$4\$t$ |$$l$(,Ë>L$8T$0>|$4Ƌ>l$4ɋEl$0E~L$8렋>T$8>>E7+)9wG>(%E~DGoE%? @EZ$;뫋D$8t$ l$<$D$3Ɖ<$D$3|$0,$t$3l$4ED$$D$D$ $/ÐUWVS诪$tO,$T$|:$1T$tN$uE;=#=u~+r}F"Ĭ[^_]$:ۋ;=#=7V+(T$pl$p#=/F"7n+9/F&#=D$ph7n+9wR/F&#=D$ph7n+9w/F&D$ph D$p'$B9$49$&9d$9'A%9tO,$|$8$;=$#=($ $)ʼn$7$$\ D$tD$|t$,^L$,D$hɉL$x0L$Llj $1D$H0t$ $0ttD$<$T1D$@tN|$@D$H8tD$DD$ht$D29.}ۋ/=E9|Ƌl$H}79.}/=E9|뎋Q1R7y-/4$0"R1tT$PL$$D$Pxu $`0W1N3)+ $ 0Q1y4$/$T$xD$$$@.t$|Nj$D$$$.|$$l/T$|Nj$D$$$-L$xƋ$D$$$-t$$+$4L$x$L$|9͉<%7L$|$$$$$l$ $|$t$$4;l$|D$l$t$xl$|79.}/=E9|됋Q1T9y/14$,$R1tT$dL$$D$dxu $A,W1P5+- $, Q1y4$+T$x$D$$$!*t$|Nj$D$$$)|$$M+T$|Nj$D$$$)L$xƋ$D$$$)t$$'$L$x4t$|$<9%;+9~T$%l$T|$8l$<$#b,$$t$t$84$q$T$Tt|$$|$$|$8<$tl$T,$$ˋD$8$!tqL$TG+9֍o)Ƌ/++9w2$G+90>;+9~X$$D$TT$8D$$"b,$9t4$T#D$,$!toG+>/++)֍o9w4$G+90>;+9~t$$$뾉t$,$."k,$"{,$~,$V tp>G+֍o)Ƌ/++9w5$G+90>.;+9~$h#뽉t$,$<$t|$4<$!s<$tyD$4G+8WT$,)Ƌ/++9w6$G+0>;T$,;+;T$,~$"뼋L$4<$L$ _4$!T$TT$(<$n!T$4t|$($|$!<$t|$4<$!ω<$tyD$4G+8֍O)Ƌ/+L$+9w6$G+0>;T$;+;T$~X$!뼋D$4<$D$b4$:tD$T$Q D$(4$D$TG+L$ D$ L$$)Ƌ/++9T$ w>G+0L$ $D$ ;T$$;+;T$$~t$({$ 봋T$T4$T$ K4$T$T4$Yt |$Tn4$,t|T$TG+:֍GD$0)Ƌ/++9w9$G+0>;T$0.;+;T$0~s$2 빋L$T4$u$ ~H_|$,$0G+Ł)Nj/++9G+8E%~DEW%? ‹?+W|$T$8$,$4G<$.t3$$$$DT$<$t ,$뵉<$dtn}G+֍o)Ƌ/++9w2$G+90>;+9~I$xl$<$qL$T $Ft$D<$2t|$D$|$6<$t ,$Ӊ<$tnG+}/++)֍o9w2$G+90>;+9~g$l$<$qT$T$t4$*D$DD$T$G+%D$<D$@D$<)Ƌ/++9T$G+0L$<$L$<;T$@;+;T$@~t$D$봋T$Tt$$LD$T$jl$T,$-t4$T$T$tpG+>/++)֍o9w5$G+90>.;+9~$뽉t$t$T4$$$l$<$0G+Ł)Nj/++9G+8E%~DEW%? ‹?+W|$T$8$,$4G<$tЋ$$D<$t ,$ω<$ftn}G+֍o)Ƌ/++9w2$G+90>;+9~c$zl$<$qL$T $Ht$P<$4t|$P$|$ <$t ,$Ӊ<$tnG+}/++)֍o9w2$G+90>;+9~g$l$<$qT$T$t4$,D$PD$T$G+%D$HD$LD$H)Ƌ/++9T$Hw>G+0L$H$L$H;T$L;+;T$L~t$P$봋T$Tt$$LD$T$l$T,$/t4$T$T$tpG+>/++)֍o9w5$G+90>.;+9~$뽉t$t$T4$$>~<\$,t$0|$4l$8D$@ȇ0D$D(FuBHT$@|$HLT$DL$L\$,t$0|$4l$8<Ë [E =D$Ll$4$D$ D$HD$j lj tT$@2D$D(땁t.4$D$D$ ,$D$Ɖ|$ 뷋@uul$4$ D$‹%.zt{D|$D$<$\4$D$D$D$ ,$D$ƋD$D$r T$LŋD$HT$ D$l$4$m |$|$$MH|,$Z 4$K (Ucharpolyincorrect variable in caradjminpolyhesshess, m = %ldgnormgnorml2gnorml1QuickNormL1gconjnot a rational polynomial in conjvecconjvecincompatible field degrees in conjvecassmatgtracesqred1not a positive definite matrix in sqred1sqred3jacobioverflow in real shiftmatrixqz0matrixqznot a rational matrix in matrixqzmatrixqz when the first 2 dets are zeromatrix of non-maximal rank in matrixqzmore rows than columns in matrixqzmatrixqz2matrixqz3intersectmathnfhnf_specialincompatible matrices in hnf_specialhnf_special[2]. i=%ldhnf_special[1]. i=%ldhnfspec [%ld x %ld] --> [%ld x %ld] matb cleaned up (using Id block) hnfspec[3], (i,j) = %ld,%ld after phase2: Permutation: %Z matgen = %Z hnfspec[2]hnfspec[1] after phase1: Entering hnfspec mathnfspec with large entrieshnfadd (%ld + %ld)H = %Z C = %Z 2nd phase done 1st phase done non coprime ideals in hnfmergehnf[2]. i=%ldhnf[1]. i=%ldhnflllhnflll, k = %ld / %ldhnflll (reducing), i = %ldextendedgcdhnfpermhnfall hnfall[3], j = %ld hnfall, final phase: hnfall[2], li = %ldhnfall[1], li = %ldsmithallnon integral matrix in smithall[3]: smithall[2]: smithall, i = %ld; [1]: smithall i = %ld i = %ld: starting SNF loopsmithcleanmatsnfaccuracy lost in matfrobeniusmatfrobeniusvariable must have higher priority in matfrobeniuseasycharsqred2matrixqz_auxLeaving hnffinal mit = %Z B = %Z C = %Z dep = %Z first pass in hnffinal done hnffinal, i = %ld hnflll done Entering hnffinal: mit = %Z B = %Z allhnfmodallhnfmod[2]. i=%ldallhnfmod[1]. i=%ldnb lines > nb columns in hnfmodgsmithall?333333?C~V⍀VP/~*~A⍀AP~~,⍀,P}}⍀P}}⍀P}} ⍀ P}} ⍀ P}} ⍀ P}{} ⍀ Pg}b} ⍀ PN}I} ⍀ P5}0}o ⍀o P}}Z ⍀Z P}|E ⍀E P||0 ⍀0 P|| ⍀ P|| ⍀ P|| ⍀ P|| ⍀ Pm|h| ⍀ PT|O| ⍀ P;|6| ⍀ P"|| ⍀ P ||s ⍀s P{{^ ⍀^ P{{I ⍀I P{{4 ⍀4 P{{ ⍀ P{{ ⍀ Ps{n{ ⍀ PZ{U{ ⍀ PA{<{ ⍀ P({#{ ⍀ P{ { ⍀ Pzz ⍀ Pzzw ⍀w Pzzb ⍀b PzzM ⍀M Pzz8 ⍀8 Pyztz# ⍀# P`z[z ⍀ PGzBz ⍀ P.z)z ⍀ Pzz ⍀ Pyy ⍀ Pyy ⍀ Pyy ⍀ Pyy{ ⍀{ Pyyf ⍀f PyzyQ ⍀Q Pfyay< ⍀< PMyHy' ⍀' P4y/y ⍀ Pyy ⍀ Pyx ⍀ Pxx ⍀ Pxx ⍀ Pxx ⍀ Pxx ⍀ Pxx ⍀ Plxgxj ⍀j PSxNxU ⍀U P:x5x@ ⍀@ P!xx+ ⍀+ Pxx ⍀ Pww ⍀ Pww⍀Pww⍀Pww⍀Pww⍀Prwmw⍀PYwTw⍀P@w;wn⍀nP'w"wY⍀YPw wD⍀DPvv/⍀/Pvv⍀Pvv⍀Pvv⍀Pvv⍀Pxvsv⍀P_vZv⍀PFvAv⍀P-v(v⍀Pvvr⍀rPuu]⍀]PuuH⍀HPuu3⍀3Puu⍀Puu ⍀ P~uyu⍀Peu`u⍀PLuGu⍀P3u.u⍀Puu⍀Put⍀Pttv⍀vPtta⍀aPttL⍀LPtt7⍀7Ptt"⍀"Pktft ⍀ PRtMt⍀P9t4t⍀P tt⍀Ptt⍀Pss⍀Pss⍀Pssz⍀zPsse⍀ePssP⍀PPqsls;⍀;PXsSs&⍀&P?s:s⍀P&s!s⍀P ss⍀Prr⍀Prr⍀Prr⍀Prr⍀Prr~⍀~Pwrrri⍀iP^rYrT⍀TPEr@r?⍀?P,r'r*⍀*Prr⍀Pqq⍀Pqq⍀Pqq⍀Pqq⍀Pqq⍀P}qxq⍀Pdq_q⍀PKqFqm⍀mP2q-qX⍀XPqqC⍀CPqp.⍀.Ppp⍀Ppp⍀Ppp⍀Ppp⍀Pp~p⍀Pjpep⍀PQpLp⍀P8p3p⍀Pppq⍀qPpp\⍀\PoŁށ)B[t؂ #<Un҃6Oh̄0Ib{ƅ߅*C\uن $=VoӇ7Pi͈1Jc|lj+D]vڊ %>Wpԋ8QjΌ2Kd}ȍ,E^wŽێ &?XqՏ$Ë$yyy8xyyyyny>yyxx`x8xLx8x4x" xwwEgwEgwtEg}wEgsw[wEw4w"wvEgvEgvtEgvEgvvyvhvZv;vEg-vEgutEguEguuuuuuu|u]uEgOuEg5utEguEg uutttEgLtEg9ttEgtEgttssEgsEgstEgsEgus]sGs6s$ssEgrEgrtEgrEgrr{rjr\r=rEg/rEgrtEgqEgqqqqqqq~q_qEgQqEg7qtEgqEgqqppppEg4pEg!ptEgpEgooooEgoEgvotEgToEgFo1ooonnEgnEgntEgnEgqn`nPnCn1nnEgmEgmtEgmEgmmmmum]mPm>mmEgmEgltEglEgllllqlEg^lEgDltEg(lEgl lkkkkEgkEgktEgxkEgnk]kQkDk.kkEgkEgjtEgjEgjjjjrjZjMj7jjEg jEgitEgiEgiiiwi"ihEghtEghhEgOhAhggggggZgAg" 0gggfff dofdf fdded{etd etdddd" dddxdRd,d dcccQccbQUbQUFb.b baaaa aQU`e`Y`3` ``__r_2_^^QUn^QU%^ ^]]]]s]\QU\Y\M\<\+\\[QU[[}[;[[ZZZZfZQUOZtQUGZQU)ZYQUYSY4Y$YQUYXlQUXQUXWDW&WtQUWQU WVQUVVVVsVtQUHVtQUVtQUUtQUUQUUUtQUUQUzUjUQUMU" ;UUUTTTSgTtS_TSUTdS3TS!TS TdSSdSSSSSSS" jSeQXSDS"S SRRRReRGRRQaQ" RQHEQdHQHQdHPHuPH5PP PHOdHOHOdHuOH/OHNNNNNdNHSNdH-NMHMoMOM)MLHLoLOL!LKHKsKSKJJIH" HHyHtu2sHu2hHXHu22H HGGhu2GGlu2Gu2GFFpF_FNF-FEu2Etu2Eu2aE EDD1DCCCkCCu2Btu2Bu2BEB2BAVA AA@@v@u2_@tu2B@u2 @??r?H?'??Tu2>>u2{>4>>>===X=D=Tu22=<<lu2E<1<u2;u2;tu2;u2;h;u2:tu2y:u29lu2>99u28tu28u2u8 87u27tu27u26tu26u25u25u25tu25u2"5tu2 5u2r4 4N303tu2!3u222Ju222Ju2q2" b2F211-1-1t-b1-\1G1100-R0-.0t-&0-0///k/A/.-.t-.-..@.-" -- -y-B l-`-8 I-A-$ 6--,,,,, ,r,7,,++k+N+:+ /++** ******}*o*) )t )))~)p)d) U)=) )) (` ( 't ' & >&t %%t T%t $t $ $` $t # ##l # 9# "" "` "_!t G!   `  "    Y E  eH6   I "t  t 5t   " yDl~t" vI||`Dl6*d/gZ7rf< tt]F'tcAt5||" ptqt[ttStststt~tuWt=tt5t/st ttttutVttPt=t0tttt#tttttttttttttttttttttp" B8t  t    | t H 1 t      t   t p "    @ ~ i T D +9 "      t r M G )  t       y m c dQ A +  +" {k Kn&tt" S4t44kM9X0"  _. " tiM<+ptt t{ts1" [tDRD@" /WBxdV<tto>rgL t=xlg7xlCY)t#gOtt{n`O3t,`!`|lall`0 tzl_C'?. ttPtbt" ^'t " ataaataa+ataat`NaC laaa+ataa8ataa.ataa[a2ta)a!ataa:a#aataaHataaataaalalaGa[SaK`a`alaar;atawataaytaJ<taataaia]" Q,t"  etee7eteejeteePenVEeteeetee_=we`teCe*~eo|tereteeh)leeeU5teexj8te teete~emea" NtֵH7&ֵdֵFֵ$qQ0ֵ$ݾֵ[H%ֵdֵݼhH'ݺֵt]4ֵtֵֵ̹4eֵlֵUֵ5tֵ/ֵֵtֵeֵ_F+~ֵ޵ֵҵ" µ_tHVHD" 0۴ŴYqQ2 Yҳ~Y=Y0ݲlY²~YYwdY#YveGtY^YîlYY-_YHY$tYYƬYrtY3tY#Y~YgtYaYU" G#۩VtPH4~t;t ܦU.t&~ӥ|٤lˤmϣlut`A)|¢" wf\U: ǡGȠsYI~UqG U՞UÞtUUUUctU]UϝtUtUZUQ" 0Ԝ" {sb~h`N~XB?~0 ,~ӛx`rQʚ`x`P9& " ݘtl~lh" ZAtЗЗ̗" tM]7MMȖMutMVMI" :- ~9ʕG s-F9!t99t9[95" " ume}cMcB4}c.c}cݐ̐zTc7tc1c'ctccяPc0tc&c}cic^P}cJ*c}c 3c݋tc׋cϋctczcecKwWމc }czTc7tc1c)ctcc҇c[ĆdccS}cA)cncStcMcA5-%}c c}cȃc}cBc߂}cWف}cpGʀlcctcc}+c `}c~~~~~~~w~f~U~D~3~"~~~}}}}}}}P} }c>}-}} }|B|{c{tc{cd{cB{tc<{cz`czxtccxtcBxcTwcwcvtcvcvccvtcZvcucutcucuceutcVuctcttctcscstcsczsqtcqcDq`c>qo`cRoc"otcmtcmcumlcTmcjlcijch`cgdgtcYgc2gcftcfcfc#fcetceceecetcec#ecdtcdcdcdtc}dcnd`cAdc+dcc" ccWcIc5c|ZcblZbZbbbxblbOb&baaZRatZIaZ6a&aaz`H`;`*``|Z____]_-__^Zq^D^lZ+^Z]]]]ZX]Z2]tZ(]Z"]8\)\\|Z[tZ[[tZ[Zv[^[F[&[[|ZZtZZZZZ|ZZ" \Z@Z!Z ZYYYYR}YUYRMY8YRYRXXR_XRWtRWRPW4WWWRVVRVVRVRoVVRURGUtR)URUTTTTUT3TR+TTTRSRStRRRR" RRQlRRtQQQQ" QQdQtQQZQQQMQ" >Q-QtPtOjPOPOOOtOOOO" OiOOtN ONN" NNMNuNMHNMMtMMMM" MM Mt MM M M" L`L:LLKKKKK|KK" K)KKd)KOK)K%K" KJt JJ JJJJ JnJfJTJ J9J)J| JJ" IIIIII|GsIZIlG9IIHHHPHGHtGGGG|GGGG" tGhG`GXGHG|(G2G(G$G" GGF`|BFF |BFFFFFwFiFYF{BGFBAF$FFFEEEEmE]Ex{BNE5ElB'EBDDDDD4DtBCtBCBCCC{BYCtBBBx{BBBB" BBx{$BBBBwBWBDB4Bn{$B B" BAAAAAAZA2>At20A2@2@t2@28@@@???r?]?2L?;?*??W{2>>>>>~>c>A>.> >===~=k=I=.= =<<<{<i<I<6<<;;;;f;H;8;&;;:::::]:888808777k7c7?7,7766666 6t2525t2424t24t24233P{22t22222P{22" 2s2V2E2,2 2211111I{/1a1L1l/>1/)11/000/I0//t////t////r/I{/X/H/I{//t/ ///" .. {..." ..A+y.tA+s.A+h.W.>.A+#...---{A+-h-S-lA+I-A+-,,A+',tA++A++tA++A+++{A+++{A+L+tA+F+A+=+" )+*'*'*** {'v*Z*7*'%*t' *')) {'))))z)'h)t'N)'A)5))'((((('{(D(0(|*',(*'((*'$()' ()'()'()'()'(J)' (J)'(('(m('()''\('')''4('')''4(''4('')'''''" ''{$'u'd'S'9'(''&&$&&&$&&M&$-&t$'&$%$%$%t$,%t$%$$$${$$" $$q$H$z #t # ##z ###d#M#6#" "t " """w"G"!" "t ! !z ! !^!t X! ;!"!! t    t ~  x # t # p # l # h # d # ` # \ # X # T A! P  L # H  D # @ |  < |  8 # 4 |  0 # ' 0   " hstZH2 tzygT; tt|pVlVhVd`\XVTPVLVHD@t<84t0t,t(t$$" |n^M" o_N<%t" vU=-wz"wP@H<H8H4+0+,+($+  h+DDD+" o@[Koz@=1@f@f@f@I@I@I@I@I@I@@I@@I@@I@@I@@|@xI@ox@N@<" ( d1It161-" " lgzwVtF" ltllxazlph\RlJ6,l$llllvlvlvlPlvlPlPl<l*lvl lvllvlllvllh" G<, " fNB6, xlY=!xjXFp(t"  nt f K8pSz _)  s T l N  1  t   Nz  Nz  } " d L  ?  4    p    Fz q a M +     " u d V % t     p _ G 7 +   thLtB<,tjE8)zqi\Ky`6Kt" {Z8twdH( tXR4" x" |" {aG7 z" W Q[I[C! > 8W0W*! % S͏S͏!  O O ! K K ! G G ! Ci Ci ! ?P ?P ! ;7 ;7{ ! v p 7h 7b ! ] W 3O 3I ! D > /6 /0 ! + % +ӎ +ӎ !  ' ' ! # # !   ! o o ! V V ! = = ! | v $n $h ! c ]  U  O ! J D < 6 ! 1 + ٍ# ٍ !     !   !   ! u u ! \ \ ! C C ! | *t *n ! i c [ U ! P J ߑB ߑ< ! 7 1 ۑߌ) ۑߌ# !   בƌ בƌ !  ӑ ӑ ! ϑ ϑ ! ˑ{ ˑ{ ! Ǒb Ǒb ! ÑI ÑI ! 0z 0t ! o i a [ ! V P H B ! = 7 / ) ! $  ̋ ̋ !    !   !   ! h h ! O O ! 6 6z ! u o g a ! \ V N H ! C = 5 / ! * $ Ҋ Ҋ !   !  !  {{!  wnwn!  sUsU!  o<o<! { uk#mk#g! b \g Tg N! I Cc;c5! 0 *_؉"_؉!  [ [!  WW!  SS!  OtOt!  K[K[!  GBGB!  {C)sC)m! h b?Z?T! O I;A;;! 6 07ވ(7ވ"!  3ň3ň !  //!  ++!  'z'z!  #a#a!  HH!  /y/s! n h`Z! U OGA! < 6.(! #  ˇ ˇ!  !  !  !  gg!  NN!  55y! t nf`! [ UMG! B <4.! ) #цц!  ߐߐ!  ېې!  אא!  ӐmӐm!  ϐTϐT!  ː;ː;! z tǐ"lǐ"f! a [Ð SÐ M! H B:4! / )ׅ!ׅ!  !  !  !  ss!  ZZ!  AA!  z(r(l! g aYS! N H@:! 5 /݄'݄!!  ĄĄ!  !  !  yy!  ``!  {G{G!  w.xw.r! m gs_sY! T NoFo@! ; 5k-k'! " gʃgʃ!  cc!  __!  [[!  WfWf!  SMSM!  O4~O4x! s mKeK_! Z TGLGF! A ;C3C-! ( "?Ђ?Ђ!  ;;! 77! 33! /l/l! +S+S! ':':~! y s#!k#!e! ` ZRL! G A93! . (ց ց!  ! HD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  g{34nlmor|q}epji;wa@hs?E<>7xzfQPNut~/Kk50*%(g{34nlmor|q}epji;wa@hs?E<>7xzfQPNut~/Kk50*%(cdyvh X  -l2 H \Q xS HU+ d> zG _charpoly0___i686.get_pc_thunk.bx_caract2_caractducos_caract_caradj0_caradj_adj_minpoly_hess_carhess_cxnorm_quadnorm_RgXQ_norm_gnorm_gnorml2_QuickNormL2_gnorml1_QuickNormL1_quad_polmod_conj_quad_polmod_norm_gconj_conjvec_assmat_gtrace_sqred1intern_sqred1_sqred3_sqred_signat_jacobi_matrixqz0_matrixqz_matrixqz2_matrixqz3_intersect_ZV_neg_ip_mathnf0_RgM_ishnf_ZM_ishnf_ZV_to_nv_ZV_copy_ZM_copy_ZV_Z_mul_ZV_add_ZV_sub_ZV_lincomb_hnf_special_hnfspec_i_hnfspec_mathnfspec_zx_to_ZX_zm_to_ZM_ZM_to_zm_hnfadd_i_hnfadd_hnfmerge_get_1_hnf0_hnf_hnfmod_hnfmodid_hnfmodidpart_hnflll_i_hnflll_extendedgcd_hnfperm_i_hnfperm_hnfall_i_hnfall0_hnfall_smithall_smith_smith2_smithclean_matsnf0_gsmith_gsmith2_smithrel_Frobeniusform_matfrobenius___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGLEVEL_gen_m1_lontyp_DEBUGMEM_pol_1_bot_resultantducos_subresall_gen_0_gen_1_pol_x_avma_gaddmat_gvar_reducemodHNF_gdivexact_FpM_red_centermodii_normalizepol_i_gprecision_gexpo_isinexactreal_gmod_RgX_gcd_simple_RgX_divrem_RgX_extgcd_RgX_renormalize_gcopy_i_perm_inv_gen_sort_mattodiagonal_i_shallowtrans_gauss_detint_dethnf_i_absi_equal_vecsmall_to_vec_cmpii_diviiround_absi_cmp_shifti_const_vec_equalii_modii_truedvmdii_dvmdii_FpC_red_gscalcol_i_vecpermute_vconcat_ZM_zm_mul_RgV_zm_mul_RgM_zm_mul_rowslicepermute_vec_to_vecsmall_vecsmall_to_col_rowslice_msgtimer_imagecomplspec_bcopy_rowpermute_vecslice_gerepileall_fprintferr_gerepilemanysp_gdivent_gerepilemany_Q_muli_to_int_addii_sign_mulii_ker_shallowconcat_gcmp_1_diviiexact_bezout_lcmii_denom_centermod_FpM_ker_factor_ggcd_gtrans_primpart_equalui_gaffect_affrr_sqrtr_divrr_addrr_sign_gtofp_const_vecsmall_gsigne_quicktrace_polsym_gmulsg_gmul2n_gpow_gerepile_roots_gabs_greal_mulrr_sqri_gsqr_gsub_pari_warn_ginv_gcmp0_gerepilecopy_RgXQ_minpoly_naive_poldivrem_srgcd_derivpol_issquarefree_poleval_gvar2_gunclone_gclone_gdivgs_matid_mpfact_divis_mulsi_gmul_det_gaddmat_i_gcopy_gneg_gdiv_gcmp1_gsubst_shallowcopy_monomial_gerepileupto_gpowgs_gadd_gneg_i_pari_err_caract2_i_easychar_sqred2_affsr_matrixqz_aux_ZV_lincomb1_hnffinal_ZV_elem_allhnfmod_reduce2_hnfswap_bezout_step_gsmithall_build_frobeniusbc_reel4.0_QV_elem_negcmpii_gbezout_step#1/12 1200773956 0 0 100644 103356 ` arith1.o   __text__TEXT ( __data__DATAR__cstring__TEXT__literal8__TEXT__literal4__TEXT__picsymbolstub2__TEXTnS__la_sym_ptr2__DATA2xR(q__nl_symbol_ptr__DATAT<__textcoal_nt__TEXT @\{dH P UuvQ,\$t$ |$$l$(D$4N׋U)ŋ+9w[ (u9|\$t$ |$$l$(,ËD$8T$4D$D$D$0$XD9|$X뗃D$8!Ȩu t$44$T$0$!(吃<\$,t$0|$4l$8D$DN׋U)ŋ+9w[ (u9|\$,t$0|$4l$8<ËD$HT$DD$D$D$@$XD9|$d뗃t$H…!ШL$D $T$@u {~M*u+v 0EF@~8$ߋ|$}w+vuGF|$$$!5UWVS[,D$DN׋WU)ŋS+9wOW (u9| ,[^_]ËD$HT$DD$D$D$@$pD9|$룃t $!t$HN׋WU)ŋS+9wLW (u9LL$HT$DT$D$D$@$D9|$'릃t $!|$DD$H<$D$T$@u O~MW(Su+v W2EF@~$ߋWS|$}w+vuGFl$n$Qؐ<\$,t$0|$4l$8D$DN׋U)ŋ+9w[ (u9|\$,t$0|$4l$8<ËD$HT$DD$D$D$@$XD9|$뗃t $!yL$Ht$DL$4$T$@u {~M(u+v 2EF@~8$ߋ|$}w+vuGF|$$ې,\$t$ |$$l$(D$4N׋|U)ŋx+9w[| (u9|\$t$ |$$l$(,ËD$8T$4D$D$D$0$XD9|$뗃t $!L$8t$4L$4$T$0댐,D$8\$t$ |$$l$(|$0t$4tD$4$׋\$t$ |$$l$(,Ë(w|$4$JD$,$%뽍`$T$?UWVS<t$Pl$TD$,FD$NL$7$T$Et $!,$.D$$P%D$(D$(L$$|$(4t$ A1ɋBt#%rщ u|ޅNΉ΋D$ ,$D$L$D$NjD$L$$m‹@%u zuul$(t t$$V]D$,l$$<[^_]$sD$$TD$ $D$o$ND$ D$$QÐSjD$ D$D$ $I[UWVS;,7l$@|$@D$D$D|$D7|$F)׉D$T$3+97,:7;t$L$D1҉4;t$~1҉t$@tDt$t!D$@D$,$D$ttuߋ7t$0,[^_]Å.t$Qc,$Jx|$D%D$QD$ D$$ÐUWVS<l$T$D$,D$PD$t<[^_]ËT$PBǁ|$P$D$|$8D$$u׍N)NjL$(+9g"87|$ ;|$(}w+uGF@Fl$,T$ D$Pt$$‹@%tFۃzu|$(t/L$PT$ L$4$D$‹@%tRuыD$,L$v+9w/|$,GE@ut$9ԃzub$DD$D$$$St$ ;|$(~$$>@D$ ŋ%D$(xt ,$gʼnl$l$PE$:ŋD$,T$,Ƌ+ 9w$0D$,@F@nz$?΃D$ D$$ÐUWVS,l$@Et $!UTց0V+9T$fD$Fu+)9:E%~DuD$xED$G%T-<$vPƋ%t|$$|$VF1z@Ht'p1҃ QمN|$$ft,_t$$l$b<$%D$D$$t$FD$,[^_]É<$dƋG|$$D$t$D$,$2‹@%t (뎃zuG|$D$ E,$D$+a}w+vuGF@F$$iӋ $ND$<$Ɖ$PB%Dt T$Ft$D$ B$D$dӉ|$$tL}w+v$uGF@Fl$ud$΍|$$L$v똋G%? @G$S$B}Z8O+(L$9wol$(G(}+9w88EG@Gt$~FD$|$$냍$T$UUWVSS|$t $!L$BOKu~+}?F"|$`KG1t$Du~+9wr}F"KD$DGD$`x;uD$@~+9w$}F"D$@Gl$`} D$`|[^_]$j$\$N4$$|$W؅' O$UT$HA| $$dOhl$\PT$XE%pt$Pp<|$<)K+9 O(%D$8O"}K++L$<9ƉL$4OL$4D$8|D$4O8K++T$<9ƉT$0@D$0Ot$8L$09$G%DT$PD$TD$dT$LD$P9D$T[|$TD$XBD$(t1%rщ Kt$(څOT$(T$(t$TD$\݉w+vh0GFn$׋WpG$_hED$$GD$G$h$|$$},+$T$1G랁hT$ЋU)ŋd+9T$wGh t$(ul$,;t$| D$,$L$,;t$|$뫃L|$D|$T\$t1)ЉڃDl$|$эNʉ $1$D$@$D$D$thD$P~8uD$hD$l$D${L$T$A$D$譨ԍ$l$蹪D$P멋t$V렃JGxl$|$EPG@VG$D$D$&t/~2.T$BD$D$$譣.)L$t$A4$D$|D$l$D$ED$G$$T$販cGD$G$ut&7D$D$,$D$b|$GD$G$2T$D$,$T$GD$t$FD$D$$諢D$$D$էtxW~UD$h~Hu,oT$Bu t$FmB|$D$<$UGD$D$$y$T$腨W띐U1WVSY@G@ot$ D$t<$t$D$k;t$ljD$<2;t$tD$,SWL$ D$ $聢l$tD$D$pl$$Nj@uSt$00D$p|$$荡t$tt$$ D$4|$$mT$tT$$D$8O(D$0)<(|$(A%U $苡|$t|$D$$ĠNjG%;l$$}%<$MT$tD$T$$膠;l$$D$$|$<)9}/D$<$L$tD$$L$=;t$|Չ<$ܠt$tD$t$$l$$l$8l$D$<$HL$tL$$ǝD$8D$4|$$$|$t|$$裝D$4l$(S9(sC/L$T$`t$dD$XD$ l$D$D$\$U$$萚냋$|$\D$<$Θ$ƋD$LD$D$x$Õk$D$$L$Xt$$h$$l$8V$t$\l$0utc$1<~.D$Xgl$X+ v1L$Xk(AFA1ɃD$$p$bDy$|$8$$\$t$|$t$ УFuě\$t$|$Ë̛8D$$4$D$d‹@%tJD$$T$$D$$D$$4$D$VPxD$<$됁?@PzuS.D$ D$D$$][Ã\\$L|$Tl$Xt$P|$`l$d7Ul$<$Γ4E9`FTFbD$ D$$t$ ޚ+0D$$D$ @ED$G$tCG$输t$$FED$G$L$$AD$$\$Lt$P|$Tl$X\ËL$ƋG$D$E$t$D$($ǎ$ҏuH$l$\1it$G$裓D$,D$D$8$]t$(t$$MD$G$uD$(8ED$D$,$L$$AD$T$($&l$$E|$D$ D$ |$4<$D$$袕U0ޚNL$+]L$T$<F0T$ t$4t$8t$ED$G$豒MW9BT$؉D$ A $D$yD$(D$t$$耒ښ;qt$G$%D$,wD$D$8$藒L$(L$$臒xD$|$ F4$D$T$,D$(8E$D$HL$AD$D$($t$F|$|$4D$ l$<$_D$:ښ$ %D$0)ޚ+L$9T$0wD$D$0t$ GFE%9D$0:OE?%?9!;t$0| D$DD$$KT$;t$0|$Np%D$0)ޚ+L$9T$0w`L$ t$01E%9D$0;t$0| D$DD$$T$;t$0|$讒뒉<$R<$J<\$,l|$4l$8t$0|$@T$Dhl$H9D$G|$؉D$ B$D$觐ƋD$L,$D$l$$t$$HD$L$ G<$D$]L$PL$$FD$D$$$\$,t$0|$4l$8<Ë`0wŋw+v/0G"|$0n~\$t$ |$$l$(,$$܏s$ˏRUWVt$D$|$wtDt7t.v'tt ^_]|\$l|$tl$xt$p$)p$ $w-$$]$D$DOʁcD$@$Dt;(;(~1틄$UP,$%\$(D$(tW))P*ʺ%Yȃt$i))Pr*f.T$DzEzD$XD$T$$ D$Pz$D$t$Pz<$D$ t$L$zNjD$@u\$lt$p|$tl$x|ËD$L<$D$D$HD$)Nj$D$<$.x;$t-$El$؉D$ G<$D$蚋낋l$DzEzD$XzD$T$$D$@t$HD$资M؉<$L$D$LA$D$$|$,l$DDž틃zEzD$XzD$TD$HGtD$D<$|$D$t$$貉|p<$t$ֈ$t$L$$3D$ts$ T$+1[D$T$$߅uD$T$pދD$T$$!뫐S貏D$ D$$|;ƒ[Ã,\$l$(t$ |$$l$0gE%~t1҉Ћ\$t$ |$$l$(,Ëc>D$rN$ {,$D$~>y뵃<\$,l$8t$0|$4l$@D$,$PtЋ\$,t$0|$4l$8<ËEl$$D$ZD$$zHL$9@L$W4D$$4$D$豀l$$~xw4$Yzta>w+v42G"nD$F4$@‹l$($뾉,$yՍOD$D$L$$yD$8w+v0G"n|$~q$~Ԑ|$|$ t$<$fy1u|$t$É<$%EސSD$$T$ u҄D$T$$[ÉD$$x퐐D$$T$ u $xÉD$$xS誌D$ D$D$l$}[ÃD$ D$$?xÐSbD$$D$D$ D$$ [S6D$ D$D$l$ [Ã,1\$t$ l$(|$$l$0UtHTуt7ЃuOx=1t">D$,$L$[w>\$t$ |$$l$(,ø)ȉ븅x1uԉ,$%wʸ)ȉ䐐UWVSS,OL$@D$!ȨD$@$vh@D$CU8с9}L$@ujу9|G%tD$@$Fvx1t$|$4$~,[^_]É<$D$-~Ը)ċD<$D$|U|$!o,UWVSG,CD$D$D+D$@<D$@?l$t$+( vYD$7@F@D$@Ft$@;t$DvD$D$$1},[^_]É4$D$u;t$Dv$~뙋;l$D$p?)ՋT$+9/"u|$Dt$@|$@)9v 4$D$utL$DL$9t?uD$u t$uD$,$}$}ԋD$D$D$t]C?T$+ v,C8D$@G@wt$Da$v}Ƌ;$^}$M}S&D$ ~D$$[Åx 퍓k$T$|ސw+9w1w0G&L$nNt$D$8$]qL[^_]$*r$rr$ rt$<HL$$@D$ D$4t$ D$4$oƋD$0D$D$$$nt$$jL$0t$ D$0D$,L$44$D$nƋD$(D$D$$$nt$$iL$(9L$,D$(\Lt$<D$4N9D$(L$0,D$< D$0L$$ $D$Jnt$4t$$qiL$0D$0D$(D$D$$L$4$nt$,t$$AiL$(9D$(L$,|$f{hc$T$pD$<UWVSs{l$ ,$|$0_a6D$4NjqD$$t$(t$dT$(t$$f^E[&G|$؉D$ E,$D$`ŋ@,$cŋD$D$,$w`E,$_NjD$4D$<$tit$0Nt$L$ H$L$i<$D$,D$4t$,D$0D$(t$4D$,it$$Nt$L$ p$t$iƋD$( qu)Njq+9w. q8~D$jċL$$9L$dT$$l$dBT$؉D$ E,$D$hT$(D$$T$gƋD$44$D$4hl$0}l$|$ H$L$h4$D$,D$4D$0D$(D$gl$$}l$|$ p$t$fhL$ ƋD$(L$D$$$o^‹PL$0l$0El$؉D$ B$D$Y^‹T$4$]NjD$ 4$D$]‹L$,l$,El$؉D$ B$D$]L$$‹tstWD$$T$$`]|$$;]x)D$$|$0D$<$fl$8D$,$hL$,L$0t$$ɋD$$$D$"]맋t D$$T$$T$ $Df낋BT$D$ A $؉D$$]1L$,tl$,El$؉D$ B$9t+l$,El$؉D$ B$D$Zfqt$$_\]t T$4$T$4$e9BT$D$ A $؉D$_\L$0t|$0G|$؉D$ B$9t+l$0El$؉D$ B$D$eqqD$4l$(D$0l$$El$D$ G<$؉D$[tG|$؉D$ E,$9t'G|$؉D$ E,$D$dqx$afD$dD$E$a0pl$ ,$L$0[6D$4NjqD$$t$(D$dT$(D$$`.,$|$\[ʼn$:_,$]ŋtD$ED$E$5cNjT$d<$T$N`D$4<$D$Vct$0Nt$L$ H$L$c<$D$,D$4t$,D$0D$(t$4D$ct$$Nt$L$ p$t$cƋD$(D$$9D$d|$$t$dG|$؉D$ F4$D$=cl$(D$$l$DbT$4T$ʼn$}bt$0~t$|$ H$L$b,$D$,D$4D$0D$(D$=bt$$~t$|$ h$l$bL$ ƋD$(D$$yi$|$l$aNjL$0D$L$$a9lj@T$؉D$ G<$D$IbD$4$aD$l$4$aNjD$,D$D$$a9ljtW@T$؉D$ G<$D$a|$$D$<$IaL$L$$]T$,T$0qqZqYl$4D$(l$0D$$; q|$88,$_]$T$b1E q%D$)Njq+9T$wh q8E%p<t EG;T$.wrL$dL$D$,Dv;L$|J$;b늋pD$dg]$T$b"D$(\$lt$|$L$ T$$t8d7D$T$ $+d8w9L$h|$dt$`T$\l$TL$|$t$ T$D$,$VD$D$D$V뱋$$Qt$lOdD$Lt$0D$`7D$4FD$,Kd+L$,F|$4GPpD$LAЋL$0t*9Ft$؉D$ B$D$}[L$,q AD$,uH|$,<$P4$D$>Z‹@ @xD$XT$$\|[^_]É$0U܋T$\t$`T$(~o$l$mZVJQL$T$ H$L$ZGFh~D$(o$l$(ZVJQL$T$ H$L$ZGFhKdl$lt$`l$ Odt$$u~+ve}Ft$$FPpD$LGЋl$ t&9t/Ft$؉D$ B$D$Zw GGd$~[덋Gdb$c[Gd'Gd0~OOdKd(}+9w Od8EG@w'$Z҉OdKd>݉w+9w Od0GFn$Z$Z$Z;$pZSJeD$$D$D$ D$E$k[UWVSel]$E $D$D$LW$T$\D$8ID$4D$T$4$N$4$D$4VD$<]EƋ$+D$@)9$$ua$ t$$Et$Pt$\UT$H)ЅD$D]D$T]D$XT$8l$TBT$D$ E,$D$vWt$XD$t$$}V|$X|$$VT$T9"BT$؉D$ A $D$WƉ4$V9$@$T$؉D$ A $D$V‹D$X$D$D$UD$ŋD$X$QD$Tt$$QL$uD$T$"@$_[ÍD$ T$T1D$T$&@ŐUWVS{_wW$D$p[WD$8Fx4$cGļ[^_]ÍT$|SD4$T$T$xL$ T$Gt$$ HR؅ D$||$tD$ |$D$4$L0$ D$L$HL$$HJT$D$TT$@$FND$L$TD$A$g@u |$\Tl$TT$L$PEl$XpB9El$Xl$XAL$<$D$6K|$XŋD$x|$$ >pD$t$ E,$D$J;t$dNjD$L$|ZT$PD$d$T$<$D$ l$J$ƋD$$|$D|$T$|$<D$lED$8L$8NjD$@D$$5HD$L$ G<$D$Y9NjD$H~-Gt$<|$D$ F4$D$+9D$<GT$<|$؉D$ B$ϋL$,D$DL$$A;l$$D$DHD$Pl$$D$Hu;l$$~"l$,$$:L$8$L$k8D$D$@D$D$ $4|$4<$D$&8D$$5T$@lj$N=l$ƋD$D$U=t$$6pD$t$ G<$D$8NjD$H~-G|$|$<D$ G<$D$7D$<GT$<|$؉D$ B$$B*9$|$BB.D$$؅OD$$D$$or_L)Nj[L+9w1_L8~L$D$DB$6BE%? @E$BFD$P$ D$@؅D$0t$LD$4$@.t$$ ?؅SLUWVSL,t$@t1$T$}AF*DxwD,[^_]ÃD$D$=t$|$1D$uA9s1҉19r1ҿ9t$ƒT$ v;L$sZ1҉1͍O9s1҉ED9r19L$ƒՉ׍4v9r$u>y$d>6t$@,[^_]^FD$D${D$.|$t$l$|$$T$ /u7Uڍ uwt$|$l$$=߅x:ʸ )) @G9W.}9|뤾ڸ )) <\$,t$0|$4l$8L$@T$D6H1%hBt'%z‰ څNAt 1t\$,t$0|$4l$8<ÍD$@ $D$i9uы2@T$0D$@@D$T$D$D$DL$D$ $7u 2@01늋2@T$@1t$%@D$$D$9D$D$@$L$e8t$Dt$D$ D$$K7$$8ƋD$DD$4$>9L$@$L$7uD$2@MD$HD$$Y;uD$tUt$$8ƅt14$D$[7l$D$,$:|$HtD$t$$,;ދD$DL$D$ D$D$ $o6D$끋2@t$0묋B@%?44$:L$@UWVSEL=l$`,$D$<$ŋD$D$|$HD$L$ G<$D$t$t$$D$w8sw+v#w0G"D$nF,[^_]$=ϋoIUWVS % ⍀> P) ⍀) P ⍀ P ⍀ P ⍀ P ⍀ Pz ⍀ Pfa ⍀ PMH ⍀ P4/ ⍀ Pl ⍀l PW ⍀W PB ⍀B P- ⍀- P ⍀ P ⍀ P⍀Plg⍀PSN⍀P:5⍀P!⍀P⍀Pp⍀pP[⍀[PF⍀FP1⍀1P⍀Prm⍀PYT⍀P@;⍀P'"⍀P ⍀P⍀P⍀Pt⍀tP_⍀_PJ⍀JPxs5⍀5P_Z ⍀ PFA ⍀ P-(⍀P⍀P⍀P⍀P⍀P⍀Px⍀xP~yc⍀cPe`N⍀NPLG9⍀9P3.$⍀$P⍀P⍀P⍀P⍀P⍀P⍀P⍀Pkf|⍀|PRMg⍀gP94R⍀RP =⍀=P(⍀(P ⍀P ⍀P ⍀P ⍀P ⍀Pq l ⍀PX S ⍀P? : ⍀P& ! k⍀kP  V⍀VP A⍀AP ,⍀,P ⍀P ⍀P ⍀Pw r ⍀P^ Y ⍀PE @ ⍀P, ' ⍀P  ⍀P o⍀oP Z⍀ZP E⍀EP 0⍀0P ⍀P} x ⍀Pd _ ⍀PK F ⍀P2 - ⍀P  ⍀P ⍀P ⍀P 5Ng/Haz)B[t #<Un6Oh0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &$Ë$ph^NlTJ*. vR@0. pb111d1M141#m?w1b1i1V1:1-. !uuuuuua# Ou%uq. `$a6gIMI@I6M;IbE. 4$ t B/t Y F  . r!_!H!=,!:! !!!!!h!R*!<~m!!h!0!. iT3. vS-. <bT8. $!k!|I!$!!!qUE-߿¿sN!&!!!r!lP&!. Խʽg. ޼1Ӽ¼1zl>.11»1111c1[1I1:11 11znP61-. ʷʷݹpX9ʷ+ ʷʷPʷAƷ. Huƶ_uKu$u uuϵuɵuuu|uqcBu)uuuشuҴuųubuq. aQ<߲Ѳr?/@$űyiY=- aK?/} o_O֮<,& tfRB2& ҬƬV2ѫ7. |c=, ߪϪl\Pکǩ~PH@$.ŧ}cxR>6.äuoS-!٣bO3ڢJ7աǡwdH4ʠ. u@_OD<<. m`U@0 y_Wڝ~;+՜Üqg7'՛ND1. Ӛ˚D. uO2,"ۙʙtǘ`P4(xgNΖcKaG;ڔf\PJ:ݓ. H~z. p^D2. ڒl[C3#p ۑёnXH<֐r`HoG7-ڎ̎FmI6+όcS;/9ߊW(É{iJ8 وfM@.·‡>>>!!!>!>>!!!>!|x!t4pl!dl>. ߆u[L3&f }V///܄/؄Ԅ/Є/̄ȄĄ/. rbaW6&}]Q; ׂvL=7 ҁJŁrJ;. @JD/P( . ~~~~~(z~v~zg~K~-~ ~}}z}}zo}_}zC}&}z}z}z|z|||||z||~|m|-||{zh{z[{H{7{z {z{zzzzz. zpz`zgde4g!gegxegtesfeefee. Je9e+edtddtddtddddtddtdydtdpd. Cd"dccjccccccc. bcbHc8c(ccbbbbbb. ~bqbgbIbb]a]a]aa-a]a]a`]````]`h`X`A`*`]$` `__]_]~_]s_b_8_!_ _]_^^^^^b]^^^x^k^C^]^^]]]]]]]]a]]a]]a]]^]]^]]^]]^]]^]]^]|]a]x]]]t]^]p]^]l]^]h]^]d]^]`]|_]V]`]]-]]. \\\\. \\\f\T\0\<\0\,\. [[IU[[r[UW[U([U[Z@UZZUZZZmZZUZUYUYYYYUOYU1YXUXUXXX{XVX#XWUWPWUDWU:WWVUVUVUVVVXVUDVU(VUVUUUU@UUUU. ^UNU)N8UUNTNTNTTTNTqTNTDT,TSNSS!NSNSNSSSWSN0SRNRNRRRRRwRgRORRRQQQNQQrQbQGQN5QQQNPPNPNPoPNXP4P P PNPNONOONlO'ONNNN. MhMPM>S>====z= ===. <<<<. <Y<;5;5;5;;5;;^;?;5;5;5:::p:`:N:@: :9595959959588z8p8!8587757575*75 766r6`65Z6J6565555. 55355C53553'54_4H43:443333333. q3J3"3222222-2T2;2#2-11s1-b1--1-'11100-00u0%0-0-/-//-v/-]/-H/..\.-D.2-@.2-<.2-8.}2-4.2-0.2-,.D2-(.2-$.2- .]1-.0-.2-.H.-.2-..-----. -p-D-'0-'-'-,',,,',,m,'R,'J,'B,,','+'++v+4+$+ +'**'*s*X*F*$**)))l)X)2)'((P('2('(' ('-''-''-'' -'' -'','','','',''+'','',''H+''('','' +''A(''8(''('','''''. m'c'R'4''$&$&&&&$&b&$\&$F&$<&$2&&%%%%$}%$n%$Z%$@%$!%$$. $$T"$T"$$z$^$<$T"2$"$$$$##T"###z#\#!#T"#""T""T"t"P". /""~ !~ !~ !~!~ v!d!~ Z!~ 9!~ !~ ~  ~ z . I 6  . {"qa"O2. . {R? raP?.o_Y/sk`Wu@+_S-^mW#}ua`=kX!dK . }oN1  B5!mgZ0 `4$  qkHB .      ~ i A 4      } ? $        B  8    .     2  .  . c [ D 3  QI*. ``\. 4!|. \!p+. vP91 sTA(. IC9SA' . _M3. |xtplhd`\j d\V- Q KC=- 8 2*$-   -  -  -  -  oo-  VV-  ={=u- p j~$b~$\- W Qz Iz C- > 8v0v*- % rr-  n n -  j j -  f f -  bu bu -  ^\ ^\ -  ZC ZC{ - v  p V*h V*b - ]  W RO RI - D  > N6 N0 - +  % J J -   F F -  B B -  > > -  :{ :{ -  6b 6b -  2I 2I - |  v .0n .0h - c  ] *U *O - J  D &< &6 - 1  + "# " -      -    -    -    -  h h -  O O -  | 6t 6n - i  c [ U - P  J B < - 7  1 ) # -     -   -  -  -  n n -  U U -  <z <t - o  i #a #[ - V  P H B - =  7 / ) - $     -   -  -  -  t t -  [ [ -  B Bz - u  o )g )a - \  V N H - C  = 5 / - *  $   -    -  -  -  zz-  aa-  HH- { u/m/g- b \TN- I C;5- 0 *~"~-  z z-  vv-  rr-  nn-  jgjg-  fNfN-  {b5sb5m- h b^Z^T- O IZAZ;- 6 0V(V"-  RR -  NN-  JJ-  FF-  BmBm-  >T>T-  :;y:;s- n h6"`6"Z- U O2 G2 A- < 6...(- # **-  &&-  ""-  -  ss-  ZZ-  AAy- t n(f(`- [ U M G- B <4.- ) #-  -  -  -  yy-  ``-  GG- z t.l.f- a [SM- H B:4- / )!-  -  -  -  -  ff-  MM-  z4r4l- g aYS- N H@:- 5 /'!-  -  -  -  -  ll-  SS-  :x:r- m g!_!Y- T NF@- ; 5-'- " -  -  ~~-  zz-  vrvr-  rYrY-  n@~n@x- s mj'ej'_- Z TfLfF- A ;b3b-- ( "^^-  ZZ-  VV-  RR-  NxNx-  J_J_-  FFFF~- y sB-kB-e- ` Z>R>L- G A:9:3- . (6 6-  22- tplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($     89 RuxyX\I^d|N $}"&~   89 RuxyX\I^d|N $}"&~u{zwv     8" * (8 C M $xT z\ e n u l @ ( ,   ,    < t    # |5 `pMxpTeLpc(djieNUb`   '4B'1 \\o|x~yGRdcP~~~     <x |3s1ovrPsx'$U@><s`o%oQlHyEFXd)5s-mr;Hp$s|s] AJ<dAkDr`E5`<\wzt bt ZܚuqG=q+]R  L2  F gO  GS | gy:\ e 5A  yrkcpZdn |J ! ;/;_x=5n~ /![.#EA{  \C %N>   3mW_garith_proto___i686.get_pc_thunk.bx_arith_proto_arith_proto2_arith_proto2gs_garith_proto2gs_gassoc_proto_znorder_order_ggener_gener_Fl_local_gener_Fl_gener_Fp_local_gener_Fp_gener_znstar_gracine_racine_uissquarerem_Z_issquarerem_gissquarerem_gissquare_ispower_gisanypower_isanypower_krouu_s_gkronecker_kronecker_gkrogs_krois_krosi_kross_krouu_hil0_hilii_hil_Fl_sqrt_Fp_sqrt_Fp_sqrtn_lcmii_chinese1_chinese_Z_chinese_coprime_Fp_inv_Fp_invsafe_init_remiimul_Fl_pow_Fp_powu_Fp_pows_Fp_pow_gnextprime_gprecprime_gisprime_isprimeSelfridge_BSW_isprime_small_BSW_isprime_isprime_gispseudoprime_ispseudoprime_gispsp_ispsp_gmillerrabin_gisfundamental_isfundamental_quaddisc_seq_umul_mpfact_fibo_gcf_gcf2_gboundcf_contfrac0_pnqn_bestappr_mod_bestappr_bestappr0_gfundunit_fundunit_gregula_regula_qfbclassno0_classno_classno2_hclassno___i686.get_pc_thunk.axdyld_stub_binding_helper_lontyp_mulii_millerrabin_BSW_psp_isprimeAPRCL_plisprime_precprime_nextprime_remiimul_REMIIMUL_LIMIT_MONTGOMERY_LIMIT_DEBUGMEM_DEBUGLEVEL_diffptr_pol_1_gen_m1_gen_2_gen_1_gen_0_bot_avma_gdivgs_quadclassunit0_roundr_eint1_incgamc_sqrtr_abs_divsr_subsr_mulss_gpowgs_compimag_redimag_primeform_u_gceil_sqrtnr_gmul2n_gaffect_maxprime_check_sqrtr_divrr_mppi_dbltor_check_quaddisc_ground_divis_gtovecsmall_mulsi_absi_equal_diviiround_mulsr_mplog2_divri_gconj_quadpoly_check_quaddisc_real_truncr_absr_cmp_mulrr_mulir_cmprr_addrr_sign_addir_sign_floorr_gcvtoi_ratlift_matid_gsub_gfloor_poldivrem_ser2rfrac_i_ishiftr_lg_cgiv_truedvmdii_diviuexact_muluu_mului_gsigne_factor_Z_issquarefree_vecslice_auxdecomp_u2toi_leftright_pow_Fl_inv_red_montgomery_leftright_pow_u_invrev_ginv_invmod_gerepilecoeffssp_gmod_gadd_gneg_gbezout_gerepilemanysp_gerepile_gerepileall_Fp_shanks_gerepilemany_pari_warn_leftright_pow_fold_gcmp0_equalii_grndtoi_mpexp_divrs_logr_abs_affir_fprintferr_is_odd_power_absi_cmp_upowuu_cmpii_padic_sqrtn_is_kth_power_is_357_power_gsqrtn_modii_Z_pvalrem_vals_RgX_shift_shallow_gequal_gsqr_gtrunc_greffe_scalarpol_gsqrt_polvaluation_gcopy_umodiu_usqrtsafe_sqrtremi_detcyc_gmul_powgi_gdiv_bezout_dvmdii_gmodulo_powiu_int2n_cmpui_sqri_gerepileuptoint_addii_sign_shifti_addsi_sign_ZV_to_nv_equalui_factoru_gerepilecopy_diviiexact_Z_factor_phi_gcmp1_gcdii_gerepileupto_divide_conquer_prod_pari_err_carresmod64.0_carresmod63.1_carresmod65.2_carresmod11.3_polissquarerem_polispower_sqrt_Cipolla_mplgenmod_Fp_sqrtl_lucas_sfcont_Qsfcont_sfcont2_affsr_conductor_part_end_classno_hclassno2_reel4.4__remii_montred__muli2red__muli2montred__muli2invred__muliired__muliimontred__muliiinvred__mul__sqr__Flmul__Flsqr_sqrt_Cipolla_sqr_sqrt_Cipolla_msqr #1/12 1200773962 0 0 100644 49676 ` arith2.oH T{dL{ __text__TEXT6pd~__data__DATA8p\s __cstring__TEXTpt__literal4__TEXT`sv__literal8__TEXTpsv__bss__DATAL{__picsymbolstub2__TEXTsv`__la_sym_ptr2__DATAz w}CC__nl_symbol_ptr__DATA { ~__textcoal_nt__TEXT@{ ~ @@ P =GHUWVSl$023{10tty 3{C03{ 9k0Ƹ 3{0Ơo3{0ƈ'3{p0p.x=vցN3{'0'N/u3{ Nm0 N(?3{0uX00u3{@R0@pl$$T$wUW1VS,xT$@D$(x0T$t $wD$T$Kn$T$"wx(D$1PtD$h,$vD$E,$UD$,$U>1ҋ%믉,$#룐SD$ D$D$BP$V[UWVSl$@}1EWN$T$tTD$@PSfD$ D$D$J$O[UWVS7D$w+9QN0GF@D$F9l$ $l$]FD$ D$,uzL$9L$;l$P,$HtFt$PFt$$D$E|$ D$<$FD$D$$$@F<[^_]ËD$PD$$\E‹D$PPցt9D$P$T$D$E|$ D$<$ED$ T$ T$뉋D$PxuL$D$ $ExD$$|$8E9|$JD$(l$t$(T$dD$`T$$BhD$$l$A|$,D$<$'zu%T$d<$T$AD$ @$D$D$ D$@9|t$,$t$@D$,D$D$ $@HD$$L$@9|봃D$8T$8xƉ|$(F%D$0nt$,l$$|$0!ȨtT$(BH7D$0)‹F+0T$ 9t$0D$ D$0D$0|$  ,D$8D$09D$8t$$1ҋ At'%qщ DޅN֋|$8D$ ҉ L$8t$ ,$D$L[^_]ËL$8T$(D$$8=9rD$8L$09L$8}7t$8L$ D$,l$4t9r!l$4uD$8D$09D$8|ɋD$oT$8L$(D$$;9r$A$|AJ"<$T$YA$HA$7A=$&AD$$l$0T$(<$T$@gD$4$Vb.NL$(D$8%9D$8D$0.HT$8l$(DuD$09‰T$8|D$,UWVSf,AD$A(D$DD$D$@$x@D$ʁ9}%D$B%Du'ʃ9|ۋD$l$$Q;,[^_]Ë,$D$:ĐUWVS<@D$,@D$D$ D$TD$D$P$HL$(@D$$%9D$$1Bt'%rщ څNt)t$t$($9D$D$$:D$L$(%9v@@}w+v0uG"D$ FD$Ft$D$,$a;<[^_]$>‹l$(DD$D$ $9D$ =$W>D$ D$$ÐD$ D$$UÐL$$D$ t $É$򐐐\$t$$?|$8D$ $xP%tx3tD$ $;D$<$8\$t$|$ø)<\$,lt$0|$4l$8>D$D$@$ h@D$}tth>0>~+v]>8F"D$,$:GD$t$4$6G|$D$$[9\$,t$0|$4l$8<$<땸)aT$$D$ t $É$e򐐐UWVSOLD$`=t ]4$|$<1L[^_]ËD$`T$`D$0B%D$<l$`!}x tD$<l=)щL$,=+9L$,="D$,(D$4o=t`ET$,u;l$<}3D$0D$08t(o=T$,u;l$<|͋D$4=֋=$:f$:===1(=~+9T$'MG҃ ƒ~~t)t1\$,t$0|$4l$8<Él$<$oىl$$L$!<$D$KHD$$ىL$!D$D$$!뎅uىl$$L$~!ŋG|$$؉D$`!l$$މ|$$t$|$ \$^$$$$ݜ$|$ l$@Y$$t$0$f.$^YFfTfUfVf(f($XXX$XY>^^݄$$$T$pl$`t$0|$ \$$\$`\$T$pt$0L$|$ Yf(YFf.r$Z2f($$f.r=f(Xf.zf(f(XYYXX$f.Of.$r0f(f(XYYXX$f.r f(Q$f.zu f(\݄$\$`d$Pt$0|$ $|$ t$0\$d$P\$`D$먍fd$P$T$[d$PUWV l$<|$8D$4l$D$<$l$t$0l$1D$)x8)yхuڃ ^_]ÐUWVSDŽ$DŽ$DŽ$DŽ$DŽ$$D$|t $!t$BK0~+98F&b$B%/$<$l$P?@։Pt<$1ɍ,EUtω$ 8ɉ0$~+9n8FG@G0~+9!8FoG@݋8$l$$4$;$t4$pE%9t$싃$$A%E B$w_$tO$B%tj))xO@ vwW 9DŽ$t$|G< ЃD$|$9$I$$D$$t$$$l$$un+9T$*FE@$E2n+9D$(FE@$E$J$A%ƋD$ $+E)9D$8~$D|$7~+wT$:FG@GL$$1t$$|$$ƒ+<)9ʼnT$`D$`T$%D$\D$`$T$XL$+)9ʼnl$}D$\ulD$X$t%4%,D$`,E%tuۋD$`F~$u ļ[^_]Ë 4$D$|$0$"f$$$$x$yD$il$|E$k$$$|$<$$Bt$T9t.p$%9t L$T$T$$t$%9ʼn$}it$|$|$D$$L$P$Nj$@T$PD$;$}D$뗃$DŽ$$$$D$L$ D$<$$U83$1t$$E$ƒ+<)9ʼnT$(D$(%D$$D$($T$ +)9ʼnw^}D$$u?D$ $t%4%,D$(,E%tuۋD$($$$T$&$T$$D$ $l$D$$$$~$4$$$rD$+E )9D$8/~$|$7~+(@T$:FG@G$2ɉt$$Il$E$ƒ+<)9ʼnT$4D$4T$%D$0D$4$T$,L$+)9ʼnw\l$}D$0u?D$,$t%4%,D$4,E%tuۋD$4$$$X$,$$T;$t3$w%9t$싃t$P$D$D$L0|$D$|$L$T$HL$D$$$Ƌ$@u^;$t/$~%9|,t$D$|$HD$LD$8m$Ƌt$D$H$D$|$D$Dp+)9D$8~L$D|$7~+XT$:FG@D$LG$t$TL$4$j$B%|$,Ƌ$)+E9D$8~$D닓T$2~+(ID$8FG@G|$$7ɉt$$ll$E$ƒ+,)9ljT$@D$@T$%D$<D$@$T$8L$+)9ljwaD$(|$⍀>Pwr)⍀)P^Y⍀PE@⍀P,'⍀P⍀P⍀P܇⍀PȇÇ⍀P鯇誇⍀P閇葇l⍀lP}xW⍀WPd_B⍀BPKF-⍀-P2-⍀P⍀P⍀P⍀PΆɆ⍀P鵆谆⍀P霆藆⍀P郆~⍀Pjep⍀pPQL[⍀[P83F⍀FP1⍀1P⍀Pssssst+tDt]tvtttttt u%u>uWupuuuuuuvv8vQvjvvvvvvww2wKwdw}wwwwwwx,xEx^xwxxxxxx y&y?yXyqyyyyyyz$Ë$Ë$-p!p@so poo soo8{ooo${oeoIo${oAo"o8{o o nnr\nnnn8{\n4{\an8{\=n4{\0nnnnm8{\m4{\m8{\fm8{\7m4{\*m8{\mllllllXl8{\Cl4{\/l8{\l8{\k4{\k8{\kk8{\kkwkfkQk8{\G8{D3GFF[F8{DFF4{D3F8{D(FFgE8{DLE4{D6E8{DD0{DDDrDD DDyDhp>D:D DCC8{lChC GC6C&Cr=C CBBB0{=B0{=B0{=aB {= B {=zA4{=0A4{=@4{=@8{=@@@0{=9@4{=3@8{=???4{=?8{=y?Z?8{=B?4{=8?0{=2?8{='???0{=>0{=> {=> {=s>8{=\>4{=E>8{===r== ==i=I=6===8{<<4{<<8{<<<8{<< f<Z<,<<8{<< ;;;;;;p;\; ;4{>:;8{>:::m:O: {>:C:8{>::: %::99 {998{99 998r1588888q15z8i8U877777 {1564{1568{1566q15654{1558{15}5658{15-5 5 544`q04 {04z4`4D40443333f3V3:33 322'2211 {011108{00<{00 00lp00 p0`0`q,S0 {,300///|/l/;///....8{,[.4{,Q.8{,E.-{- {,W-;-,,8{,,<{,, ,,ppr,n, Y,I,`qQ)<, {Q),+++z+^+N+6++|*G*8{Q)**4{Q)*8{Q)*))b)8{Q)V)<{Q)M) ?)7)tp")) )(`q%( {%(((o(M(( (''''z'S'&& {%{&_&%%8{%%<{%% %%xp%% %r%`q #A%8{ #$8{ #$8{ #$$8{ #$~$###9##8{ ##<{ ## ""|p"" ""`qm F"8{m 1"8{m +""8{m !!M!!  ~ 8{m r <{m i  [ S p> :  -   8{q tD8{b78{b+ 8{bW 8{b4{b8{bx8{bp<{b^ KCp.* `q=8{=h8{=R8{=F8{=R8{=4{=8{=mN8{=B<{=9 +#p  0{U{gM8{Ug4{U@4{U4{U4{U8{Ux4{U^8{UQ @0{=5$8{=%4{=4{=4{=8{=`4{=F8{=9 +8{xt c[pFB 7 p98{9e4{9_8{9F4{9>8{95 % 0{ 0{ 0{vr g0,{e,{e,{e$qe,{e~,{exhqeB,{e,{es,{em_,{eO,{e/$qe ,{e,{eqe,{ea @0py (8{y 4{y 8{y dV,{y N@)8{y # ,{y ,{y w ,{y q c ,{y ] H ,{y $     ,{y ; 8{y 3 ,{y - 4{y  8{y  py  ,{y u  j Z p L L{ >    L{  L{   t c  Tp8{4{n8p+@p f[ps. 8ph`sh@ph`sh@ph`sh@phz8ph\`shP@ph2`sh&@ph`sh@phphd D30{8{8{]4{4{8{<{ 0{w}T8{w=4{w58{w 8{wpw<{w|8{ws `Lp .<{ <{ <{ <{ <{ l<{ F<{ <{ <{ <{ t8{ ]4{ U8{ &<{  XTPLHD@<840 {yy{ys n h{y`{yZ U O{yG{yA < 6{y.{y( #  {y {y  {y{y  {iy{iy  zPyzPy  z7yz7y  zyzy  zyzyy t nzxfzx` [ UzxMzxG B <zx4zx. ) #zxzx  zxzx  zoxzox  zVxzVx  z=xz=x  z$xz$x  z xz x z tzwlzwf a [zwSzwM H Bzw:zw4 / )zw!zw  zwzw  zuwzuw  z\wz\w  zCwzCw  z*wz*w  zwzw  zzvrzvl g azvYzvS N Hzv@zv: 5 /zv'zv!  zvzv  z{vz{v  zbvzbv  zIvzIv  z0vz0v  {zv{zv  wzuxwzur m gszu_szuY T NozuFozu@ ; 5kzu-kzu' " gzugzu  czuczu  _zhu_zhu  [zOu[zOu  Wz6uWz6u  SzuSzu  Ozu~Ozux s mKzteKzt_ Z TGztLGztF A ;Czt3Czt- ( "?zt?zt  ;zt;zt 7znt7znt 3zUt3zUt /zF$\$t$Áuܐ\$t$t$ 4$F%~ \$t$Í#$T$>ܐVSD$ $Vp ‹%~NR %9t!D$$#$D$T$(>N[^ÐVS)t$ tj#$T$=tFD$$9tz#$t$=[^ÐSL$ t&#$T${=[ÁuڋA%uSjL$ t"$T$+=[ÁuڋAuᐐSL$ %P~u [ËD$$"$D$T$<ېUWVS|$0l$4%p~6 t t*"l$$T$a<ʃ[^_]Á.~.uɃ,\$ t$$|$(|$0t$4$GD$F$;tF\$ t$$|$(,ËG"D$FT$$D$ D$8D$;뿐V1L$u)ցt#uA ΋t1^ËI֐ $t$|$iL$t$ 0 %wBEi{{{A uI덁t1$t$|$ ËA%t uɋAuA u IuЉ% oshWGID9VS L$t$  t0BwkI=JRRA uIe1[^ËAuA u Iu uIuȃ u뚋Auz odO@1A%t UWVSK<;;L$PD$,A|$,%?D$(D$,D$$7;+8D$$l$,ED$P t^$&T$7D$P*D$(D$$@@;7u;;7;/}+9O;;8EG@wt$$F6nMf3;|$$G 6VM3;t$$Ft$l$PD$(,$D$Y6;;Ƌ}$-6D$4$6%/;8wD$,}t$$5<[^_]Íkt$$5х~Q;;(7;}+9w ;;8EG@w1$6ҋ;;7;ދ}t$w+9wuGFD$F$5Ӆ~Q;;(7;}+9w ;;8EG@w[$U5ҋ;;7;ދ}t$w+9wuGFD$F$4$4;;7;ދ}t$ w+9wuGFD$ Fr$4ӋD$P$V4`D$P^$%|$b4$Q4^,\$t$ |$$l$(l$0|$4E=%p%9t$T$31\$t$ |$$l$(,ËD$D$2.uԃUWVSl$ $%D$Xc3t$XD$DD$H L$TA!%T$TD$$?2D$P6t$PD$TD$P@D$LNL$P%D$\~TD$\|$L1ɋBt'%r QޅN΋D$\|$L D$\l$PE%D$\D$X*L$XL$ D$,l$\T$Pt$\0T$Hy׋D$0t$8D$4)l$@t$,$'0t$4;t$X);t$4p|$L$H$/T$H;t$X~׋D$1$$G D$$H$G$$l[^_]Ë$(~I}2w+9wuGF@$(F$U,Ӌ$(}2عw$ +9wuGF$ n$+$+$+$+2$X$X+DŽ$։$$$X@"u$Ht $Ht DŽ$22}w+9cuGF@F2$p}w+9uGFF$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$1*Ӌ$2߉$}w+9wuGF$n$)$)$)$)$X2Ή͉+0/$X2G"28w+9220GF@Fu8w+9220GFFu8w+9w>20GF@Fu D$$E$($z(h$i($X($X2ʼn+/$X2G"28w+9220GF@Fu8w+9w}220GF@Fu8w+9w420GF@Fu D$$$F'$8'r$''&$'$D$$\$5$H$$<$Tt$PK]$,$c$$Hݜ$|$H!$Ht'2$T0$<$2$띋227n++!/F"$Y,$$D$$$#$8@ $8D$F$X#$8NjB$+#|$$#$8D$F $"#NjFD$F$#$8ƋA$"t$$"$8D$F$"|$$"E$8$%Ƌx@FF ~D$F$"NjF$t"|$$O"D$F $r"$FD$F$Y"NjF$3"|$$"D$F$1"$t$$!E$8$d$HƋ@ FN L$F$!NjF$!|$$!D$F $!$FD$F$!NjF$!|$$c!D$F$!$T$$A!E $8$#Ƌx@FF ~D$F$A!NjF$!|$$ D$F $!$FD$F$!NjF$ |$$ D$F$ $t$$ E$8$ #HƋ@ FN L$F$ NjF$p |$$K D$F $n $FD$F$U NjF$/ |$$ D$F$- $|$$E$8$`"H Ƌ@F ND$F$NjF$|$$D$F $$FD$F$NjF$|$$_D$F$$t$$=ED$,$Ɖ$T$P$T$4$$‹$\9~ Љ$\$L?$k4$-4$@$4% $L$*!27n$2+U9$F"7N+U$9n$F,7F+U$9,$F,$$XY,D$Ӌ}2$+$w9wuGF$n$$$$D$8$XDŽ$$2+09$$$X@"u $HDŽ$t DŽ$22}w+9cuGF@Fx2$p}w+9uGFF$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$Ӌ$2߉$}w+9wuGF$n$$$$$8$Nhpph$c$R$A?$$ D$$ 2‹$X҉$XDŽ$$2+$/$XG"u $HDŽ$t DŽ$22}w+9cuGF@F 2$p}w+9uGF@F$p$u81$E D$$H$%E$$~I}2w+9wuGF@$F$rӋ$}2عw$+9wuGF$~$$ $ $ 2$XDŽ$+$Xփ$9$$$X/@"u $HDŽ$t DŽ$22}w+9cuGF@F2$p}w+9uGFF$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$I Ӌ$}2عw$+9wuGF$n$ $ $ $ t2$X$4B!$X$XDŽ$$2+($$XF"u$HE$$22}w+9cuGF@F2$w}w+9uGFF$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$ Ӌ}2$+$w9wuGF$n$ $ $ $n $X$XDŽ$$2+89$$XF"u$Ht $Ht DŽ$22}w+9cuGF@F2$p}w+9uGF@F$p$u81$G D$$H$G$r$~I}2w+9wuGF@$F$Ӌ$2߉$}w+9wuGF$n${$m$\$K2$X$X+(2DŽ$$$$X@"u $HDŽ$t DŽ$22}w+9cuGF@F2$w}w+9uGFF$p$u81$G D$$H$XG$E$~I}2w+9wuGF@$F$Ӌ$}2عw$+9wuGF$n$N$@$/$$ $H:$H^227p+($#$džp$"$Y,$$DŽ$@D$$$DŽ$P$8$Pl$L|$L$P~ً$D$$Cʼn$ t$P$t$,$$‹$\9~ Љ$\$T-$.<$a<$8@$4%+$0+?0468$$FD$$2$X*2DŽ$$$X+$$X@"u,$HDŽ$t1҃$Hƒ$22}w+9cuGF@F 2$p}w+9uGF@F$p$u81$G D$$H$AG$.$~I}2w+9wuGF@$F$Ӌ$}2عw$+9wuGF$n$7$)$$2$X$X+DŽ$։$$$X@"u $HDŽ$t DŽ$22}w+9cuGF@F2$p}w+9uGFF$p$u81$G D$$H$G$ $~I}2w+9wuGF@$F$iӋ$2߉$}w+9wuGF$n$$$$$L$4$42$XF%hƒ Ш"2$X+$DŽ$9$$$X@"u $HDŽ$t DŽ$22}w+9cuGF@F2$w}w+9uGF@F$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$Ӌ}2$+$w9wuGF$n$$$}$l$X$XDŽ$D$|2+0l$|$X/@"u $HDŽ$t DŽ$22}w+9QuGF@F*2D$|p}w+9uGFFD$|p$u21|$|G D$$H$GD$|$~I}2w+9wuGF@$F$Ӌ$}2عwD$x+9wuGFl$xn$$$p$_)2$X$X+(2D$tL$pD$p$X@"u$HD$ttD$t22}w+9EuGF@F2|$pw}w+9uGF@FD$ppt$tu21|$pG D$$H$GD$pwD$t~F}2w+9wuGF@D$tF$֋D$t}2عwD$l+9wuGFl$ln$$$p$_;2$X$X+(2D$hL$dD$d$XF"u$Ht $HtD$h22}w+9EuGF@F2D$dp}w+9uGFFD$dpD$hu21|$dG D$$H$GD$duD$h~F}2w+9wuGF@D$hF$֋|$h2߉|$`}w+9wuGFl$`n$$$n$]9$X2$XD$\D$X2+(D$X$XF"u$HED$\D$\22}w+9EuGF@F2|$Xw}w+9uGF@FD$XpD$\u21|$XG D$$H$GD$XyD$\~F}2w+9wuGF@D$\F$֋}2t$\+t$Tw9wuGFl$Tn$$$r$a?$8$PD$${Ɖ$L~ ~$L$8D4$D$C$@$@$D$L$L~$22u~+ *}F"$,$$XY,D$DD$@D$ D$$$D$D$D$$$l$$$8wDŽ$DD$($8$D$4t"$$Dp H4$41DŽ$LDŽ$P$0D$(D$H$Pl$L|$H$L$4D D$D$$L$4ƋDD$$t$$u$4Ƌ$PD$$$at$$n$0D$$)$L$0?D$L$P$D$0$,<$D~ $D$ʼn$L$P$L$],$:$‹$\9~ Љ$\~$D$<$.<$@$4%> t$t${22>W+$l  $lG "$,$8FD$F$nl$$$8ŋAD$A$$8r $t$l$$_DŽ$@GDŽ$P$8$$P<4$P4<$4@$4D$A$'$4~$|$$4NjAD$A$$4r $t$|$$$@$@$l?$P$P$$D$Aʼn$T$P$T$,$$‹$\9~ Љ$\$| $q4$]4$4$@4$$4yD$$P2Ƌ$X$4E%K#D$$$X$L2DŽ$P +09$L$XG"u $HDŽ$Pt DŽ$P22}w+9cuGF@F$2$Lp}w+9uGF@F$Lp$Pu81$LG D$ $H$aG$LN$P~I}2w+9wuGF@$PF$Ӌ$P}2عw$H+9wuGF$Hn$W$I$8$'D$ $X$@2DŽ$D +09$@$XE"u $HDŽ$Dt DŽ$D22}w+9`uGF@FH2$@w}w+9 uGFF$@p$Du81$@E D$ $H$>E$@+$D~I}2w+9wuGF@$DF$Ӌ}2$D+$<w9wuGF$<$7$)$$#2$Xl$D+DŽ$hщ$d9$d7$XG"u $HDŽ$ht DŽ$h22}w+9cuGF@Fh2$dp}w+9uGF@F$dp$hu81$dG D$$H$G$d$h~I}2w+9wuGF@$hF$cӋ$h}2عw$`+9wuGF$`n$ $$$D$@$X$X2DŽ$\+09$X$XE"u $HDŽ$\t DŽ$\22}w+9cuGF@F2$Xw}w+9uGFF$Xp$\u81$XG D$$H$G$X$\~I}2w+9wuGF@$\F$@Ӌ$\}2عw$T+9wuGF$Tn$$$$$ 9$X2$X$2DŽ$+9$$X.G"u$Ht $Ht DŽ$22}w+9cuGF@F2$p}w+9uGFF$p$u81$E D$$H$蠴E$鍷$~I}2w+9wuGF@$F$Ӌ$}2عw$+9wuGF$~$$$w$f$4%L$0$0~ҋ%$4$D$$2$X"2$X+($DŽ$9$$X7B"u $HDŽ$t DŽ$22}w+9cuGF@F 2$p}w+9uGF@F$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$RӋ$2߉$}w+9wuGF$n$$$$2$X$X+0DŽ$$9$$XE"u $HDŽ$t DŽ$22}w+9cuGF@F2$w}w+9uGFF$p$u81$G D$$H$ܯG$ɲ$~I}2w+9wuGF@$F$)Ӌ$}2عw$+9wuGF$n$$$$$D$$_2$Xɉ$X$2DŽ$+(9$$X@"u$HE$$22}w+9cuGF@F2$p}w+9uGFF$p$u81$G D$$H$荭G$z$~I}2w+9wuGF@$F$Ӌ$2߉$}w+9wuGF$n$$u$d$S2$X$X+0DŽ$$9$$XE"u $HDŽ$t DŽ$22}w+9cuGF@F 2$p}w+9uGFF$p$u81$G D$$H$dG$Q$~I}2w+9wuGF@$F$Ӌ$}2عw$+9wuGF$n$Z$L$;$*$4W%H~ )ȉQ $$D$$2$Xɉ#2$XL$+0DŽ$8 $49$4$XG"u $HDŽ$8t DŽ$822}w+9cuGF@F<2$4p}w+9uGF@F$4p$8u81$4G D$ $H$̨G$4鹫$8~I}2w+9wuGF@$8F$Ӌ}2$8+$0w9wuGF$0n$$$$2$XL$+0DŽ$,$(9$($XE"u $HDŽ$,t DŽ$,22}w+9cuGF@Fx2$(p}w+9uGFF$(p$,u81$(G D$$H$試G$(閩$,~I}2w+9wuGF@$,F$Ӌ$,}2عw$$+9wuGF$$n$$$$o$LD$$#1g2$X"2$XDŽ$+(ꉌ$9$$$XF"u $HDŽ$t DŽ$22}w+9cuGF@F2$w}w+9uGFF$p$u81$G D$$H$@G$-$~I}2w+9wuGF@$F$Ӌ$2߉$}w+9wuGF$n$6$($$2$X$X+0DŽ$ $9$$XE"u $HDŽ$t DŽ$22}w+9cuGF@F$2$w}w+9uGFF$p$u81$G D$ $H$G$$~I}2w+9wuGF@$F$dӋ$}2عw$+9wuGF$n$ $$$$4A$D$$tj$4$D$$d+$X2DŽ$ D$$2+9$$X.A"u $HDŽ$ t DŽ$ 22}w+9cuGF@F2$p}w+9uGF@F$p$ u81$E D$$H$薟E$郢$ ~I}2w+9wuGF@$ F$Ӌ$ }2عw$+9wuGF$~$$~$m$\$4A0$0$0<$D$$2ŋ$X.$X$2DŽ$+9$$X@"u,$HDŽ$t1҃$Hƒ$22}w+9cuGF@F2$p}w+9uGFF$p$u81$G D$$H$G$$~I}2w+9wuGF@$F$[Ӌ$2߉$ }w+9wuGF$ n$$$$2$X$X+0DŽ$ $9$$XE"u $HDŽ$t DŽ$22}w+9cuGF@F02$w}w+9uGFF$p$u81$G D$ $H$G$ҝ$~I}2w+9wuGF@$F$2Ӌ}2$+$w9wuGF$n$$$$$4P$0[$$$T$-鵜$T$Q鸚t$$%<镚D$$D$D$ $ÐUWVS'LD$lzuL$`l$A$T$4T$D$$:t$$1ɉD$0D$h@D$@T$,t3%T$J‰L$(‰ uhL$(T$,؅N9L$0!UB~89t*F؉D$ t$B$D$EF$$Uu~+9wN}F"L$hl$dAl$D$D$`$7Gt$hF$WG|$t$<4$]$ 뤋|$4%9tT$L$D$hL$`D$A$Ot$dt$|$4o$?l$D$D$`$'t$݉w+9wü0GF$dz$蹳D$P$P\$L$^A $\$FP$i$X<\$,|$4l$8t$0|$DLr<L$@ut$v<$(\$,t$0|$4l$8<É $NsƋ@%D$F$QL$L$$mƋD$VtD$D$$%u<$#u<$CƋ@,$D$گFF,$D$ȯF뱃u<$Ƌ%D$;|$},$D$華;|$|l|$,$r]D$4$$t$y"<\$,|$4l$8t$0|$DpL$@ut$v<$謭\$,t$0|$4l$8<É $qƋ@%D$F$թL$L$$ƋD$$D$oŋVtD$D$$蓬_<$s<$豰Ƌ@,$D$HFF,$D$6F뱃u<$|Ƌ%D$;|$},$D$;|$|l|$,$]D$4$p$t$ pD$,OD$,tWD$<T$@%9D$Pt$,$lL$E $EE O$D$,tyD$Tu[[D$@>D$(Ww+v&[0G|$(~D$,Ft$,$̉D$D$,$D$,돋D$@xG? L$,c$裣:D$L$D$4D$t$4UbD$D$D$D$ D$d4$t#T$4.4@q|$4$- <$F+$ L$|$d$آ;D$L$D$8D$aT$8D$D$D$ D$dD$$-t#T$8.<@y|$8$bD$$D$D$D$ $ÐD$$D$ D$D$ $ÐD$$D$D$D$ $ÐShD$$L$ T$(ww"::Sao}T$D$ $T[ÉT$D$T$D$ ׉T$D$ɉT$D$뻍$ T$_1멐D$ $hPu B$胞ȃV8D$@$Ƌ@$קT$F4$T$D$DD$D$FND$(AND$,A8^Ð<\$,t$0|$4l$8|$@f1t$T$脧t{td tM<$gt$D9$t$/<$D$tE\$,t$0|$4l$8<ÉD$D<$D$T͋L$D<$L$)뻋(ED$+9w3t$0E"G$ڢF70$裦뿐UWVSeD$$)‹+8T$ 9|$$pD$ |$ D$$ "D$,D$$9D$,}k8L$(l$,|$TL$t$P4$D$ߛT$\҉pD$t$\F $t<[^_]ÃD$,l$$9l$,|T$\1.uދD$ 8UT$+ D$ uFD$TF4$D$9|~}l$TuuV D$T0D$ 0u0 T$ 2|$8t$Xt D$Tl$XED$ $Τ$뜋L$ D$$菤uT$TL$ 9|E$u$l$$4‹%t,$T$螝ŋE%x~TT$B1u⋃8wD$,L$ ,3,$讙D$0)щL$+9D$T$L$%~L$T$D$T$pB%? ƋD$pD~ DD$T|$X.t$,|$T$L$,t$T$ID$,D$,$2$ˢUW1VSal$$D$0t 4$ED$8E$t$$l$@El$ |$T$@%9D$PT$8,$T$;cL$E $芟EE D$TD$LL$D$,w+v30G&|$,n~D$0l$$ l[^_]$]뿍$T$ER|,$3D$L$D$4D$XL$4 $D$D$D$ D$dD$ft#T$4.4@qt$4$蛗<\$,_l$8t$0|$4l$@D$U t$T$_U%D$2Eu,$>\$,t$0|$4l$8<ËE%$D$8w+v30G"nD$F4$HD$D$$$蝟뿍$L$腟H+VS^TD$dt$0D$,D$D$`t$ $D$T$0%9D$@T$,4$T$*`L$F $yFF euJD$Du*D$hD$D$ D$wD$<+9D$80G"D$@FL$w+v Ç2GF@n$piҋÇ݋8w+vÇ2GF$)iڅ~KÇ>w+v Ç0GF@n$hҋÇ݋9w+vÇ0GF$h$hI_p4$Sa$$fg$$4$Pg$ll$t$h$X|$\D$9~l$|$l$Xt$`D;$|$g]$g:$g$gꋌ$ډ $T$\D$D$d$c$D$$du-D$D$d$d|$h$9~$W$g$މ$t$T\$D$<$*dD$$$FduL$l;$|$lW$f$f$xfo$gfG$`e$$Bf$1f8$ f$f$e$e $e$4D$$$V$$$$9|h$e $ue$D$$$'X$$$$$9~D$e$e$d{$dH$dr$dH$dhUWVS#$$0gD$@tWP$T$Vd!Ȩtt{P$|$)d$$$@$$i$$P$$@$O $E$$$HQBD$<t1%j‰ sl$<څOT$ND$`D$XD$49D$X~t$x$t$,$ \$$t]$$W;$"$l$@D$,$]Ĭ[^_]Ë$$L$$YW$뻋$|$hD$<$[$D$$LY$mL$d$L$[M$D$dD$`D$CMD$XT$T$T$X4l$4$XD$D$x$Zl$l$dD$x,$[|$4$XT$xD$$Y|$D$xD$`$ZD$Tt$\9t$Tt2$$D$D$ZL$DL$$MD$T$X$ŋ$LT$x$D$EZD$xD$Xl$$lLL$XD$$D$wg$/LD$D$t$YD$tdgD$D)Ƌg+9L$DwfD$D7uLD$DF`F ;D$D};D$D|$t$$Y$(\$\댋$1ҋGt.$%u ޅNփT$LlD$LuggL$@$u8|$\t gt$<$t{g$D$D$0D$$H>oT9LQ T$,D$H @ D$(D$xt=L$,D$( $D$=H$H‹oT;wTl$<(cD$$D$,$Gx|$@D$ 09t$4.T$4F%Du;|$4|D$$t$ D$$ KwT2D$D$(D$$GwT1oT9tD$$7D$09x}H9|D$,D$(9D$,}e<|$ #HH++|$ 9鋃#H$8t$$D$,<9D$,D$(9D$,|D$8|$`ww#H)H+L$96D$L$1D$,t$(9t$,}RT$,|$8t4t$$9|=$(B$B$B?UWVS LD$`t$`@D$+8)9|$,T$(D$(l$(D$, &ED$4D$,9D$4Zt$$T$$D$,:)ŋD+89|$,CD$$(D$, $E|$4T$EUWVSD$X$$.Z-ED$\%*Ћl$`D$dYЋF,ʉD$hyFFD$t|$pD$lAt$\l$`t$LD$TD$t|$puEut@$;79}t$ED$E${ED$,$,$D$Xt$|tD$X4$D$O;ƋAt$t$LD$|$D$ D$d4$5t=D$XItqD$XL$$:L$TD$ $<D$XD$X4?$:D$d|0A+|$$ t$x4T$TL$$8띋D$d$D$Xtl$XL$,$J:T$\t8t$0D$84$D$;1;t$$T$)>+L$9wL$>E%~DT$D$t$HE%? ND$,4~ D$,,g|$0<$f7D$0$K8pA($l$08X$B$h/$D$F$6>ED$>$&4$EUWVSLD$`t$dD$4L$0T$(:L$()ω|$$:+9D$(D$$l$$D$( "ED$,D$(9D$,t$ |$|$,t$4$5l$ 0NjL$E+)9T$ *%E~DGD$,L$$,l$(D$,9rD$$$+L$$pŋD$4<|$< ,D$4|$LD$09D$4.L$4D1ɋpVtND$4 t$0D$49|F$,$+wD$,T$X$+<\$,t$0|$4l$8t$@F|$D;F F~u<$8(u"F 9Ft1\$,t$0|$4l$8<Ë苃.8wX<$D)D$.Ft2D$D$$S*xt F;F }뤉l$<$yD$>FFF؉<$ 랐<\$,t$0|$4l$8-E|$@D$D$DD$G $0(wt$$L$L$L$$'|$}t}4$*D$4$M %uF-8w'D$}t$$)\$,t$0|$4l$8<Ít$ $v)ŋD$E1͍$T$*qUWVS$$$Q $0N$:D$|D$x)$$BD$B$&$B ,L$tB)щ$T$t,L$p+9 T$p,2DŽ$$9$$,|$(t$l$$B 4BD$4$D$L$(L$$%$r 4$.(4$D$w‹%tT$4$!Nj$t$p%;$ D$l8n D$|$$w O$$T$hD$D$D$dD$p$|$|9T$`$~HD$D$|||$pT$;D$|$D$||$<|$hD$H &;$}L$D$9|;$D$D$D$k‹$D$$$D$dD$$$$T$$@$}D$8D$8.m|$<$,,%h++T$$9D$HT$0D$0D$ D$HL$0, &++t$$9D$H7D$ fD$H $;$,;$~,$D$0pD$@t$<9t$@9D$00 T$02$D$0 $D$$$%9t'9~;$.D$@D$<9D$@s;$.D$x$$9$)$` S$D$D$8$L$09~ $ $ j$-$ $D$D<|$8$$$$$g$t$eU$$D<$D$$9$~,8w9$<$D$j$ʼnt$$I$t$4$%볍$L$~O,,>w+9w ,0GF@n $f݋L$Ll$P,}w+9wuGFD$PF$؍4$Y$$|$4$ {$$$T$A $Ƌ$4$D$D$|$I$,EL$|8$L$||$<$$|$+s$$checkrnfcheckbnfplease apply bnfinit firstchecknfplease apply nfinit firstincorrect bigray fieldplease apply bnrinit(,,1) and not bnrinit(,)missing units in %sincorrect idealincorrect matrix for idealincorrect bigidealincorrect prime idealpolynomial not in Z[X] in %spolynomial not in Z[X,Y] in %sincompatible modulus in %s: mod = %Z, nf = %ZtschirnhausTschirnhaus transform. New pol: %Zgpolcomp (different degrees)S1S2A3S3C(4) = 4E(4) = 2[x]2D(4)A4S4C(5) = 5D(5) = 5:2F(5) = 5:4A5S5C(6) = 6 = 3[x]2D_6(6) = [3]2D(6) = S(3)[x]2A_4(6) = [2^2]3F_18(6) = [3^2]2 = 3 wr 22A_4(6) = [2^3]3 = 2 wr 3S_4(6d) = [2^2]S(3)S_4(6c) = 1/2[2^3]S(3)F_18(6):2 = [1/2.S(3)^2]2F_36(6) = 1/2[S(3)^2]22S_4(6) = [2^3]S(3) = 2 wr S(3)L(6) = PSL(2,5) = A_5(6)F_36(6):2 = [S(3)^2]2 = S(3) wr 2L(6):2 = PGL(2,5) = S_5(6)A6S6C(7) = 7D(7) = 7:2F_21(7) = 7:3F_42(7) = 7:6L(7) = L(3,2)A7S7galoisgalois of reducible polynomialgalois (bug1)galois (bug4)galois (bug2)galois (bug3)galois of degree higher than 11incorrect galois automorphism in galoisapplygaloisapplyget_bnfpolfalse nf in nf_get_r1false nf in nf_get_r2false nf in nf_get_signmatricesmult. tablenfinitround4LLL basispolrednon-monic polynomial. Result of the form [nf,c]incorrect nf in nfnewpreci = %ld polred for non-monic polynomialordrednf_ADDZK flag when nf_ALL set (polredabs)Found %ld minimal polynomials. rootsof1rootsof1 (bug1)not an integer type in dirzetaktoo many terms in dirzetakneed %Z coefficients in initzeta: computation impossible initzeta: N0 = %Z i0 = %ld Ciklog(n)a(n)coefa(i,j)not a zeta number field in zetakallgzetakalls = 0 is a pole (gzetakall)s = 1 is a pole (gzetakall)nsiso0nfiso or nfinclmatrix Mget_red_Gget_red_G: starting LLL, prec = %ld (%ld + %ld) xbest = %Z you found a counter-example to a conjecture, please report!polredabs0 generator: %Z get_polpolredabs (precision problem)chk_gen_init: new prec = %ld (initially %ld) chk_gen_init: skipfirst = %ld precision too low in chk_gen_initchk_gen_init: generator %Z chk_gen_init: difficult field, trying random elements chk_gen_init: subfield %Z `'c'f'i'l'u'''''''''''''' (%(9(P(j(((()) )#),)7)E)S)a)d)^Q?ɴK?ɴK?x2?9B.?9B.?9B.?9B.?==>==⍀P⍀P⍀P⍀P⍀P⍀P~y⍀Pe`⍀PLGj⍀jP3.U⍀UP@⍀@P+⍀+P⍀P⍀P⍀P⍀P⍀Pkf⍀PRM⍀P94⍀P n⍀nPY⍀YPD⍀DP/⍀/P⍀P⍀P⍀Pql⍀PXS⍀P?:⍀P&!⍀P ⍀Pr⍀rP]⍀]PH⍀HP3⍀3P⍀Pwr ⍀ P^Y ⍀ PE@ ⍀ P,' ⍀ P ⍀ P ⍀ P ⍀ Pv ⍀v Pa ⍀a PL ⍀L P}x7 ⍀7 Pd_" ⍀" PKF ⍀ P2- ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pz ⍀z P~e ⍀e PjeP ⍀P PQL; ⍀; P83& ⍀& P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Ppk~ ⍀~ PWRi ⍀i P>9T ⍀T P% ? ⍀? P * ⍀* P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pvq ⍀ P]X ⍀ PD? ⍀ P+&m ⍀m P X ⍀X PC ⍀C P. ⍀. P ⍀ P ⍀ P ⍀ P|w ⍀ Pc^ ⍀ PJE ⍀ P1, ⍀ P ⍀ Pq ⍀q P\ ⍀\ PG ⍀G P2 ⍀2 P ⍀ P} ⍀ Pid⍀PPK⍀P72⍀P⍀P⍀P⍀Pu⍀uP`⍀`PK⍀KP6⍀6Poj!⍀!PVQ ⍀ P=8⍀P$⍀P ⍀P⍀P⍀P⍀Py⍀yPd⍀dPupO⍀OP\W:⍀:PC>%⍀%P*%⍀P ⍀P⍀P⍀P⍀P⍀P⍀P{v}⍀}Pb]h⍀hPIDS⍀SP0+>⍀>P)⍀)P⍀P⍀P⍀P⍀P⍀P|⍀Phc⍀POJ⍀P61l⍀lPW⍀WPB⍀BP-⍀-P⍀P⍀P⍀P⍀Pni⍀PUP⍀P<7⍀P#⍀P p⍀pP[⍀[PF⍀FP1⍀1P⍀P⍀Pto⍀P[V⍀PB=⍀P)$⍀P ⍀P⍀P޿ٿt⍀tPſ_⍀_P鬿觿J⍀JP铿莿5⍀5Pzu ⍀ Pa\ ⍀ PHC⍀P/*⍀P⍀P/0+0D0]0v000000 1%1>1W1p1111112282Q2j2222223323K3d3}3333334,4E4^4w444444 5&5?5X5q5555556 696R6k6666667737L7e7~7777778-8F8_8x8888889'9@9Y9r999999:!:::S:l::::::;;4;M;f;;;;;;;<.<G<`<y<<<<<<=(=A=Z=s====== >">;>T>m>>>>>>??5?N?g???????@/@H@a@z@@@@@@$Ë$###-##.u#CX#C## #.#""".""C"Z"C?"C9"C*""-" ".!!!C!!q!`.f!U!D!3!"!        CtC)CCCyYCCTC$CCCCSG@.8%. -vgDC QDC>CCCCcG;#CCrCb --CqeQA,C C@\< gCJCBo<C .CC `0 *Y /Y |l/Y ZF2-Y CY  /Y j/Y [ACY qCY UCY A    r /Y ` 8 /Y )  z V 4 /Y &  CY    `%Y  d%Y U  *    K  n C) W C) %  C?C?-?C?C?C?q-?`P:C?X/ h%?; $/ / / [D@- &- C zKC  C +/  iBC:sCC C oT8-C-CCCCC{CLCCC veTCCCyCZCTC1CCCCCC qc a3 C=C=kC=eC=C=C=LC=FC=9 ) -yCyCyCynCyhCyCyCyz`CyZ(Cyj>"CyCyD4QCyCy~-yu g;wfCICI,Io! CIeQA3gCIR?3#|CIl\B6q>*s:CIdQACIYI+ y,IndCIHCI*CIOCI<CI-CIq]M?+`@|CIgTH<,oCI_SG;-#CI y[O=+h/,I,IaCIE 7&q`) n]L>p`D3"rj,-_Q3C-C-C- C-C-C-C-C-~C-vPC-7C-1C-%C-C-C-C-C-veTL,-A0C-,-sTL{,-A0N)|XJBw,-* C-C-Xo.C-C-kC-cC-P*C-C-C-iC-ZC-C-C-sC-mC-%C-C-C-dC-C-C-C-VC-C-C-C-C-C-C-r#{fOyXE9C-o C-C-dC-SC-C-C-pC-C-C-C-<C-&C- C-C-C-eC-%C-C-ڿÿC-uB-۾ȾyC-]C-!C-׽}C-f1)μ~C-DC->) m,CCscL ԺC h\Y,TCC ,̹C vRA( ݸ˸|jXP@8 {kCCݶ ҶCCr,VLB+ õlbC?CCCڴŴ[J'C CC+CֲCͲC6&+ڱʱ+C~JCCCCCְzpCFC,CC ǯ|XCu=Cu5Cu/Cu߮CuٮCuͮCu"CuCuCu׭veW3CuCuCuCuCuȬCu¬Cu+uxcU1CuCuCuޫCuثCuЫe:Cu#CuCunCuSCuKCuݩ̩|CuNCuHCu-Cu'CuCu~Cu[J<,`+uHCu.CuѦoCuDCu٥Cu˥CuCuCu}Cuq cS+ Cģ c?ТkQI*A1 +%Cҡ{ lCLaQ@+LI;+CLCLCLw@+LZCLH 6џ*/ +/uPC/9C/)C/C/ҞT;C/+   +UΝBCU+CU CUڜCU~q>&CUCUdCUFCU̚CUCUtCUQ C$C<C<C<ΙC<ybR*<8 ݘИw*4 gYK=$ $  ۗo: *Җ–**oC"*CؕCCCWCG6C֔”CC~Cl#CޓC xf^*X:CX2CXߒӒ*Xɒ}m]UjCXT B6*CސȐC |_8&C0nR4C0, ͎qi\ ֍C }`P/->-C-C-ތC-֌C-C-C-LC-@C-4C-C-܋ԋ*-̋C-qC-UC-J<,*-C-ߊC-׊NJoH<C-ىC-=C-"C- C-͈C-ĈC-}Q/-?/-8C-2C-) /چ/Z/K5݅ ͅjL< ĄCo*CC ߃уCɂCɂMCɂڂCɂԂł p* aQZ*@< D* uiIC|x eG:~~~R~%~~9*}}}} }}}r}Cw\}CwT}CwI}-} }|Cw|Cw||-*wA|1| |{{-*w{{{Y{CwS{CwH{:{"{Cw{zyzazCz0z$zyyyCwyCw~yny-*wMy=y-*w1yy yxxxCwxR|wx{wxXywx;ywx;ywx;ywx;ywx;yw|x;ywxxxwtxxwpx;ywlxxwhx;ywdx;yw`xxw\xxwXx;ywTxxwPx;ywGxPxw,xx*wwwCww wwww)zwbw;w*ww wvCvvvCSv0vCuCuCuCqu#uCuutttCtMtC*ttCsCxsCrsC[-[[ [ZZCZhZCEZ"ZCYCYCYCcY#,YC YXXXXCXEXC"XWCWCpWCjWC@W#VCVVVVfVC[VVCUUCUCHUCBUCU#TCTTTTJTC8TSCSSC]SC%SCSCR#RCvRCpR`RGR7RQQQQQQ|QfQKQ5QPPPPPP1PC+PC PP)OOOOOrOhOONNNNNNNCMM`$MsM/2MC,MC!MLLLtLcLULLCLKCKKCAKC KCKCJ#JCJCJxJgJYJJC JICIICEIC ICICH#HCHCHvHeHWHHC HGCGGCCGC GCGCF#FCFCFvFeFWFFCFECEEC7ECDCDCD#DCzDiDXDJDCCCCCCoCCCCBCBCB#cBC1BCBB)BAAAAC}A?ACA@C@Cj@Cd@C:@#?C????j?CX??C>>C}>CE>C?>C >#=C=C===J=H|=Fx=(Bt==p= Bg=p=C=3=<<<<<~<K</<C<C;;;;;S;CA;;C::Cf:C.:C(:C9#9C9C99y9k9#9C98C88C98C8C7C7#7Cx7g7V7H76C66C6m6C6C5C5C5#5C85C$55544C4_4C<44C3C3C3CZ3#3C22222Ct262C21C1Ca1C[1C11#1C0C00000f0R0A000"0/C//Cj/G/C.C.C.C.#W.C/.. .--C-j-CG-$-C,C,C,Ce,#,C,C+++++Cu+7+C+*C*Cb*C\*C2*#)C)C)))x)g)V)H))C((C(m(C(C'C'C'#a'CV'E'4'&'&C&&Cn&K&C%C%C%C%#c%C/%C'%%$$$$$$m$a$?$#C###).###""""""3"+" "!!!!!!_!!C  y /a $CC)wg,$ ~qTB/ ui\C4(zmP>+nbN:$/CCv^C+fC1C+CCCCCC}l^HCCCCCCtCNC<+ CwCT1CCCCs##CCSC*CCxCrCL#C)Cta#Cg) vX.RN 5C5 C5 ^$ a1 ~ C5 Q 1     C'   t '^ P  C C   C C k CP CH C<  C C  C C C  'v ^ CH < / C)  C  C  C Cz C` /  'CC E|xtplhEd`\=X0TPLHD@<1< |ZR - & q&A= 0& & k[l&FB 5%Q&A& -&kvg ]M&$,  % %T%T`P >.%&%  +% |xtplhd`\XTPLHD@<840,($   C@C@  C@C@  C@C@  C@C@  C@C@  Cr@Cr@ } wCY@oCY@i d ^C@@VC@@P K EC'@=C'@7 2 ,C@$C@  C? C?  C?C?  C?C?  C?C?  C?C?  Cx?Cx?  }{C_?u{C_?o j dwCF?\wCF?V Q KsC-?CsC-?= 8 2oC?*oC?$  kC>kC>   gC>gC>  cC>cC>  _C>_C>  [C>[C>  WC~>WC~>  SCe>{SCe>u p jOCL>bOCL>\ W QKC3>IKC3>C > 8GC>0GC>* % CC>CC>  ?C= ?C=   ;C= ;C=   7C= 7C=   3C= 3C=   /C= /C=   +Ck= +Ck={  v  p 'CR=h 'CR=b  ]  W #C9=O #C9=I  D  > C =6 C =0  +  % C= C=    C< C<   C< C<   C< C<   C< C<   C< C<   Cq< Cq<  |  v BX<n BX<h  c  ] B?<U B?<O  J  D B&<< B&<6  1  + B <# B <     B; B;   B; B;   B; B;   B; B;   B; B;   Bw; Bw;   | B^;t B^;n  i  c BE;[ BE;U  P  J B,;B B,;<  7  1 B;) B;#     B: B:    B: B:   B: B:   B: B:   B: B:   B}: B}:   Bd:z Bd:t  o  i BK:a BK:[  V  P B2:H B2:B  =  7 B:/ B:)  $   B: B:    B9 B9   B9 B9   B9 B9   B9 B9   B9 B9   Bj9 Bj9z  u  o BQ9g BQ9a  \  V B89N B89H  C  = {B95 {B9/  *  $ wB9 wB9    sB8 sB8  oB8oB8  kB8kB8  gB8gB8  cB8cB8  _Bp8_Bp8 { u[BW8m[BW8g b \WB>8TWB>8N I CSB%8;SB%85 0 *OB 8"OB 8  KB7 KB7  GB7GB7  CB7CB7  ?B7?B7  ;B7;B7  7Bv77Bv7  {3B]7s3B]7m h b/BD7Z/BD7T O I+B+7A+B+7; 6 0'B7('B7"  #B6#B6   B6B6  B6B6  B6B6  B6B6  B|6B|6   Bc6y Bc6s n hBJ6`BJ6Z U OB16GB16A < 6A6.A6( # A5A5  A5A5  A5A5  A5A5  A5A5  A5A5  Ai5Ai5y t nAP5fAP5` [ UA75MA75G B <A54A5. ) #A5A5  A4A4  A4A4  A4A4  A4A4  A4A4  Ao4Ao4 z tAV4lAV4f a [A=4SA=4M H BA$4:A$44 / )A 4!A 4  A3A3  A3A3  A3A3  A3A3  A3A3  Au3Au3  zA\3rA\3l g aAC3YAC3S N HA*3@A*3: 5 /A3'A3!  A2A2  {A2{A2  wA2wA2  sA2sA2  oA2oA2  kA{2kA{2  gAb2xgAb2r m gcAI2_cAI2Y T N_A02F_A02@ ; 5[A2-[A2' " WA1WA1  SA1SA1  OA1OA1  KA1KA1  GA1GA1  CA1CA1  ?Ah1~?Ah1x s m;AO1e;AO1_ Z T7A61L7A61F A ;3A133A1- ( "/A1/A1  +A0+A0  'A0'A0  #A0#A0  A0A0  A0A0  An0An0~ y sAU0kAU0e ` ZA<0RA<0L G A A#09 A#03 . (A 0 A 0  A/A/ |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  t |u`_hd Lj~} xeg biafsrvcmIwq lnk {oypt |u`_hd Lj~} xeg biafsrvcmIwq lnk {oyp^z $ `$ p   4  0 ) L2 P >  K V P%_ $g p H C C8wd@M6D`jWDBxN̵$2w:wG}S8~4r~D @M)4x@$#|(ԁH$_Vh~^l~w jĘ@ '<ܢ$H-l8Яx, }p؅DlgtXضkP* y  P q ! r!' ^ 3/ .  X 8   6 G@9 q   K ga yK ?.'  { `5 c! R  [i S9c  E [ C xn GY(#:B U9Nkq  N Eh qI x\   uN )eH2 " -  ~]_new_galois_format_checkrnf___i686.get_pc_thunk.bx_checkbnf_i_checknf_i_checkbnf_checknf_checkbnr_checkbnrgen_check_units_checkid_checkbid_checkprimeid_check_ZX_check_ZXY_checknfelt_mod_get_primeid_get_bnf_get_nf_tschirnhaus_gpolcomp_primitive_pol_to_monic_polgaloisnames_polgalois_galois_galoisapply_get_bnfpol_get_nfpol_nfisisom_nfisincl_get_roots_quicktrace_pol_to_monic_nf_get_r1_nf_get_r2_nf_get_sign_get_bas_den_get_mul_table_remake_GM_nfbasic_to_nf_nffromhnfbasis_nftohnfbasis_get_nfindex_nfbasic_init_initalg_i_initalgred_initalgred2_initalg_nfinit0_nfgetprec_nfnewprec_i_nfnewprec_polred0_ordred_polredfirstpol_polred_smallpolred_factoredpolred_polred2_smallpolred2_factoredpolred2_T2_from_embed_norm_T2_from_embed_polredabs0_polredabsall_polredabs_polredabs2_rootsof1_dirzetak_zeta_get_limx_zeta_get_N0_zeta_get_i0_initzeta_gzetakall_gzetak_glambdak___i686.get_pc_thunk.axdyld_stub_binding_helper_gdiv_ghalf_diffptr_gen_m1_gen_2_gcmp_cmp_pol_pol_x_gen_1_DEBUGLEVEL_gen_0_bot_avma_gpow_gcos_gsin_gaddsg_gopsg2_gmulsg_ggamma_mulsi_addsi_sign_truncr_gfrac_vecsmall_copy_divrs_mulur_glog_gexp_gdivgs_mplog2_gneg_szeta_mpeuler_switch_stack_sqrtr_abs_bnfinit0_mpfactr_mppi_gcvtoi_powrshalf_addsr_logr_abs_sqrtr_divrr_divri_divir_mulrr_mulir_powuu_gpowgs_Pi2n_mulsr_powrfrac_vecsmall_to_vec_free_cmpui_primedec_FpX_degfact_umodiu_maxprime_check_cgetalloc_element_pow_ground_gscalcol_i_RgX_powers_fincke_pohst_R_from_QR_equalii_sindexsort_gerepileuptoleaf_image_shallowconcat_vecmul_split_realimag_roots_to_pol_r1r2_gnorm_gmul2n_sum_sort_factor_outerr_modulargcd_ZX_caract_flusherr_bnrnewprec_bnfnewprec_precision_sturmpart_allbase_timer2_det_RgM_to_RgXV_matid_RgX_RgXQ_compo_modreverse_i_sqri_pari_warn_lllfp_marked_gauss_idealinv_idealhermite_aux_eltmul_get_table_ideal_two_elt_hnfmodid_Q_primitive_part_ZM_inv_QM_inv_RgXV_to_RgM_log2_addrr_sign_addir_sign_msgtimer_gprec_w_gprecision_ginv_affir_gdivexact_mulmat_pol_poldivrem_Q_remove_denom_gerepileuptoint_polsym_gcmp1_roots_monomial_scalarpol_delete_var_gen_sort_polfnf_fetch_var_lift_intern0_nfroots_Z_factor_gissquare_dvmdii_idealhermite_algtobasis_gerepilecopy_addii_sign_subresall_centermod_gsubst_gcopy_gmodulo_gsub_gcmp0_poleval_factor_ZX_is_squarefree_gexpo_imag_i_grndtoi_real_i_roots_to_pol_gadd_gsqr_gmul_cleanroots_cauchy_bound_galoisbig_Z_issquarerem_ZX_disc_gisirreducible_primpart_strtoGENstr_bcopy_diviiexact_mulii_powiu_Z_pval_ceil_auxdecomp_gneg_i_absi_cmp_gerepileupto_fprintferr_srgcd_derivpol_caract2_pari_rand31_shallowcopy_gequal_pari_err_ind5.0_ind6.1_nfiso0_make_M_make_G_get_Tr_get_red_G_nfpolred_make_Tr__polred__polredabs_findmindisc_dirzetak0_reel4.2_ok_pol_chk_gen_chk_gen_init #1/12 1200773975 0 0 100644 154044 ` base2.o| __text__TEXTK`4 __data__DATAL` b__cstring__TEXT`c__picsymbolstub2__TEXTiKk __la_sym_ptr2__DATAQ '__nl_symbol_ptr__DATA`4__textcoal_nt__TEXT, @8qLId P$$Cg /D$$D$ D$D$D$ $~ÐD$ D$D$$i~ÐUWVS$@$$1t $$D$lƋ#T$\$j$ t'`$&T$k$E%D$4$~@ # L$lA$A$B}$$7u%~$$%$3+Y }F"$DŽ$$$9'$$< T$pDŽ$$D$d$h| $t$pt$${D$d#8G $$$$l$D$$${ŋ703~+ 78F"o$|$${T$d$$"{$$$$9DŽ$DŽ$DŽ$$$9$$DD$T'9D$TtqDŽ$ŋ$$9';(tDD$Tl$$zD$T$TD$T$$#8$$$$9D$$@@D$$$}$ EDŽ$$$9$$"y$L$${$ $${|$D$$|$E$$7D$`73E$D$P+ )96}$7|$L$E )ϋ3+9}$7DŽ$|$H$$9D$`l$0l$,D$D3D$8D$4$$l$`pt$DD$,$t$x$$tm$$l$P|$LD$,L$4$8w+96D$,0GF@nD$PT$H4D$P$$$$9&D$L|$P0 t$PD$L0l$Hu t$PD$H703}w+vQuG&T$LVD$HF$$7$F%?D$$$Tv[^_]${${f${6$z|$0l$@l$<uL$8+)9wXT$0:E%~l$$8z$'z$z$$$D$$$x$ D$$y$ $$$$9~'$ $$xD$T$/`D$$,$D$wDŽ$$$9$$$<9}1@u 9|tS$T$T$<9}1@u 9|t$$W$73$$$)p+)978&7DŽ$$$9$$$9$$$)9~2$l$$w4$$$D$r$$$ȋL$T)D$$$t$$$$$$)9~^$$,$D$)t$$$$$9~$$$$T$T$$D$$$$rv$<$$$$$9kB$?v$.v$T$T$$ql$lj$}q$O$$$9~$u$$$K`D$$,$D$t|0FD$F$rsNj#|$F$2t<$D$Nj%$DŽ$$$9)G$$<$D$$t$hD$pD$$$"q$$8$t$|$h$<$D$p$$D$$$%$$$9.$t$$D$D$h$p$$D$$$$9|$D$$$q@@$$$$9|b`t$$ l$r'D$$$o$$;sy`,$lp7D$Xŋ0ׁ)Nj3+9wq7L$X8%~Dt$XFx(l$\$t$\d$\D$\D$oD$lqB%? @B$tr끍`$T$\r.$$o '`$%L$-ro$$T$D$$D$ $D$$$oUW1VSLP1vT$D$<$Z>D$r|$G%9ʼnD$ t$1ɋFBt'%rщ  ޅN΋t$F;l$ 4~8a8|$ D$P|$t$|$$}Ƌa8w=t$t$4$[;l$ D$Ml$D$$l$$[<[^_]Í+=t$<$2Z5=L$(T$ $O뙍6=L$t$$ZUu4$D$[Td4$8OuߍG$?[S=t$(T$4$!Oso=L$(l$ $O;G%? @G$ZD$P$HXT$($NyUWVSwL|$dD$`/pUT$%9D$l|$D$ D$4$TT$`D$$LD$D$lL$D$ $Q<$D$D$lD$R|$hD$`|$$LNj__1n+__(F"t$l}u8w+9wz__2GF@D$hFu :w+9w1_0GF@D$Fu|$}L[^_]$D$D$P|$$<ō|$,,$|$:>ŋD$,uD$$,$D$~?L$$$L$=l$$MJ$+MUL/$T$MBD$E‰D$D$$<$D$SK t/@L$P|$ $Z?)D$$<$D$O=V7VL$$t$ %^Ét$A$;UWVSt$0F9G|럋D$4L$0D$$9|$\J묐,\$t$ |$$l$(D$0 t0D$0L$8D$D$4L$$\$t$ |$$l$(,ËN׋N+)9wV.Mt$0F9E| ,$8똋D$8L$0D$D$D$4$}D9|$tI뜐UWVS/L$0MMljƋE+)9wOM (u9| [^_]ËD$8T$0D$D$D$4$D9|$H룐,\$|$$t$ l$(L$0|t0D$8D$D$4D$D$0$\$t$ |$$l$(,Ë MM+)9wN.&u.t9|먋D$8L$0D$D$4D$$D9|$G뤃L\$Al$$ >$=6$= {GwG2~+(|$HT$H{GF"$$<{Gŋ$wG+)9we{G8uG"7;$,;$~$ $1<t$HF~t$pj$ =$<$<,D$ l$|DD$$D$$$Չ|$pҋD$px|$lHL$hBD$dj{Gl$`/|)L$\ L$T)ʉT$XwG+9{GL$X%D$PL$X&{GwG++L$T9ljL$L{GL$LD$Pf"D$L8|$h9} |$l|$X|$hD$L<9|L$Xl$LT$`|L(;T$\}l$dDD$`;T$\|勃{G(wG}+9w9{G:E"L$XOD$LG|$$<$'D$p%$:빺;T$\.}l$dDl$`D;T$\|f9. |$l|$X|$h|$L9|$k:$Z:`$I:$8:n$4$8;$}"$$D;$|&D$T$|<$D$]8$9L\$<|t$@l$H|$D >}>w+vpuG"T$(D$Tl$,T$D$D$Pl$ D$$&HN@FD$(F D$,Ft$<$K8\$D$T9p}<D$$L$D$$|&t:D$$L$L$9|Njt$(D$T4$D$5<[^_]ÍT$,L$T$$!'D$,utL$L$D$,tD$$D$$%uD$D$P$D$,oD$$L$D$D$,D$D$ $$#>D$L$$2{$5$5,\$Lt$ |$$l$(T$09t$8($o&Njt$T$>5t$<$~ ƋD$4<$D$."$ t$<$D$/"D$,$4\$t$ |$$l$(,Ã\$t$t$$蚲t)L$TD$ 1 g $L$T$)D$Tx%h9.eD$D$$t֋9D$ ~#t$ D$(t$$d$.$T$T$$=t 9~뽋L$$D$D$ $D$rD$ ցt$TFl$TE9D$$L$$UWVS藦\t$p|$t'-9D$@D$Dt|$4$jtD$@  $T$n(J %VG?%?9ЉL$w+9w$'-0GF@D$Fh$$΋'-#-L$ȉ+ 9w$'-8D$@Gw$c$$U$$D$]$3$ l$8E'-0#-~+v'-:F"o|$8$#׋|$4~Q'-(#-}+v$'-8EG@D$4G$#΋l$4'-#-݉l$0*}+v'-8EGD$0$0#֋l$8D$,$ <$;l$lj$<$  |$$l$" t$$L$" $%l$"S D$$D$D$D$ $ÐD$$D$D$D$ $eÐ,\$t$ |$$t$4l$(&(4$blj4$" t:|$4$ &(\$t$ %|$$l$(ƒ,ËD$0D$ |$D$4$ 봐UWVSc,T$D$@t$DT$$U D$@t$D$$L$(ǁ|$ Ȩ D$@t$$<$D$n$ t$lj$ 9}%;D$9|l$@|$,$ttD$H|$D$LL$HD$ D$@L$$9 Ƌ%t2D$ x|$H4$, ,[^_]É4$9ދ%ȍ$t$< qD$@D$D$$3t$$% L\$<踝t$@|$Dl$HH$Et$P|$XL$,4$D$ L$ 1ɍT$(EʋD$TT$$L$ T$D$4$D$u(l$D$ l$$\$w+9wuGFD$F$$D$$D$D$D$ $ÐD$$D$D$D$ $ÐUWVS7 !$(DŽ$$!$)$ $$+$ $$4$$T$KV~$%$$$$$%9$t$$D$$$DŽ$$$ |$$a $$$C$$$,$$D$$ T$ t$$莃$DŽ$$t_$$X$H$$‰D$$$$$$<$y!$$ !$$$(L$D+<)9ʼn$r鋔$" DŽ$9$D$D$t$@D$<$$T$D$++$9 >&79 <$8$8$$$|$ &$L$D+)9$ >1 $ $DŽ$$$9$!!$+)9$ !0$ $;$ !;$~$4$:<$$9g!( $$$@$.! )ϋ!+$9 ꋄ$$$9 $$1$G$h$hDŽ$DŽ$!( $9$=$$$<$<DŽ$$9$G$$$$$!!$$$$(+<)9ʼnt$|K D$||$|$!9$$D$D$|$u$$$<$$D$$$I$D$$$$$$9$$$D$x$!D$tD$x(Ǎ )ϋ!+|$p9D$p|$p$9FD$p$$$D$,}9$$$T$d$$|$hD$l$ $<$D$$D$<$D$t$h$4D$<$t$v.@$$$$D$$$D$ D$$L$D$$t$D$ $D$$D$$$wz$$.~$!$98!8$$$T$,$$$$L$(T$$҉t$$|$ l$L$$$$  $t$|$ l$T$ $$9$$D$$$$҉$#!!!0n+99!(F"$D$$ $D$L$$3!>D$H!w+9w[!2G"D$LF|$H~u$D$$ $1El$$$X [^_]$$~%,$$$D$e$$$t$h$$$$D$X$l$TT$\$ $$D$,$D$t$X$4D$,$t$s.$0 tg$t$,$D$E@$iL$TD$PD$D$P$$L$TD$$ L$T$t$,$T$\,$l$$t$\D$$$t$\D$PL$X$D$$t$X,$9Dl$XDD$D$P$L$XD$$$:T$X,$9D|$,$D$$8t$<$D$G@$ L$dD$`D$D$`$l$L$dD$$L$d$t$<$LT$l4$t$ $|$lD$$`$|$lD$`L$h$D$$1|$h4$9|$hD$D$`$L$hD$$$T$h<$9|D$X.9|T$tt$xD$$ T$tƋ$$/t$$ L$p9|h$[6$$D$$H $Ƌ$5$t$$ L$|9|$ $D$ $Z $$D$$ $Ƌ$$9t$$ $9| $b 4$ j! $3 $" `$ C$ $D$$$]$D$A@$ 9|*$ $ }$$D$ ‹$!$,DŽ$8L-$,u&$,$ L$$u$ $L$$ D$A 뽉4$WUWVS跉\GD$LD$tH?L$@ t$T$ t$p14$9D$pt 4$Njt$t%IL$pD$tl$pQD$,$T$4yL$tD$xt$t$pL$D$ 4$GhED$8UT$<2F D$D)͉l$ C+E9D$ "|$ D$t$D$HD$tD$D9D$Ht$T$HD$<|$8,D$E@$L$Dt$pŋD$4$|$…tDT$+t$@$PT$pƋD$D$t$$u$l$@D$D$tl$$t$4t$$$ Ɖ$)T$pl$4zl$D$|$ 4$‹%~D$44$D$ D$T$Ƌ%D‹ tl$4E$%?D$‹D$4T$D$ D$4$NNjT$ D$H<L$DD$H9mD$ t$LD$4$\[^_]Ë?r$G @@$nT$4%$GD$0FD$8NL$<1FT$(D$DCE++L$(9ƉL$,D$,L$,"ECE++T$(9ƉT$$T$$&U2D$HD$D9D$H~KGC}w+vuG"|$$~D$,Fs$ՋT$0D$Ht$,t$HL$<<$D$Kl$8‹L$pDD$T$ $t$HT$$l$Dt$H9~R$B $1+|$@,G0C~+vG8F"o$ِUWVS蓄LD$hL$d%# D$$ t$T$~D$`$L$dD$`A%?D$( 8D$dt$`D$ D$4$D$dD$`@D$0D$h%=D$hD$dT$T$w+v3# 0G"nl$nl$D$$$XL[^_]$%뿋L$,D$d|$0L$ D$|$F$KƋD$(D$ D$dt$D$D$`$D$hut$$D$4$z늋FD$F$Nj# 0 NL$+9wdL$# Fiy8 w+9w"# 0G"nl$nt$$($뎍l$<$f~U#  T$ + v$# 8D$ @G@w$΋# ދ8 t$w+v$# 0GF|$~$S΋t$`D$d4$D$Ƌ@D$4D$0~ D$|$, H?$eD$D$,$L$(D$$D$D$d$Nt$t$`D$4$QoD$8 8 $D$4D$$$|$kY UWVS$$1t$Ƌ$ t$&T$$JoD$4$J$E@,i F $$P$@$}GwD$| %D$xE)ϋ+|$`9 |$`} "D$`0$1VT$\T$TE)׋+|$X9D$\I D$XD$\E# D$\|$X &;|$\l$Pt$(t$TD$Ht$LT$Pl$H+E+t$L9D$\ D$PD$\0 D$\ $L$X4;t$(}/D$Vl$X9LM l$E;T$(|ۋ$D$ T$X,D;|$\Ut$X|$`wD$pD$|9D$p t$|4$D$p$$D$x9D$pl$p$1D$DBt'%rщ ( ݅N&8 $L$p$|$ t$D$D$`$pŋ$D$$$l$$$$Nj$D$$$o$$$k<$$\$D$|D$htD$hD$d[l$huD$|D$t8$D$lD$t9D$l@l$tH\|$tl$|9|$lvt$tl$lD$$G$ƋD$lDD$0D$tLFT$0D$lT|$|D$l9 $둋$l$tAD$tD$|9D$tl$tDDD$$tJ$L$t<GD$l9L$l)|$t$L$l,DDD9L$l~׃D$tD$|9D$t $y$0$$$$u+)9n8~D$$$$$l$D$$D$ |$L$,$D$pD$x9D$pq$$D$tl$|9l$tW$$($$u+)9:~D$8t$|+E )9:g"7D$l$l$|9l$l t$l+.)987$BGt$l$7+)9ww(%E~DGx7$,$$$$|$$E%? @E$|x$T$a$$$%|$2Z UWVSp,okD$7n+/F$D$@ED$DEF%{D$D$DD$‹@%=;l$u_D$B%D$T$$kL$;t4D$D$$2t$D$$<$t$ǃ;l$~t$D$t$D$D$ʁ9T$3νD$9}/B%tOD$D$ʃ9|щ΁D$u t$7,[^_]$tzu빃z:zD$D$;MR$0BUWVSnLD$`|$d$D$BL$L|$l$|$ L$FD$F$D$LD$ $D$D$lD$E$tNjD$LD$D$l<$D$t$Lt$|$$RL$h$L$ƋB $T$h҉u 3T$h$%D$D$ŋD$L$4$D$XD$D$hD$]L$XL$ $r|$$t$"lj$Ƌ3;0t*t$,$xƉ,$D$K<$t$Njt$L3D$Ht$TD$@D$L,$D$D$D9D$HD$T$d$H<$D$TD$ l$$$t$Ɖ<$$t$lj,$oD$,$L$TʼnD$ $}$D$ƋB$1t$<$D$ D$lj$ƋD$@;0.t$,$MƉ,$D$ <$t$D$DD$D$L$,$D$XD$D$$ƋA$t$<$D$\ljD$w$$E<$D$ D$DD$D$LD$뿐UWVSc$$$$p%$F%?D$|9O>D$x <$_$T$$x$F(<$$D$[$A$A(D$A$ $E$D$$$)$F,~(ʼn|$p$c)щL$l_+9" D$l $L$l1$HρA $L$p$ $D$D$,$iD$4$]$)h;$YD$ht$dc_++t$h9c0L$dD$l4;$~t$l$$F`?DŽ$D$t|$(l$,DŽ$$h@l$0E%$GL$|$t$0D$`JL$\%Bl$\Et$,$%?D$D$X$|$XD$PD$L%D$HD$Dh9uT$HD$DT$$ŋD$D|$(ƋD$H1҉D$,;$ٍ$$4$|$ l$L$$$$D$$\cuD$T$D$@_+~K}FG@T$@WD$T$D$ E|$|$0<$D$ŋ$$D$$$D$,$D$|$$2,$t$D$4$|$E$%D$<$D$q$|$,؋T$(L5$$$$kT$X)D$t 9~gD$PL$XD$D$+D$Lut$HD$D9}L$D|$HD$L뮋nEL$Xcu)Nj_+9wTc8E%~DEO%? O|$t$\4$I$$uL$F.؅NЅz*$*^$ټ$$ f$٬$߼$٬$$D$$$/$$l$2>w$$~A4$D$$D$$ED$E $D$롐UWVSX$x$D$<$#P$P$%$$$T$E$@@$)Ƌ+9$$7 "DŽ$$9$| [^_]Ë$$$D$ $D$D$$$g~$$$9|$Y$$L$$ŋ$<$l$D$ D$,$D$|$$$l$$G$$T$ŋ%pt$|p)щL$x+9P D$x- "D$x0DŽ$DŽ$$9$$$<t7$D$ $L$,$D$@ $$$D$ $D$D$$$|$|$x$$$9$D$F%hp l$t)͋+9 / &u;|$td $L$tt$ $U؅y0$4$T$<$Ƌ$l$D$뺋$<$t$;|$tD$p $t$|/+( )9T$lt D$lQ |$l"/$% DŽ$$19$ $$Lu, $$T$D<$D$ǃ$$9$|f $|$,$$|$$jD$$$8$L$$+l$p$l$u$|$$T$lB)+L$h9D$h$D$h0;l$||$h;T$|~t$hDŽ$L$l$D$h$*$D$$t$$$Ɖ$|$l$NjD$|4$D$L$|L$Ɖl$<$t$Nj$D$$$:$l$D$<$#$T$$‹%D$d$$D$x4$$D$x$0 $D$x0u$)‹+0T$H9$KL$HM+$t$H "D$x$|$|D$$L$|$ $D$D$}B $D$t$$L}$;$t$<‰D$4$ʋ$L$@T$)DŽ$$9$l$($L$xl$DD$09D$4|D$xt$XL$49lj1D$t.l$d|$|l$<$ST$4ŋT$4[$ϼ$込Sl$4$螼$荼$$$D$ D$4$D$$D$$T$$|$p;$~[$&$ $FD$$$ʫt$$$Ȼ$跻cz $˸$$腻$tf$c $Ru~+vC}F$$W$,$6dG$w |$$$t$޺믋$w|$,$ct$$ܬ,$D$豭t$$|$D$,$$覭$$r=UWVS+8|t$lD$X$$*$$$:$$L$h@$T$L$t$ ,$D$8e$D$D$@D$G$t$8D$P$%D$`%D$\D$DD$$D$$$.oD$TD$lD$D$hD$D$T$6h}GE9D$LD$ll$TD$ D$h,$D$D$LD$跧L$LŋD$D $D$m,$NjD$DD$mt$8t$<$D$bD$$$诰D$@D$8L$@D$D$P $D$t$l$t$荶$D$@D$D|$D$D$@$nl$D$@D$lD$ D$hD$D$L$覦L$lt$hl$@L$ t$l$$膦1҉D$@%D$d:|$\lj|$0+<)9Ɖl$,l$,(fL$,&)L$(+9$|$(8"D$(07N+(L$$l$$(F"D$,ED$(Et$`D$lt$$'D$H$D$$$2;|$\D$4L$\iD$ D$D$t$ L$++t$9D$ 0$;T$\;T$\~򋋫D$,4D$HL$(;|$\~$t$@H?,D$lt$D$ D$hD$D$T$袤D$DD$ $j;|$0D$dl$4D$$l$$ϣL$d)L$\NjD$\D$D$l$衮|$$诲D$D$$D$$$qD$w+v<0G"L$ND$݉w+v 0GnF $+ҋD$\4$D$胭L$,L$4D$( 4$l$D$8D$j$L$8t$D$ L$$;|$0~$詳$蘳$至2$v$e$T$C^D$lL$LD$ D$hD$D $D$Ρ9D$L|$%T$UWVS0<;$'8 $$P$ $X|$ T$ $l$[^$$\$TD$ $$P|$T$$$$F$\P$Q BDŽ$t:%r $݅O$$$$PA@$A@$$X@$D$<$T$$Pp$%$G%?$$3$ $$$T$$؅y$t$$$ċ$$$$E%$ӯ$P$$X4$D$7$;$$)ϋ7+$9D$$$$ &DŽ$$9$鋋7}$$$$E$++$9u`$$$4$$9~$;Ew)щ$7+9$U&$0DŽ$9$$7$$$ $$E$++$9$0$u $$$49$~;7$+)9$$$$p$$"$)7+$9$$ $$7DŽ$:ʼn$)t=$$$Ѣ$$$転$'8e DŽ$$9$h$$D$$$ +$$D$$$9$~$D$$P$ϙ$L$$$ŧD$$$$D$|y$D$Ν;$$TD$4$$9 D$4ut$z$ $D$L<;$!;$|D$T$9l$T}j;l$TM;$89l$TtmL$Tt$@<<$}L$@L$T;l$T~D$T$9T$T|D$Xt$@|$H4l$\D$X9D$Hl[^_]É<$}L$T|$@럋L$L$D}L$TD$D$LD$ $L$舑<$D$J;$|%L$LT$DDD$$N;$|$u$ K$$$ؓY$Ǔ-$趓$襓I$蔓!$胓$rvUWVS+\t$tD$x/l$4N?L$$x|$@PD$$|t$NjD$p$PYHL$H@D$D8At$pL$L%D$,F(L$L$<$UT$0T$,T$(莋t$@l$t$$JzŋD$LtE}t$L;|$014$D$XD$ƋD$RD;|$0D$LϋD$0|$pD$G$脉,$D$;t$,D$< )͋+95/"u;|$,,D$$WD$T$$MyD;|$,~ڋD$H,$D$謎/D$8t$(+( )9T$ D$ ]&|$ 7;|$,l$D$ l$$ŋD$Lt~D$,$YNjD$LD$<$ŋ:w+v12G"D$@nFt$D$4$̏\[^_]$虐t$(4$葏뒋T$Dt$pL$8D$4$D$};t$0D$~;|$,~L$D$D$<$BL$@L$D$$T$(T$$}L$ ;t$0~$$ُo$ȏ$跏ex$-UWVS[  9L$,}]T$$L$TL$PT$(D$$z‹;t"BT$D$ G<$D$5ǃ9|D$,|$$|$ t$$|$(9|$(UD$$9l$$D$ <[^_]$$UWVS $%$?$$$fD$Ɖ$$.$F%tV))P|DŽ$$@$$$l$$Ƌ؅DŽ$DŽ$?E$;+4)9lj$$E$&DŽ$$9$o$$?;++$9 ?0.$$4$$9~$?u)щ$;+9$?]&$0DŽ$9$? ;$$$$$$$++$9$0$$$49艄$~$?u)щ$;+9/$?&$0DŽ$9$? ;$$$$$$$++$9n$0H$$$49艄$~?4)l$|;U)9L$|?D$|))ЉL$x9?D$x$)Љ荼$‹/$$$$_t$<$|$@l$$ED$l$$$L$D$\$D$D$X$衈D$T+8 $D$$$ PDŽ$$D$d9$D$t$9D$tD$p$9T$pD$p9D$t? 78;$r7$L$pT$t$D$$$;t"@T$D$ G<$D$ɇǃ;$~t$TD$X<$t$D$?l$p$t$t<D$p$9l$p'D$t$9D$t$l$d<$l$D$$$D$t$9L$t+D$p$9D$p D$t$9l$t~Ջ$L$x<$$9L$ D$t$9t$tDŽ$$9$:L$t$T$x$<@$$9~D$p$9t$p6DŽ$$9$7;$>iT$tL$x$$L$tD$$;t"@T$D$ G<$D$詅ǃ;$~$<$T$*$|$|$$9GDŽ$9$4$$T$t|$| $$9~̃D$p$9t$pD$t$9D$tF?$(l $D$lD$D$ $D$8,$D$芄D$h$$$oDŽ$9$鍔$T$,1)Ήt$(D$t$9L$t$D$,< D$8|$4D$(D$L$t$t$19<DՉD$4$T$h<$?T$81T$l$$,?0L$t$t$LƃNƉ$L$t9n$$9$$$D$,$B$$D$,$J$D$`D$p$9D$p?L$$L$0EL$pl$xD$H|$`D<$D$h$t$$U$D$hDŽ$91D$t$9T$t$$9$~σD$p$l$0t$H9T$puYD$lE$$,$D$ADŽ$$/9$8<$Zb$|$ $NI$t$$k$$<$D$ԁDŽ$$Ƌ$9$1D$t$9D$t>$$9$~ϋF%$t$$gt$$$$G$$<$T$)$$~b?$9}38w)D$tR$H $L$4$D$d$X@%t?$@tDŽ$@$CYET$$D$IoDŽ$D$Xс9$D|$0|$8D$,D$4$D$XH + $h$HD$$P$fŋ$@ $H $l$A$nc$3x>D$T$$0c>+x;$D$Xց9$D%9$DB$8$4$HD$$d$e$\$d3x9('x8wT$$d$ |$D$$D$ F$`ɉ$L$5kiY$T$l딋$4$D$G$aD$$H$9j$H$8$t$$e$HD$,$i$H$@T$CYT$$D$l$D$$D$G(D$ l$D$G$O8$Nj<$D$gfp%$$$`GW$3xF(1D$D$$`3x1+x;'D$4T$8$T$tD$p%AGt$<$%?D$UaD$l$|$lD$\D$X%D$TD$P9ljD$LpT$TD$PT$$`NjD$PD$tD$T|$p$t$ٍ$t$pt$tT$ |$L$$Ha$p$t$D$$cD$h$pD$H3x0/x~+9&3x8FG@D$HGT$h$$T$ A|$4$D$:`$Nj$t$hD$$bl$@D$D$$lPl$<$T$ļ[^_]É$iaƋ#x;0t*t$<$fƉ<$D$g,$t$zbŋD$h<$D$h,$D$`|$$f+,$t$D$(a4$|$OhE$%D$Ba<$D$a$+hT$p؋:Ѝ 2t$t$p$t$tB$Ut$LL$l)D$ibt;|$L~hT$\L$lT$D$xeD$Xut$TD$P9}L$P|$TD$X묋vt$dF|$l63x)/x+L$`9wjT$`3xL$d%~L$dT$`D$`T$dpB%? ƋD$`pD$<$[)$f눋$$D$D$G,D$ l$D$G$W2+xS$H Px$$pt$||$,$D$x_$ŋ$L$$^$҉$$t$x$D$|,$t$ D$$D$Q^u$E $^Ƌ#x;0t*t$<$cƉ<$D$bd,$t$'_ŋt$xt$<$+x$$D$ GT$D$G$KD$$$R$L$$D$ NjFD$<$lOƉ$MNj#x;8t*|$,$2Slj,$D$T4$|$NƋ$l$$T4$D$LƋE%tX4$l$RƋ$$PD$|$$E,D$ Et$D$E$h $L}u뮋$4~X3x/x>w+9w'3x0GF@$4Vu$Tˋ$4؉$3x8/xw+9w3x0GF$$SӋ$4$L$L$,$D$vS$$$L$D$iOuL$B $B%t$|$PzuD$$$K$A |$$R땉$T)D$wMt 9~V$$TD$D$P$u$$9}$$DŽ$떃}$4~X3x8/xw+9w'3x0GF@$4V_$Qˋ3x$48/xމ$w+9w3x0GF$$QӋ$4$L${J$,$D$WQ$$$L$D$JMuL$B $B%t$|$HD$4$NzuD$$$I$A |$$P땋$8$D$$IljD$$d$N$0$Pt$<${I|$ŋ$T$El$$UN$L$ G$pN1҅u $L$$LE,$D$JӋ$4$8YD$l$4$}N$,$D$$dD$B$E$T$$T$DŽ$DŽ$ %DŽ$h9~<$ D$$$Eŋ$$$ $T)D$It 9~렋$$TD$D$L$u$ $9}$$ DŽ$뙍Y$2M*x8w!$8DŽ$@$<Z $Lϋ$d"ZD$$L$~H$` v($`7AF@$~$Mʋ$$`݃ v$`7@Fn$M֐UWVSoLD$dQ0FT$4D$;|$<QD$ l$dTD$`T$$@QD$(()щL$$L$ +9fT$$&2D$,9D$$0D$,D$$ t$,0D$0 ;|$<EQl$+8 )9T$yD$Vt$"F>;|$<}?D$ D$0ɉt҉tD$hT$ $D$j?L$D;|$<|QQ+)97".l$<~6D$0 ɉt҉tD$hT$ $D$>Dʿ;|$<:D$ Ѕt҉tD$hT$ $D$>L$8;|$<~ƋD$8L[^_]$JN$J/$J$Jv$JL$($HtT$(L$$T$,T$,9|$6J$%JD$l$IL$8A*$IUWVSD$|$T‹G|$TG u}D$ |$TGT$D$G$:L$D$$L$;T$;u2;l$ ^D$`.$D$t$F1T$T$$CpT$$CD$L$T|$$$9|$$9|$$}T)$T$&Ft$$*C,t$$CD$L$T|$($V9|$$19|$(})$T$EL$`At$$Bt$$BD$l$T|$,E$8|$$8|$,})$T$DE$6E$%EUWV t$4FD$%D$D$0@VD$0@t ^_]Í|$|$F$=t$84$mCt$ŅuI<$9Ǿ;t$~D$l$0E} D$E뢉l$$>;t$~̋D$84$D$)BD$D$8$7=l$D$$DD$D$4$8Gsz<$6ŋD$8D$D$$;$6<$(l$69D$0x4$n6L$0VT$$t$ t3FT$D$F$33FD$F $D$Q*^ËFD$D$F$O*ːVD$$t$ t,D$F$)FD$F $D$)^ËFD$D$F$)UWVS,D$D|$@GG(G%D$)щL$CG+9D$t$D$<$D$DD$+L$D$D9@AD$$"51!ȨGGL$)ϋCG+|$9D$D$T$ ")ϋCG+9wl>t$DFG;t$}=9}L$9|D$H<$D$*L$;t$|ËT$,[^_]$iA$[AHT$D<$D$0D$G@$C>L$9|$Ai L$D$D$L$ U D$D$ AUWVS蛾|$L$h@D$l%9D$lD$dTl$l;l$hl$<T$l$,;l$l}n$T$l4< ȉL$љދL$Dt$Ht$4>w+9w"D$40GF|$H~<$>Ћt$d9.;l$d. L$l$ߋ$t$l<|$@u;l$h|L$l$4 ȉL$,љD$`tE%H;L$l|5D$`)‰ЉT$($;L$l}ً$D$@T$@D$l$4VUWVSl$8|$T@%D$PBD$L B0D$LD$) 0$L$H$<D$@D$\D$P9D$\BD$T$\D$T9‰T$XT$ D$\$L$\||$$PD$XD$\9D$X/|$|$|$\$T$Xl$\D$$/<t$\D$D$|$X ,T$DL$0BE%p;t$XD$D$(BT$0D$,|D$D$D$ <9lj,@T$؉D$ G<$D$;$|$@$L$|$\;T$,D$$3;D;t$XqD$X$,l$\D$X9BL$H9s`B$8wjD$L|$$:;t$P}1;L$T}$D,,;L$T|;t$P|ϋ|$ D$P9lj|$\l[^_]ËD$\ $$D$T$@:s|$(D$PL$X9.t$XD$$B, Bu+)9wuB8E%~DEw%? ƉwD$XL$$<l$PD$X9.^|$\$4t$$U$0:zL$X$l$\BuD$XD$T9D$X|T$l$\$$^9$D$DD$\,D$Xt$DT$u;t$[L$@T$L$D$$8‹=;t"BT$D$ G<$D$7ǃ;t$~G%؁? Ƌ=wL$@0<$D$6t$D$D$$u6T$4|$=0t$(D$D$9D$D$,[^_]Ël$L$@4$D$26T$<D$l$9|UWVSLL$h%D$0D$pD$D$`$.s;o;D$`E9D$,)48D$`|$lt$(pS;?D$4c;D$;T$lk;;T$l~t$8;l$lmD$p|$`D$D$4|$$L.t$pT$ht$D$ T$$10;t$0D$4k;8?D$dD$dD$D$<$5<$D$,t$|t$Dt$xŋVс D$DD$@ƋD$LOV%9\88D$pt$$D$D$@|$;T$L35;T$L~T$\D$84D$XЃlT$\D$X9~'5>JL$@|$8L$<$A&>|$Xu u,$D$D$ D$U#T$XŋD$PD$D$#;|$X~l%tR$4$D$&hE%TD$HT$$l+l[^_]Ë;5|$H81苃;5t$H0D$PD$D$"$4$L$D$6&;|$X~Y$+O4$V*m,$C*$+>$+$+T$v+3D$D4$D$N*D|$D|$ $)@$t$>HA,AallbaseResult for prime %Z is: %Z Treating p^k = %Z^%ld impossible inverse: %Zdisc. factorisationreducible polynomial in allbasenfbasis dedek: gcd has degree %ld initial parameters p=%Z, f=%Z new order: %Z entering Dedekind Basis with parameters p=%Z f = %Z, a = %Z --> %Z : IndexPartial: factor %Z^%ld IndexPartial: factorizationIndexPartial: discriminantget_normprimedecincorrect modpr formatmodpr initialized for integers only!nf_to_ffincorrect polynomial in rnf functionincorrect coeff in rnf functionrnf functionnon-monic relative polynomialsincorrect variable in rnf functionIdeals to consider: %Z^%ld not a pseudo-basis in nfsimplifybasisrnfdet2not a pseudo-matrix in rnfdetrnfsteinitznot a pseudo-matrix in %srnfbasisrnfisfreepolcompositum0compositumnot the same variable in compositumcompositum: %Z inseparablernfequationinseparable relative equation in rnfequationrnflllgram %ld k = rnfpolredrnfpolredabsreduced absolute generator: %Z absolute basisoriginal absolute generator: %Z this combination of flags in rnfpolredabsnot a factorisation in nfbasis leaving Decomp: f1 = %Z f2 = %Z e = %Z de= %Z bug in Decomp (not a factor), is p = %Z a prime? entering Decomp, parameters: %Z^%ld f = %Z (Fa, Ea) = (%ld,%ld) entering Nilord with parameters: %Z^%ld fx = %Z, gx = %Zprimedec: %Z is not primernfdedekindrnfordmax new order: %Z %Z pass no %ld treating %Z relative basis computed ordmaxROUND2: epsilon = %ld avma = %ld no root in nilord. Is p = %Z a prime?nilordnewtonsums: result doesn't fit in cache Increasing Fa (eq,er) = (%ld,%ld) ** switching to fast mode ** switching to normal mode beta = %Z rowred j=%ldnewtonsums fastnu: HNF(G) is computed fastnu: G is computed content in fastnu is %Z Increasing Ea F⍀FPܖ1⍀1PȖÖ⍀P鯖誖⍀P閖葖⍀P}x⍀Pd_⍀PKF⍀P2-⍀P⍀Pt⍀tP_⍀_PΕɕJ⍀JP鵕谕5⍀5P霕藕 ⍀ P郕~ ⍀ Pje⍀PQL⍀P83⍀P⍀P⍀P⍀PԔϔx⍀xP黔趔c⍀cP颔蝔N⍀NP鉔脔9⍀9Ppk$⍀$PWR⍀P>9⍀P% ⍀P ⍀P⍀PړՓ⍀P輓⍀P験裓|⍀|P鏓芓g⍀gPvqR⍀RP]X=⍀=PD?(⍀(P+&⍀P ⍀P⍀Pے⍀Pǒ’⍀P鮒詒⍀P镒萒⍀P|w⍀Pc^k⍀kPJEV⍀VP1,A⍀AP,⍀,P⍀P⍀P͑ȑ⍀P鴑译⍀P雑薑⍀P邑}⍀Pid⍀PPK⍀P72o⍀oPZ⍀ZPE⍀EP0⍀0PӐΐ⍀P麐赐⍀P顐蜐⍀P鈐胐⍀Poj⍀PVQ⍀P=8⍀P$⍀P s⍀sP^⍀^PُԏI⍀IP軏4⍀4P駏袏⍀P鎏艏 ⍀ Pup⍀P\W⍀PC>⍀P*%⍀P ⍀P⍀Pߎڎw⍀wPƎb⍀bP魎討M⍀MP锎菎8⍀8P{v#⍀#Pb]⍀PID⍀P0+⍀P⍀P⍀P⍀P̍Ǎ⍀P鳍讍{⍀{P隍蕍f⍀fP遍|Q⍀QPhc<⍀<POJ'⍀'P61⍀P⍀P⍀P⍀PҌ͌⍀P鹌贌⍀P頌蛌⍀P里肌⍀Pnij⍀jPUPU⍀UP<7@⍀@P#+⍀+P ⍀P⍀P؋Ӌ⍀P鿋躋⍀P馋衋⍀P鍋舋⍀Pto⍀P[V⍀PB=n⍀nP)$Y⍀YP D⍀DP/⍀/Pފي⍀PŊ⍀P鬊觊⍀P铊莊⍀Pzu⍀Pa\⍀PHC⍀P/*⍀Pr⍀rP]⍀]P߉H⍀HPˉƉ3⍀3P鲉證⍀P陉蔉 ⍀ P选{ ⍀ Pgb ⍀ PNI ⍀ P50 ⍀ P ⍀ P ⍀ Pv ⍀v Pш̈a ⍀a P鸈賈L ⍀L P韈蚈7 ⍀7 P醈聈" ⍀" Pmh ⍀ PTO ⍀ P;6 ⍀ P" ⍀ P  ⍀ P ⍀ Pׇ҇ ⍀ P龇蹇z ⍀z P饇蠇e ⍀e P錇臇P ⍀P Psn; ⍀; PZU& ⍀& PA< ⍀ P(# ⍀ P ⍀ P ⍀ P݆؆ ⍀ PĆ迆 ⍀ P髆覆 ⍀ P钆荆~ ⍀~ Pyti ⍀i P`[T ⍀T PGB? ⍀? P.)* ⍀* P ⍀ P ⍀ Pޅ ⍀ PʅŅ ⍀ P鱅謅 ⍀ P阅蓅 ⍀ Pz ⍀ Pfa ⍀ PMHm ⍀m P4/X ⍀X PC ⍀C P. ⍀. P ⍀ PЄ˄ ⍀ P鷄貄 ⍀ P鞄虄 ⍀ P酄耄 ⍀ Plg ⍀ PSN ⍀ P:5 ⍀ P!q ⍀q P\ ⍀\ PG ⍀G Pփу2 ⍀2 P齃踃 ⍀ P餃蟃 ⍀ P鋃膃⍀Prm⍀PYT⍀P@;⍀P'"⍀P ⍀Pu⍀uP܂ׂ`⍀`PÂ辂K⍀KP骂襂6⍀6P鑂茂!⍀!Pxs ⍀ P_Z⍀PFA⍀P-(⍀P⍀P⍀P݁⍀PɁāy⍀yP鰁諁d⍀dP闁蒁O⍀OP~y:⍀:Pe`%⍀%PLG⍀P3.⍀P⍀P⍀P⍀Pπʀ⍀P鶀豀⍀P靀蘀}⍀}P鄀h⍀hPkfS⍀SPRM>⍀>P94)⍀)P ⍀P⍀P⍀P⍀P⍀P⍀P⍀Pql⍀PXSl⍀lP?:W⍀WP&!B⍀BP -⍀-P~~⍀P~~⍀P~~⍀P~~⍀P~~⍀Pw~r~⍀P^~Y~⍀PE~@~⍀P,~'~p⍀pP~~[⍀[P}}F⍀FP}}1⍀1P}}⍀P}i,iEi^iwiiiiii j&j?jXjqjjjjjjk k9kRkkkkkkkkll3lLlel~llllllm-mFm_mxmmmmmmn'n@nYnrnnnnnno!o:oSoloooooopp4pMpfpppppppq.qGq`qyqqqqqqr(rArZrsrrrrrr s"s;sTsmsssssstt5tNtgtttttttu/uHuauzuuuuuuv)vBv[vtvvvvvv w#wWp8Qj΀2Kd}ȁ,E$Ë$B`1` `!\`_____8_!\)_!\ _!\^^^^D^!\.^!\^]!\]!\w]!\h]']]!\\!\\!\\l!\N\!\*\!\\& \\h5X[[[[[f[S[G[)[[[ZZZZZZ5XZZ?Z)ZYYYrYt5XPY6YYYXXXXuXPX|5X1X& "XXWWWWmWPWHW>>~>a>O>G>.>>>=====t==<<<CbM8<<<<w<g<CbM8Q<E</<<<;CbM8;;;;;;fM8d;L; ;:::::M8:q:$:9M899w9g9B9.99M88M88M88M88M888I8& 88 88777777n7F776464|65454^54X5,544444444& 4;433h]33`h]3|]331h]=332r2@202h]21111111b1L1'110000w0]X0]D0]<00]/]/]/^/C/-//....}.X.]B.]:.].-]-]-]-h-M-A-*---,],,,,,]h,7,,+++g+*z*F*:**))))))))])g))((( h]((m(Z(8(*(( (]('''&&&&g&|]0&%%u%V%J%3%%%%%]$$$$$]q$@$ $###p##|]""t"S"="" "!!!!h!]I!]5!]-!!] ] ] y K 6 VNg]7i|]?`F: ]w ]p]]]l zl^N]F3}kB]]]sT]L]F-]pg]H5 g]l]^]J]]hNg]_2]tJ].p-|]f|]8]]e]Y& "    i Y I 1       { c      s g F 1           P 8       m , t  & QQ+ p\H7 `gQB QcQDQwQVCQtgWSgQL#Q QG-QC0QLQF0Q_S7d`Q*h`QQzY3Q_9QQ\9|Q/QQ{QaQJQQQuQ[Q;QQQ_QEQ&QQQQFQ6QqQM& ?.hb& :g}l[J,dKC=+}d/ 8|$& ~m\K:)z_Yy+ & m]E maU8jRJ8s\P@iG7d+ tTD& & ,gUP= q`OCgUn?\`U``U'gV?gU0UUUfUeUJU@|UeU/#UUUUUUUUzU^Kr_UUUn:UmUSUMxF sU|UmU/UUU0UUU$UUUgF.l|U]UQ& @0frO& wkS) mB0tlT<^5%jWC1a= & znV*}lYM+vePD}l[J&.;qPJ( ^X:пn#ξlF+YKͼoڻûm]W@) r1~^BǷ& kfYH M9f'ϵf wmg dzvY2в|kWf> XRf ~gG1ZB5"٬ϫ5ͪʩaBxd& ڧf-ʧf-d-f-xgT W-H-,-ZG; ݤˤ-K0 f-УģsN5'Ѣ?|-'k4_A-֟-ПFt----Ɲ=-#-ܜ{|-u)& cfMdMٛћQfMƛ fMeMp`G6 ĚxlE MMәM͙qDM4( ȘMtdPD#|MܗtbR:*ؖΖvj`TB*M֕ȕMlZ>M.|MI& %|k]O;/sU.icYIe(& Տ!,!&!& `ӎÎa;`ٍȍ_?."`ٌӌˌ~vd 8(ftjbTI#Јh.uk-ԆCڅ pуƒvZ#|͂V`Ԁ|yG7`|& em{@em{ em{|m{wcS>.tm{~~~m{~m{~m{~`~m{C~m{=~m{.~"~em{~ ~}m{}m{}m{}m{}m{}o}V}4}}||m{|m{|m{||m{|o|m{V||{|m{{{{dm{{m{i{& [{<{Iv%{Iv{Iv{tIv{zzzzDzIv>zIvyIvyIvyIvyry\yIyIv;yyxxxaxWxOx?x'xx xwwtIvwwswEwIvwIvwvvvvxvdIvNvIvEv& 5v+vvu|duuuouVu4u#uuutdttddtttttctWtddEt&tttssssssfs=s srrrrrrXr=r+rrqqqYq?q,qqpppppqppoooddooo{oGod.od"odo ondndndn|dngnmdmdmmlllFlldkdk{k6kkdjdjdj|diid{idJi|didhdhdhdhdgdgfdfdffqf.feeeeGe-edd'eeddddd& ddld^ddHb dcHbccHbwcHbocHbgcHb#cHbc cbbbbubVbHbDb& 0bbaad`a`aaaaja;a(a aa``d```& `J` `B`2`(`` ``& ____4diY~_j_ddiY__K_ddiY=_5_'___^iY^iY^iY^^iYp^iYh^iYX^7^iY ^iY^iY^]]]]iY]iY]iYx]N]iY3]iY-]iY]\iY\iY\iY^\iYX\iY7\iY\iY[iY[iY[[tiY[[[[w[([[`iY[[ZZZiYZCZ;Z-Z%ZZ@diYY4diYYY%diYYvYiYeY& UYXXXXtX=X)XcW#XdWWWWWWWWW& {WWU WUWVVVxVmVYVcUSVdU0VVUUU& UsUcUNU6U&UUTTTTaTMTcSGTdS TTSSS& SjSSS>S-SSRRRRtRLR@RRQQQMXQMOQMEQ2QQMPMPMPPPP}PiP]PSP2PMPOOO.OM#OMNNNwNcNcM]NcM:NNNMM& MMMMrMcfMbM& 8M,MMMMLLcLLLLL& LyLhLPLL LKKK?KYJ KYJJYJJJJJcYJpJ^JYJUJ& ,JJJJ& III>>S>C>`c< ><>=@c<==x= c<r=c<b=Q=A=b<<& <<<<<`<P:Z<P:N<<P: <P:;P:;;P:g;C;P:;P::P:::q:^:P:L:& >:%:999999& a9H99888888& 888B87:87 87& 77j747b747H707& 766 65555& 55y5Q5$55b43 5444444i443N443F4434333333b43t3B34303& 32b1222222w2H21+21%2111111|1r1f1H181"111& 0/0/00E00//& ///v/&/......9.---Ub--& -{-T-D-0--,,{,E,V,E,A,& 1,!,m+,+m++m+v+m+i+& P+D+++***h*****Lb***|*& f*\*'L*:***Cb'**))))'))K)))(('('('X('R('7('1(')( (''''& u'b'Q'+''(b$'' b$&&&&&a$&&a$&&a$q&O&7&|$/& &|${%b%|$0%$%$%$$|$$$$$$$& $s$*$t#$###& #h#V#-##"o"^"E"%""!!!M! ! !    e  /   & |ha^RaC2um`T8aq|i7ub6 |& lX<, C& K1E15g161-& `a(anX t|iYIA3& _;nZ4^SX aSO& >lZJ. a& ^Dj_d a_[& J`YaYIY:YY `YY`Yv u b    |Y  xY  `Yr 9 +       q  Y Y Y`YYfQ E4#YYqYYYYt\I|YqY@YYyYqYi&|YYPY<|Y`Y|YU& G#Gp AY=9Y=3% .p (U$ U$% p Q Q % p MM% p IفIف% p EE% p AA% p ==% p y9uq9uk% fp `5\X5\R% Mp G1C?1C9% 4p .-*&-* % p ) )% p %%% p !߀!߀% p ƀƀ% p % p % p {w{q% lp f b^ bX% Sp M IE I?% :p 40,0&% !p  % p % p % p % p % p % p }w% rp lhdh^% Yp SOKOE% @p :݅62݅6,% 'p !مم% p ՅՅ% p х~х~% p ͅ~ͅ~% p Ʌ~Ʌ~% p Ņ~Ņ~% p ~~}% xp rn~jn~d% _p YU~QU~K% Fp @<~8<~2% -p '#~#~% p  ~ ~% p }}% p }}% p }}% p }}% p }}% ~p xt}pt}j% ep _[}W[}Q% Lp FB}>B}8% 3p -)}%)}% p } }% p ||% p }|}|% p y|y|% p u|u|% p q|q|% p ~mz|vmz|p% kp eia|]ia|W% Rp LeH|DeH|>% 9p 3a/|+a/|%% p ]|]| % p Y{Y{% p U{U{% p Q{Q{% p M{M{% p I{I{% p E{|E{v% qp kAg{cAg{]% Xp R=N{J=N{D% ?p 995{195{+% &p 5{5{% p 1{1{% p -z-z% p )z)z% p %z%z% p !z!z% p zz|% wp qmzimzc% ^p XTzPTzJ% Ep ?;z7;z1% ,p & "z "z% p   z  z% p yy% p yy% p yy% p yy% p yy% }p wsyosyi% dp ^ZyVZyP% Kp EAy=Ay7% 2p ,(y$(y% p y y% p ݄x݄x% p لxلx% p ՄxՄx% p фxфx% p ̈́ẍ́x% p }ɄyxuɄyxo% jp dń`x\ń`xV% Qp KGxCGx=% 8p 2.x*.x$% p xx % p ww% p ww% p ww% p ww% p ww% p w{wu% pp jfwbfw\% Wp QMwIMwC% >p 84w04w*% %p ww% p w w % p v v % p v v % p v v % p }v }v % p yv yv{ % v p p ulvh ulvb % ] p W qSvO qSvI % D p > m:v6 m:v0 % + p % i!v i!v %  p ev ev % p au au % p ]u ]u % p Yu Yu % p Uu Uu % p Qu Qu % | p v Mrun Mruh % c p ] IYuU IYuO % J p D E@u< E@u6 % 1 p + A'u# A'u %  p  =u =u % p 9t 9t % p 5t 5t % p 1t 1t % p -t -t % p )t )t % p | %xtt %xtn % i p c !_t[ !_tU % P p J FtB Ft< % 7 p 1 -t) -t# %  p  t t %  p s s % p s s % p s s % p s s % p s s % p ~sz ~st % o p i esa es[ % V p P LsH LsB % = p 7 3s/ 3s) % $ p  s s % p  s s % p r r % p r r % p ݃r ݃r % p كr كr % p Ճr Ճrz % u p o уkrg уkra % \ p V ̓RrN ̓RrH % C p = Ƀ9r5 Ƀ9r/ % * p $ Ń r Ń r %  p r r% p qq% p qq% p qq% p qq% p qq% {p uqqmqqg% bp \XqTXqN% Ip C?q;?q5% 0p *&q"&q% p  q  q% p pp% p pp% p pp% p pp% p pp% p {wpswpm% hp b}^pZ}^pT% Op IyEpAyEp;% 6p 0u,p(u,p"% p qpqp % p momo% p ioio% p eoeo% p aoao% p ]o]o% p Y}oyY}os% np hUdo`UdoZ% Up OQKoGQKoA% <p 6M2o.M2o(% #p IoIo% p EoEo% p AnAn% p =n=n% p 9n9n% p 5n5n% p 1n1ny% tp n-jnf-jn`% [p U)QnM)QnG% Bp <%8n4%8n.% )p #!n!n% p nn% p mm% p mm% p mm% p  m m% p  m m% zp tpmlpmf% ap [WmSWmM% Hp B>m:>m4% /p )%m!%m% p  m m% p ll% p ll% p ll% p ll% p ll% p z݂vlr݂vll% gp aق]lYق]lS% Np HՂDl@ՂDl:% 5p /т+l'т+l!% p ͂l͂l% p ɂkɂk% p łkłk% p kk% p kk% p kk% p |kx|kr% mp gck_ckY% Tp NJkFJk@% ;p 51k-1k'% "p kk% p jj% p jj% p jj% p jj% p jj% p j~jx% sp mijeij_% Zp TPjLPjF% Ap ;7j37j-% (p "}j}j% p yjyj% p uiui% p qiqi% p mimi% p iiii% p eiei~% yp saoikaoie% `p Z]ViR]ViL% Gp AY=i9Y=i3% .p (U$i U$i% p Q iQ i% |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  c6XON8[_(ClmW/0iT@7 b*!1U+%aVP" A 2$#B&H-E=3hnY y'.lkotmsjqrQ?jDpnSg9)f}^vZMgL> uzx;R9w|{~J4o\k]CA :e,5d3G`<Fc6XON8[_(ClmW/0iT@7 b*!1U+%aVP" A 2$#B&H-E=3hnY y'.lkotmsjqrQ?jDpnSg9)f}^vZMgL> uzx;R9w|{~J4o\k]CA :e,5d3G`<FIKhi  (0D8$@KVeLpxPL`H T4=D8@?lI\AxD NLQ,X&K2>8>>,AHHAR\0PNN-__d+m ,_h"5<(-I%<,$#h95877(3Z.1T:DH`4`-1/`Yt*' ?xSD:ZPMbMQL#0Ixd;T$D;T$~,[^_]$H$:말<\$,|$4t$0|$Dl$8L$@A%PpE+T$)9(&u|$D$@$蘭lj$6uI};t$~Ћ\$,t$0|$4l$8<ËD$@t$|$$hD;t$~ŋt$t$G$$%h$CUWVSD$(D$TD$,D$;l$$`t$L$TFD$A$[;|$$~rD$4$D$D$XD$ī|$ D$,@u';l$$~D$TL$ D$(D$,L$TD$ wl$`t t$TD$`0D$(<[^_]ËL$L$TD$$HD$L$ F4$D$o;|$$~A$c$RL\$<|$Dt$@l$H|$TD$,<$D$P$SD$PD$X$自T$XBD$(D$XP BD$$t1%rщ ?t$$څOT$$T$$ |$|$P<$olj$ t0T$(T$G$踩T$$ЉЋ\$T됉<$t$BNjD$(4$D$#뜋D$(D$G$%ŋD$(D$G$T$$)8t$(<$t$$e1҉|$l$t$l$ |$$u%9tЋt$|$l$ÃߋD$D$1҅.tŃՐ9l$`9~$辥뾋`|$t$|$ L$$w%9}L$G $jt$|$É $D$t$菣͐<\$,t$0|$4l$8l$DET$@%D$$D$W t_  t-G,$%D$\$,t$0|$4l$8<ËED$G$St]mE uwEN%??9tГ$T$rl$<$D$D$$٣y$t$;닍V<D$)+L$9T$wKL$ t$1;t$| D$D<$D$T$;t$|$讣말UWVSC,L$D#ƉNjD$D$@$Ae #u~+vW}FT$@B$ۡGL$@l$DAp?,$D$轢G,[^_]$֢뛋D$D$胡܋#0+0)9#$(Ut$@N(9L$|>l$L$@A@$1l$@}$|$=D$D$$áQT$DD$D$$D9|$ f#0+0)9wG#&9(M|L$DT$@$D$D9|$舡뫐UWVSL$$D$D$ L$$86$|t$<$D$כ\$t$|$Ð,\$Tt$ |$$4l$((|$0t$8D$4t$<$D$$t$<$D$$49D$D$4$|$,$D$A\$t$ |$$l$(,Ã<\$,t$0|$4l$8E|$@t$HD$D$Dt$<$D$3$yt$<$D$D$$DuD$򋃘+~vT}F"D$$IGt$D$Dt$$,G|$L$ $\$,t$0|$4l$8<$D랐,D$0\$t$ |$$l$(L$0t'$T$t$0Ƌ+)9wt/,}9}L$0@tT9|uu u\$t$ |$$l$(,$H$:{u~+r}F,$䐐UWVS,D$DT$@L$D0$t$$oxʼn֍)Ƌk+9wso0uU"9>c9~;L$}gD$D,;L$|,[^_]$$|UWVS |$ /9}. Qt)Dtr9|҃ [^_]Ën␐UWVS;LD$h|$`l$d$DD$8T$0D$0)+L$(9T$0wD$(L$(D$0 $<$D$,lNjEehvUT$$uD$D$(t$ $ْD$4D$$09T$4};D$4T$ QtDD$49T$4|D$4|$09|$4}ID$4LQtADt4T$4L$(D$0T$49|Ël$,(D$(L[^_]ËʋD$8L$4t$$D$<$D$,$D$CŋD$$0>,$谑t&xt$(D$4$觑됋䍫3$l$7‹ml$<$ʼn,$tm뒉,$)ŋG@D$4D$D$H90}87D$DL$@T$D$T$$0L$9|͋D$,[^_]$葎둿9.}܋D$D$L$@0D$DD$D$$4$D$͍t$9|$.|$l$|$$l$ t$D$|$,$uƉ$ٍtGt$|$l$9u4$舌D$(D$D$ $过D$D$$$}ÐUWV D$@D$@@D$(D$<@$#L$8D$ƋD$0L$$NjD$4t&t$D$0t$4t$$D$<$όlj|$|$@G $Ό9}# Qt Du9|݋D$8 ^_]ËL$D$D$8D$D$0$D$8Ƀ<|$4|$Dt$0l$8t$Hl$@<$kD$Lt t t$|$,$t$0|$4l$8<ÁuՋF,$|$D$_,$D$,D$Lt$ D$D$,|$D$gD$,$ʼn<$9ŋD$,O덉<$蘊UWVSs,ST$@|$Hl$D$D$ƋG@$ЇFSO%xh+)9wKS0u-$9>G9~,[^_]$$막|$4$لNjE | ~t{$T$ӊ1량l$4$胄$|$^D$l$4$|$$tD$D$$芆VU1WVS|$4t$8Vt;Dt.D$0|$l$$YL$D$(D$)ŋ+8l$9|$D$L$D$ "D$D$9D$y|$$D$t$D$4D$ BD$t1%r rt$݅Ol$l$s8-|$ )͋+9.E;t$|$t$lD4$D$1vL$`NjD$h $|$D$uD$8T$hD$(T$|$$u|$4D$,D$l|$$ut$hT$dt$D$$1uD$0;t$8|[L$D<$D$|l$t$D$l$9D$$Gu$&u|$jL$,;t$@~ċD$0t$$D$;T$$o;T$$~|$ pwt$TD$ F@$%hDD$TD$T @hEl$$؉D$d|$$D$tD$PL$X@@D$@0%9/ pt$$p+,)9 p:"7|$(D$D$$$_ p1ŋp~+v| p8F&oL$D$(l$(H|$|$,D$(T$D$ D$TT$$/t$ D$,|$ l$D$4$_D$(L$AD$,A $wjs$fj#$UjD$L$$^D$ ppu~+v9}F"D$GD$xD$p$fL$S$i빋o $io$i_UWVS7,D$DpxH t$p1Ql$@%IuUM E<$lED$E10FD$)щL$l+9woD$,0;|$}@L$T$4,9}@%9ʍl(|;|$|D$,|$@G,[^_]$h냁 ,D$8D$D$ D$|D$@tkL$l$%<%D@ $5aŋ%P~3t$tNt;Dt.L$ыT$l$@T$E$`,[^_]Ëd$`$`$`zUWVS_?cDŽ$$$$_$$[$ŋ ?c})Ƌ;c+9 ?c0 "9>3c9~?ct$l;cu~+X }F,|$h$$|$$wYD$p‹%tB@$S$[ul$p_Q$l$T$m_$D$$$PSD$tpt$`hl$d?c%pPE lj$)ϋ;c+|$X9j |$X}F "D$X0;cu~+ }F"1DŽ$$$El$p9$|$\D$hl$pD$$l$$$L$X@t$\4$D$/RD$\$0~|$|?c )͋;c+l$T9D$T&$0L$Ll$`t$dT$hD$|$$$D$P$DŽ$g1퉄$D$X$0FD$H)щL$D;c+9T$D,2;|$H}@D$XL$D4,9}@%9ʍl(|;|$H|t$D,|$LwDŽ$$9$T$X$<DŽ$|$@Ձ9$$|$@HL$<@ DŽ$D$8%9$D3cD$ $t$8T$<<$4D$pt$|$D$ ,$D$4VtD$?c8ƍ o)΋;c+9O$?c90>L$ 9~D$ D$L$t$4D$$T$t$$G,$[D$P|$PL$T$T$qq,$ED$T9~$.O$$L$D$ ED$ED$$$IT0Tn+9wT*F$P$N܃D$(D$D$ D$$D$D$ $ ÐUWVS#LD$dQ8P+)9w.&MD$lD$D$ D$$9| L[^_]ËD$0L$hD$$EL$L$ D$L$dD$D$`$pD9|$MpUWVSWLD$d7P3P8+4)97P3P&*u2V+T$rrD$7PL$ F$D$hL$ $D$9| L[^_]ËD$T$L$dT$ D$D$D$`$D9|$L$LA,t$ t$8\$L|$$l$(|$4l$0w$t$8|$4l$0\$t$ |$$l$(, =$ T$\LĐD$$D$D$D$ $ ÐD$$D$D$D$ $m ÐD$$D$D$D$ $I ÐD$$D$D$D$ $% ÐD$$D$D$D$ $ ÐUWVS;l$$8L$,T$4t<$|$SK|$4$@D$0t<$l$Kl$0}с]4$IJD$@$$覯ND$4NL$<)D$<+L$(9D$4D$4l$( ".ED$8D$49D$8t$$t$@|$ t$|$8$T$$,L$ l$0}+4)9w}D$$"(uD$8L$(9,})T$T$L$0D$D$$T$,D9|߃D$8D$49D$8f|$(l$<|$,$El[^_]$Ir$It<$T$I8D$D$D$,4$;D$XZNNu~+9T$4w}F"[$IᐐUWVS~\D$tK0эn)K+L$@9D$@$0D$H9l$H|$8L$8|$HD$<T$xt$H|$tBD$$IHL$Ht$xNjL$tD$A$)H|$$HD$LD$D9l$L.l$(t$LD$t<|$0<$ HtID$Ll$(9l$L~֋D$DD$D$<$~Gt$H|$@9t$H3D$@\[^_]ÿD$(D$49D$,.D$,L$pt$HBuA9~ۋD$4.kT$4D$0T$$CG|$DD$<$GD$D>L$x% L$t5D$$D$Gt$4…tD$D$4$F‰T$4uzuŅyω $FŋT$xt$tBD$F$F$FUWVSc|LD$dCI0/F D$8?I)+(T$09$D$00D$<t$89t$<|$(l$(|$<}|$,t$dT$<D$F$ED$$CD$4;t$8~:D$4t$,D$4$zEl$l$L$?tF>\$,t$0|$4l$8<Él$$Z<t&L$@Au5$T$!C먋El$$D$;D$D$Ht6t$H,$%D$^:HD$$L$;ƋD$D$D$@$;D$HD$t>D$4$D$j:t$HL$DD$l$ t$D$ $9D$D tID$Dl$D$ D$D$@$ l$tD$D$$D@D$<$?T$DBt BD$D렋FD$4$?UWVSsw\SDt$xD$LD$pсJD$4$R:ljD$$':؅xS3$t$^AG1҉t'%w OޅN֍jrl$DSD E)ω|$,OD+9D$,ED$,"0$T$|D$tt$T$$8L$L|$p D$0ODL$D$(L$D$$l$ <$<D$,<;t$DtǃD$@둍p3$T$f7ӋD$4ыD$LT$$+9w$l$D$L/@EuD$X$ >$=$=$=$t$$6$9 T$t t($D$tL$pt$ T$D$ $iBt BD$tŋGDT$pBtBD$pGDUWVSr|?$D$\ED$Tt1%}щ |$TڅOT$TT$T$1QBt'%z‰ ^څNAD$l?8 T$l$t$h$T$ L$t$$2ƋD$lD$D$h$Rt$$i2D$$$kD$L$D$$$2|$TD$w+9wl?0G"t$D$P$,T$ BFBn FD$FD$dFT$X|$T9l$\D$P,$D$2|[^_]$6농. $.$|6$k6-D$`4NAL$$D$7/9F|D$X$D$$<$D$+D$8D$XT$.D$$-$5R$5$5$5O$5D$l$+$r$L$2HD$T/L$D$4$F-$75$$52UWVSjtt$pED$pL$hl$p|$d0!|$ $#U$+$+UWVS?a$.$$$$-$$D$`$.+(Sl$`$.@"$!$Et$\<$,*$ɉD$tD$`l$tE%$]$D$h.$.E+)9Ɖl$XRD$X.)"L$X1L$p$\..D$d7~+*".8F"L$hOt$p~DŽ$$9$'$D$`T$X$$9~ً..D$t7$F+MD$TD$TF@@M$Չ$$)t $|$TG1ҋ$<D$TP.$8D$TT$tD$$zD$lD$|%9D$|$t$D$|l$lDD$P$!‹@D$@%JD$@$D$D9|$D ШWD$p$%$t$P9T$DD$L$$D$xD$D$..7~+9.8FG@D$xG$$tAN$t$tD$$4$D$$$T$D$DŽ$9‰T$H ,RD$D$(l$$l$ D$$$D$HD$pD$|$0Չց}l$4)щL$,.+9*D$,. L$,19T$0l$,D9~D$,;t$4<|$,D$<8T$DD$ $T$HD$$$9t$Hl$D$D$xl$@9ʼnl$DD$|L$l%9D$|Q.$98s*.8D$pD$$$!D$pT$TB;$$t`DŽ$D$pՁ9$}>$D$p,}D$|9|$||;Ճ$9$|‹D$p$D$<$0![^_]ËD$|tFND$A$$FD$|9|$||Ջt$p뒍$t$&L$8l$(,$D$T$\;t$4|?$$$$D$T$dD$tT$$$L$Pl$t|$L$,$]$$;$EJL$@T$ $Bt$T~$$#n$#<$t$h|$tt$D$d<$D$.Nj.un+v\.*F"D$h}E.2~+v.8F"oD$pxX$2#$$#$#$#$D$D$tT$$D$hDD$\$"L$ AD$D$$D$$UWVS/X,t$@|$DOFD$L$$ŋGD$E}v@$4$D$D$%D@ $!Ƌ%9|sD$t$$(D$E$!D$%8 %w+v#%0G"n|$~,[^_]$!ϋ$莈%9|oUWVSW\#l$t,$D$LD$@uEt$c+)9."uL$H$L$$kg9D$8F|$@,$|$j D$pc_1V+(T$4l$4c*F"$:h_+wc2G"D$tnFD$4pl$|h cT$lP$t$4F$D$0Eǃ )ϋ_+|$,9(D$,EL$,"$1D$4H|$t$x4$wL$,AqD$0t\[L$0;9E_+ )9wzc"9(U|'l$,E |$4$|$4$hD$4L$0T$pD$ T$D$$$Q D9|$uD$p$$w$f<$UL$<D$D$8$D$D$L$L$tL$$D9|s$-L$D,$D$D$D$H$L$tL$$螇T$@9|$`|$dc7F<D$X)L$T_+9T$Tc&2}_+)9wfc0uH$9>W9~;D$Xl$Tt;D$X~D$T$$$H0cFD$`)щL$\_+9D$\c&0_+)9wjc2uL$>9$W9~;D$`L$\4;D$`~D$\$$$DFcD$P,)_+E9c}ue&c70_n+r2c*F$;D$P ,;D$P~$W$$$kD$p$8$ȧĬtL0 nfmulelement_mulelement_invnfdivelement_divelement_mulielement_sqrnot an integer exponent in nfpowelement_pownegative power in element_powid_mod_pelement_mulidnot the same number field in basistoalgalgtobasis_iincompatible variables in algtobasisnot the same number field in algtobasisnot a matrix in matbasistoalgnot a matrix in matalgtobasisnot the same number field in rnfalgtobasisarch_to_permzero element in zsignezsigneelement_invmodidealmodule too large in Fp_shanksFp_shanks, k = %ldPohlig-Hellman: DL mod %Z^%ld nf_Pohlig-Hellman: DL mod %Z^%ld not an element of (Z/pZ)* in znlogIdealstar needs an integral non-zero ideal: %Zincorrect archimedean component in Idealstaridealstar%Z not a nfeltnot an element in zideallogideallistideallistarcha not invertible in ff_PHlog_Fpmodule too large in ffshanksffshankszidealij done treating a = %ld, b = %ld treating pr^%ld, pr = %Z leaving entering zlog, with a = %Z Ideallist%ld zC ⍀ PfCaC ⍀ PMCHC ⍀ P4C/C ⍀ PCC ⍀ PCB ⍀ PBBt ⍀t PBB_ ⍀_ PBBJ ⍀J PBB5 ⍀5 PBB ⍀ PlBgB ⍀ PSBNB ⍀ P:B5B ⍀ P!BB ⍀ PBB ⍀ PAA ⍀ PAA ⍀ PAAx ⍀x PAAc ⍀c PAAN ⍀N PrAmA9 ⍀9 PYATA$ ⍀$ P@A;A ⍀ P'A"A ⍀ PA A ⍀ P@@ ⍀ P@@ ⍀ P@@ ⍀ P@@ ⍀ P@@| ⍀| Px@s@g ⍀g P_@Z@R ⍀R PF@A@= ⍀= P-@(@( ⍀( P@@ ⍀ P?? ⍀ P?? ⍀ P?? ⍀ P?? ⍀ P?? ⍀ P~?y? ⍀ Pe?`? ⍀ PL?G?k ⍀k P3?.?V ⍀V P??A ⍀A P?>, ⍀, P>> ⍀ P>> ⍀ P>> ⍀ P>> ⍀ P>> ⍀ Pk>f> ⍀ PR>M> ⍀ P9>4> ⍀ P >>o ⍀o P>>Z ⍀Z P==E ⍀E P==0 ⍀0 P== ⍀ P== ⍀ P==⍀Pq=l=⍀PX=S=⍀P?=:=⍀P&=!=⍀P ==⍀P<999U⍀UP%9 9@⍀@P 99+⍀+P88⍀P88⍀P88⍀P88⍀P88⍀Pv8q8⍀P]8X8⍀PD8?8⍀P+8&8n⍀nP8 8Y⍀YP77D⍀DP77/⍀/P77⍀P77⍀P77⍀P|7w7⍀Pc7^7⍀PJ7E7⍀P17,7⍀P77⍀P66r⍀rP66]⍀]P66H⍀HP663⍀3P66⍀P6}6 ⍀ Pi6d6⍀PP6K6⍀P7626⍀P66⍀P66⍀P55⍀P55v⍀vP55a⍀aP55L⍀LP5ټ $=Voӽ7Pi;1Jc|ǿ+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk3Le~-F_x'@Yr!:Sl$Ë$ÔeWI}}}۶}Ƕ}}G}!}}}۵}}Q}0}}}}Ĵ}v^B2"ӳrC}}}}c}<}%}}}߱}ձp}d}J }ذ}˰ue5%ʯv}}}c}K;֭}y l! hWF5$ ūr[?Ъ~mLD:vKB8 ƨѧvѧnѧdU8 ͧ vVE7)զuHC7| ǥ~nrR*n]OĢpOI \(à^;5֟ɟtk+О e5lg_U5-5L5f5)55 5˜Yܛ5қ55X5>51 ! Ӛ=ٙ[$ ʘQQQsdE4# ŗQQQXQEQ&QݕM <$21Ӕ”~ma1JߓΓƓ1eL1/1)1ܒ̒11n1O1G,111ܑt<11ې111{1I1C11 111܏11t1nS@0_A." Ѝ161- یq`Rt^>.ъoSM&ىX@ψ ~jH<$և~X:*Ά xiC'܅m]dA1ƃ y]>$`9 xQZQM ? ~~܀~րƀ~~|~vcA1~~~~~~ ~~k~G~#~}}}}} }}m}8}}|||||||||| |||Y|4|{{{{{ {{{wp{wh{w-{{w{wzwzwzzwzzxzwazIz'z zyyyyylywNyw=yw7ywywywxwxwxxxzwxgzwxzwxzwxzwxzwxzwxzwxzwxRzwxRzwxzwxzwxzwxzwxxw|xzwxxzwtxxwpxzwfxpxw4xw xww wwwEwVwEwNwEwAw -wvvwvvvwvv uvgvUvBv2vmvv uuuuu uugu[uKu@iutttttttssissi9si3si(sssrrrrrr}rfrMrrqiqiqiqEqiqipipipipipipTppioioioinnni{ni]ni/nmililKli8lilk~kiHki kikjjijjjdjiZjiHji#jijiiiiiiii i}ili\igNihhghghg\hgVhg;hgggggg ggg-bg}g-bfg-b^g-bgf-bf-bf-bxf-bZf-b5f feeeeKe-bAe-b)edd-b}d-bYd-bDd-bcc-bc-bzc-bYc-b@c-b4c-bcbbbb)b baNa`a`a` ```\`t`j`\0`\*`\``____b_\M_\C_\=__\^\^\^g^L^\4^\ ^\]]]]\c]\<]\\\\\\\ \\\\}\L\<\4\\[[[T[L[[ZXZXZXZuZaZZXZXYXkYXLYX2YXXXXXX XXpXhX-XXWWWWWW}W pWqVOW=W WqVVqVVqVVvVqVmV \VDVVUVU VUUUUUU|U ^UdTRU:U0UUdTTdTTTdTTdTTdT`T .T"TTSSSSSS SSpSZSDSS SS RRRRRqNpRRR-R RQQQtQFQ6Q.QQPqNPPPqPFPPqNPqNOqNOqN)OqN#ONNNvNqNmN [N4NN NMM`QJMMMsM^M[?M????>>>>>>>>>>>> ~>k>a>U>1>>==[=A=5==<<<<i<_<-<<<;:;;g;:P;:.;:;:::: :::::v:8]:8W:8L:::*:98w98m98g998888 88888l8`8X888'88776767:76'7676766 6616166k6Z666%6555151{51P554P4?454$441 4143133331I31C312212212;412L412L412L412L412L412L412L412-412*412L41|2L41x2L41t2L41p231l2L41h2L41d231`2L41X2`21@2 211111 1f11f1b1 L1>11q00q00q00q00q000m0 `0200/,00/!00/0/}/0/q/a/0/,/ /....D...}.u.R.D.@. ..--------- -z-p-R-H-D- 5--,+,+,+,,+,,o,+g,[,1,,+ +++k+**E*m*E*N*E*A* 1*#* *V)F)h( )(((( (((&s(&d(&P(7(( (''&'&'&''l'R'&;''&'&&&&& &&c&0%G&0%4&0% &&@0%&%%%0%%%U%D%0%,% %$$t#$~$t#i$t#<$t#6$t#$$###p# Q#E# #"N""""#N"""N"""N"""N"""N"""N"""N"""N"""N"""N"""N"""N"""N"""N"|""N"x""N"t""N"p""N"l""N"c"l"N"J" -"!!!!!z!g!-!!! &   WQ0   ]l f7+iY@.  E%YYU G6&DcDZD@ !mmmi ]2!Xyyyyu ķȷrQ.@ ~tfVJ5+̷з{scaQ@ e9) }jQAX5% ~m\K} } } R} ?} "}    k   P @  } } } y  j Z A     T YA Y$ Y    d4YYYYU F2# ydU=*qaUE5% zi[A%m]Q pXrSC1+ uD0,($   d d   K K   2 2       {  v  p h b  ]  W O I  D  > 6 0  +  %         j j   Q Q   8 8   | |   x x  |  v tn th  c  ] pU pO  J  D l< l6  1  + h# h     d d   `p `p   \W \W   X> X>   T% T%   P P   | Lt Ln  i  c H[ HU  P  J DB D<  7  1 @) @#     < <    8v 8v   4] 4]   0D 0D   ,+ ,+   ( (   $z $t  o  i a [  V  P H B  =  7 / )  $        | |   c c   J J   1 1       z  u  o g a  \  V N H  C  = 5 /  *  $         ii  PP  77     { umg b \TN I C;5 0 *"     oo  VV  ==  $$      {sm h bZT O IA; 6 0("     uu  \\  CC  **    ys n h|`|Z U OxGxA < 6t.t( # pp  l{l{  hbhb  dIdI  `0`0  \\  XXy t nTfT` [ UPMPG B <L4L. ) #HH  DD  @h@h  <O<O  8686  44  00 z t,l,f a [(S(M H B$:$4 / ) !     nn  UU  <<   # #      zrl g aؿYؿS N H@: 5 /'!    tt  [[  BB  ))    xr m g޾_޾Y T NžFž@ ; 5-' "   zz  aa  HH  //    ~x s me_ Z T˽L˽F A ;3- ( "    gg  NN  55    ~ y ske ` ZѼRѼL G A93 . (| |  xx 840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  s|qpowtuzvyrx~Y}'X{6s|qpowtuzvyrx~Y}'X{6mn H+ 8 B O ,Y Hb (n z    0 L   ܨ ȧ t t  ĬX1xWBHJ7Di(x%Q(#C8" /X)5"|v D8^8tyhVgHTodUM@>ZPp(?@ht (dALhN~o}~P~t~{~,~ v`PX+J8g$b<*(`X#VS<-8.-<8<=h0l$:5x8o:+&<v,|$( $|$T$$9T$ D$TD$D$ pō )͉l$+E9D$&D$0;l$ ;t$$~U;l$ ~L$L$TD$T$D$D$T$L$(ɉD$Tu <[^_]ÉL$$Jt$T$D$D$P$sL$;t$$~x$~@$m $Mt T$T|L$TD$TD$D$P$D$T${t7D$D$T@$GL$T)$l$.D$Tt$(t$$T$PD$TD$$|$TGD$D$P$OL$$h\$ t$L$ |$Xt$$8 $t$$$9t!;FtD$<$\$t$|$É$搃<\$,|$4l$8t$00l$@|$DFD$+TL$F&,$:ʼnЉx((((((((((((((@gE<$%D$}NjD$xD$\$,t$0|$4l$8<Í|$,$T$-lj|$,$빍$l$룋E%9uΉ<$zt$t$$UWVS<|$Pl$T<$WD$(G%D$,Et4 w!l$<$ʼn,$nmGt$,)NjC+9w{G8u]"7,$t$Xt$};t$( ;t$(~;t$,~ <[^_]D$$2;t$,~$p$btl$G@$t$,Gŋ)щL$C+9D$"D$0;t$(>T$|<$uL$X<$L$|$;t$(~;t$,JT$|<$1u9T$X<$T$BD$$|$;t$,~D$D$$D$D뱋D$$D$.X$$ ED$ UT$*~jD$$9| D$$'D$XL$ D$<$D$.T$D$$$tD$D$$$`D$$9|맋D$XD$?<$D$UWVSLD$hl$`|$dD$u$`$ObD$8|$dl$`D$lD$;T$(;T$(~D$pD$,\$$1ɋ$G%D$hT$lu)D$ $$$$ $T$D$pD$h9D$l}}D$lD$hpE )ϋ +|$d9D$dE&l$du;l$l;t$h~M;l$l~D$dD$p|$p<$<$D$$҉D$p"T$$bt$T$pD$$$L$d;t$h~$G$# 0 n+  /F&$$7$~+9 8F$$$T G} $$( 0~+9w( 8F$o$}$U$$~^$m UWVS/$$ ƒ Шt-$$L$t$$8[^_]Í$$L$$}u$$D$$|$몋$$$ML$d $$ $$@(E$D$$$J$t$4t$$A$9tB$E%D$TT$X D$3$ $$D$d $|$D$/$1$$1U Bt#%r u!݅ND$d $D$@$B$ʋ$V BD$Lt+%rщ څO։T$L$1PBt'%rщ oڅN$D$x1L$L$$9NȉL$|WT$h$/+T$0ы/+()97D$0xD$0 &t$pD$hFD$`L$0/+L$H+E)9D$07D$0D$0 &$*D$L*T$|^$yټ$$ f$٬$߼$٬$$D$D$d$$38$x;$8D$H$+D$DL$$t$@D$`$/T$@D$l++t$D9D$07D$0D$0 $$$4;$D$$D$,L$pT$lAD$B$9ꉄ$DŽ$D$,D$D$dD$$$$$@;$v;$/D$0.)Nj++(|$<9l$0"D$<D$0D$0L$< ,;$v/+0D$0$$)Ή$$)9l$07D$0L$0$D$0D$t$D$|9D$t$|$ |$LtD$|+D$t|$Lul$d$l$$E$;$/D$ D$($D$tL$<4t$l;};;$~كD$tl$|9l$tz/$T$tT$xW;$D$(D$,/T$pL$l0t$8BD$A$;$$DŽ$ND$,D$D$dD$$$9$$@$QF%9L$L$8 $<$;$,$$/T$l$$98w=$$$$T$|$ L$D$$|^ $t$z뫉 $D$t$,$#/$(>L$p$L$lD$$1HD$L$ F4$D$$$;$$~F$6$%T$4$T$$ $$u|$<;$~>D$d$D$RD$L$$$/T$xtL$p$L$lD$$HD$L$ F4$D$$$9艄$~$ A$ T$h$l$T$$|$p$$$w$V$T$pD$`t$0el$d$l$D$LD$x$C$2.$ $T$ D$\D$T9D$X}zD$XD$Tp )͋++l$P9D$P&|$P7;l$X;t$T~M;l$X~t$Pt$\l$\,$A,$D$$҉D$\zT$$it$T$\D$$$ L$P;t$T~$H$%$@ $D$s1҅$$1@D$A$t $$T$@D$$$tƐUWVS,GL$Dt$l$@ $t$D$T$Hljt$$,$ŋ@%HL$<L$DL$,$D$DL$HL$,$D$HT$D%%$ŋD$H$ ,$D$lj$T1D$D@$tD$H@$D$H$ŋD$D$l$$R1Ɖ4$tdtF<$$|$ƋG8D$4$D$4$D$D$,[^_]ËGL$D$$ދD$HD$D$D$D$t:t$$mD$t|$$%D$D$D$D$$(눉t$$ċD$H@@D$D$D@@$UD$D|$$Y|$D$DD$H$ED$HT$뇋D$L$끋L$HD$19L$D99,T$T$T$4$AtT$4D$0T$$X,ËT$4 .tڋB%9ủ$QtD$4ʐD$$t$|$D$D$ l$$uŋD$(D$D$ $_,$ƉD$NjD$ t$l$$cD$<$>t$|$l$ÐUWVSkD$08+)9wZ.$uL$0AD$$G9E| [^_]ËL$0$D9|$<또,\$|$$l$(t$ u~+vb}F"D$0u$WL$4l$8L$$l$D4$D$wG$G\$t$ |$$l$(,$됃,\$|$$l$(t$ TuP~+vb}F"D$0u$L$4l$8L$$l$4$D$G$3G\$t$ |$$l$(,$UWVSw<L$TD$$D$P)$.D$P@U%D$ 4D$T0t$7~+9F&T$+)9D$t$D$ l$(|$q;t$}HD$T (D$PT$$‹l$T<$T$;t$|L$(t$,<$t$L$b‹%tB@$u$|$s;t$ D$,<t ;t$ ~D$l$(|$ D$ T;t$T$(}A$|$l$L$D$$T$|$ l$ ;t$}T$(뿋D$D$D$$$ <[^_]Á.B%9$l$t$|C$k$T$PUWVS9~$t,\$t$ |$$l$(T$0 Nj$U)ŋ +9wV$ (u9|\$t$ |$$l$(,ËL$4T$0D$$`D9|$뜋D$4$D$.륐,\$t$ |$$l$(T$0 NjTU)ŋP+9wKT (u9|\$t$ |$$l$(,ËL$0$kD9|$막$븐,\$t$ |$$l$(T$0` NjU)ŋ+9wS (u9|\$t$ |$$l$(,ËD$4T$0D$$cD9|$.럋D$4$D$먐,\$t$ |$$l$(T$0蔬 NjU)ŋ+9wV (u9|\$t$ |$$l$(,ËL$4T$0D$$`D9|$_뜋D$4$D$륐,\$t$ |$$l$(t$0īL$4I t69t L$4$\$t$ |$$l$(,D$4$ډL$4$Ũu9tL$4$뵁tg8o+v:(G&F$ED$F$EQ$C븋u~+9w}F&$L$4$T$ t/ t $É$覿u$$ِT$ L$$t;# tT$ $ÉL$$Uu݉L$$*ۉL$$d͐UWVSө|$t$l $t$蹩T$hʼnT$$$蠩9ʼnD$TyD$lT$hl$PD$h$$$D$Pl$TT$l$D$TD$P D$P1~+ 8F"|$L$$ 7퉄$t$X$D$$D$$$趆t$XD$4$L$Pɉt;T$l҉tL$hu1DD$h$6D$lD$LpD$lL$LAD$L|[^_]ÉL$$iЃ|$T$$L$(r%T$ D$$u9T$${‹$D$$T$$D$(|$\|$$)T$ D$(9T$$D$$‹ p,)+E|$9L$ &D$0;l$$;t$ ~N;l$$~t$t$(D$($;|$(D$<$T$\D$(T$$t$L$($$D$L$;t$ ~|$ D$$ED$$$}|$$jl$T|$T$$ 4$tvt!D$4$$|$<$|$t$$臷$D$8z%T$0D$4uT$$L$`D$8L$$T$0D$89T$4}D$4 pō )͉l$,+E9D$,&|$,7;l$4;t$0~I;l$4~t$,t$8D$8$D$D$8$T$`D$8T$$t$T$8D$$$L$,;t$0~$L$)$t$$Ŀ!$D$$$~Ƌ$@D$$$_4$D$ŋ$@4$D$ݿl$$G$8ƋB%D$@|$Du D$L$d4$L$ D$HD$@9D$DD$D D$@p<)+l$<9L$< &D$<0D$D9D$T;t$@~:;l$D~t$;l$$;t$ ~J;l$$~D$D$(|$(<$衸<$D$|T$8҉D$(!T$$Gt$T$(D$D$`$oL$;t$ ~$}N$l+"L$d9 ty t $O|$`iw?F%?9tc$t$L$dwt$ $讬D$dD$dD$D$`$蓝L$|$`G$<L$diI $耰붋D$dD$D$`$|$dO$L$$fD$0L\$$,[^_]É,$t$2L$@ʼnD$ $.T$$D$y$t20D$D$D$<$覣2;t$L$"t$t$<$聤D$4$‹@%t4$T$ZɃzuD$D$D$@$蕎<$D$t$,|$D$<${;t$D$L$@l$l$ $ST$$ljt$<$D$;l$$裞Ƌ%FxGL$@A@ $t$D$T$@|$ju$t$$|$$ƋD$u9|$4$wD$|$@D$D$<$aiD$D$$j<$D$>뷍$T$芨J$l$o$T$TYUWVSۊ<L$Pl$, $D$ 蔦Ƌ@8l$WT$T$T$蘊eL$TL$4$诌D$Tl$l$X,$kT$XT$4$肌D$XT$T%D$X%t$($t$T$$D$TD$XT$$訜‰D$XD$(ID$$ D$D$($D$(D$XD$D$T$$|$D$,(D$l$oL$9L$}8t$<7 7D$D$9D$}D$,̋D$,D$D$T$0D$,D$X@@D$D$T@@$̞D$D$,$AT$(҉D$,uD$,D$D$ $<[^_]ÉT$$ٝD$,$-TD$D$T$衤D$TD$$D$$舤D$XL$ Ή+̓rD$ 7@&l$賥ދT$XL$%9L$TG9UWV T$8t tOD$0T$$oNj%D$<$̗Ɖ$詗;D$tl$<$蹢֋D$44$D$脣D$$X@D$D$4$a ^_]ÐD$$D$D$D$ $=ÐUWVS;\st$pE4$D$8T$LHljL$(1T$T$tD$HD$<FD$,D$DD$4$ӆrT$t HT$<$ۈ‰D$tt$H$t$<$D$tD$xL$D$oD$0$(l$LD$0uD$tD$l$8,$\[^_]ËEXD D$0tRT$|D$|L$0<$D$L$֌$pD$0l$L|$0tD$0,$D$ʼnD$LsD$t>D$ow+v"s0G"L$nNt$($ӢЉ<$D$|R|$,|$0D$Du D$HD$0]D$HD$D$<$‰D$;T$;T$~<[^_]$א$ɐ먋L$X$TtP9|l$.Q|$D$|$$ۇT$,uD$D$ $)뇉T$$D$(t$PD$D$$4$D$ƋD$(D$ D$$D$D$D$D$P$>t$$苇T$X4D$D$Pt$$چt$…tL$D$ $词‰T$T$(5T$(3$觏$薏D$($ D$(D$D$w$肊tUWVSqLl$hD$8D$`$萍l$D$`$zƋD$dD$D$`$sD$d$芎t:4$~tT$84$'L[^_]Í7|$L$貎ҋD$d|$<|$$袍D$dD$<l$dt$,$ʁT$`t$$\D$,@|$,D$4GD$00D$(9t$(t$$}Y D$L$(t$4l$`,$D$D$dD$蟓l$(t$0D$$l$(9|L$,D$`D$L$$[T$dNjB@<$D$‹D$L$D$x)Nj$|$t$/w$$$Zg$+)9 "g9/;$k;$~$$$퉬$$O$DŽ$$~%$$$藄tׅ;$$$ 4 $4$ 4 $4$$$4$t$$v$$,D$$l$$$$D$D$l, 4$ztvD$4$&$l$k$L$lt-$$D$P,,$L{uӋ$$$҉D$p1$$;$ $$T$p4$T$D$$$߻gŋD$D l$4$$D$0c+wv4g0G"n|$0~t$l$|,$\|ļ[^_]$$t$C$Xt$D$t$]yD$8l$$D$,$-D$4$w~0t$<T$8$l$T$$Ӌ$$~t$$rG$D$4$g‰$$$$$L$ t$$$L$t$$D$TD$_l$D$ D$$$(O$D$p$4$D$L6p_;0UL$T$t$L$$D$HD$L$~_0,$l|ʼn4$~_;0L$Pt$$4$L$Ɖ,$~tC$$L$H $4$T$p$$, D$Tl$D$$$4$D$h|뒋t$P뀋T$Tl$$T$,$ًL$Pt$L$L$t$$D$D$H$|D$HT$TT$Ht$PT$L$t$T$$ɉt$$l$4$n$D$hjU%T$`D$duT$k$|D$h$l$$|D$hD$`9D$dD$dgD$`pE)щL$\c+9D$\E&D$\0D$XT$d9;t$`~RD$Xt$d9t$X~l$\l$hD$h${D$D$h$s{$҉D$hT$$t$L$hT$XD$$$a{L$\;t$`~t$l|7$[|$t$$Oz!ot$T$|/$ |pot$t${$ot$L${$UWVSS^,$@$D$z$@@%$!i$T$^{V$F$F $ti$L$ {$ A$$ci$l$z$#$@%p9$9$~$~($)ŋ$$$u$$$u$$$uDŽ$$$9$$$t$@T$$^$$$9$~DŽ$9$W$$t$$@T$$G^$$$$9$~$${$$L$D|$8t$DDŽ$$~$$$<$$$jx~$$L$Dɉ$~\D$8D$<$$$$$x $$$%$$$$wE$$D$$D$$@$觰$Nj  4$Pntv0 D$4$v|$$!vDŽ$$$9$}7DŽ$$9$$$9$|ɋ~$98sG{~8$$$$|$l$ L$D$$bo$D$D$$@D$$@@D$$@$R$F~$EǍ )ϋ~+9}"7DŽ$$9$~$|$$u,[^_]Ë$$$@D$$4$D$蕮$$$9~$u[$u;j$t$n\$$$,,$tt$$9$|$$$@D$$$D$迭NjE Q4$nktvD$4$s$|$?s$D$ $eG$$$D$D$$@$$$$~9O )͋~+9."9MDŽ$$9$~%$DŽ$$$Q$$DD$$$Tp$$<$9$~녋T$L$D$D$H$pD9|9$r$rj$T$qat$$@|$4$ND$\N%T$TD$XuT$~$p$D$\T$$zp|$TD$\9|$X}D$XNj~pō )͉l$P~+E9D$P&|$P7;l$X;t$T~E;l$X~t$Pt$\l$\,$o,$D$qo$҉D$\T$t$T$\D$$@$foL$P;t$T~$tpP$cp-l$$@,$Wn$@t$|$$$@D$pq%T$hD$luT$~$ o1$D$pT$$nT$hD$p9T$lD$l~p)щL$d~+9D$d&|$d7D$`t$l9;t$h~RD$`D$l9D$`~T$dT$pD$p$mt$pD$4$m$D$pPT$$?t$L$pT$`D$$@$mL$d;t$h~t$n7$n$@l$$l$@t$|$,$$u%T$xD$|uT$~$Om$ $|$$m|$x$9|$|D$|Nj~pō )͉l$t~+E9D$t&D$t0;l$|;t$x~N;l$|~t$t$$,$&l,$D$l$ ҉$T$t$$D$$@$kL$t;t$x~y$lA$l$@T$$j$$$$$$|$ $t$L$l$$$$$@D$L$,$D$ $D$;$$$$$$4$k$D$$@$k$$$l$@~8~9O+)95."u9$$$h$$$,$$j$$@|$4$k$$~8~;|$@O|$@+)9."9MDŽ$$9$O$$$,D$$$,D$9$~$$$<$$$ DŽ$$$D$$$ihD9|$i$i$@$,$D${i$$~8~;|$@O|$@+)9.l"u9$<$h_$$@t$$h$$~8;|$@O|$@)~+$9$un$"9|$,$|$Ff$$D$$$f$9|$h$hb$$D$$$nfD9|$g$gd$$D$$$fD9|$pg$_g$@t$<$.gl$$;|$\D$\3`h/`L$84D$0t$4$T$8L$0D$<++t$49T$82$;L$\7`;L$\~D$<42$4;|$\yD$h|$`D$d9|$htD$,;l$\T$@g;l$\~D$,D$|$D$\9D$d;D$dl$,$T$hD$|D$@;l$\hL$@uT;|$\&t$@;|$,!Ȩ6;|$\~ڋ$$W$T$,<;l$\~3`l$H9(s_#`8$$$L$$|$|L$xD$Ll$T$t$|$ L$D$$QD$hD$`9D$h|$Xu)3`t$P0D$TD$7`$6X4D$x$D$$,$D$謑T$PD$$XD$D$D$[Q$L$,D$$D$$${OƋ$D$D$|D$$$QOt$$,O|$d‹$4E$T$D$$$I؋|$Xull$lT$\D$X$9L;l$,t=$;T$lt$@|$pT$D$$$u$;l$\~t$h|$pL$,D$$D$$$5l$@‹D$,Dыt$xt$t$T$$iL$xrL$@t$pit$tL$hD$D$|D$$$M;|$\L$@u9;|$\~싄$4D$,94$VVD$,DʼnD$,L$hT$tD$$D$$$aM4$D$DT녋7`n$OV0$>V $-V$Vm$ V*$UmUWVS8X$$$$0TD$@T$<$%hNW$G$: Bl$%$X$nP$$$D$tJD$d$D$$X$X$4$)$$D$/F$$$ZP9$$$DŽ$~$)$$$9ʼn$l$\i$$$$T$HL$Dt$@|$<$$~%$$$St;$ $$ 4 $4$ 4 $4tPD$Hl$DT$@D$Xl$TT$PD$$$$<$$$<퉬$X$)ƋX+9$P$7 "$XF;$$$$$$;$$$$4$ $D$$D$GŋX$ $l$4$AD$$$P$X$u$YMŋ$$T$|4$D$xOX;0D$|t$$4$D$[Ɖ,$iO)$4;$$X9sGX9$$$$L$|$ T$D$,$G$$KX$$}D$tXt$pw+v6uG"D$tFl$pnt$$$J[^_]$N뼋$D$D$t$5GD$xl$$D$,$D$4$OLt$|T$x$l$T$ $Ӌ$$Lt$$@$$$D$5$;$|$M$$$D$$L$$ml$$$L$D$X=ŋ$u@;$l$D$$$A;$~,$D$K$%Mw$D$D$t$E$$$t$T$D$XL$LD$ D$P$t$L$$D$$D$l$D$ $D$$$$$$4$$KOX;05$t$$L$4$$$$K,$$I$Ɖ,$KtX$;L$$T$l$$1$4$:KX9$tt9$tk$$$D$$L$$ l$$JJD$$:ŋ$T;$$$$D$$T$$9l$$ID$$:ŋ$;$~P$$$$$ $$$$4$l$D$$$%$;$~t,$D$HS$l$$$D$$;$~,$D$LH$$t$T$$"D$$$eG$$$$$t$T$$ҿ$$$L$t$$諿D$$$F$$$$D$$T$$[XXun+9wX/F&$HܐUWVS+ƋkH(D$LD$D$@$B|$(G4$D$LD$BL$(AD$ D$8l$|$$'>D$(\[^_]ËD$@D$/$?xp% L$$>$/D$$D$>؅y|$$D$@|$$0>tL$@D$pl$L$$t$$D$@t$$=lj,$D$8CL$$,$L$&CŋD$pt$$>D$D$D$p$=l$D$ l$pD$$,$D$&D$L$HT$DD$$L$ T$<$D$D=D$D<$D$gA|$$ƋD$H<$D$QAʼnD$D$ $?At$Nj@$@Gt$t$4$Al$Ƌ@$[@F<$D$@D$<4$ŋD$@D$<l$D$D$p$l<D$pl$$<D$D$D$p$<D$LD$D$8$9=|$(D$LGD$9t0$l$@T$$7L$Ƌ% $A@D$Hl$DD$D$@l$$<|$@t$<$D$7@t$t$D$D$@t$D$$E7D$L$A $>0ʼn9},LQt DuM9|ԋD$$?u"|$L$t ,[^_]É $>t$DF$D$L$D$D$D$D$@$x6D$u냋D$DD$D$@$8$@D$UWVS!\t$t|$xL$L%D$<L$4$%D$8*>T$HD$tD$xT$$>D$xD$HD$D$L$tb|$<|$8D$L Ȩ|D$<+BD$8pō )͉l$4'B+E94D$4&D$40;l$<`D$;|$8<L$\(FD$(FD$$AL$$D$/D$ D$(9ωL$||$\,$|$.<[^_]ËD$$ D$ D$ $.Ƌ@u ;|$|뺋D$( | ~|t6D$\$D$?.D$\t$ $D$.D$,$72뤍L$,$L$7L$XL$$.T$,tT$$6L$\$L$딋L$PT$ $G6뫐UWVS,|$HGD$D$SD$D$3ŋG% t$t$E <$D$.1ƋD$@t$E$2ED$x.|$T$@E$D$-ED$L,[^_]9thFt$؉D$ G<$D$2L$DD$A$)2|$ƋED$D$@$.-t$$.EE|$L늋:밋Ft$$D$,!D$?EEET$L5:7U)ŋ:+9wF:(%E~DGM%? M<$86묍'$T$ 6D$ t$|$0xD$(D$D$$4$D$n|$ 4$D$D$(t$|$Ãt$|$D$ 8L$$pL$L$<$\nt$ <$D$D$ܐt$|$UWVS LL$`A@D$$D$dtD$d$4<D$ t$ D$$t{t$ l$$|$<%D$0E,$%D$,0T$8ŋD$`|$T$$'D$4L$09L$4}"|$4D$ ҉T$(uD$4t$09t$4|މL[^_]ËD$89D$4<;t$,}ҋD$(L$4D$D$'2|T$4;t$,|롋|$4);t$,}D$(D$DD$1LDD$(D$D$1L;t$,|BD$dt$`ׁ|$F%9D$t !$T$3D$dЋl$dl$ .st/!$L$3C8D$>)‹?8+8T$9|$D$D$t$ ,;t$| D$D$ l$dD$%1ҋHt#x1҃ u߅N׋D$;t$|$2$2cUWVS[[39~O3$$?%뫋$D$D$\$ [3$$$$$L$,$s$Ƌ 4$Ltvt D$4$#$|$$t$D$$$$D$4r%T$,D$0u T$!$D$4L$$-#T$,D$49T$0}D$0W3pō )͉l$(S3+E9D$(&|$(7;l$0;t$,~=;l$0~t$(t$4D$4$I"D$D$4$ "$D$4/t$T$4D$$$!"L$(;t$,~$/#X$#5t$$4$!2$$$$t$D$[L$\$$$L$<$D$m[D$$D$$$[9$Nj$$ $t$D$([$$WD$$G$D$<$$O3;(.d$l$$$ƉD$$D$,$$ 4$Xtv$t$D$$$"$D$$r%T$D$ uT$[3CD$$$|$$O T$D$$9T$ }~D$ W3p )͋S3+l$9D$&D$0;l$ ;t$~=;l$ ~t$t$$D$$$l|$$D$<$CD$$$Rt$T$$D$$$DL$;t$~$R X$A 5$t$<$5I<$D$$L$$|$$$t$|$$?D$X$r%T$PD$TuT$[3$D$X$t$$dT$PD$X9T$TD$TW3p)щL$LS3+9D$L&|$L7D$HD$T9;t$P~KD$HT$T9T$H~D$LD$XD$X$rt$XD$4$I$D$X8't$L$XT$HD$$$>L$L;t$P~{$I>$8$t$$,}$t$D$$$$D$pw%T$hD$luT$[3$$D$pT$$T$hD$p9T$lD$lW3p)щL$dS3+9D$d&|$d7D$`t$l9;t$h~KD$`D$l9D$`~D$dD$pt$p4$T$p$D$$D$pt$L$pT$`D$$$~L$d;t$h~{$>$x$l$$l^$$UWVSl$ ‰L$P͋+)9D$PT$H|$PD$H"8)鋫+EL$D9D$PD$D8D$X|$PD$T9|$X}eUL$X$T$\D$$$d$t$$Plj$D$\ED$X|$P9|$X|D$D|$T0x t$TD$D0l$HuH t$TD$H0 .D$T)‹+(T$@9l$TD$@D$TL$@ ,>t$$t$ |$\D$XD$TD$L9D$X7t$Xl$@D$tmM9ωL$(.}͋t$,Bu ;|$(|뱋D$9⍀P% ⍀P ⍀P⍀P⍀P⍀P⍀Po⍀oPvqZ⍀ZP]XE⍀EPD?0⍀0P+&⍀P ⍀P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P|w ⍀ Pc^s ⍀s PJE^ ⍀^ P1,I ⍀I P4 ⍀4 P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P} ⍀ Pid ⍀ PPK ⍀ P72w ⍀w Pb ⍀b PM ⍀M P8 ⍀8 P# ⍀# P ⍀ P ⍀ P ⍀ Poj ⍀ PVQ ⍀ P=8 ⍀ P$ ⍀ P { ⍀{ Pf ⍀f PQ ⍀Q P< ⍀< P' ⍀' P ⍀ Pup ⍀ P\W ⍀ PC> ⍀ P*% ⍀ P ⍀ P ⍀ P ⍀ Pj ⍀j PU ⍀U P@ ⍀@ P{v+ ⍀+ Pb] ⍀ PID ⍀ P0+ ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pn ⍀n P|Y ⍀Y PhcD ⍀D POJ/ ⍀/ P61 ⍀ P ⍀ P⍀P⍀P⍀P⍀P⍀P⍀Pnir⍀rPUP]⍀]P<7H⍀HP#3⍀3P ⍀P ⍀ P⍀P⍀P⍀P⍀Pto⍀P[V⍀PB=v⍀vP)$a⍀aP L⍀LP7⍀7P"⍀"P ⍀ P⍀P⍀Pzu⍀Pa\⍀PHC⍀P/*⍀Pz⍀zPe⍀ePP⍀PP;⍀;P&⍀&P⍀P{⍀Pgb⍀PNI⍀P50⍀P⍀P⍀P~⍀~Pi⍀iPT⍀TP?⍀?P*⍀*Pmh⍀PTO⍀P;6⍀P"⍀P ⍀P⍀P⍀P⍀Pm⍀mPX⍀XPsnC⍀CPZU.⍀.PA<⍀P(#⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pytq⍀qP`[\⍀\PGBG⍀GP.)2⍀2P⍀P⍀P⍀P⍀P⍀P⍀P & ? X q       9Rk3Le~-F_x'@Yr!:Sl4Mf.G`y(AZs ";Tm5Ng/Haz)B[t #<Un6Oh0Ib{*C\u$Ë$TC~eK+oV6eR4 -m8 -4 -Q4 -98 -) }m4 8 < iD,?4 "8 < vk[N;#L4 38 < sS70 *^F5r4 U8 =}L< >%0 < 8 4 8 uW 4 8 kOE< iG0 < O.qM0 E0 ;,0 ~k4 8 < I<  8 zgBr_4 8 |r< 2< w8 gR? N2$Y8 F4 08 8 4 8  74 8 $  E&w] xD4 =,8 =4 =8 =~`< =L@'h9 ) pQ)0  c@$4  8  {bQ34  c8  K54  8  <  m]S<  p]24  8  pX@  ~6# {H, 4 8 bI1vR6 hH  8 v0 f(4 "8   }lZ?4 8 D4 :8 ( 0 qY 8 }4 }8 }P=zR+0 < }0 }|k[E0 }eQq }?/[7+V }I4 }.8 }( }8 }j0 }\6$0 }8 }H< }4 }8 }tC0 }K( }8 }Ye4 }V8 }B2 0 }I }8 }y jYH7&< p$E tMC< /8 ( 8 i< 4 8 8 4 8 u8 L< B8 14 +!0 4 0 `S@ 2 8  ӿǿukK;3 (8  ߾Ͼþo_( (L68 ($ ޽r8 `\ :. ʼ8  |fZF7 ۻ8  ~jPF8 84 Һº   N;"{qK0 =,Ѹ[ 4 ߶8 ˶J4 @8 صSE&4 8 nL4 8 гd4 Z8 F$4 8 uS!ziH4 u8 S4*< ٮK;ͭ4 8 xn< 7Ҭ%4  8 ԫʫ< ~n cR6L4 .8 ֩Ω`T/}a ԧ ɧN4 ަ8 Φ}<( +8 ̥y?e0 -ܢ4 ͢8 z D4 j š @ іrb@ іWF6@ і! נ4 і8 і؟< іza,֞ʞh^;0 і-#0 і ؝0 іʝ0 і)ǜ) іudV?8 і4 і8 іg)( і8 іɚ0 і0 іyiG8 іAvQi< іؗ8 і8 іi8 іc4 і іٖ8 і͖ j8 `\ K/8 Օ4 ϕ8 d8 54 /8  ٔ˔u8 F4 @8 .  4q 4^J 40 Β8 ȒĒ 8 ѐ`8 ѐX28 ѐ8 ѐ4 ѐ8 ѐ< ѐt4 ѐڐ8 ѐ͐  )Z8 )C8 )4 )8 )ӏm< )]64 )Ȏ` )vjTD.8 )% 0 ߍ΍uZN"،i< .8 #4 ϋ< < m8 84 28 (ފʊ, x[K  ډ8  h\H.8 ($ Ոʈ 8  }[C 0 ·qX<̆4 8 ` 7! < .}8 .w]8 .90 .* = لrj9 Ӄs3hE$āt^L-zl4 9~$ 9~x 9~O~~~~~~f~P~>~8 9~5~ '~~}4 x}0 x}]}H}7}}||||||||k|.|8 x|4 x{8 x{{{{o{S{K{{zzzzziz8 xRz4 xBz8 x6zzzyyygyQy)yxx8 xx xxyxixSxAx7xxw~w4 %uxw8 %uewLw7w%wwvvvLvDv,vuuuu}udu@u*u8 %u!u uu5rtt5rtt5rttttqtet]tCttssssssys^sRsBs2s5r(s< 5r s8 5rss8 5rrrrrrr8 5rrr~rfrZrLr:r8 5r1r rrqq8 qq q8 pqqUq8 p#qq q8 pp#pp oooo8 oo oqoMo*oopnotnnnnnn8 nn Onmmmmm|m_mPm?mmmlll7l4 Ii'llIi lkIikkkkkk]kGk7k kjjjjjkjWji8 Iiii8 Iii4 Iii8 Iiiziji@IiEi :i&ih8 hh4 hh8 hh hqhehhggggg_g?g/g gffSf4 0e?8 %:0?>>>>n>;>>=4 %:=8 %:|=W=#==<<<<u<T<<;;;<;4 %:%;8 %:;:::8 %:v:4 %:n:8 %:!: ::9999]9=9 9884 )8r88 )8d8@8%8 88`57777 57`7M766 56666=68 564 568 554 558 5558 55 z5U5J5>5|4%544 448 44 4444<4}4S44 <4J48 <484 (44330 334 338 33 u3i3S3E3/3322O2;2&211111118 /w1k1Y18 /M1E151)111000000y0\000&00/8 // //y/^/M/// /..w.4  #J.2.!..-----h-W-(--,8  #,,,^,?,.,+++8  #+~+n+ #c+&+(  #+8  #**D*!*8  #)8  #)(4  #(8  #(4  #s(8  #.('k'8  #F'4  #'<  #'&l&4  #f&8  #&4  # &8  #"%%$8  #$w$m$<  #)$$###V##8  ## """"8 i"8 iy"0 im"4 ig"O"8 i"4 i "8 i!4 i!8 i!!!!l!`! 4 i   < iW )  ixg)yk48 i8 i8 i, is< iP4 i4 i8 ib8 i\< iV:8 i4 iW8 i34 iraF!x8 i:8 i"4 i4 iX4 iH@8 ie 6I34 x8 x< x~nx_B< x8(x< x4 x8 xxpxllxhlxdlx`lx\lxXlxTlxP@xL"xHlxDlx@lx<lx8tx4lx0lx,tx(lx (x8 x4 x8 xt ]H7e4 u5 < u8 uq cS+    q \ '      o 4 X f 8 X T  G      t T J !  8  4  8  ~ t 8     0    X G 6  {?4 #8 8 r4 X8 G= HrHj\LH% HHpHpHpHpHpHpHpHbHJHpHpHpHpHHpHpHHpHH8 Ho4 HV8 HD 58  pU:.o 4 98 99L5 vgR8 D@ < |xtplhd`\XTPLH@H }  w! mo! mi d  ^ TV TP K  E ;= ;7 2  , "$ "                                  }suso j  dZ\ZV Q  KACA= 8  2(*($                      y{yu p  j`b`\ W  QGIGC >  8.0.* %                          {  v  p fh fb  ]  W MO MI  D  > 46 40  +  %                             |  v }ln }lh  c  ] ySU ySO  J  D u:< u:6  1  + q!# q!     m m   i i   e e   a a   ] ]   Y Y   | Urt Urn  i  c QY[ QYU  P  J M@B M@<  7  1 I') I'#     E E    A A   = =   9 9   5 5   1 1   -xz -xt  o  i )_a )_[  V  P %FH %FB  =  7 !-/ !-)  $                            ~ ~z  u  o eg ea  \  V LN LH  C  = 35 3/  *  $                       {  ukmkg b  \RTRN I  C9;95 0  * "                       {qsqm h  bXZXT O  I?A?; 6  0&(&"                        wyws n  h^`^Z U  OEGEA <  6},.},( #  yy   uu   qq   mm   ii   ee   a}a}y t  n]df]d` [  UYKMYKG B  <U24U2. )  #QQ   MM   II   EE   AA   ==   99 z  t5jl5jf a  [1QS1QM H  B-8:-84 /  ))!)   %%   !!               z pr pl g  a WY WS N  H>@>: 5  /%'%!                       vxvr m  g]_]Y T  NDFD@ ;  5+-+' "                    |~|x s  mcec_ Z  TJLJF A  ;131- (  "                         ~ y  si ki e `  ZP RP L G  A7 97 3 .  (         |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  uvw{yCx~qs t G|zS=r0/;9EJLN-+no)}uvw{yCx~qs t G|zS=r0/;9EJLN-+no)}p     $ 48 G X f p `y $   P @  D nxUd TxUEu,UTeT<hE KBt" "bU"   ;H * U    `  C    j aOK ?  G  W      h    ; V     {/  hy, 8 a   } L ) h  Uw p 5 ~r. _idealtyp___i686.get_pc_thunk.bx_prime_to_ideal_isidentity_idealhermite_aux_idealhermite_principalideal_get_arch_get_arch_real_principalidele_ideal_two_elt0_idealpow0_idealmul0_idealdiv0_idealaddtoone0_idealhnf0_ideal_two_elt_val_norm_factor_norm_idealfactor_idealval_idealadd_get_hnfid_idealaddtoone_i_unnf_minus_x_idealaddtoone_ideleaddone_idealaddmultoone_idealmulprime_idealmulh_mul_content_to_famat_to_famat_all_famat_mul_famat_inv_famat_pow_famat_to_nf_famat_reduce_to_Fp_simple_famat_makecoprime_famat_to_nf_modidele_famat_to_arch_vecmul_vecinv_vecpow_vecdiv_arch_mul_arch_inv_arch_pow_idealmul_pr_norm_idealnorm_pidealprimeinv_idealinv_idealmulpowprime_idealdivpowprime_idealpow_idealpows_idealpowred_idealmulred_isideal_idealdiv_idealdivexact_idealintersect_ideallllred_elt_idealred_elt_ideallllred_minideal_coprime_part_make_integral_idealprodprime_factorbackprime_unif_mod_fZ_init_unif_mod_fZ_check_listpr_idealapprfact_idealappr_idealappr0_idealchinese_ideal_two_elt2_idealcoprime_fact_idealcoprime_check_ZKmodule_element_mulvec_element_reduce_nfhermite_nfsmith_element_mulmodpr_element_divmodpr_element_invmodpr_element_powmodpr_nfkermodpr_nfsolvemodpr_nfdetint_nfhermitemod___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGMEM_cmp_prime_ideal_gen_1_bot_avma_gen_0_lexcmp_cmp_pol_lllint_ip_FqM_gauss_modprM_lift_FqM_ker_modprM_ff_to_nf_Fq_pow_nf_to_ff_lift_nf_to_ff_init_RgXQ_mul_lift_intern0_nfreducemodpr_gauss_hnfdivide_close_modinvertible_matalgtobasis_element_div_element_inv_reducemodinvertible_gcmp_1_vecpermute_sqri_Q_div_to_int_gneg_i_nfgetprec_poltobasis_lll_rank_ground_nf_get_sign_gceil_kerint_denom_Q_content_gerepile_hnf_invimage_leftright_pow_gmodulo_coltoalg_QXQ_inv_shallowtrans_gauss_triangle_i_dethnf_basistoalg_i_Q_primpart_set_sign_mod_idele_famat_to_nf_modideal_coprime_FpC_red_special_anti_uniformizer_colreducemodHNF_int_elt_val_Fp_inv_Z_pvalrem_Q_remove_denom_zk_to_ff_init_Fp_pow_Rg_to_Fp_zk_to_ff_modii_addsi_sign_gen_sort_element_pow_concat_ZM_ishnf_cmpii_isnfscalar_vecslice_hnfperm_i_gsub_element_mul_zsigne_zarchstar_arch_to_perm_lllreducemodmatrix_hnfmerge_get_1_gdiv_gunclone_gclone_ginv_matid_gcdii_Q_muli_to_int_lcmii_Q_denom_gerepileall_pari_warn_gerepileuptoint_powiu_ceil_checkid_checkprimeid_element_val_sort_factor_gen_dvmdii_ggval_mulii_primedec_factor_Z_pval_gerepilecoeffssp_element_muli_centermod_bezout_diviiexact_equalii_cmpsi_powgi_auxdecomp_gscalcol_i_gerepilecopy_addii_sign_mulsi_gmulsg_shallowcopy_pari_rand31_gequal_FpM_red_shallowconcat_gnorm_gneg_gsigne_gmul2n_glog_gadd_nf_get_r1_algtobasis_checknfelt_mod_gscalcol_gcopy_checknf_gmul_hnfmod_detint_element_mulid_RgM_ishnf_Q_primitive_part_gscalmat_gabs_RgV_isscalar_algtobasis_i_gcmp1_gcmp0_gerepileupto_hnfmodid_eltmul_get_table_pari_err_scalar_get_arch_real_famat_get_arch_real_mat_ideal_two_elt_famat_to_Fp_simple_idealmat_mul_idealpowprime_spec_computeGtwist_idealapprfact_i_merge_factor_nfbezout_reel4.0_get_random_a_ideleaddone_i_elt_cmp__mul__sqr #1/12 1200773992 0 0 100644 20108 ` base5.o| H&H&__text__TEXT(__data__DATA@!x7__cstring__TEXTX!__picsymbolstub2__TEXTL"7V__la_sym_ptr2__DATAE%'8B99__nl_symbol_ptr__DATA,&(r__textcoal_nt__TEXT@&( @EZJh P>Dw\$t$L$ t,1t\$t$Í$T$$ډЉ%.tǃ uq,뽐UWVS,%T$@$D$tNj@D$D$G$k$D$G 1Ht'p1҃ 8ޅND$pD$D?$#)~l$Dt$,$#D$DߋD$<$D$#D$%$n#|$DD$%(%x~]D$D4  tsVD$l$$"4$D$#t$D$t$$"D$l$$~",[^_]Ím$T$A#뒋L$D$4$L$D$"sv$#UWVS!|$,D$$D$(9$D$D$,L$P9~t$l$D$ l$$|$$GT$(L$TB $D$Bl$$ED$$<[^_]$s$R$$$QN$|$s1뉁tD$T<$D$iL$TAuڋT$,L$$Cl$T1t$wl$<$ŋGD$F$r,$D$;<$D$Aŋ% &E~|$8w+v>2G"nD$Ft$D$,$ET$D$$$]봐UWVl$$}t8U9| Ѓ^_]ËDT$D$D$ $A9|ԋL$ A%$9뻐,\$t$ |$$t$0l$(~((4$F%tRD$44$D$@<$D$7NL$D$<$,$D$\$t$ |$$l$(,ËG%$Ր<\$, t$0|$4l$8HD$D$@$&L$@A%D$DD$D$@$@D$(t|L$A$9| <$D<$ƋD$DD$4$D$‹% &$D$4$dŋ@D$F$ <$D$D$`8Tmw+v=`0G"n|$~t$D$$ \$,t$0|$4l$8<$S 뵐UWVST$4D$(4;|$,T$4^D$8l$09l$8D$(l[^_]Ét$$$x($gUWVS+,g [ u~+ e}F "_  ~t$@F,@D$F(D$F4$D$L$‹L$%$p$t$ŋD$,$D$$l$l$$|ŋD$Gt$@F D$D$$CL$@ƋAL$%D$A $t$$G L$A,$%?D$G,$D$G D$GD$D$$G$G$mG,[^_]É4$;$SD$ Pt $[Ëtplease apply rnfequation(,,1)incorrect data in eltreltoabsrnfinitalgmain variable must be of higher priority in rnfinitalgelement is not in the base field in rnfelementdownrnfidealhermiternfidealabstorelG⍀P3.w⍀wPb⍀bPM⍀MP8⍀8P#⍀#P⍀P⍀P⍀Pkf⍀PRM⍀P94⍀P ⍀P{⍀{Pf⍀fPQ⍀QP<⍀<P'⍀'P⍀Pql⍀PXS⍀P?:⍀P&!⍀P ⍀P⍀P⍀Pj⍀jPU⍀UP@⍀@Pwr+⍀+P^Y⍀PE@⍀P,'⍀P⍀P⍀P⍀P⍀P⍀Pn⍀nP}xY⍀YPd_D⍀DPKF/⍀/P2-⍀P⍀P⍀P⍀P⍀P⍀P⍀P~⍀Pjer⍀rPQL]⍀]P83H⍀HP3⍀3P⍀P ⍀ P⍀P % > W p !!8!Q!j!!!!!!""2"K"d"}""""""#,#E#^#w###### $&$?$X$q$$$$$$% %9%$Ë$Ý,&zv iXC5fZ> 4&0&<& N8 :&0&Ep<&EA 3<&0&<&tUF4<& <&x0&p<&fZF:"<& bR<&Q0&Q<&Q<&Q0&Q<&QhV<&QM 6$<& yiJ: <&0&<&<&0&<&}<&T0&H<&B2<& {sXH<& ,&,&yg?<& k^<&LH 9<&E p0&E a<&E J>2<&E E xgV7,&E 4&E <&E 0&E <&E 4&E \<&E E0&E <&E <&E 0&E <&E E E E E E E E E E E E E E E E E E E | E r | E P A  6   <&| 0&| <&| r <&| j Z `| 8    <&| 4&|   x  c G  <&x  0&x <&x   t  b I  <&, 0&, <&,    n H 2 <&, (    <&<&z0&t[8&M*<&<&0&8& <&g0&N<&<*  n`L0<&0& 4&<&0&<&y<&\0&D<&%0&<&<&0&<&0&<&qZ<& ~z oWRN 4&-k) qK4&q=08&q&v<&qm F6 Y %&1%%&1%y tY n!&%f!&%` [Y U&$M&$G BY <&$4&$. )Y #&$&$ Y &$&$ Y  &$ &$ Y  &$ &$ Y &i$&i$ Y &P$&P$ Y %7$%7$ zY t%$l%$f aY [%$S%$M HY B%#:%#4 /Y )%#!%# Y %#%# Y %#%# Y %#%# Y %o#%o# Y %V#%V# Y %=#%=# Y z%$#r%$#l gY a% #Y% #S NY H%"@%": 5Y /%"'%"! Y %"%" Y %"%" Y %"%" Y %u"%u" Y %\"%\" Y %C"%C" Y %*"x%*"r mY g%"_%"Y TY N%!F%!@ ;Y 5%!-%!' "Y %!%! Y %!%! Y %!%! Y %{!%{! Y %b!%b! Y %I!%I! Y %0!~%0!x sY m}%!e}%!_ ZY Ty% Ly% F AY ;u% 3u% - (Y "q% q%  Y m% m%  Y i% i%  Y e% e%  Y a%h a%h  Y ]%O ]%O  Y Y%6 Y%6 ~ yY sU% kU% e `Y ZQ% RQ% L GY AM%9M%3 .Y (I% I% Y E%E% |xtplhd`\XTPLHD@<840,($  7QA2> KW?=$BLC,@HR8TMI0)P1F5U/DGS-('#*X+J;6"9!.:V<EN7QA2> KW?=$BLC,@HR8TMI0)P1F5U/DGS-('#*X+J;6"9!.:V<EN4&3O%9<IR]t{@& D&@LWx%h2$ l zh .@< n @ZNHn1MtkuYH9}Yo!>#c/M *_checkrnfeq___i686.get_pc_thunk.bx_eltreltoabs_hnfcenter_ip_check_and_build_nfabs_check_and_build_norms_rnfinitalg_rnfelementreltoabs_get_theta_abstorel_eltabstorel_rnfelementabstorel_rnfelementup_rnfelementdown_rnfidealhermite_prodid_rnfidealnormrel_rnfidealnormabs_rnfidealreltoabs_rnfidealabstorel_rnfidealdown_rnfidealup_rnfidealtwoelement_rnfidealmul___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_1_bot_gen_0_pol_x_avma_Q_denom_get_mul_table_powiu_idealnorm_gdiv_hnfmodid_RgXV_to_RgM_Q_remove_denom_mulii_shallowconcat_ideal_two_elt_hnf_algtobasis_idealtyp_mulmat_pol_lift_dethnf_idealmul_matid_rnfalgtobasis_gmodulo_rnfbasistoalg_nfhermite_matid_intern_gcmp0_checkrnf_poleval_gcopy_lift_to_pol_gerepilecopy_rnfequation2_gauss_lift_if_rational_RgM_to_RgXV_matbasistoalg_rnfallbase_fix_relative_pol_checknf_check_and_build_obj_addii_sign_cmpii_shifti_cmpui_mul_content_Q_primitive_part_gsubst_gerepileupto_RgX_divrem_gmul_RgX_RgXQ_compo_gadd_gmulsg_scalarpol_gvar_lift_intern0_pari_err_modulereltoabs_reel4.0_makenfabs_makenorms #1/12 1200773999 0 0 100644 164172 ` bibli1.oH  d  __text__TEXT dp__data__DATAt__cstring__TEXT __literal4__TEXT,__literal8__TEXTо(4__const__DATAd__picsymbolstub2__TEXT tM__la_sym_ptr2__DATA ?`f__nl_symbol_ptr__DATAL__textcoal_nt__TEXTh @nx| P8Txj <\$,t$0|$4l$8D$@(tpL$@D$A$`9|$D$t$$\$,t$0|$4l$8<ËL$@$$4$D$9|붋뼐t$,$0gǁU)ŋc+9g(%E~DGM%? M;|$ D$$L$(E4aBT$,$%‹BT$D$ F4$D$dT$(;|$ wD$,D$L9D$,|$0D$4|$$aT$tL$@t$Ll$D|$)ŋ+8l$l9$ D$lT$l$ ,$t $$$1$ $D$xt$}|$x$$A%҉$$9$!Ш8 /l$tuD$t $)Ɖt$p襾$$D$w$D$$+E)9$ $7 &$;$$l$`L$4D$8D$d;$}7l$4$tl$$2;$|͋T$l$L$`D$hE++t$d9D$8uD$8D$8 $;$;$~D$h4;$+$1t$$Ѽ$$$D$$t$lD$$l$$t$D$ {D$|8DŽ$D$|9$~]{8D$l$$D$$l$D$$t$ D$$$,$|$|D$x9$$$$$D$T$T$Xt$\D$P$$D$D$L$?D$L$\l$PNj$D$T$LHD$L$ B$D$jD$|$$ƺŋ@u)Nj+98E%~DEw%? Ɖw|$D$L$l$PD$D$\ $l$ D$8D$|T$Tt$\D$ $T$t$$|$l$\t$X$D$ |$D$w$$l$XDD$l$$D$$t$ D$D$|L$D$$D$ $D$$D$$$$9|$x$$9D$xET$xT$x$~$|$p98s8wN$$$҉t$$$t$tl$|$ L$T$4$ǶD$|$D$l$轶뒃l$xYD$x9$b$$K$3$$$D$D$|$HD$@$DD$D$<$D$$t$@$Nj$t$$$$tt$x$uD$Ĭ[^_]Ë$ɍҬ$謴hD$|Ԭ$D$L$]$T$|$$T$$Dl$<$D$$D$$D$ $D$j>$賶l$|$$l$<$D$$T$D$$D$ $D$$D$$螳G $苳 $;$ $?$t$$$ȵ,D$D$D$D$@D$D$$t9$L;$t~$$+)9$'0$ &$)+9$&1ҋ҉0&$ $$;$ $$$$$$$++$9 &$0%$;$t%;$t~$42$4;$^$tz$2$$~+,%:F$EPW$PJ$$>$DŽ$|$p9$|1 $|9$l$p}$lDŽ$`>$$$$$$/$$p+( )9$$$$7$$pBGDŽ$9$T$$4$ $C$T$ $_$|$$$$$BV T$ $7;$$$ $T$ $ݛ‹eBT$D$ G<$D$;$j7U)ŋ+9(%E~DGU%? ‰U$$$| KEl$T$ A $D$GD$$$R$$$|9$|$$1J~eDŽ$d.$$|T$El$D$ B$D$薓$|l$<$D$l$l$D$t$ l$ׅ.$T98s|8$$$$t$|$ L$$$$$$Xl$T$|$ L$t$$茏$$|$t9$|$P.$L_8=$H"$$‰$$D$$D$$f$p$$p$贏NjOσ8$L$`<$l$\E|$T+)9D$T. $E;|$T}4D$\tbD$`$D$pD;|$T|҉苴$t$4$ DŽ$L$DŽ$|DŽ$pBu$肑O|$T)+l$P9D$TD$PL$PD$T &D$XT$T9T$Xt$H|$Dl$XT$\t$H|$DD$L(+ )9D$H$0>9}5D$@D$LtAD$`$D$#9|Ջl$XT$P4D$Tl$X9[D$PBuL$@$Rh$AL$$臍D$$$讏H$$D$薏‹$$4$/$Hu$$Ht!$D$$$*$8w@$t$h$8$$\D$$Ѝļ[^_]Í@ $苌밋$$D$赎$Z$.J$t($9l.)>wq$D$$$S$$|$$t$$T$l$ L$|$$ƳDŽ$|E} $诋|$pґ$l$T$]FBT$D$ E,$D$qEtEl$D$ B$΋El$D$ B$D$DwFt$D$ B$D$tBT$D$ F4$ϋBT$D$ F4$D$ڌl$$3It T$,$T$,$(%}D$d$9T$d.TD$d|$h4$| $tmtABT$D$ A $D$$|D$d$9t$d|AL$D$ B$D$ċ뽋tBT$D$ A $ҋBT$D$ A $D$蛋xD$d$9T$d._D$dL$h4$| $tqtCBT$؉D$ A $D$$|D$d$9D$d|AL$D$ B$؉D$Ŋ뻋tBT$؉D$ A $9t'BT$؉D$ A $D$葊kd$$裈틄$$lD$$L$D$ $D$$D$$|$nBT$D$ E,$D$ۉEtEl$D$ B$΋El$D$ B$D$讉\Ft$D$ B$D$ptBT$D$ F4$ϋBT$D$ F4$D$D}l$$蝈.t T$,$T$,$蒈 }D$t$9T$t.9D$t|$<4$| $tmtABT$D$ A $D$V$|D$t$9t$t|AL$D$ B$D$.뽋tBT$D$ A $ҋBT$D$ A $D$xD$t$9T$t.DD$tL$<4$| $tqtCBT$؉D$ A $D$Y$|D$t$9D$t|AL$D$ B$؉D$/뻋tBT$؉D$ A $9t'BT$؉D$ A $D$kd$`$ D$<$lD$$L$D$ $D$$|D$$|$ؾlB%?q-9$.8mDŽ$x$p9$x.U$$$$x.鉼$$)+($9$$$$$ $$$xGFDŽ$9$K$D$<4$ $T$ $'$x$|$<$$$G VoPT$ $;$L$<$ $T$ $諃‹c0BT$D$ G<$D$;$m7U)ŋ+9(%E~DGU%? ‰U$$$x El$T$ A $D$D$$$ ~$$$x9$x$$J.t9$$p9lj$x$T$<$D$<?~AL$D$ E,$D$IEtl$T$ A $l$T$ A $D$"$莂1G|$D$ B$D$ӁtBT$D$ G<$ϋBT$D$ G<$D$见L$$7t T$ $T$ $L$$ˀt T$ $T$ $T$ $W~tT$ $U~D$T$ $U~$d?$S$pl$ $~$D$3$|D$4${$d$`9$d~$DŽ$dѼ$>$Hf$6$‰$$D$$D$$x$H$$t$$։l$$$$X$L$|$ T$t$,$y$$$+)9$$> $;$}<$tF$$D$tx;$|ʉ$$t$"{$PBuE$|b$)+$9$L$$$ &DŽ$$9$$$$$$$$8E+4)9$$(u9}?$$tT$$D$wD9|΋$$,$$91$cBu$$#{H${D$$$z$$D$~z‹$$$5D$4$ xaX$wlN?9$1.$*Uz$DzO$(z $z$zQ$y.$y$y`$yAwNu2$u$*y$X1+\$ t$u붍@<$v렋8$e$Pu!$$p!ȨJ$=$|$$P8$H$$‰$$PD$$D$$ s$H$$ɋ$X$щ$|$ l$L$Bt$$$9$)Nj+9$$> $;$}@$$$D$s;$|Ɖ$$t$uѤ$`$`$L$`DŽ$$`8wDŽ$pF$`lD$4$LtՋBJEU$v$)+$9$L$$$ &DŽ$$9$$$$$$$$8E+4)9$$(u9}?$$tT$$D$.qD9|΋$$,$$91$Bu$$JuH$9uD$$$t$$D$t‹$a$\$}$ D$t$p$$T$$'o$‰$tT$D$$D$o$$$$Xl$ L$D$$Tp$$D$s벋$y$ |$l$2pC$ZZ*YX,҉$$0~+9$w:F"o<$wsٍ@<$p)$Vs$Es$T$@+)9ws>$79}1$@t6$$D$8n9|ω$DŽ$P^Bu$sr| )ω$8+9Sꋄ$8$8&DŽ$<9$<$,$($<$@$,$48ƍ )΋$(+$09$0$,$09}E$$$4tZ$$D$l$09|ȋ$<$0$89鉌$<$8jBu$$$p<$p$$$$@$D$D$T$l$ D$|$4$@F$|9NЉ$|~DŽ$|;$.$@49}t9|;$|9$|9NЉ$|$o5$T$oy$|$o$na,D$4D$D$D$D$0D$ D$$,Ð,D$c|$Ƌ$$)c9ƉY @T$؉D$ F4$D$zc$lj,$t$]$<$ʼnL$]Nj$O $FD$ F|$,$D$_D$$$Vc$$$$9om8v($$OXD$,$`$$$$$t$T$ |$ _wmsmD$pL$|D$l)t$|ȉD$x$)9$$7$ &$$,$`D$t$$9D$t\{m|$hD$$t$h$$.)Ƌsm+(9$ZD$h$02$ $L$t49{mD$$|$DD$@$L$tT$t,l$dD$`$ L$\9D$X>|$\/l$TwmT$XL$\D$PBD$A$N`;l$TD$P|$$]L$t|$`l$dD;t$tFD$t$9t$tD$t$T$l9D$tD$<T$8D$4$9D$4kml$(t$t$|$tt$4+$;$OD$$]T$tT$0t$,t$,$Bl{m8GD$4$9D$4cwm|$x98s9gm8$$D$|l$ L$D$$[D$t$9t$tD$<D$tD$l9t$tQ$t$tB%tj))pD$t$t$l9D$t~|$89|$lt?om8.D$ $$$T$$$T$lL$D$ l$|$$> $$D$\ЋkWljD$Xō4)gW+l$<9 L$t$PD$4$E/D$Ht$$>~OkWgW/}+9w kW8EG@w$E҉kWL$@ݺl$D(}+9wkW8EGL$DO$0E$"E6C$|$Eh$UWVSy\t$p.GED$Dl$t9D$DGl$DƉG+(r7|$DG"$Aމ4$i<D$tt D$t*Y7,D$t4$K9Ɖ$U> 3$L$(A3$T$ AZUWVS;u$3CED$|7C$L$xȉL$t) D$xL$p$D$dȉL$`)D$dD$||$x$))9$7C$7l$F`F ;$};$|,$t$?|$|t% $E,$7,$$7|$x$)|$d7C3C$E+)9$T$\$T$\ ,UD$x$=3C$E))9$L$XYD$XE)D$TD$X)9$D$TE)D$PD$T)9$DŽ$t$xD$P9$E$l$L3CxL$D,l$Hl$T$@l$t$Ll$D+E+t$H9`T$L2=D$@$D$T4T$LL$D$+)9$$L$L $1$T$X4T$D+)9$D$Ll$P0$tDŽ$9$}qL$L$<$L$P7C,3C++t$<9.7C2 D$@$t$$9|DŽ$l$x9$nD$D$8$t$X7C,3C++t$897C2^D$@$tl$x$9~$D$x9$$4$p$$$p$$|$4$Aq$$$a$$D$ $:Ƌ$$;‹BT$؉D$ F4$D$;$D$44$:9$ D$4DŽ$$: T$4 7CDŽ$l$x9$D$hD$lt$$$$D$$oŋ$a $,$|$6$T$$s:$D$$D$6DŽ$$9$}R$D$\: $t$PT$TD$$1$$9$|$L$X,$D$g5t$X1$]nT$T $L$1l$TD$9 D$Tr $D$\4l$xt$|$h9>$l$xD$\B$t$ /C8x L$TT$xADŽ$DŽ$9$$$t$T,E%?ЩD$, 7Cu3C+)97C8E%~DD$,{G% D$,G<$$T$5~$$$$D$x9$!$T$ht$P$鋫7CU$D$ $D$$6Nj$x0$L$87Uэ)3C+L$(9~D$(El$(%E~T$(Gt$(N%؁? N$$$D$ t$D$+C$3$$Ƌ$47CL$P|$(D$h$,El$D$ G<$D$a6DŽ$$$9$}.$t$\=$$9$|ҋ$$D$T, $q6T$T$4$t$D5pD$t$ E,$D$5ʼn$e5E$$t$TD$$4l$$2$$T$P$$<$D$j-|$Tl$$R2$$$7C4$9$D$[4t$1$07C8L$T$$z4D$TD$\$4t$T$,$D$,$l$\DD$x$95D$P<|$$l$$D$E$3L$ŋ$$D$$m3pD$t$ E,$D$3L$ŋ$$4D$$$3L$$<7C L$$HD$ىL$ F4$D$]3|$$7/|$$7C$:t$,$D$o+$l$xt$9$7CD$p9s3'C8 $T$l|$$ 2.$l$hL$xt$\7C.$)Nj3C+(9$$$>$+Ct$xDŽ$9$}$;C$l$x$9|⋄$$81|$$$*|$tD$<$a2[^_]$2\0$L$.B%?- ;D$d E%?- ;D$dL$T$$D$$)$t$\$|$T,$D$)$|$x$9$t$P$$D$$0)D$x9ʼn$~$T$P$$|$P4D$D$($60‹tnBT$D$ F4$D$`0L$P$$ŋ$D$$v(L$P,$D$`(Ft$D$ B$D$ 0됋tBT$D$ F4$ҋBT$D$ F4$D$/K$N0q0$l$30j$"0$$0|$xT$0|$$O-DŽ$9$.UDŽ$$9$|$D$x9$~ $t$P$$'$9͉$|믋B%?- ;D$dwm$L$X$$D$$dt$T $|$P$47C:L$$*t$$*7C8$T$X$|$PD$$K.,$D$*:$$$D$$Zc$ $ljD$-l$Ƌ$$-t$$(*t$4t$$1*D$0$l$$-$$ʼn|$-l$$)L$4L$$)$$t$s-ŋ$D$D$0$Z-l$$-B%?- ;D$d4DŽ$$A%?- ;D$d$$$$뻋Ft$D$ B$؉D$,gtBT$؉D$ F4$9t'BT$؉D$ F4$D$b,;C $$l$+$t$$T$$Ήt$ $+h$p,$_,l$N,$=,$,,P$,$ ,$+$+$+3C$+3C$+00$|$+@$|$`D$B$+$ŋA$D$F$*l$$'Ɖ$L*w4$-(9e3CL$tt$t+7C͉7rD$t7@".$*$*$*Yw)r7C0G"$~*ፓ0$T$f*7C8\$^t$|$,ƃ)֋,+9w7\$t$|$$)\$(^t$|$L$ $,)֋ ,+9w7\$t$|$$)ސ\$L$ ]t$|$+)֋++9w7\$t$|$$6)ސUWVSg]c+_+T$<ET$D$8)4$L$@D$D$`t$4L$|D$0$莡t Č[^_]ËD$pt$D$,o ";t$,[+c+8.YL$ D$<|$D$D$0$ u[D$49s܋S+:w2L$lT$hD$0L$L$dT$L$ D$D$,$#럋D$ $D$#븋|$8D$<$%o[^D$$Nl$D$&;t$,|$&$&$&T$&0E+)9ƉL$$wCD$$Eu&l$$ul$$DD$$#$f&$X&UWVSZ$0(( $%$ET$$p)ȉ|$$$l$$L$$荞t [^_]Ë$$$x)E )ϋ(+9v)}V)7|$$CD$<$q $(Nj$)‹(+$H9$($H$($$H "~;$W($$#$$ $#$($l$L$$4$@)򋳃($D)9'$D($+$@$<$D)9u'$<($+$@$8$<)9$'$8$8()Љ7$+$@9&($0)+$@9&($9)+$@9]&($0)֋D$L)9t$L$4&($42l$L<<$<$$d <$$<$$9$}<$$4;$|;$T$<<$$D;$~;$$<<$^$<;$~;$$<$$$8D;$~;$$<<$$;$~;$c$<<$$D;$~;$($<$t$;$~⋼$HW$$l$a,$r$d\$8L$8J;$}"$dTY;$|ދ($h(8i#$$D$Pl$T$$LT$PD$L$$K$9$t9}]T$Tl$PBE$$ʋT$TBEʋT$Tl$PB E   ʃ9|L$TAL$P,A<|l$TE A 44U,,9G$t$DŽ$09$0$,Z7t$PL$P$0nf(ˉl$4A4$0y9}ƃY;D$4X|Qf.!!$0f.!\‹$0ljl$49}  σ;L$4|틄$0T$4f(9}$ǃY;D$4X|ꋴ$0L$4Z;9^}sZ?ND$49L$X}0f(鋬$4Y,ϋDTY,,,ʃ;L$4|f($4Y4DY4X4t$X;t$4|D$PPp$(x$09$$D$4$09l$4$$$0<$49D Y } $4D<Y<׃9X|$( ȃ9|$09}'|$4$$D$(ȃ9|كD$49t$4O$0;$,}"l$P$0EЃ;$,|ދ$,$09DŽ$|($l9sRw(82$$$$L$hL$T$l$ t$D$$$t$|;$}@f($8D$dfTY$;$|ȋ$$DŽ$ 9If.v f(ȉ$ 9~㋄$ t$PD$4$蔜$9$ '$ $8 dYYXQf.Z?$ ^f(Y$XYl(?$Pb$ ;$$8$x틌$ T$X$PYYX4ȋ$8Y$XY$P\Ӌ$ T;$u?z$9҉$t$99}]T$Tl$PBE$$ʋT$TBE<<ʋT$Tl$PB E 44ʃ9|L$TAL$P,ATl$TE A   U,,9G$ ;$.Vt$D$P9$O׃T$ܐ;$~`$DŽ$9$$}l$P$E$E DŽ$ $$9$ $ $$3S $44$34 $$4$$$$\$8|$8,R ($$D$$ $ $ $  $`\$8l$8,H ($$D$ $9$ $$9$$$Ll$$$$L$D$F $F F$D$<$FF<$D$F$$$t$`~L$LBz44$4$9b;l$`~$LE$$L~91n(DŽ$09$D$D$>09$t$$ $9$$D$D~‹((}w+vbuGF`FGt$$<$$ $/D$$p$M$됋$L$A$ 4$D$Q9|$L($*DŽ$$juׁ)Nj(+9(8E%~DENDŽ$$$9$$$(|(7+)9((%E~DGM$$,$|$D$$9$1$L$4y4$ut,4$9}$L$F 1F%?- 9|σ$.t݁u뱉$$$EFuUډ"Et틳((>΁$)׋$+9wE(:7|$$$$(l$<$p$뭋$ Eu$PډV$Gt苳((>΁$)׋$+9wE(:7|$,$N$($<$D$k$뭉T$,$VE%? @E[$G%? @G${Z$L($׋(DŽ$$hu)Nj(+9(8E%~DEDŽ$$$9$$$(|(7+)9]((%E~DGM!$tc$,$|$F x5$$9$9$L$B $$$봋FuUډ똋Et((>΁$)׋$+9wE(:7|$$$ $(l$<$^ s$ 뭋$ Eu$Pډ$Gt苳((>΁$)׋$+9wE(:7|$,$ $($<$D$ k$M뭉T$,$ E%? @E$G%? @G$ F%?- 9.b$.~Q((.u+9w (0EF@~y$` ҋ(8(݉w+9w(2GFn$ ׅ~Q(((u+9w (0EF@~o$ ҋ((>݉w+9w(0GFn$k ׃$|u@$$LD$$H,$D$萍F$hD$$V$9ΉL$L9}]l$PEl$TE44ʋT$PBEʋT$Pl$TB E ʃ9|L$PAL$T,A,ll$PE A $$U<<9G$D$LDŽ$|$L9$tl$P$t$LE$E DŽ$9$$$$  $3 $$3 $$<$44$\$8\$8, ($$$$$<$$d$$b\$8|$8, ($$D$|$L9$$D$L9$$$LD$$1 $L$T$F $ F F$D$<$FF<$D$F$$$9͉L$\L$LBz44$' 4$9;l$\~$LF$~9n(DŽ$9$D$HL$|809D$|t$$+$9$D$|D$H~ȋ((}w+v/uGF`FGt$t$|4$$Ë$L$A$4$D$9|A$L(T$x*D$pl$tjuׁ)Nj(+9i(8E%~Du"D$lL$t|$h9L$lt$lT$x(<(7+ )9։l$dD$d(l$d%E~T$dGd|$dt$h|$hl$d|$,$D$lD$t9D$l1$LT$pE}44$Xut&4$39w$Lt$pG $F%?- 9|ك$.A2믋t$dL$lt$hL$pSFuL$dQډ,|$dGt鋃(΋(()׉+9w?(:7|$D$h$(t$d(<$t$S|$볋l$hMl$dEuD$hPډm|$hGt닳((.΁)׉+9w<(:7|$D$d$((l$h<$l$$Y붉l$<$|$dG%? @G$!5G%? @G$$L($׋(DŽ$$hu)Nj(+9O(8E%~DuDŽ$$$9$$$(<(7+ )9։$$($%E~$G)$0$tn$$|$,$x2$$9$$L$E $$$$밋Fu$Qډ덋$Gt鋃(΋(()׉+9wE(:7|$$$($(<$t$v$q뭋$M$Eu$Pډ$Gt苳((.΁)׉+9wE(:7|$$$(($<$l$u$뭉l$<$!$G%? @G$edG%? @G$?F%?- 9..$.5&~Q(8(w+9w (0GF@n$ҋ((>݉w+9w(0GF$aڅ~Q(8(w+9w (0GF@n$ ҋ(݋8(w+9w(2GF$ڍ$l$\t$P  $1҃.F$F 9$~ 9~$$z+$$$_+ 9~1&$u$X$P$ YYX$$ $$ \$8T$8'}$|$Xs $Z7\$8T$88m$D$<$$t$TL$P{$$$(U$(K$( $($(r$'|$$HD$$H;$|w$;<$*$$yE( +)9w8}u7|$$i$$뺐UWVS/@"$ސWVS(,t$ |$$Ⱥ%9}tc9|tM"t|$4$襲[^_É4$&tuًD$(4$D$ZӉ4$ɉ4$뿉4$뵍$T$*W<\$,l$8t$0|$4D$@D+0l$D  D$@$t,\$,t$0|$4l$8<Å@u< ׉T$+)ω9L@8'$47Gt$@w9l$@ED$L<$D$D$HD$+ƉtV~j4$D$Ƌ%tBD$g~D$t$$O4$mD$D$$^D븍$T${<$Ƌ_D$@D$D$9~$?$.u 4G$t$JL$@A$.` $T$D$(D$ D$D$$D$D$ $}ÐD$(D$D$ D$$D$D$ $QÐS(D$$T$ t,u $[Ís$ T$11$א\$T(t$P0D$ $@$D$d$@4$D$c\$t$ÃL\$<(t$@l$H|$DT$,t$PT$T$(D$$D$T$ D$D$4$=D$,9}Hu9}D$Ww+h[2G"D$FL$ NW|$\D$`4D$TD$([T$0+)9[L$(8%~T$(T$(OB?% OD$\t$$7$HL$$$`‹Et\t0BT$D$ E,$D$;t$,~\El$D$ B$D$|΋tBT$D$ E,$ҋBT$D$ E,$D$S댋T$\D$TL$P<bUWVS\$D$LD$|9D$L'T$L$tD$|9‰T$L~ً|$LD$|9lj|$HD$LT$p,,$D$DD$<D$@D$L9D$<?t$<$|$@Dh@D$4L$0%)ȍ4D$4t$8HD$8PT$ $v;|$0}D$4 D$84T$ $3‹BT$D$ F4$D$r;|$0|E#t$,$0ǁU)ŋ+9(%E~DGM%? M;|$0D$4L$8E4'T$,$ ‹tBT$D$ F4$D$Jt$8;|$0wD$<T$L9T$<D$@D$D$D$G$$t$Ll$x|$tT$L$t$ l$|$$^1҅t*D$LD$|9D$L%D$L|$|9|$L|\[^_]Ët$LD$t,D$t$LT$H9։t$,};t$|\Tt-tT$<$D͉|$$t T$<$T$<$ȋl$,D$|9ʼnl$L\HFt$D$ B$D$tBT$D$ F4$ϋBT$D$ F4$D$Bl$$t T$,$T$,$$9l$4$t t$,$t$,$Ft$D$ B$D$ ztBT$D$ F4$ϋBT$D$ F4$D$5L$$7t T$ $T$ $,L$$nt T$ $T$ $Jt$|M+)9wL}u3"7;T$|;T$|~$$x$j릐<\$,t$0|$4l$8|$@t$DG$I2~+vr}F"$)G0n+r(*F&o\$,t$0|$4l$8<$~$p뀋u~+r }F&$6$.tы0n+vr(F"0V+T$r:D$F&Et<$E$$x$j뀋8o+9w.G&$-1u~+9UWVS/,D$HL$PPց1t?D$DD$D$@D$um;|$LD$Bu;|$L~,[^_]ËD$t$H,T$4$tHD$L$ E,$D$T$믃td;|$L.L$Bu ;|$L~낋D$4T$,$!HD$L$ F4$D$_t$빿;|$L.6/D$Bt0l$L9t2؉T$D$ A $D$ l$D;|$L~;|$L.D$ Au;|$L~l$DT$ L$H$L$Dʋ|$HG.3؅N$UWVS',D$HPсID$D$;l$D|Ut$DD$LL$@BT$؉D$ A $D$L$,T$L;l$0|x$:\[^_]ÐUWVS_LL$dt$pL$`t6B%?- 8 |$<$|$‹D$< 11҅)G[7U)ŋW+9 [(%E~DGU%? ‰U|$hD$`L$8ыD$4D$d4t$0|$`D$44D$0EuVT$,$‹BT$D$ F4$D$L$`t$4;|$8L$hD$4T$,4D$0E<T$,$‹BT$D$ F4$D$FT$4L$`t$,;|$8aUׁ<D$(|$d9|$(D$(t$pT$`‹Z'BT$D$ F4$D$}L$`D$(D$d9D$(fD$dL$p|$`4EtZEl$D$ B$D$|$`l$<$D$ll$dD$D$tl$D$ L[^_]ËBT$D$ E,$D$뤋EtEl$D$ B$ыEl$D$ B$D$^Ft$D$ B$D$otBT$D$ F4$ϋBT$D$ F4$D$Cl$$@t T$,$T$,$}D$(D$d9D$(.HD$(L$p4D$` D$dtgt;BT$D$ A $D$^|$`D$(t$d9t$(|AL$D$ B$D$<ËtBT$D$ A $ҋBT$D$ A $D$D$(T$d9T$(.e_D$(L$p4D$` D$dtkt=BT$؉D$ A $D$sL$`D$(D$d9D$(|AL$D$ B$؉D$OtBT$؉D$ A $9t'BT$؉D$ A $D$qjFt$D$ B$D$rtBT$D$ F4$ϋBT$D$ F4$D$-l$$t T$,$T$,$Ft$D$ B$D$79tBT$D$ F4$ϋBT$D$ F4$D$ l$$dt T$,$T$,$Y}<D$`|$4 7BT$D$ A $D$@t$`T$4;|$8.D$h4D$4 D$0thtBT$؉D$ A $D$<T$4L$`;|$8|AL$D$ B$؉D$tBT$؉D$ A $9t'BT$؉D$ A $D$p_cAL$D$ B$؉D$薼tBT$؉D$ A $9t'BT$؉D$ A $D$__y$込;$kUWVS,t$LD$@l$HD$D$DD$D$L$Uс);|$}}D$4D$ET$,$‹tdt8BT$D$ F4$D$1t$;|$|,[^_]ËFt$D$ B$D$ƋtBT$D$ F4$ҋBT$D$ F4$D$넉l$$E=t T$,$T$,$:};|$.:D$ D$tbt6BT$D$ A $D$l$D;|$|AL$D$ B$D$ȋtBT$D$ A $ҋBT$D$ A $D$ӹ놿;|$.n۾D$ D$tet7BT$؉D$ A $D$EL$;|$|AL$D$ B$؉D$'NjtBT$؉D$ A $9t'BT$؉D$ A $D$wpUWVSl$$$D$u 1l[^_]Ë$0t$L$DD$\$裶D$X$D$T$1t$DD$D$輷t$XHD$L$ F4$D$<$D$HD$觶ƋD$T$W$D$芶$t$nD$TD$D$H$賵$$$89$!Ȩ$t#$$$|D<$DttDU$T$Pt3;|$P}(D$L֋TD ;|$P|؋$9}2$$LՋT$9 |΋$$D͋0;$t$LD$0D$($$$D$8DD$D$L$8ƋD$\L$$誵9Ɖ@T$؉D$ F4$D$|$T$|$޳$Ƌ$ L$4L$L~)эW~ 9D$4 $$|$0NjDD$D$\$$ƋD$8$D$D$ǴHD$L$ F4$D$$‹D$T$D$Ƌ$$DD$,N)׍Q~ L$,<$$t$(D;$D$L#t$\Fuz$;$6$$DT;$~Ћ$$DD$DaD$T|$XD$<$ֱƋ$$ttŃ;l$P$;$l$~x|$;$.o;$l$$~|$$;$|$4$D$۲T$TT$$;$;$~몋$$DD$D$\$苲|$T|$$$$T;$~-$4$D$?|$T|$$蟰$;l$P~$$D$DDD$Dw$D$@D$T$x4$D$<$ƋD$XD$װ9Ɖ@T$؉D$ F4$D$ Ƌ@D$<%tV))D$$t59},T$p$LՋTT$p9 |ԋ$9}+l$xD$LTT$x9 |Ջ$;$.t$x$$D$,@T$؉D$ G<$D$藥‹|$X$D$uD$ދ|$PD$\D$(49t$$t$(%D$ L$$|$(AD$G$衤;|$ |D$,t$$JL$$T$(D$$eHD$L$ F4$D$¤;|$ |뢋먋T$tL$(A$订;|$gT$($萢HD$L$ F4$D$K;|$|(UWVS$T$ttG$T$p}|$x!$F%9tG$L$54t$d+)9ʼn|$hL$h,0l$)׋ߦt$p4$t$l$++t$d93&0>$9D$dD$X$l$$L$\D$Tt$P$t$\T$TD$`++t$X9D$$D$\0L$P;T$x;T$x~T$`4D$h9||$x<$9$$DŽ$D$|D$(l$ $l$|$T$Lt$($D$H44$ru% MD$H$KuL$H% M9^D$ l$hD$D$|l$D$ $D$$D$$$M|$|~D$(D$|PT$(|$l98ۦ8w:$$$D$pT$l$ t$D$$kG$L$i뮋|$|$$$t$DL$|DD$@D44$D$8u D$8% LD$8D$8T$@$ڟuL$@% M9L$8[D$|D$x9D$| T$|T$h$:9}Bu9} T$ht$f#)+L$09L$0T$0& 9}DL$09|)lwl$,up&D$,p8w+v60G"|$0n~t$tD$4$ŝĜ[^_]$%$$ 0$)lwl$4u&D$4p{$軞ދ}u }$蕞T$@4$D$T$H$'t$DD$<D$D$<$L$|t$DD$$t$DL$|9|FD$@D$D$<$赝T$|D$D$Нtl$|DŽ$ZDD$D$<$lL$|D$D$臝TL$|9|uD$H4$D$D$W$6L$(t$Lŋ,$D$L$|t$LD$$ t$LL$|;t$(|ID$H,$D$ȜL$(D$T$|$t$(,|$|DDŽ$L$(,$D$yT$|D$$蕜L$|;t$(|sD$ht$ D$$D$$D$$$u9|$fI$U$D8$$l$$UWVSS$$$%D$x1t $D$$$%D$$D$5$$D$t;$ qt$,$$OD$h͋8K+)9.$u9}0D$hGD$$qD9|ЋO,$D$drD$\$D$`9T$\B|$\$T$`Dh@D$T0t$P%) D$TL$XH|$XWcT$ $;|$P}D$T D$X  T$ $՘‹ W BT$D$ F4$D$;|$P|E  t$,$c0OǁU)ŋK+9 O(%E~DGM%? M;|$PD$TL$XE4  T$,$譗‹} J BT$D$ F4$D$T$X;|$PwD$\$9D$\l$`t$dl$4$|$,D$pD$l|$|O$t$p|$|D$LD$| f G T$ $膔‹@OL$Ll$|D$|D$ltD$t1|$tdAČ[^_]Ë$$ ȨD$tD$p$BeS0$D$x9ʼnl$|}(D$||$pBD$|D$x9D$||؋$A@$‹t$$n$$tr~I$M$t$D$*$$$4A$$O,Kl$H}+)9.$u9}0D$HD$$jD9|ЋO,$D$DkD$<$D$@9T$<BL$<$T$@Dh@D$40t$0%),$O$D$\$`$褄‹9v$l$,$ $D$\$($D$(^D$`D$XM‹v$l$袅,$賅*d$l\$X\$(T$(^T$`T$PY^f.qD$<$߃‹Iv$|$4<$E1t$l\$(L$(^L$`L$HD$l1t0.xD$@D$D?D$lo*t$P\$H Y*YYЍW**Y|$H*YYl$X\Y\$@*XYYXYl$@8Xw9Z[~f.s+t$lX1$8$0|[^_]Í#|d$ d$0t$|$ $+d$0띉$C|$T$計t$3$$8>UWVS購 "D$0L$8${w++T$49D$\T$,T$,1D$,t$00D$PD$TL$8D$${t$Pu~CL$8$|{D$D$6T$TT$$芃L$,t$,F$ƋD$,4$D$迃D$PD$84$D$諃${w +)97&$pD$X9l$XL$\|$$w|$L$ T$$t$++|$ 9D$\"D$$8D$\ $$T$XA9։<};t$X|L$Xt$PD$D$L$Xt$PDD$$蘂$D$t$X$~$~t$XD$(9t$~CD$9D$X"9~1~t$$|$$h9~֋$$@yT$(T$$9~$F$5^$$?$T$3$BBE$Łx$F@@@ @@F1%?- ;D$@|)|$T. |$@;D$@{D$H<$D$L{lj$xƉ<$xNj% "4$uM4$x@D$H%D$D t$DD$H0<$D$Et=<$wl$Hp~tL$H|$ $NjD$L|$$~A@$yt t$HF&{w2~+r{8F$$ $7{wu~+r}$틻{L$)Njw+9wA{8L$$9L$9~o@$P뱍qv$T$8UWV|$t$oL TGT GLGT G9L)G \G 9T~^_]ÐUWVS߲$$$@$Fۀ$.׀+()$9$$$$$ "E;$]$.DŽ$$~DŽ$9$}g$$4! b |$4$z~$$$$9$|Ӏ8 $$$l$e$9$ ;$$;$+Ul$$9$OփT$Fc;$~ՋӀ8$F$y$n9n߀D$D9l$DD$ L$@209|$@t$<$sD$D9l$DD$@D$ ~΋ۀ׀}w+vJuGF`FGt$D$@${$r$zĬ[^_]${먋$L$DB$r4$D$r{9|/$ۀUT$<D$4%D$8juׁ)Nj׀+9+ۀ8E%~DuD$0L$8|$,9L$0T$0D$<ۀ $;t$H}:o$ D$$f;t$H|̉,$_;$$ $t$$i E@$e;$\$`V D$`$/_$_ك`$\$XL$`X`f.L$`L$P $. $n oEo$>‰D$t)$$Z`DŽ$׉|$l$L$P$^ Qf.  ,$<$ $uZ`;$8$$$*$Y$X$$;$~ȋ$$*,$X,苄$YY,X,,$L$P$\ $^ Qf.$\$_\$(t$(,,$$$*<$D$PX<YY<X$$<;$.$;$~w$ g벃$tu$QZ`ټ$X|$`$ |$(f$D$(٬$߼$٬$$苌$Z`ټ$Xt$`$ t$(f$D$(٬$߼$٬$$롋o;$D$0>;$'$$;$~ك;$~‹$$D$$t$$Nu9o8woL$0$_<$bvbҋo>dD$|9$tcot$l90o8w#$L$tD$ $c$$!_$T$|$/a뺃>oD$x$uo[^_]Ë$~Mol$xt$x+( v"T$x7BF@$F$odЋoT$x$+t$x݉у v7|$xGFn$"dٍ2Y,$oaa3_$Wa`$T$$gqL$p $D$c$EoD$`D$p$WX$daD$D$p$Hc$G$D$`o0$X$"aNj$D$<$Wx o0mX<$t$R^4$c^;$DŽ$\$(l$(X`l$Pt/$w%9|Ft$싃ot$t$0D$|$`$$zb묉<$X$<$$D$|Z`D$X9$ŋ$N$f.ku$$=&79$$D$pl$T$ D$$]$u+o$F$F$F ~Joo>w+vo0GF@n$4aՋoo݋:w+vo0GF$`ڋ$D$$$Xn$9~$`D$X$GU$T^|T$xoo։+Ճ9$wD$x7@"$G`ރ$ot$p0o8$2Y<$ $TV\$(D$(4T$|$;^$G $#V\$(D$($D$D$t$]_D$$$$D$|$~Z$t$|oE )ϋo+9w-}u,7$$_$_ŋ$1ҋEt*%$uщ upޅNօ҉T$|xG|$|oE )΋o+9wu$h$^㍻G_$|$k^$]^. ^$L$>^D$zYD$`ك;$\$`~|$t0X$|$$Y<$)Y\$`ك`\$狄$$X$9|;$~$$X$9|ċB@EH$?]L$H)ω|$Do+9D$H D$Dl$DD$H &ED$LT$H9T$Lt$<|$8$D$LT$<D$@8ō4)t$8+9D$<$9(M}6oD$4D$@tBD$$WD9|ԋt$LD$D,l$Ht$L9Vl$D8BuL$4$\f$[$$k$.Do$oGGou~+r}F&$x $x[ك$ol$x(o|$B[l_$t$'[oou~+v}F"$Z㋼$1ҋGt.$%}‰ ߅Nׅ҉T$|~hD$|D$$U$$t#$4$Y$$D$$IX$뽋oou~+r}F,1$Y$Y7^$ T$Ys$u_$T$Y1o$UWVS賍$$1DŽ$\DŽ$@$p$lt $@DŽ$<t p $<DŽ$4t @$4$$<$$0S[>ʼn$`G$,[+9$,GB`B 8@$,Lp $L$D$[$j88G7$,BT$D$ F4$D$,W$$6n6$DH6$D4$T$cV$[5[[$pE+)9$p$(5$p$( "UD$$l$RU$L$X)Љ$P$0$@D$$8wt8 $X)95}4"/$[[,+)94[8x4"[[7$HE$p+)9$p)4$p[[$2.$t+)9$p31ɋ[ɉ03.$x[)[+9$p{31ҋ[҉1X3.$|;$p23[$$($t$xE$|;$p|}$t$l<DŽ$d$h$hW[$h$$h$TD $tTK2,2T$ $fS$hƃ;$p$$h $t11T$ $S‹711BT$D$ F4$D$FS;$pj$Tt$$?N$h$|[$h$T$tL$|T/0/BT$D$ A $D$R$6S$hƋ$x|$(T/d/T$4$Q‹/.BT$D$ G<$D$RD$$T$&M$x$h$49q.$x@X$$h4Z-,t$<$oO$|$h[,[u+)9(,[8E%~DEO%? O<$vO$t$h1s[$h$T$(4$t $|?+ +BT$D$ A $D${P$ Q‹**T$4$Oŋ$h$xE*)BT$D$ E,$D$O$W)")BT$؉D$ A $D$ONj$`,$؉D$Kʉ'&'t$<$IM$T[7 $x$h$t@&hD$$l$C[$($h$T$h4$t $|%%BT$D$ A $D$N$)O‹G%(%T$4$Mŋ$h$xE$$BT$D$ E,$D$N$##BT$؉D$ A $D$MNj$`,$؉D$Jʉ"!t$<$iK$T[7$h$L$l$h9$x$t@u%hD$$l$A$h$L4hD$4$l$A$h~$h$L문)狄$8$d9$dM$@$8[(b$8$}T$|% }$$@T$t[$[+E+L$t9ƉL$xD$xD$|D$x["($++T$t9ƉT$p`t$p7D$|=|$p/1;$8$D$l$L$l4tE$D$hT$h3L$h4$L$ I$HL$l$<D$$$@$t{uQ$,N$,BT$D$ F4$D$J$$T$pL$l$HL$x;$8D$p}0 D$p0L$x1 L$x1$8t $HFuV[[}w+v(uG"|$p~$nĜ[^_]$qJʉ $H4$$U>$JJ`$9J3Ft$D$ B$D$~I$,t$,BT$D$ F4$BT$D$ F4$D$DIaBuVډFt틃[ʉL$TD$X[L$X)щL$PL$X+9T$TwMT$P[L$TD$TT$D$h$uFT$X[D$Pt$$@Fd$I륋D$hFuD$hPډD$h@t[ȉL$`T$dL$d)‹[+T$\9T$`wMT$\[L$`D$`T$4$E[L$dT$hD$\T$$nEf$0H륋L$h4$L$E:$ H$G$GJ$G'$G~K $E$82$H$88$H % &$$d[8[w+vy[2GnF@$[|$L8[w+v([2G"nl$Ln$HF +$F$Fv[(뇋$tj$,t5$,AL$؉D$ B$D$E$BT$D$ F4$؉D$}EЋ$,t"$,G|$؉D$ B$9t.$,Ft$؉D$ B$D$4Ek[^Չ$C$H,$9&$uE[[2~+r[}F&$H$+E֋$P[9o[8]$8[[7~+([8F*$d;$8$H<;$8~ꋄ$H$8$HG$H$@tU[[7n+m/F*$d;$8$,;$8~ꍬ$$@$$$l$t$ |$T$$|$x$t$XL$t$ |$l$$?$h$tNA$xB@$h@u,HD$$L$e7$h($h$L<hD$<$l$,7$h~$h$L)ዃ[$T$|P\BT$D$ A $D$A$VBƋ$xx$(PT$4$A‹l9BT$D$ G<$D$DA$$$C|$4$>~"[$T8$t$x'$$Tt$$)AƋ$@= $\N$$0 $c $4$l$>>$d$89$dN$@t$$d4$t$f?$d$H$89$0$t6$d'$dƒ$ рD$d$[$[+E$)9$$$[$(l$$ "$@[$:$$3$[1;$d$$$4tR$$3$>$4$L$U<u$H$$<D$$$@tsuQ$,V$,BT$D$ F4$D$=$$H$$;$d[$퉬$d$l$4f$,,$,AL$D$ F4$D$E=$‰$D$D$D$<$DŽ$\$9$8.[$$8M)Nj[+9$$}$"$$;$d$4;$d~ꋫ[[u~+r~}F*$d;$$<;$~ꋼ$<$0$Gu#$H@u $H$n0<$d0$Y<q$H<$7<T$<$;n$Dt$D $T$ՉT$ $:=%ld*negative number of vectors in minim0bound = 0 in minim2maximal number of vectors must be providedfinal sort & check... sorting... New bound: %Zsmallvectorssmallvectors looking for norm < %Z incrementalGSgenadding vector = %Z vector in new basis = %Z list = %Z base change matrix = ?@???9@yPD?RQ?-C6?ffffff?@ ⍀ P@@ ⍀ P@@ ⍀ P@@ ⍀ P@@r ⍀r Ps@n@] ⍀] PZ@U@H ⍀H PA@<@3 ⍀3 P(@#@ ⍀ P@ @ ⍀ P?? ⍀ P?? ⍀ P?? ⍀ P?? ⍀ P?? ⍀ Py?t? ⍀ P`?[?v ⍀v PG?B?a ⍀a P.?)?L ⍀L P??7 ⍀7 P>>" ⍀" P>> ⍀ P>> ⍀ P>> ⍀ P>> ⍀ P>z> ⍀ Pf>a> ⍀ PM>H> ⍀ P4>/>z ⍀z P>>e ⍀e P>=P ⍀P P==; ⍀; P==& ⍀& P== ⍀ P== ⍀ P== ⍀ Pl=g= ⍀ PS=N= ⍀ P:=5= ⍀ P!== ⍀ P==~ ⍀~ P<⍀>P66)⍀)P66⍀P}6x6⍀Pd6_6⍀PK6F6⍀P26-6⍀P66⍀P65⍀P55⍀P55l⍀lP55W⍀WP55B⍀BP5~5-⍀-Pj5e5⍀PQ5L5⍀P8535⍀P55⍀P55⍀P44⍀P44⍀P44⍀P44p⍀pP44[⍀[Pp4k4F⍀FPW4R41⍀1P>494⍀P%46Oh̿0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk$Ë$޶ζɶiUc#ֵL :̳~I6۲9{95 %Dʰ߱űʰNư J# ǯwC3<U*٭vQQ B1Mrwp_SK Mr1 ܩ˩Mr|XG#ͨc> ħr\MrO9MrMrMrMrlMr6Mr&Mr{WFڤMrϤXJ7MrMrУMrMrwdNMrA+MrMrMr\ΡxQMrFϠMrvMrGMr)Mr۟şMrMrlMr\Mr,Mr~ZIߝѝMrMrOMr?Mr՜MrϜMrMrlMr<.MrMrMrMrZG9Mr,MrMrϚMrL%Mr4vaMrT=MrMrMrMriMrHMr*Mrr]MrP9MrMrMrMreMrDMr&MrMrߔj; ֓MrK:ΒƒMrpMrjHMrMrMruMrh?Mr MrMrgBʏveWMǎMrMrVMr8Mr ʍSMrMrMrMruMrhMrJMr ˉOGMrcMr]Mr2MrԆMrΆMrMrMrqMrZMrTMrI8)Mr }.Mr#Mr҄MrƄMrMrMrMr˽MrӃƒ{aMr[?Mr$Mr MrMrmMrHMr-MrtfWMMrMrc.Mr~Mr~Mr~~Mr/~}}Mr}T}=}||||t||Mr{{Mr{t{]{{zzz*zMr zyMryMryMrzyyxxoxgxxMrwww,wvMrUvMr*vMrvMrvMruMruMruMr{uMruuMr[uMr;uMr5uMrtRtMrLtMr>>>m>H>/>>>=/===/====^= =<<<M</:</</<;;;;Z;$;;::::/g:C:2::999o9^9M9)9988h8*87m7/Z7/>7/6776655/5v5/k5//5444f4/3/33/a3#32f2/S2/72//211z100/0x0/e0/$0/ /z/i/X/C/....l.U.<.4..---}-f-K-C-)--,,,,,],'F,'>,'+'+'+'+**v*X'k*1*'*'))k)(('l('\('2('('('('''''''''''''y'X'N'>'X' '' ' &&&&L$&_&;&#&%%%c%M%/%L$$$L$l$L$H$ 0$%$###y#k#X#F#<# ##""""z"^"9""!!!!w!!!y!h!#!     | c H 7   hA_[!Gx) iiiwiy8 iI9^ii/VFiieYJ<,ie N%n,fX! i^ m    o 3  k G 6     R &   M . 3Q"T/F3 qqKqHe"Pq6q m 'suR2U5 8pP xxzxdx\xTF8" xxxxx\xVxN@xxxxxxt TF tc~96_ |E%iT~m\8' B'  8-m-S-D-5---<-%-q-m\}߻-k,߻-Z>--|O- ---l-B!- -0 -5-)  t}G9׻tp ^R5 se]* ) UUxX&UzUQ >)H  }ͻZrV KŻdG:*` X> ź|rh^B3 -g6&@-um,------X-'---r ->-) u\>+u%u uuutunZuR:*u /uuuuuvuiu]?u uuuuuY, uuuuM:%uuuuJuuu*uuuseUCu=#uuuu~duFu6uNuuuTuAuuqukuLusaH)ubuFS2uu uݾuǾuuuuufu^8uuu˽q^Iu<&uuu}upSu!uuBuuuuuUuCֹuulufuu˸uuu@uuuuuSu;/ ߵ׵ϵuuau޴nU6ɳuduHd|uSubu5uخu0u uIu=uuuTj,̨ۨu]u8uuuuyuVu uuyusk['uuuq fXCդĤvdNڣԣ}wo[ _<I<8 %ءءԡ ġxxt ^ŊXHźŊ@)ŊŊŊ{Y4$źŊŊŊ֟şp_N=Ŋߞ ԝĝ|p[FŊܜМœŊ=̛Ŋ{̺Ŋp_u(ЙD4źŊ)ɘŊŊxŊbŊ:Ŋ ŊȗŊŊtE%cKŊE7ŊxnN4ǔŊf\ŊՓŊźŊlŊ˒ŊŊŊ1Ŋ‘\ԐbŊB_E/֎ŊŊŊMŊ4Ŋ)ŊŊuŊo'Ŋ!ŊϋsŊŊԊŊ {q\оA7҉ȉtcI4 وɈ,܇wؾO vivDv:vvv҅…n[H(vvQveR߃AvЃ v`O>-҂uvW1%vفݹvιvsb:v ùvkXEvivHvBv9 ~v~v$~}}v}v}}l}vO}|v|v|v|vS|C|7|v|{{@v{v{a{zyvyv+yv%yvxvxvxvxvxMxv?xxwvwvwwzw\www0vvvv0vvvv vcvEv1vvv`uuu`uueuEuut`t`ttythtt`ttssss`_s`Is)ss`rrrr`kr`Ur5rr`r`qqqqqjqLq@q'`5q$qqqpppp`Xp8ppoo}oOoon`n`n`sncn`Gn&nnmll`l`kk`k`k`Rkk`jvjQj`i`i`ri`Lih`h`hhhԸ`fh`6h#hgggggjg>g"g gff`fff?f`ed`d`dddcc`cccSc3cb`b`b`bbbObbb`aaa`Ya7a````Ƹ```` s`W`4`(`` ``` ______ __z__}^^}^^}^^^}^y^ m^a^Q^]I^?^5^(^^i^]^O^]^O^] ^E^]^;^]^O^]^O^]]1^]]^]]]]] ]]].]]]]]|]l]].]h]].]d]].]`]].]\]].]X]].]T]].]P]].]L]p].]A]L].]*] ]\\\O\\\[ &[[ &[,[ZZcZ5Z &pY &VY &KY;Y &YX &X &yXhXWXOXK &GX(X & X &W &W &W &WW &WWNWWV &VV &VVVtVVU &U &T &TTTw &T &cTx>g>">===~=ݷ &l=d=ȷ &F==< &< &<<<K &w<=< &0<;; &;;;; &};l;;: &Z: &G: &<:999 &x9 &r9 &)9 &988 &J87 &7 &7y776Q65 &5 &5 &544 &4 &494 &(4 &3 &3(322A21m1 &Z1 &>1 &1//:/ &'/ & / &..[.. &-2- &- &, &H, &, &, &+ &H+ &;+ &+ &* &* &* &* &* &u* &* &* &)9)F( &( &P' &J' &='*'' && && &&u& &2& && %%%%%%o%`%U%D%3%"%%%$t$o$c$~X$-$$####t#j#P#-##"""""g"L""!!]!C!8!   w    M 5 n>,k-}wN/&vpU(]J oCua @ ; y iy }qcy _ ~My ogKy y Qy Cy .$y cy Py 4y  25y y y `y 0y y y   y y D  y y = 'y  y  y y y y  y u d S B 1         >  YmErUqiG raP?'hb wgYM [E+          | v |n |h  c ] cU cO  J D J< J6  1 + 1# 1                      | t n  i c i[ iU  P J PB P<  7 1 7) 7#                       z t  o i oa o[  V P VH VB  = 7 {=/ {=)  $  w$ w$   s  s   o o  k k  g g  c c  _ _z  u o [ug [ua  \ V W\N W\H  C = SC5 SC/  * $ O* O*   K K  GG  CC  ??  ;;  77 { u3{m3{g b \/bT/bN I C+I;+I5 0 *'0"'0  # #            { s m h bhZhT O IOAO; 6 06(6"               ys n hn`nZ U OUGUA < 6<.<( # ##              y t ntft` [ U[M[G B <B4B. ) #))             z tzlzf a [aSaM H BH:H4 / )/!/    {{  ww  ss  oo  kk  zgrgl g acgYcgS N H_N@_N: 5 /[5'[5!  WW  SS  OO  KK  GG  CC  ?x?r m g;m_;mY T N7TF7T@ ; 53;-3;' " /"/"  + +   ''  ##      ~x s mses_ Z TZLZF A ; A3 A- ( "((    ݿݿ ĿĿ  ~ y sykye ` Z`R`L G AG9G3 . (. .   |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  {z\a%oX*)ZpYn|}cq[fydVils482C?Wmwh]vutx~kbrj`_^{z\a%oX*)ZpYn|}cq[fydVils482C?Wmwh]vutx~kbrj`_^UTge(<H<$Xer`|h\/'T@xDM\LDC&^.Dr<LHZ0bDh8 Lb   (̡T$t^!l܆\g& _\!D`xX\-``o \R\DCp \PPv_lv>|`wL_T?F N$l(]]5d-(,qv5f$"-uAMFo5]  )d8z-VAVN40<}rse^%yLD>mVkNH_z_sqscal___i686.get_pc_thunk.bx_gscal_sqred1_from_QR_R_from_QR_lllint_marked_lllint_i_lllint_ip_lllall_lllint_lllkerim_lllgramint_lllgramkerim_lll_scaled_lllfp_marked_lllint_fp_ip_lllgramintern_lllintern_lllgram_lll_qflll0_qflllgram0_gram_matrix_lllgen_lllkerimgen_lllgramgen_lllgramkerimgen_lllintpartialall_lllintpartial_lllintpartial_ip_zncoppersmith_lindep2_lindep_init_dalloc_dalloc_stackmalloc_pslq_pslqL2_plindep_lindep0_algdep0_algdep2_algdep_matkerint0_kerint1_kerint_ZM_zc_mul_ZM_zm_mul_minim_alloc_qfrep0_qfminim0_minim_minim2_perf_fincke_pohst___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_x_DEBUGMEM_gen_1_DEBUGLEVEL_bot_avma_gen_0_err_leave_err_catch_setjmp_gnorml2_ZM_inv_sqred1intern_sindexsort_gunclone_gclone_addsi_sign_gtovec_gcmp_roundr_dbltor_sqred1_gneg_i_outerr_RgM_zc_mul_matrixqz3_ker_gsigne_RgV_to_RgX_deplin_hnfmodid_RgV_to_FpV_gpowgs_ggval_dblexpo_sqrt_vecmax_printf_sqrtr_gmax_gconj_gabs_gnorm_timer_extendedgcd_floor_gauss_output_affrr_gshift_imag_i_real_i_primpart_shallowconcat_nfrootsQ_dethnf_i_powiu_RgX_mul_modii_bezout_gcmp1_equalii_vecsmall_to_vec_appendL_gcdii_FpX_eval_cget1_cmpsi_gceil_gfloor_glog_diviiround_gerepileuptoleaf_gprec_w_qf_base_change_gcvtoi_Q_primpart_gprecision_const_vecsmall_divrs_gaffect_rtodbl_ceil_safe_gtofp_gmul2n_gneg_poldivrem_gsub_gdiv_gerepileall_pari_warn_ZV_lincomb_gscalcol_i_gerepileuptoint_divrr_divri_divir_dvmdii_flusherr_gexpo_cmprr_affir_fprintferr_diviiexact_cmpii_sqri_ground_grndtoi_truedvmdii_shifti_mulsi_gcopy_matid_shallowtrans_gerepilecopy_shallowcopy_ginv_mulrr_mulir_mulii_gcmp0_gsqrt_addrr_sign_addir_sign_addii_sign_gmul_gerepileupto_gadd_gsqr_pari_err_Householder_get_mu_FindApplyQ_ZincrementalGS_Zupdate_row_Zupdate_col_do_ZSWAP_ZRED_gram_lll_trivial_reel4.0_affsr_HRS_update_col_do_SWAP_RED_gram_lllgramallgen_choose_params_init_pslq_one_step_gen_initializedoubles_SWAPbar_redallbar_minim0_smallvectors_do_SWAPgen_incrementalGSgen_redall_SWAP_addcolumntomatrix #1/12 1200774001 0 0 100644 39260 ` bibli2.o XYY__text__TEXTDO\__data__DATADO R|__cstring__TEXT`Ow+9eD$0GF@|$ ~4$gPt, D$($6PL$(l$D$ $PD$(9l$ T8Sw+9T0GF@n4$OTt$~7D$($O|$ D$D$(|$$APD$(TD$D$$$sOL$ D$D$$L$$ PD$$$PWTD$CD$$$)Ol$D$D$$$OD$$$^PI$T$CPUWVSD$)‹F+8T$9|$D$D$t$ ,$B|$@ƋL$GA;|$|D$D$D$$B,[^_]ËT$@4$D$CL$t$,$OD;|$|$kDe<$T$PD$UWVS,D$@H?L$ ;$L$DD$DPց?;t$t;$|$CD$DPt$@n% ,)΋L$Dt$@% )L$D9L9L)nEE2~+vAE8Fud$ t$w,[^_]$C$ C뱋E)E+L$9L$ET$2uYd$D$ t$pw9}1L$)\$,t$0|$4l$8<$@$@뫋L$@A@q8Cit$Dt$04C~+vp8C0C:FG$CG 4C;(r C;(r-Gt$uw5$H@,$D?$0@낋8C4Cu~+vu}F|$l$@L$Du ΉwE$>|$GD$DL$@D$A$9=t$F D$l$@E$=|$GD$|$?zD$@8Ct$D4CM+)9}um7|$l$@EGt$DM9|0CE9Ή}LT$@$=+$>$>ih8C04C?~+9w98C8Ft$Du  $M>$?>빋D$@$7=D$D$@8C(l$)ŋ4C+9L$wm.L$@%EC<t AE;t$l$.~L$Dt$@L$$D;T$|$}=녍9$T$e=<\$,t$0l$8|$4l$@U>OOlOOOOOOOOOOUt|>D$D)Ƌ>+9L$DwJD$D7u0L$DD$Dt$,$:\$,t$0|$4l$8<$^<$P<먋|$D?9}b>0>n+v5>(F u un$;$;뽋>>7~+v>8FEG$;ց>T$Ћ)>+L$9T$wmD$T$E%l><t EB;|$},wT$DT$D$|$Dv;L$|׋D$l$:념<\$,t$0|$4l$8|$@(lG;T$D~~<D$DM)Ƌ<+9L$DwKD$Duu0L$DD$Dt$<${7\$,t$0|$4l$8<$9$9막́<T$ЋU)ŋ<+9T$wd<(%E;<t GE;T$}'rL$DL$$cDv;L$|܉;$9뎐UWVSw,D$@S:(>O:+8 )9T$D$|$t$@ t0$L$8|$@t$G9Fu|D$l$$5,[^_]ËL$@$^7T$9|$<8cUWVSl$0s9u׍)Njo9+9w?s989VEG}D9|[^_]$7UWVS,l$D8T$@D$u|$8)׋T$+988ur"79!D$@D$)$39~ߋ8<$D$85,$4D$<$3l$D$,$i3,[^_]$6$6_R~7L$L$@߉L$<$3,$ƉD$3؅t$@Vׁ8u)Nj8+988ui"79+L$@Q)L$$T$39~Ջ8<$D$4lj,$3D$<$2$5$5h.3L$@AD$)$m2렋F1҉t'%v ޅN֋D$8Չ~ D$@Pu 83D$@|$p8()l$l$);t$w288~l$@D$48$45L$@.xԅND$@$\3}_/$T$;4ʐUWVSw+9T$ 2GnF@L$$DD$D$$ 3t$$0<$D$2|$$l$;l$,~;l$P"D$Pt$$)|$$;l$P~D$(<[^_]$2_$2$2UWVS\D$8D$x3UT$0D$4D$p.|$4 |$4!Ȩt$|$4|$4 !Ȩt11;|$|3t$|)l$ 3U)9D$|^D$ )D$D$ )9D$|.D$1;|$|}t$tT$L$ ;|$|||$8L$l$|D$<|$8119l$"9<$((9D$|>l$7u 7|$D$$)4$+ًL$D$$'uD$L$9|됋L$@$'9|W$+/$p+g.0c.~+9wg.8F"$-+ދg.c.u~+r}$*퐐1ɉt$|$l$|$ tȋt$|$l$ÁՃtܾ9}(u-T$D$&~9|؋1ɋ1UWVSD$0t"$T$/*L$0AL$0xt_D$4t=L$0D$D$D$<$T$@t*x!~9}͋|$81҅t[^_]Ín݋T$8҉D1҃|$8؉%|S(Z D$D$u( >t$D$$%\$,t$0|$4l$8<$(ʋD$$#u ;|$|덉Ƌ)+rD$}p$'ސ,\$t$ l$(|$$(t$08l$4tV$T$N'l$4$"()$D$l$<$%\$t$ |$$l$(,ËEu볐UWVS_,;(D$D$@$tD$D$uj$T$&D$@;(87(+)9."uD$9|@uD$u t$ul$D$$$,[^_]$"&D$L$@D$D$D$tL$@L$DL$9|{$%LUWVS+,'D$D$@0l$'+(T$ )ʉT$9l$"/uD$|$@%9}4?;t$}l$DDl$@D$D$L$@;t$|e4?;t$XT$D,$D$T$@D$$L$@;t$|$$tl$@,$,{$T$t$D $,t$ t$0\$|$$l$(tHt2r$T$V4$:\$t$ |$$l$(,ËF.u ˅~J(u+v0EF@~$Չŋ8݉w+v0GFn$א + à - UWVSD$w+9w>2GF@D$FD$,t|$(D$,9|<[^_]$봃tBD$,L$(9L$,}ы|$,t$PD$T$,DD$(T$,9|D$,D$(9D$,.}t$,|$PDDD$(t$,9|gD$TtED$$RD$Tt EtL$PA$|$PG$$D$TEx $t$MBT$PD$(S>D$ D$(D$D$$D$D$ $[UWVS諶 D$ D$D$ $}[SZ D$ D$D$ $Q[S. D$D$D$ $%[S D$D$D$ $[Sֲ D$D$D$ $[S課V D$D$D$ $[UWVL$ %x|,4/L$ D$D$$$T$(t xn9}1҃^_]Í~쐐t$l$|$l$ }9|1t$|$l$ËL$$D$D$b.uԃ9|Vt$ L$$FQ@+BtэD^ËAD$F$g球t$|$t$$F|$ D$G$t t$|$Ét$<$搃D$(D$D$$$T$ Ð L$T$9 ƒ ÐUWV|$ l$(;7| 1^_]ËODD$L$$$W.uփ;7|NNNlegendrenegative degree in legendreargument must be positive in polcyclonot a series in laplacenegative valuation in laplacenot a series in convoldifferent variables in convolprecision<=0 in gprecpolrecipbinomialtwo abcissas are equal in polintnot vectors in polinterpolatedifferent lengths in polinterpolateno data in polinterpolatenot a set in setsearchnot a set in setunionnot a set in setintersectnot a set in setminusdirmuldoubling stack in dirmul not an invertible dirseries in dirdivinvalid bound in randomn too small (%ld) in numtopermpermtonumnot a vector in permtonumreverse polmod does not existnot a polmod in modreversegen_sortvecsortindex too large in vecsortnegative index in vecsortincorrect lextype in vecsortqy O?s"⍀"P_Z ⍀ PFA⍀P-(⍀P⍀P⍀Pݬ⍀PɬĬ⍀P鰬諬z⍀zP闬蒬e⍀eP~yP⍀PPe`;⍀;PLG&⍀&P3.⍀P⍀P⍀P⍀Pϫʫ⍀P鶫豫⍀P靫蘫⍀P鄫~⍀~Pkfi⍀iPRMT⍀TP94?⍀?P *⍀*P⍀P⍀PժЪ⍀P鼪跪⍀P飪螪⍀P銪腪⍀Pql⍀PXS⍀P?:m⍀mP&!X⍀XP C⍀CP.⍀.P۩֩⍀P©轩⍀P驩褩⍀P鐩苩⍀Pwr⍀P^Y⍀PE@⍀P,'⍀Pq⍀qP\⍀\PܨG⍀GPȨè2⍀2P鯨誨⍀P閨葨⍀P}x⍀Pd_⍀PKF⍀P2-⍀P⍀P⍀Pu⍀uPΧɧ`⍀`P鵧谧K⍀KP霧藧6⍀6P郧~!⍀!Pje ⍀ PQRRRRRS+SDS]SvSSSSSS T%T>TWTpTTTTTTUU8UQUjUUUUUUVV2VKVdV}VVVVVVW,WEW^WwWWWWWW X&X?XXXqXXX$Ë $Ë$ñNNmN"NsM[MYVMRM GM/MY*M&M MMYLL LLYLL LLYLL LLYzLvL kLGL7L%RK/LTOK'LLYK LYKKK KsKbRUIhKWKGKHRUIz@i@W@C@???Y>J?:?Q>>Y>>Y>> >>QI<w>f>Q>A>3> >YI<=YI<==YI<=YI<=YI<b=YI<M=YI<;=YI<<~<YI<t<YI<n<E< 8<(<Y <"<Y << <;Y;;Y;;Y;;;Y;;Y;;Y;u;Y;i;D;<;,;Q;; ::`Q7::::p:7: :9999_9Y79Y78Y78888I88 8;Q77Y77 777u7477666BQ466Y46Y4k6W666 6Y45Y45Y4P5544;Q44Y44Y44 4p4Y44j4Z4%Q44P4D404 4332Y22Y22 22p2\21Y11Y111 Q1111Y11 p1`1V1Y 1P1D141P 11Y 11 00Y/00q0=0100Y//Y// //Y// /n/YP/f/T/YP/L/ ///\O/. c.S.P5.1. .-s-Yu+m-Yu+e-K-Yu+5-Yu+--Yu+"--,,,,i,,Yu+,Yu++++Yu++Yu+q+ S+Yc*K+++Pc****Pc***Pc*_* 7*&**)Y%r)Y%:)())((((`P%((}(q(R(H(6(('''Z'H'Y%}&Y%f&Y% &Y%% %%%n%b%V%$Yi$$Yi$$Yi$r$Yi$e$ W$G$PP <$$$Y ##Y #Y #Y ]#Y #""""""Y "h"Y U"Y ?"Y " "!!!!!!!Y |!J!Y (!Y !Y   Yi Yi r Yi e  V :  GPYY yU&YYYYtY`Y@<840,($  D ZYT,YTYT YTYTYTYTnYTfYTB4YTYTTTTTTTTTTTTTTTTT|TxTtTpThpTP -1PYYtYaSEYYYY/Y%YpYjYbTJYYYYYYYsGY,R$Ynnn YYYnYnnYnYYYYY hWI8#YUYUYUx?YU&YU YUPU|OUQ B2O'~YcSO"Y {"YiY+YYYY Y |Y !Y Y Y Y Y Y Y Y  Y r O B Y 4     Y Y   e Y F Y @ Y  Y   . Y  Y   Y  Ya  x k ] L 8 * Ya Ya Ya Yad J YaYa] O?O4 YYpYhMY.Y&YYxdYY iOY`OnPY> YzG1YYYYY Y |k$m?Y F*Y Y wY `Y :Y  # YXYX  YXYX  YiXYiX  YPXYPX  Y7XY7X  YXYX  YXYXy t nYWfYW` [ UYWMYWG B <YW4YW. ) #YWYW  {YW{YW  wYoWwYoW  sYVWsYVW  oY=WoY=W  kY$WkY$W  gY WgY W z tcYVlcYVf a [_YVS_YVM H B[YV:[YV4 / )WYV!WYV  SYVSYV  OYuVOYuV  KY\VKY\V  GYCVGYCV  CY*VCY*V  ?YV?YV  z;YUr;YUl g a7YUY7YUS N H3YU@3YU: 5 //YU'/YU!  +YU+YU  'Y{U'Y{U  #YbU#YbU  YIUYIU  Y0UY0U  YUYU  YTxYTr m gYT_YTY T N YTF YT@ ; 5YT-YT' " YTYT  XTXT  XhTXhT  XOTXOT  X6TX6T  XTXT  XT~XTx s mXSeXS_ Z TXSLXSF A ;XS3XS- ( "XSXS  XSXS XnSXnS XUSXUS X@*%` DBG 2XU H1-d$48/>1LL@tLt$M|M`$7PL-K2uO|HClu_z\7W 05QG<%%Ci,aYb=<UNk  _tchebi___i686.get_pc_thunk.bx_legendre_cyclo_roots_to_pol_intern_roots_to_pol_roots_to_pol_r1r2_mathilbert_matqpascal_laplace_convol_gprec_gprec_w_gprec_wtrunc_polrecip_polrecip_i_binomial_vecbinome_polint_i_polint_gtoset_setisset_gen_search_aux_gen_search_setsearch_ZV_search_ZV_sort_uniq_setunion_setintersect_gen_setminus_setminus_dirmul_dirdiv_genrand_getstack___i686.get_pc_thunk.cx_gettime_numtoperm_permtonum_modreverse_i_polymodrecip_pari_compare_lg_pari_compare_long_gen_sort_aux_gen_sort_gen_vecsort_vecsort0_vecsort_sindexsort_sindexlexsort_indexsort_indexlexsort_sort_lexsort_tablesearch_cmp_vecint_cmp_prime_over_p_cmp_prime_ideal___i686.get_pc_thunk.axdyld_stub_binding_helper_lexcmp_DEBUGLEVEL_cmpii_gcmp_mulii_lontyp_top_gen_1_gmul_DEBUGMEM_gen_0_bot_avma_pol_x_pol_1_free_gpmalloc_caract2_RgV_to_RgX_gauss_RgXV_to_RgM_RgX_powers_divis_rem_timer_randomi_pari_rand31_shallowcopy_fprintferr_gcmp_1_gcmp1_shallowconcat_equalii_vecpermute_gequal_GENtocanonicalstr_gcmp0_gabs_gsub_gerepileupto_gdiv_gaddsg_diviiexact_seq_umul_cmpsi_addsi_sign_normalizepol_i_modii_gpowgs_affrr_normalize_mpfact_gerepilecopy_addii_sign_gtrace_gnorm_divide_conquer_prod_gadd_RgX_divrem_gneg_mu_gerepile_gerepilemanysp_gcopy_pari_warn_gdivgs_addmulXn_gmulsg_gmul2n_gerepileuptoint_divis_mulsi_int2n_pari_err_gen_sortspec_reel4.0_cmp_nodata_pari_compare_small_veccmp #1/12 1200774003 0 0 100644 73140 ` buch1.oH dd$ __text__TEXTnd__data__DATApԐH__cstring__TEXTE__literal4__TEXT$L__literal8__TEXT t__bss__DATA$@__picsymbolstub2__TEXT0tXx__la_sym_ptr2__DATAP__nl_symbol_ptr__DATA(X(__textcoal_nt__TEXT @ XL P'' 42UWVSl$VD$\tFD$\D$\1D$\T$XQP,$\$D$Qf.MG1D$\WP,$L$ $à\$T$ L$Yщ, )͉l$D +E9D$D"L$D1D$LD$\‰D$T҉D$HuBt$\9w%l$<1҉D$P99vD$T;T$XwyD$\41t$TD$PD$T9|$T9s+D$T؉D$01҉D$P99r߉9tgD$TT$T;T$Xv$l$L($t$H0D$D0u L$D1D$Dl[^_]$[ދD$H<$D$.D$H D$L+u9w02E,~D$TFD$PF |$LD$D4-$‹D$H<$D$脞UD$H T$8Љ+D$L9(L$8A,} D$TED$PE D$LT$D,D$LD$4+9w4(D$4@,}T$0UD$PE L$LD$D,6$$R|$TD$H<$D$荝D$H( D$L}+9w18E,L$TOOT$PW D$Ll$D|w$oD$H<$D$UD$HL$w+(vgØØ0G"FFF9o+rØ(G"n nz$跁$詁닃L\$<|$Dl$Ht$@T$\Bl$XD$,t1%rщ t$,څOT$,T$,Epm,$|$ t<$tT$T\$ tZpmD$Tl$$s,$sD$,D$ D$D$PD$\$ \$$\$u`$-u?$u#$tA$t$t$t\#i$t$t$tet$4$r@D$t$D$$r$D$urt$tD$4$LrD$ $lD$$<$D$rD$p'$lD$,$rrFUWVS?Wv$ $D$|o$D$dEt$d@@4$D$l$D$n$$$ FD$t%P$D$ T$x$t$dD$F@$SpWv@SvL$ D$h+)9D$ l$`D$`l$`D$ "EDŽ$$9$Tt$T|$P$t$tD$D$lD$D$d$ml$dNj@D$E@$ot$dhGD$F@$o|$T7L$P@D$\+9VT$X9>|$XD$T8F"oD$\G|$LD$lj,$Do$l$l4$l<$D$HlD$DWv0Svn+9PWv(F"D$T$L$D$$D$ -l$D$ nE|$D$H${n$Ml<$D$gn$ $k$|$cnEOvt$Du 8t$<$,n$kD$8E<$D$nƋED$D$8$mt$$Mk<$D$mD$$k|$Ƌ|$X$<$D$ D$jt$$kD$k|$Ɖ$kD$,$h$5k|$|$$ k$D$(}$1ҋ|$,D$41t#t$09D$4CT$pl$,BED$p$g$ƍDt,)t$pՉ4$HjL($|-9Nωȉ$Gv8u;$<$~i$l$$ht$xD$4$iD$d'$#c$ D$T$i뢋T$||$$gĜ[^_]ËFT$(WvL$$(}+9w0Wv8E$L$(wO|$l$d,$f$l$l$D<$i/9$N$J9$4$|$f$MlD$TL$PD$@+ 9w$D$T(L$@A"D$\}El$L$k$k$kUWVS;l$D$D$4$ cx@@D$TwFD$\HL$XA%?D$@D$TD$D$\$Btl[^_]ËT$T1ɋBPBt'%zщ ߅Nɉ4$1L$D$1҃D$҉tD$4l$8hT$4,hl$,9vD$d19D$8tD$8뒃L[^_]; hw;|$h!Ȩt7Ghu=D$4'h4l$4h4hT$4h딉|$$cD$<$a1҃q1hg|$08t$9rD$0L$,1҉G%02hUWVS_Lwe8sew+Pwese0GF`FGt$eRD$4$N^$_1#D$`|$$U)‰ƋD$${^$j^UWVSʼ\D$tD$DD$@\$HكOL$p\$8l$|A%tL$py))P1ɃT$,`L$0`+)97%D$(,T$$a`L$4+L$,D$4L$ +9gD$ D$(DD$$|$ 919t~L$D;t$@}D$ <a<;t$@|9}a `u=D$Dpat$D$$TR$3R`T$4\[^_]Ët$D2N,$t$M[믋a$[UWVSK\c^D$L^L$L|$L%D$D)_^+8L$@9T$DD$@D$Dt$@ "{^D$HD$D9D$HD$pD$,T$H^,^D$^$Z{^t$$RP^^^|$l$L$ $PxƋh Gt$^4$D$ ^D$^D$MD$<D$HD$D9D$H.{l$pl$,l$0^t$H<^D$^$Wc^Nj_^++t$09D$,wzc^0D$,uZD$, "l$HD$@4~;l$p~D$HD$D9D$Hn|$D$L;l$p~$W$Wu$WJUWVSCD,$LB|$t9|V0u$$Ĝ[^_]LWD$D$D$|$ D$L$,$L$MUWVS7PO%$$DŽ$DŽ$$ы$$)ω$O+9$$$$ ,$/E$$$$9$N$)$OD$(D$$$$9$$$9$!ШtODŽ$]O$k9($$)$9/P1ɋ89}7$t"/PɋtT$ $$9|Ʌu$$덋$$PO$DŽ$$DŽ$$DŽ$DŽ$$$ ȨO$9sEO8$$$$T$ L$,$|$D@$SCPD$;PD$$$>$$$‰$DŽ$$ED$B$?I$ $D$PD$$$q$i $} $1$ɋ$$D$t$ l$|$$&$ $ui/P1ɋ8g99}2$t/Pɋt T$ $Չ9|΋$ʉ$2OO֋)8)׉|$x;$iOL$tD$pCP4$D$ ?PD$;PD$=L$tƋD$x9sD$p8t$,$bBƃ;$~t$,$HB$DŽ$/P8g9D$l9}<$t'/PL$lɋt D$lT$$ՉD$l9|ċ|$l$$U$O$@)D$hO8)׉|$d;|$hdL$`L$(L$\CP4$D$ ?PD$;PD$<T$`ƋD$d9sD$\8t$,$#Aƃ;|$h~t$,$ A$@ $D$F$2Fu&$Ex?@xE H$$t$A$fFt$$$@$IF9$$t$$9o$$$$$@D$TD$XP;uP$ D$$l$$$9$;$}57P$$,$+;$|ˋ$@D$DD$HP;*$Et $,$BD$$@$8ŋ$x$HAL$D$ G<$D$8Pt$l$$8ƋOuy$$4$D$j8$t$9$]$$,;P$0DŽ$ $D$=$BiT$D<#P,P4T-D$HT$$C9苄$G4D$DPt$D;0~~;$}37P$$,$+;$|͋$@D$PP;($Et $$BD$$@$a7Ƌ$H$P9t:BT$؉D$ A $D$ 7‹Pt$$D$O<#PD$LP4D$LD$D$P$B;D$L$G)4P;(~L$TT$X<#P,P4L-$L$8B9苄$G4D$TPt$T;0~3=$L$>#PD$;P$AP|$$k7CP?P;Pl$ t$L$$,7pŋx VꋃCPT$T$lD$?P$D$ ;PD$6pŋx Fx艄$|$4$@uF%? @FOɋCP,$D$ ?PD$;PD$d6룉|$4$e@uF%? @FO6CP,$D$ ?PD$;PD$6 =$T$F=IL$|$#PD$;P$"@Pt$$5?P;PCP|$l$L$ $5pŋx FꋃCPT$D$?PD$ ;PD$D$|$45pŋx Fx‰$|$4$1?uF%? @FONjCP,$D$ ?PD$;PD$4롉|$4$>uF%? @FO4CP,$D$ ?PD$;PD$4 O8M=$=:$ui/P1ɋ8g99}2$t/Pɋt T$ $Չ9|΋$ʉ$OO֋)8)׉|$<;$gD$$L$8D$4CP4$D$ ?PD$;PD$3L$8ƋD$<9sD$48Zt$,$28ƃ;$~t$,$8$$DŽ$$$4;$$},7P$$<؉D;$|ԋ$BD$,D$0P;0~DPD$BD$B$D1ƋOy$4;l$T$,<#P,P4T-D$0T$$<9苄$G4D$,PL$,;~$]=$T$X9L$@$#PD$;P$4<PL$$1CP?P;P|$ t$l$$1pŋx FꋃCPT$T$@D$?P$D$ ;PD$F1pŋx Fx‰$R|$4$C;uF%? @FONjCP,$D$ ?PD$;PD$0롉|$4$:uF%? @FO4CP,$D$ ?PD$;PD$0 $GD$$@$l:FDŽ$6@ D$B$[:uy$pF%? @F$@ H$FD$$@$9FD$$@$9V$AD$$@$9t($BD$$@$9CPD$;PD$$$.$$/DŽ$=$t$y6=$$#PD$;P$R9CP;Pt$$L$F.xƋh GCPT$D$ ;PD$$$#.xƋh Gx$l$<$8uG%? @GMɋCP4$D$;PD$-뭉l$<$?8uG%? @GMGCP4$D$;PD$E-&,$9|7=$D$=$T$ D$|$,$6gOu$$[^_]+7=$D$=$D$ L$|$,$6$8$UWVS{L:D$4:D$8:0ō )͋:+l$09gD$0,0D$8;:T$,:t$8DD$<:#T$0L$(%D$$:(D$l$ ;t$$:189}1D$0t:t T$,$T$(Ń9|υu t$ D$0뗋D$1D$XpVtp~D$T|$$-u|$l$$3.D$`8D$|$$-.~̋L$P|$ $m-$L-@$(-$-낋L$|$ $S-.)D$P|$$!-$-@$,$-$-$q-K$`- UWVSNj\D$p$))D$LD$ppVBD$8t1%zщ %|$8څOT$8T$8nl$H~ t$8|$D}/GD$@E)щL$4/+9T$4U"D$40t$@QE )Ήt$0/+9t$0"u>T$H$'D$HNj% ,D$<D$@9D$</L$,D$l$@|$HFD$<9l$<+D$@T$HL$<+D$$(<\$,|$4t$0l$8D$@|$D@ !D$GWpB@D$l$D$$D$!u Ȩl$DE@$ D$T!t D$D$ $D$4!u1҉Ћ\$,t$0|$4l$8L$D$0$>t$V0N|$tq|$t<|$(1!Ȩ.D$D$ t$@4$ VOփ)ՃuD$D$D$@$ȉVUUU)R)oD$D$돃VOփ)׃=뚋l$DExE@$'%D$uVVOփ)փ.D$D$r$D$D$D$<$#ʼnl$$8$؅.lD$D$l$$@F,$6E1҉t#%u u,ޅN֋D$׍ D$E|$$$D$L$@A $%B4$D$#V%>t21tvxڅNʉL$$e$ދFyD$<\$,踂t$0'|$4l$8D$'D$ 'D$D$DD$D$@$xƋh Gx\$,t$0|$4l$8<Él$<$"uG%? @GM'4$D$ 'D$ 'D$뛃,\$t$ T&|$$l$(D$ L&D$D$4D$D$0$xƋh Gx\$t$ |$$l$(,Él$<$="uG%? @GMT&4$D$L&D$FUWVSO|$0%0%vt=9zt9}l$4D9u9|D$89Bt Ѓ[^_]1T $‹D$<D$8:9񋃓%}|$49|%말UWVS胀,D$@l$DP$u)Nj$+9wJ$8E%~DEx ,[^_]ËG%? @G$r!먋EurD$@$0M$+)9w5}l$@E%~L$@t$@Fd$ 뽋D$@E=?}j$u)Nj$+9w1$8E%.D$X E%?- }pl$@$u$M+)9w2}T$@%.L$@$D$@$$0+)9$L$@:%~T$@D$@H|$@$$u+)9h$8E%~Du!Wс? t$D$@l$$t$$|$l$$H|$@D$ىL$ G<$D$l$@Pʼnс? |ul$@$u$M+)9w4}L$@%~T$@D$@@W$1HG%? @G$G%? @G?$$΁)Nj$+9w*$87,$|$(t$@Vo$4ȋUtd֋$)Nj$+9w,$87|$L$@ $|$@W$ƋD$@l$$UWVS{$$x <$D$D$D$l4$#$D$h(|$D4$aNOΉ)ʃD$D$`D$$$$ƋG@%?D$XT$XD$D$F$ŋF$'L$XD$$T$D$xD$F $t$XD$$,$D$tD$l$lD$\$l$<T$\@@$D$lD$hD$L$l@L$@p>4$|$<;t$<}%|$<D@;t$<|⋃1D$8WD$@D$l$$|$8:D$?$|$lj$u~؉몸)D$`|$dD$$D$D$t$$T$tT$$D$l$X$t$dD$p./)щL$4++9ZD$4L$419 GT$4B<$T$D$d$@t$dD$0/%D$(Nj)++l$$9D$(D$$L$$D$( D$,l$(9l$,|$|t$|$D$dL$,l$x4D$D$  3E |$4$l$|$$0NjD$|$D$| ƒ  ШΉ<$ti tKD$ t$$t$,L$$D$(t$,94l$d|$$EGČ[^_]ËD$04$D$롋E%?*D<$D$ t$$ha $T$L$|4mv$VT$pD$D$\T$$L$49|$S4$D$D$D$D$@$D$@rD$?|$D$D1~M/(+}+v /8EG@w$ҋ/+ދ}t$Dw+vuGFl$Dn[$TӋ$D$h $D$G@|$l@|$L($D$H9}"}T$H@9|1u_D$HD$D$D$L$"uD$?$L$"Ɖ$.t~؉릸)<$D$D$D$D$L$D$LjD$?|$$T$H1L$lL$T($D$P9}"}L$P@9|1u_t$PD$TD$t$$M1D$?$t$Ɖ$ .h~؉릸)<$D$ D$D$D$T$ D$TjD$?|$$ L$P1<}}not a polynomial of degree 2 in quadhilbertquadhilbert needs a fundamental discriminantform_to_idealquadraynot a polynomial of degree 2 in quadrayyquadray needs a fundamental discriminant *** Bach constant: %f sorry, couldn't deal with this field. PLEASE REPORT rel = %ld^%ld cglob = %ld. %ld buchquadbe honest %ldbe honest for primes from %ld to %ld #### Tentative class number: %Z KC = %ld, need %ld relations ...need %ld more relations *** Changing sub factor base Bach constant <= 0 in buchquadnarrow class groupincorrect parameters in quadclassunitquadhilbertimagproduct, error bits = %ldrootsp = %lu, q = %lu, e = %ld class number = %ldcomputeP2get_lambdalambda = %Z [%ld,%ld] quadray: looking for [a,b] != unit mod 2f [a,b] = factor baseFB = %Z subFBquad (%ld elt.)powsubFBquadgeneratorssmith/class group. Time %s rel [#rel/#test = %ld/%ld]: %ld random %ldPqrf5_rho_powreal_relationsinitialregulator is zero. #### Tentative regulator: %Z quadhilbertimag (can't find p,q)quadhilbert (pq)[quadhilbert] incorrect values in pq: %luincorrect data in findquad?@@>@??&DT! @???lo⍀oPllZ⍀ZPllE⍀EPll0⍀0Pllgl⍀PSlNl⍀P:l5l ⍀ P!ll ⍀ Pll ⍀ Pkk ⍀ Pkk ⍀ Pkk ⍀ Pkks ⍀s Pkk^ ⍀^ PrkmkI ⍀I PYkTk4 ⍀4 P@k;k ⍀ P'k"k ⍀ Pk k ⍀ Pjj ⍀ Pjj ⍀ Pjj ⍀ Pjj ⍀ Pjj ⍀ Pxjsjw ⍀w P_jZjb ⍀b PFjAjM ⍀M P-j(j8 ⍀8 Pjj# ⍀# Pii ⍀ Pii ⍀ Pii ⍀ Pii ⍀ Pii ⍀ P~iyi ⍀ Pei`i ⍀ PLiGi{ ⍀{ P3i.if ⍀f PiiQ ⍀Q Pih< ⍀< Phh' ⍀' Phh ⍀ Phh ⍀ Phh ⍀ Phh ⍀ Pkhfh ⍀ PRhMh ⍀ P9h4h ⍀ P hh ⍀ Phhj ⍀j PggU ⍀U Pgg@ ⍀@ Pgg+ ⍀+ Pgg ⍀ Pgg ⍀ Pqglg ⍀ PXgSg ⍀ P?g:g ⍀ P&g!g ⍀ P gg ⍀ Pff ⍀ Pffn ⍀n PffY ⍀Y PffD ⍀D Pff/ ⍀/ Pwfrf ⍀ P^fYf ⍀ PEf@f⍀P,f'f⍀Pff⍀Pee⍀Pee⍀Pee⍀Peer⍀rPee]⍀]P}exeH⍀HPde_e3⍀3PKeFe⍀P2e-e ⍀ Pee⍀Ped⍀Pdd⍀Pdd⍀Pdd⍀Pdd⍀Pd~dv⍀vPjdeda⍀aPQdLdL⍀LP8d3d7⍀7Pdd"⍀"Pdd ⍀ Pcc⍀Pcc⍀Pcc⍀Pcc⍀Pcc⍀Ppckc⍀PWcRcz⍀zP>c9ce⍀eP%c cP⍀PP cc;⍀;Pbb&⍀&Pbb⍀Pbb⍀Pbb⍀Pbb⍀Pvbqb⍀P]bXb⍀PDb?b⍀P+b&b~⍀~Pb bi⍀iPaaT⍀TPaa?⍀?Paa*⍀*Paa⍀Paa⍀P|awa⍀Pca^a⍀PJaEa⍀P1a,a⍀Paa⍀P``⍀P``m⍀mP``X⍀XP``C⍀CP``.⍀.P`}`⍀Pi`d`⍀PP`K`⍀P7`2`⍀P``⍀P``⍀P__⍀P__⍀P__q⍀qP__\⍀\P__G⍀GPo_j_2⍀2PV_Q_⍀P=_8_⍀P$__⍀P __⍀P^^⍀P^^⍀P^^⍀P^^⍀P^^u⍀uPu^p^`⍀`P\^=Voӓ7Pi͔1Jc|Ǖ+D]vږ %>Wpԗ8QjΘ2Kd}ș,E^wšۚ &?Xq՛ 9RkϜ3Le~ɝ-F_xÞܞ'@Yr֟!:SlР4Mf$Ë$^>&͌uR2 ڋiQ3gO?4Љʒ5وш=#yiaQ Ԇz\H4 P$( քĄ}}j}S9#}}}ȃA}8} ͂Z}1}+}}Á}}V}M}/}}̀}6}+}}}}y( iD~KD~%~D~~P~~( ~~T~~\~i~8~ ~T~~\~~( }}TH}}XH}}\H}}}j}TH}`}XH}N}\H}D}( "}|||C|-| |{{{{zz{zx]zMzzzyyyxyy}ymy]y"yx( xxxyxgx9t\xKx:x)xxwwwww9twvwSv9tIv9tu9tu9tPu(u9tt9tt9tDt5t( 'tttsssssssssosTsmB<>`B@>IB>AB>;B#BB>AAAAAA_>A<>AAS>EA9A%AA@`>@@`>@`>@>X@>*@,>$@<>@(>@(>?(>?`>?>??(>?>?<>y?>^?>X?@>F?>,?>>>> >>>>>>>>>>( >4<:>< >>>4<=8<=4<=@<=`<=$<~=8<q=4<4=<<%=<<8<<4<<<p<<<9<<<( <;;;5;5;;5~;g;5W;F;+;;:: 5::5:5{:8:52:5"::595959959595u9d9T958909%5#99595888858{85J8:8857577575s75"75756566}6$655( 555:5)544444-q4-N4<4(4-4433-33)33332222V2-52-/21111111p1`1T1C1.1&1110000000q0-h0\0K0?070$00/-/-/-/////,//.n.-e.-_.#. .----( ---ѐ#-#t-]-#G-7-'- -,,,,#,,,,v,#k,Z,I,8,',,,+5#++#+#++++#+s+#g+#U+I+1+!+#*#***G*#4*#*#))#)))))q)a)U)?)/)))(#(#(#(((({('#''x'#R'#L' '#'#&#&#&#&#&#&#%#%#s%#<%%$$@$$#####( ##`<"####p<"$###p<"""?<""}"<"8"( ""?!"!!!!p!!}!m!p!!(     p l d X p ( U U U wU qU ZU TU E0U 9$U U U {fP U E8 U HU DU PU LU skHU e]PU MU B1 U U U U (U v(U U LU L@U ,0U U 0U `U <U MU skcCU ]%U U>U U HU PU TU 0U qZDU BU -,U TU U HU bHU ,U <U ,U U PU U x(U j0U R(U L,U ;U LU (U U P=U U U U H1LU eU >0U 1U (U (U 0U U <U ~(U xTU 'U U U U O(U HU PU TU U (U TU \U zXU tlCU 0U TU U 0U DU HU PU cHU YPU U $U U U TU LU  U 0U  U 0U G 6 . " pU  TU DU DU U 8U U 4U U \ U V U F U @ 0U TU TU j U ] :U Q ( F > 5 / *   '   (   %    ( Z D 6 "  (   r f ^ hT H >   w@]G7(  ]/) <) ( hL<"( _ 0 *   N 4     p P D >,   ( p jb\' W QwIwC' > 8^0^*' % EE'  , , ' ܣ ܣ ' أ أ ' ԣ ԣ ' УȠ УȠ ' ̣ ̣{ ' v p ȣh ȣb ' ] W ģ}O ģ}I ' D > d6 d0 ' + % K K '  2 2 '   ' ' ' Ο Ο ' ' | v n h ' c ] U O ' J D j< j6 ' 1 + Q# Q '   8 8 '   '   ' ' Ԟ Ԟ ' | | ' | xt xn ' i c t[ tU ' P J ppB pp< ' 7 1 lW) lW# '   h> h> '  d% d% ' ` ` ' \ \ ' Xڝ Xڝ ' T T ' Pz Pt ' o i La L[ ' V P HvH HvB ' = 7 D]/ D]) ' $  @D @D '  <+ <+ ' 8 8 ' 4 4 ' 0 0 ' ,ǜ ,ǜ ' ( (z ' u o $g $a ' \ V |N |H ' C = c5 c/ ' * $ J J '  1 1'  '    '  '  ͛͛'  ' { umg' b \TN' I Ci;i5' 0 *P"P'  7 7'  '  '  '  ܢӚܢӚ'  آآ'  {ԢsԢm' h bТZТT' O I̢oA̢o;' 6 0ȢV(ȢV"'  Ģ=Ģ= '  $$'    '  '  ٙٙ'  '  ys' n h`Z' U OuGuA' < 6\.\(' # CC'  **'  '  '  ߘߘ'  ƘƘ'  y' t nf`' [ U|{M|{G' B <xb4xb.' ) #tItI'  p0p0'  ll'  hh'  dd'  `̗`̗'  \\' z tXlXf' a [TSTM' H BPh:Ph4' / )LO!LO'  H6H6'  DD'  @@'  <<'  8Җ8Җ'  44'  z0r0l' g a,Y,S' N H(n@(n:' 5 /$U'$U!'   < <'  ##'    '  '  ؕؕ'    '  xr' m g_Y' T NtFt@' ; 5[-['' " BB'  ))'  '  '  ޔޔ'  ŔŔ'  ~x' s mܡeܡ_' Z TءzLءzF' A ;ԡa3ԡa-' ( "СHСH'  ̡/̡/' ȡȡ' ġġ' ' ˓˓' ~' y ske' ` ZRL' G Ag9g3' . (N N'  55' LHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  WUOfbREi:pk=9ZdLlzw[YBA@cSJ_N\7XPmjgahQxK{^6]o>;GFyT|qr~<H}MeDIv`8nWUOfbREi:pk=9ZdLlzw[YBA@cSJ_N\7XPmjgahQxK{^6]o>;GFyT|qr~<H}MeDIv`8n5Lus4VtC?#-5pT 048*D3$<PCHMXT\\>d(h(CsE<TLLm,<I|i`Mo0tx@ `~!t*6<}A}  rhL | K _ 3("&BWh q A_6Q.u(i>Tr#}?hm 5]Bx}`[ii]:c)3(Pt!zJG!wQ-8# LaWk?BV/XN_getallforms___i686.get_pc_thunk.bx_quadhilbert_form_to_ideal_quadray_check_bach_wr_rel_dbg_rel_buchquad_buchimag_buchreal_quadclassunit0___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGMEM_compimag_gen_m1_gen_0_pol_x_DEBUGLEVEL_diffptr_gen_1_bot_avma_divir_dethnf_i_hnfadd_i_hnfspec_i_const_vecsmall_truncr_sqrtr_free_gunclone_exp_dbltor_log_check_quaddisc_gaffect_rtodbl_addrr_sign_mulir_gcvtoi_gcdii_affrr_mulrr_qfr5_dist_addii_sign_divrr_pari_rand31_flusherr_powgi_qfr3_to_qfr_qfr3_rho_qfr3_red_qfr3_comp_qfr3_pow_smithrel_qfr5_comp_qfr5_rho_qfr5_red_qfr_to_qfr5_gclone_vecslice_gerepileuptoleaf_gerepileall_mulur_divrs_krois_maxprime_check_gpmalloc_diviu_rem_bnrstark_bnrinit0_bnfinit0_quadpoly0_fetch_user_var_gnorm_deg1pol_i_colreducemodHNF_eltmul_get_table_poltobasis_gscalcol_i_conductor_isprime_dvmdii_Q_content_divis_rem_nfroots_content_gcmp0_simplify_poldivrem_galoisapply_gneg_gadd_truecoeff_initalg_rnfequation2_quadpoly_nffactor_equalui_issquarefree_subresall_gsubst_gaddsg_monomial_cyclo_gerepilecopy_gprecision_coltoalg_roots_to_pol_gexp_ellsigma_gmul2n_gsub_PiI2_elleisnum_gconj_gsigne_imag_i_idealdiv_nfnewprec_algtobasis_i_addsi_sign_idealmodidele_idealmul_shallowcopy_idealhermite_checknf_quadhilbertreal_isfundamental_checkbnf_gerepileupto_pari_warn_srgcd_derivpol_grndtoi_real_i_roots_to_pol_intern_gexpo_gpowgs_gmul_gdiv_trueeta_gdivgs_lift_gmodulss_sqrtr_abs_affir_chinese_gmodulo_shifti_muluu_compimagraw_fprintferr_cgcd_msgtimer_cmpui_timer2_gequal_equalii_absi_equal_gcmp1_redimag_primeform_u_kross_umodiu_mului_log2_sqrt_pari_err_quadhilbertimag_computeP2_get_lambda_HASHT_CBUCH_reel4.0_Disc_PRECREG_primfact_exprimfact_hashtab_limhash_subFB_powsubFB_sqrtD_isqrtD_FBquad_KC_subFBquad_powsubFBquad_FB_real_relations_vperm_get_R_KC2_factorquad_get_clgp_real_be_honest_imag_relations_get_pq_getallelts_treatspecialsigma_numFB_badprim_largeprime_gcdreal_compocyclo_QFR5_comp_QFR3_comp #1/12 1200774007 0 0 100644 129036 ` buch2.o $p[K __text__TEXT(\O __data__DATA(d,__literal4__TEXT(8|,__cstring__TEXT ) ,__bss__DATAK__literal8__TEXT84P7__const__DATA488__picsymbolstub2__TEXT4H8,__la_sym_ptr2__DATAZH(L __nl_symbol_ptr__DATAK(,O__textcoal_nt__TEXTKTO @ P''"I\<\$,t$0|$4l$8t$@%T1t\$,t$0|$4l$8<ËK4$D$T$HD$%D$<K8Ko+KK(G"GGD$L$DD,$MG|$K|$8%Tt11D$DtBt$GiD$$Fl$D뎋D$DtBUWVS{\D$p~׋T$tGD$H)ЉD$LD$p$Cl$Hl$D$$lC\$tT$t$T$?C#JD$DE)щL$8J+9D$8 E0D$@$D$xD$B;|$LD$<BJt$,l$pt*D$D4$D$yB‹t$8;|$L~;|$H~ D$@\[^_]ËD$x$D$ZBD$D$(D$D$AD$$T$p4t$D$$4$D$B‹t$8;|$H~돋D$$D$F$Al$(D$ l$F$AD$$AT$ u#JJ.u+9w$#J0E l$ nD$Fk$D΋D$DD$F$LAL$>t$ ;|$~뭋D$8$>D;|$t~$A\$A7$}AD$tFUtՉD$D)ŋF+9F(ut$TuT$@;|$t~:;|$D~ D$p44$&>D4$R=L$@;|$D~̋t$p $=D;|$t~$@{$@Zl$T$ t$|$ՋtauE,$%)Ǎ?|$)փt$|$ŋD$$t$$,$D$^<t$|$l$É$_<@h돃<\$0t$4L$@|$8hC8 $:@ D$(Q q%tDL$,T$(D$L$ D$T$4$@<$D$<\$0t$4|$8<ËFJ%9u $9ʐUWVS,D$@$9H L$tT $T$?D$hEBB%p+)9wVB8u8"L$9A@G}D9|,[^_]$>$|>뜉$e`UWVSAD$\$$:D$DAD$@$$t<A?D$DL$D@ D$PA$D9u7t$D?Fp$D$t$$=6?NA$D$D$F$7D$H‹%DpVD$<tFD$<$$@D$4oL$4l$0EL$8A%.D$,)‹A+(T$(9l$,dD$(L$(D$, ";t$,}RD$01ɋBt'%zщ ߅Nϋ|$4l$(D;t$,|D$(D$8L$Dl$8T$`Al$T$$%$D$QHAD$T$E9t$TD$XWA8V}Aw+9#uGF@l$Tnt$$$9t$TD$L8D$Pt$$ 4oD9AD$ D$T$ L$L:44$7;D$$$4؅ED$<9D$TT$:$t$$N3D${$v:9|l$@E+8)9|$0T$,<D$0l$, &.ED$4D$09D$4xt$(|$T$(D$2)ŋw<+09t$D$((D$D$ $ED$4L$,,s<;|$00|$0D|$<l$<4$l$c/Nt$D$0D$D$<$,4L$dL$$/D$<@%?- {<w<}w+vduGF@Ft$<}w<w+v"uG"l$,nD$"79D$4L$0D$$d9|$Z1볐UWV0|$D<$[-ŋD$@$+D$@$s-D$,u'L$@AD$(9ŋD$@L$,@ D$(A $%D$ 't$ ƉD$D$ <$l$t$D$Nj% $|$~\D$@l$$jl$ƉD$<$ …!1ҨtD$(L$$,<$D$-NjD$Hl$$&D$D$L$+t$ t$$,;t$D$$;t$~XD$,|$$ED$D$P$+l$Tl$$D+|$T?}t$P$t$)ƒ0^_]1D$$,L$$ $D$>,$l$+;t$~hD$D$$$,l$$*;t$~2L$$3+.9|UWVSLL$+89wl$D$X.@$D$0$q$c$R$$(t$`(+)9/b$u;T$`(D;T$`~$$}t$DD$@Ot$@((t$@7V+9T$<9|$<((8F8w+9(1GF@D$DFD$D$()ŋ+8l$$9|$(D$$D$(t$$ ";t$(}RD$,1ɋBt'%zщ J߅Nϋ|$0l$$D;t$(|T$$D$\L$`t$dD$D$8$D$l$4D$XT$ L$t$$|$l$T$A $D$TD$dT$TBt$LD$ %T$L$ $Ƌ%huY >4$b$D$9D$D$ $|$TGl$D} D$`E$l$D$@$ |[^_]$k 뙋$S $B C$L$HD$D$D$X$$L$l$$?T$89|$ ?$L$PT$XD$$D$D9|~$ ND$h$$T$$U,\$|$$l$(t$ 0l$0~+v_8F",$D$4D$E$GD$x~\$t$ |$$l$(,$ UWVSwD$p$$T$y $$O$$$A$A $A$$|$$1ɋPBt'%rщ cޅNΉMEEE$@D$h$9$$D$h,$T$D$D$dh$l$lыh,})+L$P9}D$PL$P"195t$P>+,)9ωT$LD$LL$L&t 9t$h4$$<$$KD$T8.+( )9T$H)T$H&*tL$dA%9h$w$t$\>.+( )9T$DYT$D$ D$\D$D$d$iVl$dD$`E%9D$t}dD$\1ɋBl$@t-%jщ D$@څNʉȋL$`|$tL$DD9|$T$DL$H@l$d|$|D$X$t$xD$D$XT$ L$|$t$D$,$D$M$G(pt$<@D$D$l$7ōFD$8+D$8F"t$4$$D$D$D$0$*Njun+*F"D$4}EE L$8MD$PEF%FD$|$D$,~ |$(:w+ v{2G "D$XFD$(F|$L~ D$HFL$DNFT$dn VD$,F$F($G0F(t$l$p,$WĬ[^_]$t$$8$$"$$L$TT$D$D$d$\$L$l$$藾T$H9| $=$L$PD$D$D$d$l$LD9|8$DD$D$l$L$P9|$r$$D$$|$$D$h$ 뼐\$t$|$T$ 8t$$L$(t:L$ D$t$$V[HAD$<$!\$t$|$ÉL$ t$D$$%L$뼃\$T|$t$T$ 0|$$L$(t:L$ D$|$$Z@@D$4$\$t$|$ËBxL$ |$D$$@UWVS軹LD$`1T$8$D$D$,D$`D$D$$D$0c0_~+(c8F&|$4L$8D$<9D$$D$D$|$$1ɋT$(T$,Ɓ9t$ }D$<ȃ9|t$,|$ D$, 0D$D$`$D$D$$D$ƋD$4$t`T$(|$L$,% D$ l$D$D$ $t$(D$H<;t$,<;t$D2D$L$HT$0$k,$D$ȃD$Hl$D9l$H4$L$( $$|$ D$D$d$D$8~D$8D$D$($2D$ljʁ9T$P%9}:T$%$9OG‹%9|ȋ΃D$9t$|D$| D$xtb'D$$l$T$<։+r7|$U$$;$P$l\$h$9$lt1$lD$ D$D$$$$l$$gFk0$h<+$~9k8FG@$w|$D$ $$|$4$]D$$l4$D$m$l;$P$9$l.;$TDŽ$X$T9$Xc$x$t$$$$$$$|$LD$H|$DD$@|$<|$8$`$l$D$G,$D$$dG$d|$$E$WD$u$t$k0NjgE+)9 k(%E~DG $ $,$D$ǃ$x‹@%P $$$$$x(tO$k)֋g+9 k$p0$t$$$T$DD$$$$po9t븽;$T}$`;$T|拼$X$` $T$X9k$$\$`9$\$PDŽ$\$P$P$$`)Ƌg8)$$$9$Pwfk$P0uC$P ,$h_$P#D$ $=$$DŽ$`멋$0$$E4$D$ ؅h$tDŽ$;8<t$L|$HL$Dl$@$$$$t$<$$ $$d0$$D$A$@0$<A ,$89}^$$4$@4D$FD$ FD$$dD$$$;$<|1.+$t$‹$;(DŽ$,$xB1t!r1҃ ݅N$d$=$d$$D$$l$D$ D$t$<$Ktt DŽ$,$,C;$Pt$8$$$$hQ$$PBDŽ$t.%zщ NڅO׉$$$$F $$G<%$q$9}+$@$D$u$;$|Ս$L$,1ҋ$$$h$<99} 99|99tT$<;$P$d$lL$E$'Ĭ[^_]Ë$<$pDŽ$ $E$$E <9Չ$}h$$$$$4D$FD$ FD$$dD$$$-u;$|1L$$ꉃ$<1ɋVBt/%J$ u*$څN)$ m$"DŽ$($E$$8$ E  9$.$$$$$$$$L$|T$XT$D$D$耷D;$~$c$ DD$\{|$`t$`$GɉD$DV T$@,SO7~+S8F"KF|$x$$f$t6$T$dD$$$D${D$D$x$AD$xL$XC9D$4D$89|$<}D$XD$<l$4+)9D$4L$0t$4D$0"0)鋫+EL$,9D$4D$,07n+i/F&7V+T$(0D$(F"h@$$E$;l$4$F|$,D$D|$$菅ŋt$DD$Pt$$WD$D$\$A$T$$V$l$"D$HL$@D$, $D$2ŋD$TD$D$\$NjD$@D$D$P$|$$Ҵ$t$$$l$賴$跲D$LNjL$4+E)9D$4|$4D$L$D$4 ";l$4$,$@}D$w+9uG"D$FD$F|$0~ $0}w+9wLuG"T$@VD$LFL$HN $0(ul[^_]Í4$K$躶$謶QT$Dt$$ޱu;l$4|D$0 D$0L$@%|9v+T$2 D$0;|$@wՋ|$07uY D$00D$,0u3 L$,1T$H2u D$H0<$迵$豵$裵$蕵a$脵$sL$<$t$(xBF|$t$$$D$ <$٭;t$4D$8}!|$<B;t$4|ߋ|$8|$$G$议t$$D$ $t$$plj4$ʫ4$D$臰G$oL$ Ɖ$L$P>$$|$T$ D$$*Nj@$"t$ t$$T$8I|$$9׉|$$tV|$T%t9D$\$t$\|$@%t9wjD$P$î|$Pt$$|$0F$L$$T$AD$$$觩$聮t$,;l$4,$[;t$@wv$;9w/|$$t$ $|$(G|$T$$$D$ <$īD$D$8D$$$б$D$8D$$L$ D$$荱D$8$轲$謲$蛲R$芲$<PU1WVS!j,L$@T$DA%D$D$%9D$D$}YD$Dt$1ɋBt'%rщ ޅNΉș|$9OD$D$9D$|ɵu)ŵ+L$9CD$ "L$19D$9~D$l$9l$D$Dt$1ɋBt)%rщ ݅N͉ȋ|$|$ŋuQɵŵ8w+9wOɵ0GF@nt$|$@<$߮t$D$D$9D$HD$,[^_]$舰$zR$i$X$GJUWVSgl$$`$D$PF @@D$X$uD$H$B @@ D$TB$@ D$LD$T(+l$D)9D$D|$@D$@L$@D$D ";l$D}jt$0t$$|$X$D$؅xQD$ D$ t$HD$D$TD$$$pT$@@;l$D|D$@l[^_]Ë|$Tt$\$賨t$T$XL$L$LD$L)‹+8T$H9|$LD$HD$Lt$H ";t$L}Sl$P1ɋTBt'%zщ V߅Nϋ|$Tl$HD;t$L|D$HD$XD$`.)‹+(T$D9l$`D$DD$`D$`t$D &$h}9{D$\D$`9D$\L$||$xL$$|$(bD$@D$d9D$\&D$\T$t,l$D$\t$p+D$dD$ Ȩ|$hL$hx t$lD$D$8D$`t$l$\$ \$$\$Lt$P|$Tl$X\ø뽸붋D$lD$8l$D$D$`\$ \$$Q븸뉸1{؍$ l$S1؋Wt$|$<$$؋W 1ɋBt#%rщ u@ޅNΉ͋Wt#$t$|4$荗\$8`$$蜥빍(\$ $T$|D$ ,UWVS']L݄$dDŽ$0DŽ$,ݜ$X݄$l$`ݜ$P$$`$B%$Du$$趒$$@D$A$荠$Gè$$$t$L$$蜓$$ $ $@$LljT$D$$$}~$n E,$|$͕<$ޕݔ$ $|ݜ$*$Df($$YfW$$n$ݜ$YgY$ Qf.Y$*$o$t$,$Z\$8$Xd$8Y$,ԉ$<O$<f.؉$<v$$P_$X$X$PZ f.$XD$$莟$$L$&$t$$$Ϩ˨u+)9xϨ8E%~DE1<$D$xD$$G$ԟ$T$$=$èϨ$ $8$Z$P$LY$XT$tY$L$Lt$P$$$$|$xDŽ$$DŽ$$XL$hl$T|$XL$\T$`t$d$L($$t*p;$(t$tF$/D$t@$tY$t<$F$F$F <v<$֑uċ$A$跟Z݄$Xl$$ԍݜ$X$XY$,*^$$X$D,,|$h9Lè9EL{$t$ |$D$$$($ 9$<$<ZONj$$*D$L$X4$|$7T $ $9Ϩ$$$H$@T$D$D$t$v$t~K$t*׋$D$݄$$L$tT$T$\$D$ $;9$H>$,$(DŽ$)DŽ$DŽ$8DŽ$4DŽ$i̅M$$)i̍;$07$8,$82$,~!$4$4DŽ$$$M$ DŽ$$($˨+$ i̋Ew@Ϩ$,+)9Ɖ$ $$S $"˨+)9Ɖ /$ &1ɉu$$$t @  $ ;$(1 $ $$t$L|$T$%t$|$,$D$D$PD$ $ D$衉t$T$H$|$PD$Ll$Xt$D$ $|$l$D$$($$ % A%x +$$$i%)Ƌ$D$%)Ƌ$n$l$袈L$\$D$@$lL$ T$t$$k$| $ $$Ƌè $D$$$4$D$ŇL$`t$dD$$L$ t$$m  $9$$$tL$$D$T$$La$$D$L$$$$D$<$[$xDŽ$$xDŽ$ $x$|$pD$$l$t$L$ |$$ $ $p$xz4$,N$,DŽ$,$|è$|Ϩ$}$0t$$y$$`Ƌ}$`7$$t@ uX$E%9}"$$ %9|ދ$$DŽ$$ $ї$@ 됉$蹗^T$$*T$,$踅$|l$$ D$*$||$|$,r$$;$(s|$tG$/D$t@$t<$F$F$F v<$uċ$A$–$0<$)&7$h$D$|D$$l$$jP$$ D$$$$d$$||$D$$$D$$t$ D$$T$D$$|$|$x$d$DŽ$u$x%$Ϩ8˨o+Ϩ*G"u$EE $M$ uw$- $w苄$h$$$$$x$$l$$$5Ϩ˨0V+$$ϨF"$$FBFBF D$|˨~Ϩ|$x>w+Ϩ0G"D$|FL$xN$w $FGl$<$!Ϩ2ŋ˨~+vϨ:F&oL[^_]$舔$zc$iϨ8˨w+ voϨ0G "$F$~$V $F$FǨN$n ~$n$F(9$̓$输$譓\$蜓4$ǒ$FuT$t;rvk$蘒F t$艒֋$x$;t4D$$l$t$$l$x$$x$t$xD$t$$u$tNj%D$ $%+$@D$D$$t<$袄D$$t$S$tD$$l$9$|$DT$$t$K$lè7$謑Ϩ$$D$D$4$8$(n뷋$0~Z$Xf..vA gt$ $Qèt$אv$|$D$!ȹ$ D$$$~$$}DŽ$ $@$L$Ll$D$D$PL$D$ D$TD$$ D$$$},$4$$$|D$ $@T$D$$D$&D;$(vw$D$tt$$r(?$&$$$m$$$D$ $D$tt$L$T$$1?$|$t$D$|$,$>$$D$$L$$ .0DŽ$8DŽ$4Zf.$X 4,$ ։$04t$퉄$$$tU$($ $,)))$$$$($ $,B$(6 ˋ|$t$$Ӎj$蔍$FuD$t;pv8$eF t$V֋$l$ D$$,$D$^G%? @G$΍w$L$賍$I\$8L$8,$,$Ϩ˨7n$+)9$˨F"7N+*$9$/F&7$N$$(˨+B$F"$hH˨.7V+$9$˨F"h$pp 7V+)$9$˨F"$P$pp 7L$HV+)$9-$F$DŽ$$xu$x%$ϨD$H/u+7E"$F$NF $~$F}$uZ $}t$$$$xD$ $$T$T$T$T$D$ t$,$`1$Ċ$越5$襊$蔊`$胊 $r$aD$PUWVSA|݄$$\$`@ D$X$PE+T$H)9D$Hu%D$8sD$H "$pE+)9D$H1uD$8D$H ,$p,ML$<)D$D$P\$@D$HD$T9D$LcL$lL$|$T$TD$\$,G1PBt$t-%r tD$مN$L$BT$XD$ D$0L$|$$D$0L$lD$ t$A z9T$PD$$1ɉ,T$PD$4Bt'%r tޅN*$YD$@9|$PD$@~f.D$`wD$TD$H9D$Tl$H19l$TD$$0D$P t$PL$$1;|$P}$T$$n,D;|$P|D$TD$L9D$T}*l$T$T$(p,l$TD$L9|;|$H}$L$\n,DD$$$ŋ$P@$@(8ul$<(|[^_]Ëq%$D$$s$b{D$Lt$(,D$L1)֍ 1$){$$$m$@L$044$虄T$4$B4;|$,|ыJ$蝄N$茄*${$j$Y|$HUUWVS;\D$tt$p@ D$DD$p@ D$4FD$0FT$,%|$4pEƉD$8/t$8+( )9T$(CD$( ,|$(7D$<D$xD$@t$x%9D$@l$Ll$|$@t$xL$p1D$$T$$APBt'%rщ sޅNl$pL$DE2,D$ $D$|$y0L$LtFUtl$pE z9|$$t"D$<|$$t$(<L$8D$<93D$@T$x%9D$@ D$89D$< D$09D$@l$Hl$t$p|$@F,1D$ FL$ PBt'%rщ 9ޅNl$pL$E,0D$DL$|$$a0L$HtBUtl$pE z9|$ tD$<|$ t$(<L$8D$<9D$@T$09T$@l$019l$@tID$(L$pD$A$膀t6|$4t t$pF D$p@$L$,\[^_]Ël$pE$$T$($ǀ|$pGG 뱉1)֍ 1$賀1)֍ 1$葀|D$@$s$bk $nUWVS7D$h$ED$tW%D$dG(D$`0$ $D$\F(Et$d+)9D$d|$Xe|$dD$X"E8E+)9D$dL$T!D$TE8E+)9D$dL$PD$dT$P ,Ut$\F $t0$l$dAq)i̍T=$;U7D$pD$d9D$pb|$|l$x|$$l$$L$pBw+]2G"nL$DND$Hp2F+UD$@9l$@(F"D$TT$p,E|$L$|$$|D$LD$lt$t$ t$ll$HT$LDT$D$$$a|$D$<w4t$8un+99D(F&0~+98F"t$w+9wz2GF@D$$Ft$(u|$Tzŋz8w+9wz0GF@n~$nq$`qp@. ؅NL$T*^L$<$paoQ$hO$(xu ut$X$p{ztw(_^4$0p$@,D$Dl[^_]Í^<$o$Fl$P^D$FD$ Fl$$D$oD$X$;A.z^$|$X$E,B4$D$D$XD$goD$XL$X$;H~(`\<$?o$o1D$\L$T|$\;T$hl;T$h~L[^_]$i$h먉D$D$d$dŋD$`x t\1%9ƉD$<}Ft$D$`ɋ@@ t T$ $[;t$<|̅tl$ $g[ŋlt$h)Njl+9w|l8u^$7,$D$pD$^;t$lD;t$l~;t$hD$D$odމ$g$gsUWVS{L#kD$<t$`D$4FD$0F9D$0wT$0J uD$09D$0vꋓ#kD$4L[^_]ËJt$<9L$8.tщL$wg|$`<$8$$$2$\tDŽ$DŽ$\B$`$(1x:<$E>w#L$p $@7D$D$`c$$:t$D$,$yE$F$0EDŽ$$TE$$E <9Չ|$|}V[t$\$$4D$FD$ FT$D$$X$>u;$|1ST$|L$hꉃSSL$\<1ɋVBt)%JL$x u#L$xڅN)$ue$DDŽ$$TE$$E <9ȉ$.&[t$X$$‹$$$T;EElj$x$5?GUWVS|$BA0%$DA%$@A$<‹$$E$P%$HB$8;V|$P$$P?4E$B,$`EƁ$Xt9$`Dp Vt 1҃~)$XDŽ$\$X9$\ $\$`$lD$hJD$$$<B$4BDŽ$L|$8t$4$,L$0l$,L$(l$$D$ $4;$@ $(%4$8{ BDŽ$T$D9$T$0D$8JL$0D$lD$4l$,D$hD$$T$(D$Xt$ BL$dl$`T$\t$TD$L|$HD$D|$@D$<$$T$(E0|$$T8D$$.Ƌ@D$$($,8$$$z5t%a B84 $$$T$A$7$D$~$|$5B0NjBE+)9 B(%E~DGp $($@5,$D$l4ǃB$l‹@%" |$ll$h$$$x(tO$B)֋B+9 B$d0$h$$$T$DD$$[4$$d?9t븃$T$DD$T$09$T$H$,9$T8|N$L$L2$\$`c)L$$ D$51|[^_]Ã$\$X9$\$G$P$80$P;O |$P"Btw8)$9B$<$N$88_d$,$8븋$E0$D$$$2؅$hDŽ$ ;8.L$L|$Hl$Dt$@$|$|l$xt$tL$D$ $939~;t$T3D$ |$$I&lj$+Ɖ$P%;D$uIT$<$(D$$$wt$X$t$+D$,$,+uD$,$;*}/3l$(1<[^_]Ël$,/3u׍)Nj+3+9/38E%~DEL$ D$$|$,L$$*;t$D$(*D$(,}D$TuG |$T};t$~֋D$T$(l$,$l$ T$D$=D$\t$(0D$, $s-뫋G%? @GU$P-V<$T$T$+-$-$q,uUWVSL_0t$`D$t$(t$TF L$D$$;L$ h.}l$l$(D$1Dt$\;L$ l$|덍N;L$ .}T$(D$1t$\;L$ |^%|$,81dD$(@ t$ $9D$(,$D$|$4$D$L$T $T$ $$$D$|D$$1t*L$ $#$$$ČÍT$ D$|T$$#D$$D$$$2@A?@@?A@B@?not a vector/matrix in cleanarchincorrect big number field is %Z End of PHASE 1. #%ld in factor base Norm(P) > Zimmert bound Testing P = %Z *** p = %lu is %Z **** Testing Different = %Z PHASE 1: check primes to Zimmert bound = %lu red_mod_unitszero ideal in isprincipalisprincipalinsufficient precision for generators, not givenisunitnot a factorization matrix in isunitnot an algebraic number in isunitcodeprimebnfnewprecbnfmakebnfclassunitbnfinitnon-monic polynomial. Change of variables discardedfundamental units too largebnfinit: %s%s, not giveninsufficient precision for fundamental unitsgetfu #### Computing fundamental units SPLIT: increasing factor base [%ld] # ideals tried = %ld precision too low for generators, not givenprecision too low for generators, e = %ldclassgroup generators #### Computing class group generators completing bnf (building cycgen) *%ld %ld makematalcompleting bnf (building matal)classgroupallincorrect parameters in classgroupbuchall (%s)cleanarchcompute_R #### Tentative class number: %Z bestapprregulator is zero. #### Looking for random relations LIMC = %ld, LIMC2 = %ld R1 = %ld, R2 = %ld D = %Z Bach constant <= 0 in buchinitalg & rootsof1sub factorbase (%ld elements)*** Changing sub factor base powFBgen %ldComputing powers for subFB: %Z factor base########## FACTORBASE ########## KC2=%ld, KC=%ld, KCZ=%ld, KCZ2=%ld ++ LV[%ld] = %Zisprincipal (incompatible bnf generators)BOUND = %.4g .small norm relations small norms gave %ld relations. nb. fact./nb. small norm = %ld/%ld = %.3f for this ideal*v[%ld]=%.4g small_norm (precision too low) *** Ideal no %ld: [%Z, %Z, %Z, %Z] #### Looking for %ld relations (small norms) (more relations needed: %ld) looking hard for %Z ++++ cglob = %ld: new relation (need %ld)for this relationrelation cancelled: (jid=%ld,jdir=%ld) m = %Z (%ld)be_honest() failure on prime %Z be honestBe honest for %ld primes from %ld to %ld #### Computing regulator multiple bestappr/regulator #### Tentative regulator : %Z ***** check = %f D = %Z den = %Z truncation error in bestappr #### Computing check KCZ = %ld, KC = %ld, n = %ld weighted G matricesadding vector = %Z vector in new basis = %Z list = %Z base change = 333333?&DT!@+m0_?ư>UUUUUU? zo ??ffffff???[⍀PGB⍀P.)⍀Pv⍀vPa⍀aPL⍀LP7⍀7P"⍀"P ⍀ Pz⍀Pfa⍀PMH⍀P4/⍀P⍀P⍀Pz⍀zPe⍀ePP⍀PP;⍀;P&⍀&Plg⍀PSN⍀P:5⍀P!⍀P⍀P⍀P⍀P~⍀~Pi⍀iPT⍀TPrm?⍀?PYT*⍀*P@;⍀P'"⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pxsm⍀mP_ZX⍀XPFAC⍀CP-(.⍀.P⍀P⍀P⍀P⍀P⍀P⍀P~y⍀Pe`⍀PLGq⍀qP3.\⍀\PG⍀GP2⍀2P⍀P⍀P⍀P⍀P⍀Pkf⍀PRM⍀P94⍀P u⍀uP`⍀`PK⍀KP6⍀6P!⍀!P ⍀ P ⍀ Pql ⍀ PXS ⍀ P?: ⍀ P&! ⍀ P  ⍀ Py ⍀y Pd ⍀d PO ⍀O P: ⍀: P% ⍀% Pwr ⍀ P^Y ⍀ PE@ ⍀ P,' ⍀ P ⍀ P ⍀ P ⍀ P} ⍀} Ph ⍀h PS ⍀S P}x> ⍀> Pd_) ⍀) PKF ⍀ P2- ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P~l ⍀l PjeW ⍀W PQLB ⍀B P83- ⍀- P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Ppk ⍀ PWRp ⍀p P>9[ ⍀[ P% F ⍀F P 1 ⍀1 P ⍀ Pڿտ ⍀ P輿 ⍀ P騿裿 ⍀ P鏿芿 ⍀ Pvq ⍀ P]X ⍀ PD? ⍀ P+&t ⍀t P _ ⍀_ PJ ⍀J P۾5 ⍀5 PǾ¾ ⍀ P鮾詾 ⍀ P镾萾⍀P|w⍀Pc^⍀PJE⍀P1,⍀P⍀Px⍀xPc⍀cPͽȽN⍀NP鴽诽9⍀9P雽薽$⍀$P邽}⍀Pid⍀PPK⍀P72⍀P⍀P⍀P⍀PӼμ|⍀|P麼赼g⍀gP顼蜼R⍀RP鈼胼=⍀=Poj(⍀(PVQ⍀P=8⍀P$⍀P ⍀P⍀PٻԻ⍀P軻⍀P駻袻⍀P鎻艻k⍀kPupV⍀VP\WA⍀APC>,⍀,P*%⍀P ⍀P⍀Pߺں⍀Pƺ⍀P魺診⍀P锺菺⍀P{v⍀Pb]o⍀oPIDZ⍀ZP0+E⍀EP0⍀0P⍀P⍀P̹ǹ⍀P鳹讹⍀P隹蕹⍀P遹|⍀Phc⍀POJ⍀P61s⍀sP^⍀^PI⍀IP4⍀4PҸ͸⍀P鹸贸 ⍀ P頸蛸⍀P釸肸⍀Pni⍀PUP⍀P<7⍀P#⍀P w⍀wPb⍀bPطӷM⍀MP鿷躷8⍀8P馷44445*5C5\5u555555 6$6=6V6o6666667777P7i7777777818J8c8|8888889+9D9]9v999999 :%:>:W:p::::::;;8;Q;j;;;;;;<<2<K<d<}<<<<<<=,=E=^=w====== >&>?>X>q>>>>>>? ?9?R?k??????@@3@L@e@~@@@@@@A-AFA_AxAAAAAAB'B@BYBrBBBBBBC!C:CSClCCCCCCDD4DMDfDDDDDDDE.EGE`EyEEEEEEF(FAFZFsFFFFFF G"G;GTGmGGGGGGHH5HNH$Ë$ñ((a(O((('%4%''''4%'4%'3%'K%'K%&&K% &%K%%( %%K"%K"x%k%Z%$$3"$K"#>#K"#K""""""""( {"o"3 U"D"6"h!>! K [  K  (  KHKHKHveW)KHKH KHKHKHKHKHiKHaKHD( 2-%3Ip4I3IKIt3IKIKIoKITKIA5`3I+@3I $3IKIKI4I)Ix4IKI{sg(IQ?-!~^KINKIE( 6.3y#S KyKyKyKy~bMC)KyKyKyKyKyu( ZJ2 - K x]Qe2 ? K K qK T_K VK =K  %S K K K CK :K !K vK K K .K  # - K 2 K 02  I K 6 K # K  K    K [ K Q K K -  K     k K A S  K   K  K  s S  K , K  (  kZF:n2! e2FK=K'K 4K+KKoKKK1K(KKSsK KKSM<.R2=2yhK6.+2(2K~KhO]SSKEKSX0KxKRKKKKQK*K KKKKKKK11xKBKK( tY1@/K$@1 10-o2KKiK@DK9KKKKbK9S7K,KK0K[$000Z0-IK:K&KKdSSKJK-K XSGgKaS4X0KKsKIKKwP4)KG`4?)J0K(tKgUeYI1!K(KrKl)(r:h4(X4h4h4fK2( oW1)KKKK( seJKKKYG9KKK(  0]wb>."K]fK]Y( 8K9K9K9h5( %KioKiiKiSC3tKie( YK.K.K.eS._K.*( {h`-!@0!/!/!/!nK! K/!K!K!K!XK!>K!.K! ZEK!K!t?,K!gK!K!mK!IK! K!K!K!K!K!K!K!K!UK!OK!;&K!( `/kZI8'KK/KKKKKt\m\KC-;3B/KKKKRKKKKKuYK?K KKKKKKKKKdKP:K K( $/ ]Q/K ~K xbK fK `DK mK WK K ( rXG6%/KKaCK(KKǿKK}KsKmKoKKK( ܽ˽yhڼK٢K٢K٢ջK٢K٢K٢oK٢`K٢LK٢2K٢K٢ϺK٢ɺK٢.٢z.٢oI2.٢ԹĹ.٢.٢@ (٢J9(ڷ2#жȶk.٢K٢b.٢@.٢.٢y(٢FK٢ .٢K٢ѵY0ݴq=K٢K٢K٢߳K٢ԳóK٢{K٢qK٢k1K٢K٢ K٢ٲK٢K٢K٢K٢K٢ޱK٢ֱK٢/|qOޯү.٢ K٢ϮK٢ ,٢oڭE"K٢ëK٢K٢uK٢Y ڨK٢Ԩ(٢e3K٢ۧƧ(٢|O(٢sK٢cK٢VC-K٢ȥK٢¥K٢l(٢(٢ۤH4٢@4٢y4٢G6."(٢K٢}]բ( -s((ڡ-uHϡDȡ@<840L'084( -q`O.ȟ-hMK -K֞--kKBK,K  KvRK8ҜQK>KKKK( ֚ƚ`- gYK 4TK JaK XK G'K ( ԗ×`KߕEKߕ?KߕKߕoKߕە( ˕ƕ -kA&ՔM$ۓΓwjOʒ~um -YKKАKÐKiK_KYQE2&֏Ï+KKKKK|S?K ( ؍ǍeKUWF3 tN9) ɋqT@ЊŠ,UKU,U;&KUۉKUӉKUKU,KU  KUwVKU?/чKUÇ_KUPKU3KU-KUdžo\P7KUSUڅKUԅwgKUƄKUKUx!KU KUQ( 2$K=VK=VK=VxjK=VK=VցK=VaS=V[K=VS=VK=VK=~K=V~K=V~K=V~}}K=V}K=Vt}K=VK}|>|S=V7|K=V,|K=V|K=V|{{j{K=V`{K=V@{K=V{zS=VzK=VwzzK=V zK=VyK=VyryS=VlyK=Vx x8wS=V2wK=VwvvvyvvK=VvK=VuK=Vu*utK=VtK=VtK=Vots^sS=VWsK=VLsK=V.sK=V srrurK=VjrK=VLrK=V#rqqK=VqK=VpK=Vponmmmqm`mOm>m2m,=V mllll@lK=V7lK=VlK=Vl}kkK=VkK=VjK=Vj4jiS=ViK=ViK=ViK=VieiWihK=VhK=VhK=VhhgK=VgK=VgK=VlgffsfK=VjfK=VJfK=V@fK=Vff"+=Vedcbb{bjb^b`,=VGbK=VbK=VaK=VaK=Va`K=V`K=V`K=VN`K=VH`<``K=V_K=V_K=V___ _S=V_K=V^^M^K=V^K=V^K=V]]o]K=Vi]K=V7]K=V]K=V\K=V\K=Vf\K=VH\K=V4\K=V[[K=V[K=Vi[K=V[K=V[[ZK=VZK=VZK=VZhZRZYS=VYK=VSYK=VJYK=VYXK=VXK=VXK=VYXK=VSXGX XK=VWK=VWK=VWWWWAWWK=VVK=VVK=VVK=V{VTV9V( *VVVUU.UKQTUKQTUKQTTKQTTKQTTKQTTKQTTKQTrTKQTlTMT( ?T.TTTSSmSUS5SRKQR RKQRKQQ( pQhQ ,I]QOQQKIQKIQPPPPPPZPAP+IPPOOKIOOOO ,IgOKI?OOONNNoN&NKINKIMMMMMmM+IgM+I\MKINMKI'MM MLL+ILLKILKIL|L+IoL+I)LKKKZKNKJKIJJKINJKI>JKIIKIIKII( vIaIQI`+dH7I)IIHHHKdHrHKdH`H( OH>H"HGxG`GFKEFFKEFFKEFFrFAF( 2FKE'FEEEKEE( E`ENEEKEE( DDL+DDD( vDXDHD?+DBDC( CCC`CGC'CCBBBBBnBK<cBRBAB*BAK<AK<AK<lAK<\AK<MAK<1AK<+AK<#AAA@@z@K<g@K<a@=@g??K< ?K<>K<>K<>>)>K<!>K<=K<=K<===<<7+<<K<<( z<M<><&<<K;;K;;K;;( ;;;;X;9;";:::K6::::y:Q:I:#:K6:909K69K6z8K6l8K6[8H8*87K67K677f7V7C7+7,+666K66( 66666s6_6A6.65K35K35H5K3@505"+354K374K3)43K33K3}33K33( 32(22( 22(22( T2 2K12K12K1111K11( ~1v1b1Q1C1.1K/&10K/0K/0K/00E0K/$0K/0K////( //K./K.m/K.L/D/4/.K..K..( ..+"S.C.*".-K"-K"-----~-K"v-;-K""-K",K",K",K",K",K"z,\,K",K" ,K"+++++K"+K"z+T+0++********r*b*K"Z*L*;*)K")K")K"v)K"p)K"I)K"C)K"*))))(((((((U(D(4(*",((*"('K"''''u'W'''&&K"&K"z&K"k&K"a&S&"&K"&K"&&%%%%K"%%k%K"R%K"$%K"$K"$K"$K"$K"$$K"k$K"X$K"=$K"/$$$#K"#K"###]#""K""( ""{"W" ""!!K!!!K|!V!8!&!!  K   { l D 4 *, KKKW*}KqKZ+KcKJK*KK KK( r=*EgYK7KEKEKEKEKEKEKEKEC/KEKEW*E:!=*EKEKEtKE\KE9KE3KE+ KEKEKEKErdKE\A( "{k[7"kK9|K9tYK9AK9;K91%5( %/*m3K KK( Z5K-$K-sK-XK-=K-K-K-K-zK-MK-E7K-K-K-[K-K-fK-`K-2K-)(  * ) ) K ) yh\) QI) 1y)  K   K   g) v K _ K 1 ) \)     K u 1 K  K K 9 K ! K  K { I & K  K  K (   e KA K; K+  A)( XNK@<( (oNBKKKbVKK.K ( xKpK_O )D6 KKyK^KXKJ>'aKQKK( G6KKKKKQK(  ~KFH~KFH'  zK-HzK-H'  ~vKHvvKHp' k erKG]rKGW' R LnKGDnKG>' 9 3jKG+jKG%'  fKGfKG '  bKGbKG'  ^K~G^K~G'  ZKeGZKeG'  VKLGVKLG'  RK3GRK3G'  NKG|NKGv' q kJKGcJKG]' X RFKFJFKFD' ? 9BKF1BKF+' & >KF>KF'  :KF:KF'  6KF6KF'  2KkF2KkF'  .KRF.KRF'  *K9F*K9F'  &K F&K F|' w q"KFi"KFc' ^ XKEPKEJ' E ?KE7KE1' , &KEKE'  KEKE'  KEKE'   KqE KqE'  KXEKXE'  K?EK?E'  J&EJ&E' } wJ EoJ Ei' d ^JDVJDP' K EJD=JD7' 2 ,JD$JD'  JD JD'  JDJD'  JwDJwD'  J^DJ^D'  JEDJED'  J,DJ,D'  }JDuJDo' j dJC\JCV' Q KJCCJC=' 8 2JC*JC$'  JCJC '  JCJC'  J}CJ}C'  JdCJdC'  JKCJKC'  J2CJ2C'  JC{JCu' p jJCbJC\' W QJBIJBC' > 8JB0JB*' % JBJB'  JB JB '  JB JB '  JjB JjB '  JQB JQB '  J8B J8B '  JB JB{ ' v  p ~JBh ~JBb ' ]  W zJAO zJAI ' D  > vJA6 vJA0 ' +  % rJA rJA '   nJA nJA '  jJA jJA '  fJpA fJpA '  bJWA bJWA '  ^J>A ^J>A '  ZJ%A ZJ%A ' |  v VJ An VJ Ah ' c  ] RJ@U RJ@O ' J  D NJ@< NJ@6 ' 1  + JJ@# JJ@ '    FJ@ FJ@ '  BJ@ BJ@ '  >Jv@ >Jv@ '  :J]@ :J]@ '  6JD@ 6JD@ '  2J+@ 2J+@ '  | .J@t .J@n ' i  c *J?[ *J?U ' P  J &J?B &J?< ' 7  1 "J?) "J?# '    J? J? '   J? J? '  J|? J|? '  Jc? Jc? '  JJ? JJ? '  J1? J1? '  J?z J?t ' o  i J>a J>[ ' V  P I>H I>B ' =  7 I>/ I>) ' $   I> I> '   I> I> '  I> I> '  Ii> Ii> '  IP> IP> '  I7> I7> '  I> I>z ' u  o I>g I>a ' \  V I=N I=H ' C  = I=5 I=/ ' *  $ I= I= '   I= I='  I=I='  Io=Io='  IV=IV='  I==I=='  I$=I$=' { uI =mI =g' b \I<TI<N' I CI<;I<5' 0 *I<"I<'  I< I<'  I<I<'  Iu<Iu<'  I\<I\<'  IC<IC<'  I*<I*<'  {I<sI<m' h bI;ZI;T' O II;AI;;' 6 0~I;(~I;"'  zI;zI; '  vI;vI;'  rI{;rI{;'  nIb;nIb;'  jII;jII;'  fI0;fI0;'  bI;ybI;s' n h^I:`^I:Z' U OZI:GZI:A' < 6VI:.VI:(' # RI:RI:'  NI:NI:'  JI:JI:'  FIh:FIh:'  BIO:BIO:'  >I6:>I6:'  :I::I:y' t n6I:f6I:`' [ U2I9M2I9G' B <.I94.I9.' ) #*I9*I9'  &I9&I9'  "I9"I9'  In9In9'  IU9IU9'  I<9I<9'  I#9I#9' z tI 9lI 9f' a [ I8S I8M' H BI8:I84' / )I8!I8'  H8H8'  H8H8'  Ht8Ht8'  H[8H[8'  HB8HB8'  H)8H)8'  zH8rH8l' g aH7YH7S' N HH7@H7:' 5 /H7'H7!'  H7H7'  H7H7'  Hz7Hz7'  Ha7Ha7'  HH7HH7'  H/7H/7'  H7xH7r' m gH6_H6Y' T NH6FH6@' ; 5H6-H6'' " H6H6'  H6H6'  H6H6'  Hg6Hg6'  HN6HN6'  H56H56'  H6~H6x' s mH6eH6_' Z TH5LH5F' A ;H53H5-' ( "H5H5'  H5H5'  ~H5~H5'  zHm5zHm5'  vHT5vHT5'  rH;5rH;5'  nH"5nH"5~' y sjH 5kjH 5e' ` ZfH4RfH4L' G AbH49bH43' . (^H4 ^H4'  ZH4ZH4' $  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  {gjuh.*x POavRse dKqJ\_,];UrQtoZnYXW8 9z TpVw^fiSNMkL ~[}c|{gjuh.*x POavRse dKqJ\_,];UrQtoZnYXW8 9z TpVw^fiSNMkL ~[}c|lmyIb`( (0 (= (H |S IZ HTj 4Vq 0{ L ( |Q  ԕ  Т K S  0 T  * `@ "N U _  i u p @      |  < % ( K KCD<6;XHN4G2_2En$V<"<"`"""E/1v3.b :h2.#/l9SJ_=] & z _9JykoE\s -  m  3!%=<S  tiT 7Z xe2* 8lRGu{1  lF)"Wt   b a)H] N 4 ;  8{az U*B   I ("AZ0|K (K5hW_check_and_build_obj___i686.get_pc_thunk.bx_split_realimag_gauss_realimag_buchfu_init_units_testprimes_init_red_mod_units_red_mod_units_isprincipalarch_isprincipalall_isprincipalfact_isprincipal_isprincipalgen_isprincipalforce_isprincipalgenforce_isunit_zsign_from_logarch_zsignunits_signunits_trunc_error_check_and_build_cycgen_check_and_build_matal_smallbuchinit_bnfnewprec_bnrnewprec_bnfmake_bnfclassunit0_bnfinit0_classgrouponly_regulator_extract_full_lattice_buchall___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_gen_2_cmp_prime_ideal_cmp_prime_over_p_diffptr_gen_1_DEBUGLEVEL_gen_0_bot_avma_initalg_get_nfpol_hnflll_i_divir_mulrr_vecsmall_sort_vecslice_hnfadd_i_hnfspec_i_nfnewprec_i_sprintf_check_bach_gpowgs_pow_exp_rootsof1_rank_quadclassunit0_nfbasic_to_nf_get_roots_get_nfindex_checkbnr_gabs_det_gtrans_shallowcopy_get_arch_check_units_nf_get_sign_to_famat_all_diagonal_i_reducemodHNF_smithall_timer2_powiu_hnfall_i_Q_muli_to_int_Q_denom_err_leave_bestappr_err_catch_setjmp_gerepileall_det2_sindexrank_wr_rel_Q_primpart_dbg_rel_free_norm_by_embed_cgcd_floor_sqrt_gaffect_rtodbl_sqred1_from_QR_lll_lllint_ip_minim_alloc_gprec_w_ceil_log_matid_Flm_outerr_Flm_Flc_mul_vecmul_const_col_equalui_perm_identity_Fl_inv_row_ground_mppi_garg_row_i_nfnewprec_get_arch_real_nfgetprec_gcmp_1_algtobasis_arch_mul_isnfscalar_idealmulred_gmodulo_setrand_getrand_gerepileupto_idealhermite_aux_algtobasis_cp_idealtyp_idealhermite_idealmul_idealpow_equalii_famat_to_arch_truedvmdii_gsub_ZM_zc_mul_vecsmall_to_col_const_vecsmall_Q_primitive_part_ginv_glog_nf_get_r1_gmulsg_denom_idealinv_gneg_i_shallowconcat_gsqrt_cmprr_affir_cmpii_addrr_sign_addir_sign_addii_sign_gsqr_tablesearch_umodiu_famat_mul_idealpowred_pari_rand31_ideallllred_elt_diviiexact_subresall_RgV_isscalar_idealred_elt_int_elt_val_idealval_cmpui_Z_lvalrem_stop_dethnf_i_vecpermute_gen_sort_appendL_cget1_gceil_gdiv_mulii_gcopy_checkbnf_gsigne_gneg_gcmp_QuickNormL2_QXQ_inv_PiI2n_gcmp1_idealnorm_grndtoi_gexp_gexpo_gmul_pari_warn_lllintern_gprecision_gauss_checknf_imag_i_gmul2n_gcmp0_gmod_gadd_Pi2n_gdivgs_sum_real_i_gerepilecopy_eltmul_get_table_divrs_mulsr_affrr_divri_mulir_mulsi_powgi_primedec_flusherr_maxprime_check_element_mul_calloc_ideal_two_elt_ideallllred_idealmulh_prime_to_ideal_gprealloc_gpmalloc_gunclone_gequal_fprintferr_msgtimer_divis_rem_sindexsort_pr_norm_gclone_pari_err_OBJMAX_RANDOM_BITS_MAXRELSUP_cleanarch_getfu_recover_partFB_SPLIT_act_arch__isprincipal_reel4.0_get_pr_lists_class_group_gen_decode_pr_lists_classgroupall_buch_primfact_exprimfact_divide_p_quo_split_ideal_get_Garch_makecycgen_makematal_get_norm_fact_primes_compute_vecG_FBgen_subFBgen_init_rel_small_norm_compute_multiple_of_R_compute_R_subFB_change_powFBgen_be_honest_get_log_embed_powFB_fill_rnd_rel_buchall_end_addcolumn_mod_bestappr_noer#1/12 1200774011 0 0 100644 111756 ` buch3.oH  d  __text__TEXTLdhV __data__DATA`__cstring__TEXTd__const__DATA__literal8__TEXT __literal4__TEXT$__picsymbolstub2__TEXT(b.__la_sym_ptr2__DATAYt __nl_symbol_ptr__DATA ,4__textcoal_nt__TEXT ` @"d P%;pUWVSl D$($$$$D$X$D$<$B L$<@ɉD$@u$ul[^_]ËD$@L$@$@D$TA $D$D$PD$ .$l$t$)‹ +8T$9|$,yD$L$D$, "D$8t$,9t$8t$4l$@)t$w+9w!0GF@T$@V$HыD$@؉D$,8w+9w0GFT$,$$$D$40Ǎ,)+E9wSL$4}%~T$4l$4wE?% Ɖw|$4$A$3$"?E%? @E$D$8HD$$D$D$D$ $dÐD$$D$D$D$ $dÐUWVS[w+9w!w0GF@T$$V$GыD$$o؉D$w8w+9ww0GFT$$$$D$w0Ǎ,)o+E9wSwL$}%~T$l$wE?% Ɖw|$$@$2$!?E%? @E$JUWVS<D$(D$P$0t$PFT$T@D$$0t$ %9tC$L$1|$ D$$t$ @D$ )͉l$+E9T$&D$0;l$ |$t$Tti$L$L$$t$4$D$|$TD$$ L$D$0~+98F$D$GT$<;l$ ^0~+:F$D$Gt$D$D$,$t$$9|{$*>$u~+9T$4w}F"J$t$l$|$l$ }9|1҉Ћt$|$l$ËD$$D$D$u.uӃ9|ȐUWVS$D$|$щ%D$ltl$$ $~a$ptl$$t.vl$$F$詷|$l<$i$p@ @@D$dF%$n +u)98E%~DE<$r$菶$Et$l+)9D$lL$`n|$lD$`"E8E)+L$\9D$l*1ҋD$\҉Et$\>D$xD$l9D$xx$l$TD$P|$,|$x$L$T4l$Pt$h%D$pNj+E)9D$pT$X~D$Xt$Tt$p"0L$xl$`DL$Tl$P+E)9D$pT$L)D$LT$T0l$x|$\D$tD$p9D$tL$,L$0D$4D$tL$h$$+$ 0N+}L$x9|$x 8FG@$w$D$t$Y $D$ $W@ }D$lw+uG"D$xF|$t~D$lF $$$$t$$9$+ 8w+ 2G"$F$~$$$$ $90s,8w~$$t$$葩$$$9$m$$(9$$$T$ $8 [^_]Í$l$g$萫$ OoL$dG >D$`+wv/ 0G"$nFl$dn D$`F$$ $t$tnl$hGD$$$ŋ 8w+9w 2G&D$hnF<$芪ҋ$~S 8w+M9w) 2GF@$Ft$t$,ɋ$ ߉|$p>w+M9w 0GFD$p$٩$˩D$$$T$$<$x$@D$$$臜}D$|+w9w"uG&$Fl$|n$$$$4$D$@$$ʼn<$Ζ 7$V+$9$F"h$HDŽ$$$E%$;$}($$@u $;$|؋$$D$$ T$$H1҉t#h1҃ u3݅NՋ$E;$g $蘧$芧$yIW$$+$|$$$$D$@;$$q $E$ǁwNj,+)$9$ %$K $ 8$8+)9Ɖ *$ };$}.$$$D;$|҃$$9})$$$D9|׋ 8w+9w( 0G&$n~$$d$V$E$4$#m$F$$$ߤ$Τ$轤$謤h$蛤l$X${$jW$Y DŽ$0~+Mv 8F"$S$׍4$I$$$D$$D$$D$=H$L$$(9$~b$r $al$T$A+$0$rꋴ$pn$$?9~D$4t$D$D$0$[^_]$$두,\$t$ |$$l$(t$0舒l$4|$8t-$T$螚t?Ft2u l$4t$0\$t$ |$$l$(,D4$Fpl$4$ʄ\$t$ |$$l$(,Ðl$t$|$T$$l$ tT$,$t$|$l$ËB1ɉt#%rщ uޅN΋D$(L$,$D$P$袙UWVSW $OD$PD$L$L$T$@$$$l$$<$辒$DŽ$D$d%D$`V T$tBH$@ $1D$FD$X$D$$$1l$XD$p@H@ D$l%ʼnD$\ D$T D$PtaOL$pA ׉D$H)NjG+9d "O87t$X|$dDŽ$ D$TO})ƋG+9 O0k ">$DŽ$;T$X 9#׋L$l+|$X$$ًD$\|$TOǍ,)G+E9O8t"7D$Tt $G l$tE@G$wL$P*OG1n+O(F"$MD$pED$dE t$X4$ۏ}EOG7V+8T$DD$DOF&|$`<$葏O:D$@Gw+v;O0G"D$DFL$@Nul$t$L4$茓[^_]$$f$|$D$L$$•{$豕V$$$觎L$pD$x$A@<$D$;T$XC;T$X~;D$\ t;D$\~D$h,$D$Wt$,ʼn4$TNj$1$|$$*l$$$$l$T퍌$|$E$t$褐|$TOǃEō)Չl$$G+E9D$$O"D$$$0L$<$Yl$$E}D$T4D$POGt$(E+)9D$(|$ D$ OD$(L$(&D$ Ol$(G(l$`+<)9bO2=&$DŽ$D$`tV$<$<$$<7 7$;D$`$~$L$`;T$\DŽ$$U|$ $$<7B 7$;D$\$ $뫋$D$d$n$D$h$1L$ Nj$ $D$)|$$O:D$|Gw+(OO0G"$FL$pN|$d~ $FD$$FG$l$*}+v)O:E"D$|Gl$o~t$O$e$WX$F$5%$$$$=$T$$T$D$p$$D$ $l$D$4$<|$$G $蚎M$艎$$x$$g$V$E$4$#|D$0T$8D$ D$D$D$4$辆D$$$臌L$kD$D$,$=$D$,8w*;w$L$,D$ $L[^_]ËD$,[tD$$뾋u$t$$蔉$D$|$$+uD$(򋃋+щ|$~ve}FG@l$o<$D$gD$$>$D$D$($蟈|$$D$<$<$܉덋7n+8l$ 9l$ (FE@E0n+:9wf(FE@E8w+9w 0GT$ Vn $$$?}w+vuGF@F$蟈؋}w+vuGF@F<$TՋ7V+8T$9l$(FE@E@0n+89w^(FE@E8w+9w0GT$s$葇$胇$uG}w+vuGF@F@$'Ջ}w+vuGF@F$܆Ջ8w;w $|{t,$|ًD$4D$$}E%? @E>$rUWVS#~\iD$pT$|$L$t$HD$,D$pHL$'D$D,$D$ID$8 8|$@t$@nE-80|$@D$8|$$M{$t$~t$D$t$yL$LL$$yp $z4$D$}w1҅.D4$D$zƋ 8w D$4$Cnx,$D$LzՋE$D$$$D$'y|$@|$$uzt$@D$(t$u~+vg}FG@T$WD$<$xD$$x$yD$D$($l$$D$,$z$ 닋0n+9l$ 9l$ (FE@E0n+:9wd(FE@E8w+9w0GT$ Vn$W$I$;A}w+vuGF@FF$Ջ}w+vuGF@F$藁Ջ7V+8T$9l$(FE@E@0n+89w^(FE@E8w+9w0GT$r$Ԁ$ƀ$踀G}w+vuGF@F@$jՋ}w+vuGF@F$ՋD$8D$gn$t,$D$Lvtpnl$ $0v>D$D$,$qL$DD$L$Nj$p|$$rt$DD$4$crD$D$0$6rx D$DD$rD$lj$u$tt$D4$D$>r$D$tD$8ynD$0D$4$MuD$8D$$snD$|$$#u$~]L$,D$D$4$C}$%p|$Ɖ$qH;l$@~UWVS/v<'L$XD$,%D$(D$dPBD$$t1%r t$$݅Ol$$l$$t$`D$('>UՍ48)ŋ+9'("u9M;t$(}LfD$ L$T$PL$XT$$nuL$\D;t$(|1ҋD$$t$Pu8T$dBD9}L$`D9|}u] }8w4D$hl$D$ D$PD$D$T$R'l$,(<[^_]Ífl$<$rsq$|땍f$rED$ 8D$$rD$PfD$$r$-|o$|J$ |,\$t$ |$$l$(t$0sl$4|$8td$T${% u~4$v{|$@ɉl$$L$ƋD$<8|$<$rul$;l$R~;T$~O$Yy뼐UWVS qLL$`ApD$d $D$6g?D$$@$gŋ@% ED$|$$G$fD$ ‹@% B,$D$D$f}D$(D$d8ō )͋|+9].Ut$dF9ED$(l$$e1҅t@D$,%D$L[^_]É$GiuFT$8t$(L$4l$FD$D$t$$D$F $hT$0|$(ƋD$ T$<$D$d1ɋPljtO1ҋ}t$t$Ս)щL$|+9D$]|$,7D$D$,$d;|$D$,l$,,$t;|$D$,D$L$,D$$dt$,9|;|$~ZD$L$t$,D$D$$cL$ƋD$T$,D$D$$c19.9|똋D$0t$,T$(D$$D$c1ɋPƉt4N4);t$9 Љ+T$D$E4;|$~$u$u$uo$u${uT$dD$$5cL$ L$$b$D$cD9|$#uUWVSl|$x$D$Lt$w+M9w;o2GFD$ $d$d'oD$o$bL$4L$$D$4x$|$0@4$D$W}D$,3o+w9wuG&D$0Fl$,n3$?d$1d/ol$TDL$\D$P $D$eH1҉t-@1҉D$DL$D u5T$DمNы'oEl$TD;$$c$c$|c/o$L$|+$tt$|7$$$t;o3ou~+9w}F"$bH$$y;o|$lFD$hʼnNj3ou+,)9ƉT$dUD$d;o%D$`$ D$d;o8D$h83o+)9Ɖ;o(T$` };$}%|$l|$d|$hD;$|ۃD$lD$h9} |$l|$d|$hD9|;o83ow+9w";o0G&D$dnFt$p$na$`a6$Oa$>a$-a$a$ abUWVSXld$$1$t$T$UT$PO L$HN1t$\p@|$\P%ljyD$HdL$T8l$%t8D$T+Et$X)9D$XL$,"l$,dD$X(D$XT$, &T$L;l$XD$D$dL$7~+9d8F$t$,<;l$X|dT$1~+*3d8F&|$D$t$PD$F$J|$PD$($D$G$JNjd0dn+d(F&D$(}E|$D<$`J$D$$$D$B$J]D$ d8dw+v?d2G"nD$$FL$LN l$ nt$D$T$\l[^_]$^$y^;$h^$W^D$D$edD$u$/^$^T$ $2\$C\D$$sI9l$\PT$L@ D$DC6dVT$<)щL$8d+9D$8d&0d+)9d0$9>d9~;D$<|$84;D$<~t$8t$@|$\tHD$\|$LD$<$D$Lt$Ht$$[T$@$T$ZD$L0D$Hd0ǍVT$4)׉|$0d+9D$0d&0}d+)9whd2uJ$>9l$\d9~;D$4l$0t;D$4~D$0$[$[$[F$[c$[>$[L$LD$\l$ $D$3K$t$ZD$@ZUWVS#S|$$E%D$l|$l.$E%D$\_t$\4$D$G_D$TL$l)ω|$4_+9D$lJD$4L$4D$l "D$XD$`L$\D$ld$X9D$`D$Xt$(|$$D$t$`$T$PBD$B $Yl$PƋEL$T8L$$|$0|$hWX$hX4$ŋ$D$lXl$$.X$JRD$L$GT$(D$H|$$l$+)9D$t$,1D$,|$(D$D$t$, ,D$\l$(T$htL$$E+<)9D$((,uD$dD$X9D$dL$0L$ t$ T$d;L$\t D$hȉD;L$\~} }l$D$ t$LD$ D$H4$D$DT$H$ Q$PD$$$S1ɋPƉtNt$dD$,L|$Xt$d9.D$Ph_8_w+9wC_2G"nD$,Fl$`|$44D$ll$`9D$4|[^_]$W$WR$W$WY$W6$W$W${W$_(>_+8l$D)9|$DT$<nD$<D$Dt$< "D$@D$D9D$@ $D$@,ED$E $UƋE$U4$D$TUT$8$O$N$<$D$QP1Ɖt~__0n+9w{__(F,}8w+9w@_0G"L$8nN|$@D$<4D$D|$@9D$<$U$Ut$U?$UUWVSoM|gY$,$D$L_U$D$04$L$T$PAT$,$D$?ND$\D$@(D$`l$H%t(D$D )͋_Y+l$(9oD$(L"|$(7;|$H|$$D$@1ɋBt$ t+%rщ D$ ޅN΋D$0L$ l$D$D$,$C$D$4$T$$L$(;l$Hp;l$D?|$($$|$D$E@$>gYD$<0ō )͋_Y+9/"9U,$?,l$D$4gYD$<_YD$8++l$9wQ/"}9}#L$D$4TL$8D9|T$Ll$$P|[^_]$7S롋L$<$ KD9|F$ ST$,l$$BD$$$L$(;l$D|$R$R$RUWVSKJ$$$L$4$D$,$$ $ @$G@@$$P$B@$ow E%D$F$$M$$CVE‰$ϋ;V+)9$$ $$;V"E0E+)9$$ $E0E);V+$9$i $U2DŽ$$9$ $EDŽ$%9$$~$$ A$Q$JL$xz|$|< $E% DŽ$$DŽ$9$DŽ$}gD$,$$$,$L$$l$$KD$pC $$D$,9$|t$|;VCV.+(L$t)9T$`D$`L$`D$t "D$lD$t9D$l$l$4L$ll$x$D4$D$ID$XD$4|$XD$<$IDŽ$$D$\9$ D$0$$$4$$$,CVD$T$pl$ $l$\D$t$l$$It\t$<$HtJ$1ɋP B|$Pt+%zщ wD$P߅Nt$TCV01$$D$09$D$X$$D$$T$ L$$G$$|$Gt$ll$`DT$tt$l9;CV$$$l$`D$hD$|4$L$T$ D$l$RGƋ$tP$t$$4$D$Gŋ$D$$$KD$D$,$FƋ$$$D$$T$ l$t$$H$D$$l$$YJ$҉$t$$L$3F$$T$@pF@$.IL$$D$<$H$Nj$ $D$|$HŋF@$H$l$4$H|$$D$<$FH$$ƉD$H$G‹vV]5$l$K1~bCVL$@$D$D$h$H$$$$9$$[^_]Ë$$t$D$$|$ D$$F9tY$t$$/G$G‹titP]5$t$J1~CVl$@($$|$D$$)HBD$B$F봋/V$D$BD$B$]F/V$D$勄$t$l$$F$$t$D$,$F$$W|$0$$D$<$D$8ug7VT$8$D$T$4$eDD$D$X4$D$8D$l$D$X $Dl$XD$,${CD$X~QCV8;Vw+9w CV0GF@nZ$H҉CV;Vߺ|$H>w+9wCV0GFD$HF$HӋ$D$<4$D$CD$$$G$Ƌ$L$$C$4$D$LT$bCƋ$u 7t$8sL$L$L$!CT$L4$T$D$B͉؉D$DuC7V|$<$D$|$,$BD$D$XD$$$vB`D$D~UCV8;Vw+9w$CV0GF@|$D~v$CG΋CV;V>w+9wCV0GFn$F׋$$L$$]BD$<$Fx$F$$x$|$,$$/[D$p7V$l$D$4$/A$t D$$D$$$@‹L$p$$L$B$@$t$D$,$%A‰$L$p~UCV8;Vw+9w$CV0GF@T$pV$lE΋|$pCV߉|$d8;Vw+9wCV0GFT$d$E֋$D$4$i@$$D$CƋ$D$$$!@$4$ʼnL$?Ƌ$u 78l$$?D$4$l$?׋$$l$$?$$$$ |$$D$ L$<$?Ƌ$$$$,$ED$$$?$$$$9|$C$CC$CCV;Vu~+9w}F"$@CᐐUWVS:,L$@FA}w%D$F+uGF@D$F4$^9@PBD$t1%r t$݅Ol$l$t$9t$D$@Fh uׁ)NjF+9@F8E%~DED$<$q8@D$G%Dt{l$E%9ljD$}GD$1ɋBt#%rщ u'ޅN1;L$};|$|,[^_]$tAˋl$1ҋMAt#%qщ uޅN1;T$}@$AՋG%? @G$@$@B$@UWVS8$DoD*ϋ>Y?+D$`D$\L$84$l$|t$x$#@$D$dL$tG8l$l$lL$ t$Wl$T$hT$p<$T$4D$$F@$4D}D$XwDw+uGF`F|t$$A@$9>D$$4;|$hكG+t$hD$t\$@D$8l$x\$HD$@TD$|L$H|$p^ Qf.ga,ЋL$hL$xnZG+ ;t$h,D$lL$xD$p*YX;|$h~ԋD$p|$t*D$xXD$|YYXD$tL$8t$p\ D$|^ Qf.D$x\$2\$(d$(,̉ T$pL$xD$|*,|$tD$8X,YY,X,f.s ,ÃBu7+f.wxoD8QD$`1|$`1L$pD$x|$@*IDXHD$|}YYHD$tXHD$XL$X7+$_L$P|$@1D$D$d$G$g11ɉ‹@%ɉ}t3D$h\$P*f.v?d$PoD]d$H8d$Hw D$p,)$<31ދD$p$0$D$$|$$7$5u뉃zD[Č[^_]Í),$2W1oD8wnL$\DwDΉ+̓v=D$\7@"sDFD$@$^2FD$H$O2F r$;뵍)4$B20z $:0\$(D$(X $!0\$(D$(D$0D$|9|;|$h~ D$/D$l9|$V;p*$1>w 0/*|$ $w1UWVS2$.>$$D$`.$$VUUUD$4.$$D$8j.$$DŽ$D$lD$<$$)9$$$$+$$9Љ$a>$+$D$0$)9$$$9$!Ȩ $$9$9 Ш$$t$<t$)ŋ$l$,$,D$$$l,$<$$D$7D$D$,؉$$,$L$$/T$,ʼnT$$0$l$7$$+$D$$$/$ŋD$7$>~+9_>8FG$G<$t$,t$e+T$d$D$D$F(D$|$$F)$+,$4)$+hD$l$ G<$D$%)$ $D$Q+ŋD$|$($T+D$D$,$++pD$t$ E,$D$(D$$*D$h>8D$lT$lD$hT$$W($$9$D$lt$lD$0t$$T2D$l$$9$$$9$VDŽ$P&$$~D$lt [^_]Ë>닃>|$08xD$hD$l+t$hD$4$($D$$$$D$ $l$ |$S*($3$D$4 $D$&NjT$8$T$$&$|$%ŋt$<$t$$&$l$%|$`$|$u&T$4NjD$8T$$1$ $D$e&D$\t$4D$1$t$%<$ƋD$\D$D$$D$X$#l$XD$,$,t$<$D$XD$#ʼn$#D$,$+ʼnD$D$XD$$#D$T$x#D$D$T$+$$L$<$T$D$T-#D$H$T$XD$$$D$#$D$P|$\$L$D$<$",$D$D$D$$D$"$D$L$T$4$D$"D$@$$D$Tt$l$$w"D$$a#D$xDŽ$9$$.f$|$x$#$D$|l$xD$"$"kL$|AYt$P$L$4$D$!ƋT$||$L$T$<$D$!l$H$D$|,$D$$D$!T$|L$D$$T$ $D$_!|$|$$|$D$D$@$4!D$$4$"D$t(9$}x>D$$L$t$!T$tŋ$!$!}5E~+$l$D$$$ $N!|-;$|$$9$7$$l$t$$O Ƌ$$L$l$$/ $l$$$ $D$ 4$$D$ D$p9։$.8D$$D$(L$p$ T$p$$m $L }<$B~+$T$D$$$i$ |;$|$$$L$T$$&$}$ $ $"D$$$",$D$hZ $"D$$$"L$h $D$T$|D$h$ $"D$$$\"D$D$h$D$D$h$"D$hD$(8w1D$ltD$lD$D$h$L$hL$lL$hD$ $ $D$$T$ D$$$D$$b" 끋$$t$$y!ʼnD$$l$$z$|$U$4l$$$O$$A$L$D$ E,$D$D$$ $NjF$t$؉D$ B$D$D$$ <$D$|X$ ŋD$|$B$ HD$L$ E,$D$3$D$4$_ $D$ D$h>8w1D$ltD$lt$hD$4$xT$hT$lk|$hD$<$$$D$$$L$$D$ l$w 끋$D$$xD$$$D$$P_UWVS!\D$,D$HD$p@L$tD$<-)0{-~UT$D+-8F&|$8D$(l$D$(l$xt$|D$ $;t$Ds-8v;|$LD$ ZD$4$7D$H|$D$$|$|$8<$%Ɖ$';D$Hts-8w3D$HD$D9D$Htt$8D$Ll$@9l$L\[^_]ÍT$ $빋D$0D$,$AL$tl$D$D$<$L$,L$ L$$$L$L$0L$;t$D~$&-{-}w+9w@uGF@D$F4$D$,t$$@4$D$^D$0$l&$^&_$M&UWVSL ;'@A B%@ g$@*}2#@cq"@ S!@e}b*@u[`)@W-'@ ZZ&@ȥ;q%@=ˎF$@ ԕ-@D7H,@mQ +@b)@/(@MNL'@o l`&@RFi0@DH~/@)&o/.@A"pj,@㐠+@Iqa*@Fw()@˱a 2@> _1@Eկt>0@BF 0@r.@ă-@(B,@$("+@Mt3@k3@h#M)U2@}1@&00@GX0@e h/@Zh9#.@Rk\5@ ^4@v)3@)K3@W2@p1@ U~L1@O}50@Xu`0@U> 7@`]9U6@Ċ5@vJ14@DZB4@?3@/2@9qޤ@2@n˙1@o8@-P8@,AN7@8 6@ O5@t9f95@ȿ+V4@#G:3@@153@C^2@"k:@+j0 ó9@ЗE8@bG8@RK)7@xT6@/%06@tHb5@8:4@x *4@;_ <@qVqf;@<\iD:@c9@H*@9@֫而8@RI97@HPW(7@0(x6@uIh&5@Vl5@smith/class groupwrong type in too_bigbnrclassbnrinitisprincipalrayplease apply bnrinit(,,1) and not bnrinit(,,0)bnfcertify Testing primes | h(K) PHASE 2: are all primes good ? Testing primes <= B (= %lu) sorry, too many primes to checklarge Minkowski bound: certification will be VERY longMinkowski bound is too largeconductorincorrect subgroup in %srnfnormgroupnon Galois extension in rnfnormgroupnot an Abelian extension in rnfnormgroupnot an Abelian extension in rnfnormgroup?rnfconductorincorrect character length in KerCharconductorofcharbnrclassnolistdiscrayabslistnot a factorisation in decodemoduleincorrect hash code in decodemoduleLbnrclassno[2]: discrayabslistarchStarting discrayabs computations Starting bnrclassno computations [1]: discrayabslistarchStarting zidealstarunits computations r1>15 in discrayabslistarchnon-positive bound in DiscrayabslistsubgrouplistBuchrayMahler bound for regulator: %Z Default bound for regulator: 0.2 (lower bound for regulator) M = %Z M0 = %Z M* = %Z pol = %Z old method: y = %Z, M0 = %Z p divides h(K) Beta list = %Z p divides w(K) *** testing p = %lu neither bnf nor bnr in conductor or discraybad subgroup in conductor or discraybnrdiscrayfactordivexact is not exact!*. Searching minimum of T2-form on units: BOUND = %ld [ %ld, %ld, %ld ]: %Z prime ideal Q: %Z column #%ld of the matrix log(b_j/Q): %Z new rank: %ld generator of (Zk/Q)^*: %Z ?{Gz?ư>rZ| ?7 ⍀P#  {⍀{P  f⍀fP Q⍀QP <⍀<P '⍀'P ⍀P ⍀Pt o ⍀P[ V ⍀PB = ⍀P) $ ⍀P ⍀P ⍀P j⍀jP U⍀UP @⍀@P +⍀+Pz u ⍀Pa \ ⍀PH C ⍀P/ * ⍀P  ⍀P ⍀P ⍀P ⍀P n⍀nP Y⍀YP { D⍀DPg b /⍀/PN I ⍀P5 0 ⍀P  ⍀P ⍀P ⍀P ⍀P ⍀P ⍀P r⍀rPm h ]⍀]PT O H⍀HP; 6 3⍀3P"  ⍀P  ⍀ P⍀P⍀P⍀P⍀P⍀Psn⍀PZUv⍀vPA<a⍀aP(#L⍀LP 7⍀7P"⍀"P ⍀ P⍀P⍀P⍀Pyt⍀P`[⍀PGB⍀P.)z⍀zPe⍀ePP⍀PP;⍀;P&⍀&P⍀P⍀Pz⍀Pfa⍀PMH⍀P4/⍀P⍀P~⍀~Pi⍀iPT⍀TP?⍀?P*⍀*P⍀Plg⍀PSN⍀P:5⍀P!⍀P⍀P⍀P⍀Pm⍀mPX⍀XPC⍀CPrm.⍀.PYT⍀P@;⍀P'" ⍀ P  ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pq ⍀q Pxs\ ⍀\ P_ZG ⍀G PFA2 ⍀2 P-( ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P~y ⍀ Pe`u ⍀u PLG` ⍀` P3.K ⍀K P6 ⍀6 P! ⍀! P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pkf ⍀ PRM ⍀ P94y ⍀y P d ⍀d PO ⍀O P: ⍀: P% ⍀% P ⍀ P ⍀ P ⍀ Pql ⍀ PXS ⍀ P?: ⍀ P&! ⍀ P } ⍀} Ph ⍀h PS ⍀S P> ⍀> P) ⍀) P ⍀ Pwr ⍀ P^Y ⍀ PE@ ⍀ P,' ⍀ P ⍀ P ⍀ P ⍀ Pl ⍀l PW ⍀W PB ⍀B P}x- ⍀- Pd_ ⍀ PKF ⍀ P2-⍀P⍀P⍀P⍀P⍀P⍀Pp⍀pP~[⍀[PjeF⍀FPQL1⍀1P83⍀P⍀P⍀P⍀P⍀P⍀P⍀P⍀Ppkt⍀tPWR_⍀_P>9J⍀JP% 5⍀5P  ⍀ P ⍀ P⍀P⍀P⍀P⍀Pvq⍀P]X⍀PD?x⍀xP+&c⍀cP N⍀NP9⍀9P$⍀$P⍀P⍀P⍀P|w⍀Pc^⍀PJE⍀P1,⍀P|⍀|Pg⍀gPR⍀RP=⍀=P(⍀(P⍀P}⍀Pid⍀PPK⍀P72⍀P⍀P⍀P⍀Pk⍀kPV⍀VPA⍀AP,⍀,Poj⍀PVQ⍀P=8⍀P$⍀P ⍀P⍀P⍀P⍀P5Ng/Haz)B[t #<Un6Oh0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk3Le~-F_x'@Yr!:Sl4M$Ë$C2!   ziZ t e4   l uf u[>`u1u utduZNu4 u u um# u u u u uq `PH8) )pPH:2&tbP4/)sk[K80$ vnX  tl?7& )hG vT2 x`PD* ) iYF. pTC>)  ) )^ )~^VLD1 ) ) )yiE.xO%t[3'# )`D )>% yy|cTOGqy?) y y y yoyhZUMmy) yy yV yEy4yyF y9 y3y y yu eTC 9    e5       bkO<'      gG$ xaE$      ~a M9޿˿ j d Z4   ׾þ G$ ڽ ҽ v_W>μ vnYB'ջm7#ܺ |i n  z r ? Ƕ  y e bI2  tE &  Գ ܲ  }l[M ݬ ݬڱ ݬ ݬ ݬ~vg[Nݰ ݬӰ ݬ}l[M ݬ ݬ ݬxlG;3' ޭ\ ݬA ݬ;) ݬ٬ Ƭ{j\N E Eԫ E E E Eo_O Eժ E E E Eg EG7/  Eԩép E[ ES EI( E E E¨ E| E] E: E E EJ EA 1 ܦΦ     ڥ   m I  ˤ s 4   |r f [M+  Т  ~ g ] W0 ء ҡ¡  k U 7$à      g Z ޞΞd M8*ԛ YƛlU D3#  PҚ}; 3 n 1   Θ-ȘE-yb -T=ߗ -ӗ -u_A -, -" - -ݖ -ז -˖ -x -p -h -Aؕ|tdQٔ -$^9 -) ݒ%ΑiJ  L  zO) Ž  | v iM  f XY XH9)X! X݌nj~nXT 1 щŋщщ щ|T щ щъ}щ щ щu щb щC щ։ щ͉ n^`݁XD4V݁* ׈È ݁aUM݁JE91D݁ ݁ڇ ݁҇ ݁ ݁vhJ ݁ ݁ ݁ ݁چ ݁ ݁ ݁h ݁b ݁Z ݁ ݁ ݁ ݁ ݁ ݁W ݁Q ݁* ݁$ ݁ ф ݁p`M ݁E94 ݁ ݁܃݁ԃă ݁؇݁݁݁`݁|݁x ݁t"݁p݁lK݁al݁B ݁8 ݁ oA ݁*݁ف ʁe{ue{h e{`# e{ e{؀ e{Ҁ e{ǀ e{[ e{U e{A e{ e{ e{ e{ e{ e{c e{] e{R e{G9+ e{~ e{~ e{~ e{~ e{n~ e{h~ e{`~O~?~/~'~~} e{}}}} e{}}e{u}e}[}e{N} e{D}<}*} e{$}e{ }Ѐe{}e{}e{}[e{}Pe{ }f~e{}(}e{}}e{|}e{||||||}|m|Y|K||{ e{{ e{{ e{{a{ P{{ {zzzgzWzDzzzyyyyyyyKy:y)yyyxxxx nx nNx nHx n/x n#x nxxwwv nv nv nlv nAv n;v nvu nu nu nuuuuiu]uJuXBWW CV CV CU CU CpT CCT C6T CS CaS CXS C S CR CR CzR CpR C;R CQ CQQ CQ CQ CxQ CGQ C:QP CP CP CVP CP CP CO CO CrO3O C"O CN)NyM CTM C,M CL CL CL CzL CfLL CK CK CK C?K C$K CJ CJJ C(J J CI CI CI CI C[I C7I C1I CI CI CHH CrH CPH CH CG CG CrG C9G CG CF CYF CSF CEE C~E CvE CnE CRE,EED CD CD CxD_DD CC CC CCCC@ACqC_C AQCCBB AoB AAAAAA AA tABA ; ;>> ;= ;= ;p= ;c= ;]=Q== ;< ;< ;<<<l<2<; ;;;; ;f;4; 8.; 8#;;::::::9 89 8999]9)98 8888 88888}8-87 ]67 ]67 ]67 ]67 ]67l7U7E7]6*7 ]66 ]666]6t6b6 ]6Y6 A66 655 25 2x5 2i5X5J5(5 25 25 244 24 24 244k4 2C4 24 24 23 23 2t33 22 22 222 222 2}2 e2?2.2 21 .1 .1 .1|1n1L1 .+1 .%1 .10 .0 .0 .000 .g0 .?0 .90 . 0 .0 ./&/ ./ .. ... ... .. .o.@.. .-- M*- M*w- M*h-W-I-'- M*- M*- M*,, M*, M*, M*,,j, M*B, M*, M*, M*+ M*+ M*s++ M** M** M*** M*** M*|*I* :*** (* (**))) () () (~)p) (j)[)M)1))))((((( (( ((|(`"q(P(!(('' "' "''v' "h'T'<'*''''&&0&%%%%$ "$ "$`$"3$#$##x# "`#P#"7##" "" "" """""o"^"M":" 2"! ! !! ! !}! q! &!!      y q e U 7 '     !  +   ~pJ  aI`G   ^NwC3@( 9|n  ^ R L&  n ;$ `~ L       mH<H &     _:` 9 t`RA2    m`9;           s  c  ] A 5    5 5 5 r f V (         v L : 5 1     1  q a (@ <  # x }mP }H1} }t}UM;' }y WF5$y n[OG3Z  C  ;  3      wk[M            x  rh  >0(    e    c>2#   !  E E} x! r ,j ,d _! Y Q K F! @ 8 2 -! '   !    !    !    !  } } !  d d !  K K ~! x 2p 2j e! _ W Q L! F > 8 3! - %  !     !    !    !    ! } j} j ! y Qy Q ! ~u 8vu 8p k! eq ]q W R! Lm Dm > 9! 3i +i % ! e e   ! a a  ! ] ]  ! Y Y  ! U pU p ! Q WQ W ! M >|M >v q! kI %cI %] X! RE  JE  D ?! 9A 1A + &! = =  ! 9 9  ! 5 5  ! 1 1  ! - v- v ! ) ]) ] ! % D% D| w! q! +i! +c ^! X P J E! ? 7 1 ,! &   !    !    !    !  | | !  c c !  J J }! w 1o 1i d! ^ V P K! E = 7 2! , $  !     !    !    !    !  i i !  P P ! } 7u 7o j! d \ V Q! K C = 8! 2 * $ !     !    !    !    !  o o !  V V !  ={ =u p! j $b $\ W! Q  I  C >! 8 0 * %!    !     !    !    ! u u  ! \ \  ! C C{  v ! p } *h } *b  ] ! W y O y I  D ! > u 6 u 0  + ! % q  q    ! m  m   ! i  i   ! e  e   ! a { a {  ! ] b ] b  ! Y I Y I  | ! v U 0n U 0h  c ! ] Q U Q O  J ! D M < M 6  1 ! + I # I    !  E  E   ! A  A   ! =  =   ! 9  9   ! 5 h 5 h  ! 1 O 1 O  ! | - 6t - 6n  i ! c ) [ ) U  P ! J % B % <  7 ! 1 ! ) ! #   !        !      !      !      ! n n  ! U U  !  <z  <t  o ! i  #a  #[  V ! P  H  B  = ! 7 / )  $ !     !     !    !    ! t t  ! [ [  ! B Bz  u ! o )g )a  \ ! V N H  C ! = 5 /  * ! $     !   !    !    !  z z !  a a !  H H {! u /m /g b! \ T N I! C ; 5 0! * "  !     !    !    !    !  g g !  N N ! { 5s 5m h! b Z T O! I A ; 6! 0} (} " ! y y   ! u u  ! q q  ! m m  ! i mi m ! e Te T ! a ;ya ;s n! h] "`] "Z U! OY  GY  A <! 6U .U ( #! Q Q  ! M M  ! I I  ! E E  ! A sA s ! = Z= Z ! 9 A9 Ay t! n5 (f5 (` [! U1 M1 G B! <- 4- . )! #) )  ! % %  ! ! !  !    !  y y !  ` ` !  G G z! t .l .f a! [ S M H! B : 4 /! ) !  !  !  !  !  ! ff ! MM ! z4r4l g! aYS N! H@: 5! /'! !  !  !  !  ! ll ! SS ! :x:r m! g!_!Y T! NF@ ;! 5-' "!  !  !  !  ! rr ! YY ! @~@x s! m'e'_ Z! TLF A! ;3- (! " !  ! }} ! yy ! uxux ! q_q_ ! mFmF~ y! si-ki-e `! ZeReL G! Aa9a3 .! (] ] ! YY plhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($   i`rRTjMG>O]DEf|c( }B PVmk sSUKutelZ~bon^LF_gy@HWxz?CJw{QhvX Ip=YNA da i`rRTjMG>O]DEf|c( }B PVmk sSUKutelZ~bon^LF_gy@HWxz?CJw{QhvX Ip=YNA da<q;\[0 n9 `> ԁX ȉe \{u < t  $  P  Ԭ <    , p;  G lU    Z, o, 8hT6ED* ne  Q D4|Ak.wx2;ClOT.[x.%t;Dh{ 7()"\mzK  ]   w *    g    q ~ & r x oh>c ]AXI   1  / y ?  "-f|  m AsU -H9u  l, Ptuq 3 x 9fnp  =  6    OA =y|   KH]f 3R @  _  !& n f4 ~WHc_ S T V cJ 2"b M o <W3"}  2_buchnarrow___i686.get_pc_thunk.bx_idealmodidele_buchrayinitgen_buchrayinit_buchray_bnrclass0_bnrinit0_bnrclassno_quick_isprincipalgen_bnrisprincipal_isprincipalray_isprincipalraygen_minkowski_bound_norm_by_embed_certifybuchall_bnrGetSurj_bnrconductor_bnrisconductor_conductor_rnfnormgroup_rnfconductor_bnrdisc0_discrayrel_discrayrelcond_discrayabs_discrayabscond_bnrconductorofchar_bnrclassnolist_isinvector_discrayabslist_decodemodule_discrayabslistarch_discrayabslistlong_subgrouplist0_bnrdisclist0___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGMEM_gen_m1_diffptr_pol_x_gdiv_gen_1_DEBUGLEVEL_gen_0_bot_gen_2_avma_subgrouplist_subgroupcondlist_gerepileall_mulss_zlog_units_noarch_zlog_units_idealmulpowprime_rowselect_p_mattodiagonal_i_vecsmall_append_matsnf0_vec_to_vecsmall_trivfact_vecpermute_sindexsort_concat_factor_checkbid_diviiexact_pr_norm_idealdivpowprime_addii_sign_addsi_sign_powgi_const_vec_rnfdiscf_RgX_rescale_Q_denom_unifpol_Flx_eval_ZX_to_Flx_nf_to_ff_nfrootsall_and_pr_poleval_initalg_i_lift_intern0_shallowcopy_rnfequation2_cgiv_FqX_factor_FqX_is_squarefree_modprX_nf_to_ff_init_cmpui_fix_relative_pol_perm_to_arch_factorbackprime_gequal_log_gen_arch_hnf_gauss_log_gen_pr_equalii_hnfdivide_checkbnrgen_vecslice_idealhermite_lcmii_maxprime_check_testprimes_pari_warn_exp_rank_Fp_PHlog_to_Fp_simple_zkmodprinit_gener_Fp_local_Z_factor_primedec_uisprime_umodiu_monomial_gceil_gnorml2_algtobasis_delete_var_gsubst_content_subresall_gadd_gpow_gsigne_divrr_gexpo_imag_i_real_i_roots_gaddsg_gsub_gmulsg_gcmp_logr_abs_addrr_sign_sqrtr_abs_mulrr_addsr_fetch_var_gach_vecsmall_to_col_ground_RgM_zc_mul_floor_sqrt_rtodbl_sqred1_from_QR_gprec_w_minim_alloc_flusherr_gmax_sqrtr_ggamma_gdivgs_divsr_gmul2n_divrs_mulsr_gsqr_glog_cmpii_int2n_nf_get_sign_dbltor_fprintferr_auxdecomp_factor_gsqrt_gpowgs_gopsg2_mpfactr_powuu_factorbackelt_gcmp0_gerepileupto_checkbnr_isprincipalfact_gneg_isprincipal_gerepileuptoint_dethnf_i_reducemodinvertible_lllint_ip_detcyc_hnf_gneg_i_zideallog_hnfall_i_vecmodii_zlog_init_zlog_bid_init_units_check_and_build_cycgen_matid_RgV_isscalar_idealcoprime_fact_Idealstar_check_units_gdivexact_colreducemodHNF_element_muli_famat_to_nf_modideal_coprime_FpC_red_make_integral_ggval_int_elt_val_Q_primitive_part_algtobasis_i_powiu_element_mul_element_pow_FpC_Fp_mul_Fp_inv_Q_remove_denom_mulii_element_inv_unif_mod_fZ_idealval_famat_to_nf_modidele_eltmul_get_table_init_unif_mod_fZ_set_sign_mod_idele_absi_cmp_gnorm_coltoalg_element_div_idealdiv_idealaddtoone_i_idealred_elt_gcmp1_famat_reduce_idealmulred_idealpowred_arch_mul_to_famat_all_nfgetprec_gerepilecopy_shifti_idealmul_Q_primpart_idealpow_msgtimer_smithrel_shallowconcat_diagonal_i_vconcat_gscalmat_F2V_red_ip_gmul_zsign_from_logarch_perm_identity_ginv_mppi_rowslice_archstar_full_rk_ZM_to_Flm_FpM_image_zsignunits_gcopy_nf_get_r1_checknf_checkbnf_pari_err_Buchray_c.0_lowerboundforregulator_i_check_prime_regulatorbound_args_to_bnr_ideallog_to_bnr_rnf_is_abelian_Discrayrel_get_discray_factormul_factordivexact_bnrclassnointernarch_zsimpjoin_subgroupcond_reel4.1_compute_raygen_isprimitive_minimforunits_compute_M0_primecertify_compute_fact#1/12 1200774019 0 0 100644 46140 ` buch4.o| kk__text__TEXT^XnS__data__DATA^\a__cstring__TEXT^xa__picsymbolstub2__TEXT`G kc:__la_sym_ptr2__DATAj|l____nl_symbol_ptr__DATAk 0n__textcoal_nt__TEXTkPn @ШЮ` P hUWVSLL$` !Ȩut$dt^$T$ikkD$8k8$D$0D$dD$i4D$`|$D$$eH1҃<$hl$8ƋD$d,$D$gD$4D$,l$d1ҋEt+%L$dyщ ߅N9T$4}w|$8G|$D$ F4$D$\gL$dD$ƋD$,D$ D$`D$L$$Iu D$4ck|$08L[^_]Ëkt$01҉0$KhYL$`.|$ $hƋ@u 4$guT$\cD$L cL$D$D$H:D$$$D$D$LT$D$ D$,$@ct$D2tI$A,$D$z[$D$$sYD$@%9|cD$D$*1bD$$$2YD$D$H$Z$D$D$@$D$D$LT$|$D$ L$D$,$Bu%9|icL$D $D$HD$D$L$#\D$8D$4L$0$E[t t$8$,$t$L$kZD$4$$D$,$$L$ T$$t$,$XD$D$,,$D$vXD$,$$D$D$,$Zt$0cɉ04$D$8,$t$D$.YD$P$ t`F$&T$P$$N,$M$ŋA$D$TP$BBƋ S4$D$ɉD$8R|$0D$48T$PD$$$T$D$ D$t$,$2 S|$0:tH$F,$D$bMT$8D$$^KL$TNj%9| Sl$0*D$L1XT$TD$D$8$KD$D$4$LT$PD$$L$TD$$T$L$|$D$ D$,$4uL$T%9|g SD$0|$L:|$4$|$$ NljD$,L$($.Mt $|$,$D$XLD$,T$\L$XD$$t$`$t$ T$L$D$X,$Jt$$D$,$t$oJD$$D$\D$`D$D$$$Lt$( Sɉ0J$|$,$D$1KNj$$~LL$4L$$MƉ$2Lt+4 9!$t$,$T$8K뺋D$X$IpD$$t$LIL$`ƋAL$$D$,I4$D$IL$`t$\D$D$$L$ t$$HD$$ tUF$T$LT$$Bt BD$$R틔$B,$D$:Jt$$J<$D$ID$,D$d$}HpD$$t$JHL$lƋAL$$D$*H4$D$HL$lt$hL$ <$t$D$Glj [tUF$T$!KGt G&R$A,$D$DI|$$I4$D$HR)$S|$,$D$I,$t$t$D$aHD$,$$T$HD$l$F<$EL$lNjA$D$RHJl$dt$hT$$E tl$<$DŋT$h tT$<$DƉ4$D,$Dt$ JD$$L$KDl$l<$l$D$|$$J>L[^_]ËD$l<$D$D$dD$[FT$lD$0D$hT$D$<$?FD$0D$,uuJ|$(8뢋D$0LJt$hD$<$t$CD$D$,tJL$dD$<$L$XCT$T$D$<$+CD$0t D$,%L$$T$,FEt E)J$AL$,~QJ(Ju+v$J2EF@D$,FI$E΋l$,JJ݉l$.u+vJ0EFD$$WE֋D$0~QJJ.u+v$J2EF@D$0Fq$D΋l$0J݉l$ (Ju+vJ2EFD$ $DUWVS,SFD$D$D$CuD$H$Ct9$T$[DD$@$aAT$DD$@ tD$@T$$w@D$DT$H tD$@T$$U@D$HL$D $'@D$D$H$@D$D$@$?ŋD$@9x%D$D$$C@9~ۋD$D$D$At$Ht$$?D$D$@$>x%p~/L$Hl$@D$ D$DL$D$,$x!ыSFt$0,[^_]Ë?F8wSF|$8ڋD$9$~>֋D$D$$B@?F8vt$?:VD$,t$ L$$T$(tD$ T$L$4$H^ÉT$L$4$UWVS[D$ED$pt$8$T$"B$$|=$@$D$hA PT$dr t$`u@~D$XC|$T+]|$TC}F"}w+"uG"C|$Tw wwD$XGt$dw$GE+L$l)9D$lD$lu &DŽ$|$l5l$dE$A<4$D$$>$D$t$<DʼnT$\%|$l$DCD$DƋ% D$lL$l+E)9D$l71D$l &$DŽ$|$l~|l$4t$D( l$l($T$4$D$8D0~+9D:F$D$8|$;D$l$|T$|$l$tL$Dt$x|$T$ l$t$ $:T$x8ŋD$||$@%D$<%~B%aD$lDCD$0++t$09D$l"D$l7C "D$,++L$09D$lL$(D$(1T$,D$(DŽ$|$l~-D$t$$;D$l$|Ӌ% D$@DŽ$;D$@;|$<X,$8,$D$LD$9NjD$|<$D$:$i8<$D$;l$(D$HD$TDhC>l$tw+D2G"nD$HFL$LN D$TpD$\t$XD$4$:D$XDŽ$;D$l}S$Ttd$$D$7|$XD$<$9D$X$;D$l$|D$XT$TBT$D$p$27Ĝ[^_]ËR$ =D$D$ D$|t$D$$$E7L$h@D$A$#9$L$($;|$<$|8D$D$ Dt$D$$$6|$h@D$G$8$|$($;D$@$|$<1$ <$;$8$L$;$;$;N$;1$,$D$|$6$q6$ʼnL$$C6$D$\u[ Du$)NjC+9D8"7D$D$$$5Ƌ$$udD$8Ct$Pw+v,D2G"D$\nF|$P~ l$Tu$g:Ƌ|$hD$ |$D$D$`$4$$$$uN$ :$9$9$$$6$D$$$5$$;D$l$|r$98$n9$]9,\$HT$0t$ |$$l$(:($4Ɖ$16NjD$4Q/$L$8T$8tvvvvvvvvvvvvvvT$<$1D$8L$8D$4<$L$D$"tND$84$D$1t8%t,|$$W1D$,$21\$t$ |$$l$(,Ë:ꋻ:+/ur 7E$$7卓/$T$7?UWVSK9$$D$d$;9+8] l$d$$.@ "$$t$L$$0$P$?T$|u8$D$ D$D$D$$/$$ $$$T$|$$/$‹%U D$A6& $%$F%?;D$|xw-$l$,6D$p$@%$$!Ȩ$D$$$.D$pPD$T$h@$_.|$pGG D$l$tD$l$4u6$$-t$hD$ D$D$4$9.$$$$C9K9$;9u~+Q}F"$$$@ @HL$t@ D$x1DŽ$9$$:$$$l$$|$ D$$$|$tD$$3$t$$],$$$T$\D$Xl$xD@PD$$D$TD$ D$PD$D$LB%6$+@D$H89|$D}HD$Ht$TK9<2D$|$$C-K91?9;f;l$D|$$9$$C$L$dA$A$q t$D$lD$$$*|$dG$G$G$G$u-?9|$dG |$$,$,ļ[^_]Ë$~MK9;9}w+vuGF@$V$b2ӋK9$8;9݉w+vK90GFn$2׋$$t$@ $)D$$@ $q.K9ŋ$;9D$@$D$<u+)9dK98E%~DU$$$L$8D$4l$0G%<$')@D$,89|$(.D$,t$8K9<2D$|$$*K91?9;u;l$(|mL$8|$$h/T$8|$D$@$|(t$4D$$.T$4|$D$<$T(L$0D$$-|$0눃G%? @G$%0L$T|$$.T$T|$D$\$'t$PD$$u-T$P|$D$X$'L$LD$$M-|$L-z'$/T$p$>K9;9+)9.M$FE9$}.9~T$XD$L$t$$D$Tt$t$@4$uD$@$u@~D$H+E}F&D$Tl$P|$<9l$T}.D$D$@L$T,Eu`D$TD$P9D$T|܋|$<%L$@l[^_]ËD$D$8$ t$9o⍀oP% Z⍀ZP E⍀EP0⍀0Pڗ՗⍀P輗⍀P騗裗⍀P鏗芗⍀Pvq⍀P]X⍀PD?⍀P+&⍀P s⍀sP^⍀^PۖI⍀IPǖ–4⍀4P鮖詖⍀P镖萖 ⍀ P|w⍀Pc^⍀PJE⍀P1,⍀P⍀P⍀P``a+aDa]avaaaaaa b%b>bWbpbbbbbbcc8cQcjccccccdd2dKddd}dddddde,eEe^eweeeeee f&f?fXfqffffffg g9gRgkgggggghh3hLheh~hhhhhhi-iFi_ixiiiiiij$Ë$ù^k]^^_]l^P^D^$^ ^]]]] ]t]h]M]\\\\\k\\\L\>\k\4\\ \[[[e[kZS[I[7[+[[ZZZkZZ ZcZkT]ZkTUZ6ZkT ZkTYkTYYYYeYkTNY(YkT YkTXXXXyXiXXkTWkTWWWkTqWkT=WkTWkTWVVkT8VkT!VkTUUkTUkTUkT%UUUTTTT ToT6TTTSSSSSkQRkQRkQ*RQkQQkQQ QQkeP~QBQ2QQkePPPPkePPjPkePaP QPEP9P PkLOsO!ONN{NkNHNKk9K5K *KKJIJkI=JJIIIIIoI@IkI8IIkI I HHHHkHHkHH cHSH`=EH8HGk=Gk=GGk=Gk=Gk=GuG_GMG7GGk= Gk=GFk=FsFk=EEEEEEEnE]ELE;E"EDDDjDk=SDk=KDk=%DD DCCCCCC`Ck=RCk=4Ck=Ck=BBB}Bk=cBk==BAk=Ak=AAfA=AA@@@`=@k=@k=@@k=_@D@@??????k=x?k=r?>?k=?k=?k=>>k=>o>^>@>k=7>>k=>k====`====|=p=`=``=!=k== =<<ki2<<(`i2<<x<ki2_<ki2U<ki2M<'<ki2<ki2<ki2;ki2;;;;`i2z;Q;E;;ki2::ki2:ki2e:?:-:::9999x9f9P9,9ki2$9ki299ki28n8ki268ki2'8ki2!8 877ki27ki27ki27\7ki2V7ki2:77ki26o6ki2g6ki2a6F6ki26554ki24ki24ki244p4K4-433_i23e3*322ki2q2ki2e2 @202_0(21k01k011111t1x10p1.20l1.20h1.20d1.20`1.20\1.20X1.20T1x10P110L1.20H1.20D1.20@1.20<1x1081.2041.2001x10,1.20#1,10 10_0000k00 00~0L02000///d/k'I/k':/k'//k'.k'.k'.k'.x.p.P.?.... ._'.----=-'-,,,,N,,k'+k'+k'+++++*k'*k'*k'f**k')k'V)k'P)k' )k'))(q(k'A(k'%(k''''_''k'' ''O'_a%@'ka%/'''`_a%&ka%&ka%&ka%&&}&m&G&'&&&%%%%%0_a%%x%f%ka%]% R%0%k %k %k $$k $k $k $$k e$k _$k S$)$k $k $k ##k ##_ ##v#V#<#$#k ##""""k x"b"k C"k .""!k !!!k !!!z!U!k G!.!&!! !_ !  k k   n kkv[Ik5k(k_aG2&k__E5knZkSCkk{kgk]kW2k&{mkE)! _k kxl<kkym=kzik< kkksYk?/_ k~rfLk2"_|l`Fk&_o k3ktdH8,k_hN;kgS   k| > .  k   k X kN kH 2  k   k u k\ kT kN & k    | n kA k5    q c k;    ^k [C+k}]F8kl`L0kk kkkrk^4sWkKkEk?/^ Vk G9%k k mC{_k Sk Mk G7^  C  = kj5 kj/ *  $ ki ki   ki ki  kiki  kiki  ~ki~ki  zkpizkpi  vkWivkWi { urk>imrk>ig b \nk%iTnk%iN I Cjk i;jk i5 0 *fkh"fkh  bkh bkh  ^kh^kh  ZkhZkh  VkhVkh  RkvhRkvh  Nk]hNk]h  {JkDhsJkDhm h bFk+hZFk+hT O IBkhABkh; 6 0>kg(>kg"  :kg:kg   6kg6kg  2kg2kg  .kg.kg  *k|g*k|g  &kcg&kcg  "kJgy"kJgs n hk1g`k1gZ U OkgGkgA < 6kf.kf( # kfkf  kfkf   kf kf  kfkf  kfkf  jifjif  jPfjPfy t nj7ffj7f` [ UjfMjfG B <jf4jf. ) #jeje  jeje  jeje  jeje  jeje  joejoe  jVejVe z tj=elj=ef a [j$eSj$eM H Bj e:j e4 / )jd!jd  jdjd  jdjd  jdjd  jdjd  judjud  j\dj\d  zjCdrjCdl g aj*dYj*dS N Hjd@jd: 5 /jc'jc!  jcjc  jcjc  jcjc  jcjc  j{cj{c  jbcjbc  ~jIcx~jIcr m gzj0c_zj0cY T NvjcFvjc@ ; 5rjb-rjb' " njbnjb  jjbjjb  fjbfjb  bjbbjb  ^jb^jb  ZjhbZjhb  VjOb~VjObx s mRj6beRj6b_ Z TNjbLNjbF A ;Jjb3Jjb- ( "FjaFja  BjaBja  >ja>ja  :ja:ja  6ja6ja  2jna2jna  .jUa.jUa~ y s*jhR56fa$O3 sij*+N?PwX~Z7}DT,[qgC|@.`{9Apm;L\(YenxBKrt:'lU8kvbu%JI-_#=z4S!HMQ0^c</dyV1])W>hR56fa$O3 sij*+N?PwX~Z7}DT,[qgC|@.`{9Apm2o&EFG"I 0KQL%\P.T9^BZJ \T]k kHv0l'UX%`X'I $/=`2<mv96!a)^Wd;E8sS{ OfY+C0k(1yNqD^uiPH _zpsoluble___i686.get_pc_thunk.bx_qpsoluble_qpsolublenf_zpsolublenf_nfhilbertp_nfhilbert_nfhilbert0_bnfsunit_bnfissunit_rnfisnorminit_rnfisnorm_bnfisnorm___i686.get_pc_thunk.axdyld_stub_binding_helper_diffptr_pol_x_DEBUGLEVEL_bot_gen_0_gen_1_gen_2_avma_factorback_gfloor_inverseimage_check_units_idealnorm_maxprime_check_pari_warn_simplify_gcmp_1_get_theta_abstorel_powiu_primedec_factor_cgcd_nfisgalois_gsubst_eltreltoabs_nfgetprec_rnfequation_i_lift_intern0_rnfequation2_bnfinit0_get_bnfpol_gerepileupto_concat_isunit_basistoalg_famat_mul_to_famat_all_dvmdii_gnorm_Q_denom_algtobasis_i_gerepilecopy_glog_gneg_dethnf_i_isprincipalfact_mathnfspec_factorback_i_ZM_inv_detcyc_mattodiagonal_i_smithall_hnfall_i_diagonal_i_isprincipal_checkbnf_idealfactor_fprintferr_nf_get_r1_gneg_i_element_div_element_pow_mkpoln_lift_basistoalg_i_gmul_Fq_pow_diviiexact_addsi_sign_pr_norm_nf_to_ff_nf_to_ff_init_checknf_checkprimeid_gmodulo_gadd_gmulsg_shallowconcat_idealhermite_zidealstarinit_idealpows_element_val_zideallog_gdiv_gpowgs_coltoalg_idealval_polrecip_addii_sign_mulii_gcopy_Z_pval_vals_gcmp0_Z_lvalrem_derivpol_kronecker_umodiu_equalui_Z_pvalrem_gcmp1_poleval_pari_err_lemma7_zpsol_repres_lemma7nf_zpsolnf_make_unit_reel4.0_lemma6_lemma6nf_quad_char#1/20 1200774031 0 0 100644 106228 ` galconj.o X__text__TEXTh __data__DATA___cstring__TEXT@__literal8__TEXT__picsymbolstub2__TEXT___la_sym_ptr2__DATA\~__nl_symbol_ptr__DATAp0LF__textcoal_nt__TEXT| @4 P';tRUWVS,T$@$D$pNjF%?D$<$D$D$8ljt$<$ D$8+)9wc.$u9}5D$D$L$$ H L$HD9|֋D$l$$= ,[^_]$ 돉4$j Ɓ`?UWVSLoL$`D$,1V҉T$8D$`$ c;El$hT$`l$$y D$( @D$0D$$D$h*Y,D$h)͋g+l$ 9`D$ ="|$ _7GD$<t$89t$<|$`t$dGo%? D$4)͉l$g+E9D$\$|$k7T$4GD$<D$8t$d9D$<9t$0!ШrD$8l$D$l$<|$(t$ L$8D4$D$hD$ l$8D$$D@D$$0D$ t$D$$o0t$8L$lu+)9Ko:E%~DEw%? ƉwL$$D$4 $D$ $|$ D$ƋD$`$ l$`l$$ tD$0D$[T$04?D$8D$<t$d9D$<9t$0!ШD$|$00u:L$ W1D$D$ $|$,D$<$ L[^_]$@ 븋D$<t$D$,$Y$ $ T$ $ pL$l$$T$l$Pt t$D$P0D$L8,[^_]ËE붋t$D$H4$D$$L$#$D$,$D$Jl$@,$D$$BD$@t$$‹D$T.BD$T07t$4$WL$T$ $#T$$+iUWVS,D$@l$DG0?L$+ݍ~G8F w|$;l$| D$,[^_]ËD$Dt$@D$F$K;t$|&D$<$D$N|$;l$|$|맋D$DL$@D$$<$D$w;t$|$hQ$W<\$,t$0|$4l$8D$@lL$toD$Dt$@D$F$;l$|\$,t$0|$4l$8<ËD$DL$@D$$J|$Ɖ$O;l$|뵋l$D0~+݉v38F uwe$Z$L뿃LD$XT$D$ D$D$\T$D$D$`D$$D$TD$D$P$[LÐ\$0t$|$8D$ D$ $L$$L$D$$1ɋPƉtN8ȋ\$t$|$$zՐUWVS,D$@?0ō )͋7+l$9D$&0t$@%9}y7|$T$t$@|$L$0+)9w~T$,:7D$$4$|$D$D$P$t$X;l$`~$t$XE%M4$=D$h$D$hD$L7V T$HGN%D$D)͋F+l$@9D$@$0;l$HT|$8D$8B;|$D1D$<~<$4$|$D$D$<$t$@;l$H~t$@$D$L$T$D$$HD$L$ F4$D$;|$D~l$!D$h|$ll$pDD$x4L$xAD$4%9D$4D$0|$4D$09lj|$,9}/T$xL$4D$$9|ыD$tl$l!ȨD$ttE:8wD$tD$D$|$IČ[^_]Ë|$teG$D$:ƍ$l$9.u;|$00D$,t$09D$4t$lD$pt$$D$D$x$D$$$D$ $$|$L$T$$\D$t$T$d$T$D$$HD$L$ F4$D$;|$\~j$$A%D$,$%D$w$[B$JUWVSo,D$@ 0ō )͋+l$9D$&0t$@%9|$T$t$@|$L$0+)9wpD$$87D$$G$9$)?$ 0Ǎ)׉$+9$ ,0:$$$$D$$$t$l$ L$w$t$l$Ƌ$$$D$ Nj$L$l$D$F$z$L$l$$$$T$L$l$ t$D$<$葝$ 8x $$$PT$$R$$|$$$$FD$ F l$$D$F E$ $$$+9 $$}@"$$F%pE+ )9f }F "7$x$F%pE+E )9 8 ,7$xD$$4$C$MAE$x$jE%9$D$0|$0$,$ ++$9D$0 8D$0 $|$oE%9| DŽ$$t$($E%9$7$T$(0+,)9Ɖ$2 |$($,0$0+,)9Ɖ$ $l$(,E0$$F4$<$@,4$$$@%$$nH$PT$|@ D$x8 $$F$$$$$m$$%$$D$pD$hl$l$$L$|$T$d$D$`l$x||$` ŋ4D$\)D$XL$T+9t$T 0T$T" l$$$T$`t$Tփ~&D$dL$TD$D$T$Tڋ$l$D$$$t .D$P+( )9T$L0D$L ,t$L>|$PF;l$`D$dT$LD;l$`~l$`~mL$PL$,t$d$<$t$D$NjD$L49}׃B$9|L$LD$,$ t$`/+( )9T$HD$H,D$H0|$`$l~)|$LT$HD$D$%L$H׋$E%9}#$$%9|D$tt$`9t$tT$tD$T$4D$p|$D$dt$@D$pD$l|$dD$lD$$$_D$D8;L$d}L$DA$;t$d|勄$ $D$.$8<D$<$9D$<t$tD$<|$Ll$HD$\|HD$8$Ձ9l$8}0D$8$D$8$с9L$8|D$8D$$l$dD$pt$<9\D$$$D$8|D$8 ($$t$hD$<l$d$;l$p~$UD$pD$8<@|$$9t$8s$$t$dD$l$D$L$@$|$t$l$ D$L$$4AD$Xu"D$<$9D$<}D$X$%9}*$$$E%9|֋D$D|$<$$g$$;tl$4$T$l$<$$D$(0M~O t$(>w+vT$(2GF@n|$ԋ ݉D$(8w+vT$(2GF$K܋$$T$$D9|ؾ9$BD$D${D9|$` $TD$4$x ?.$P$|$AD$ A D$$D$$$4$$|$4$PO$`$%9}uG%9|닃$;t$$L$l$ (<$GW뢍 $F$D$$(UWVScD$LD$\$ t8$$<$҉$7 $w$ցNɉL$H F93ƍG$tl$$9~ՋT$H$D$y $%D$H $$D$l$$C$u^T$\c[։U+у $v%D$\u@F@~Ĭ[^_]$͋$ $t$T$$c֋[D$$ +E)9D$$$8E%~$싄$@Q$t$$[>$w+9D$$0GF@nt$`O$$|$`|$D$,$'$D$hD$D$`D$$$D$TTD$t$$D$ D$TL$l$$^D$P |$H>$|$$D$ D$P|$TD$$l$|$$D$XO>WL$X;$c[0V+)T$@YD$@cEF "D$L$$Tt$LFc[0N+*L$<L$D$$L$0D$D$(L$ D$$n‹l$ D$ƃD$u;t$4~|$aʃL$0T$D$D$@T$$l>D$\$0t$4|$8<Ð\$t$t$ ʮ t;t$*$T$j\$t$Á u卓Z$T$9뫐D$$\$XD$D$ t$D$$lƋt\$t$Í$T$ּڐ<\$,D$Dt$0|$4l$80D$@$D$@| ~tt,$t$|1\$,t$0|$4l$8<Ë@T$@@%?D$B@ D$BD$ BD$B D$D$D$S/멋D$D(׍)Nj+9wQ񋃈8 9|TL$Dl$@,$D$%9|$蘻UWVSìLD$`0n l$8_@%D$4E)ϋW+|$09(|$0,W}7ED$,D$d0D$,|$,+ )9},/9}%9|t$`F@;t$8D$D$<"D$dl$< t%T$89T$~ދ_|$,8D$0L[^_]ù;L$4&l$`E;L$4 D$dڋD$L$04D$$$UWVS/|˼$D$lFT$l%pD$l )ʋü+T$\9D$\w$D$\0$l$\A0D$0ō )͋ü+9 "/uD$d$%9D$d|$Xü|$TT$d$|$XL$T0+)9D$X"87D$`$L$d%9D$`}6L$`$L$`D$d$%9D$`|ʋ$$<$L$D$:|$dD|$d$%9$$,$D$tD$h}$˼0)щL$Pü+9ND$P$0} $0ō )͋ü+l$L9"T$L2D$d$09t$d|$DL$D,9|$H)|$@D$Hü+9WD$@"T$D0$΁9|$<$˼0Ǎ )ϋL$<+|$9|$˼"87$%9}D|$dt$h$4$T$$%9|$$|$D$t$<$L$@$ʁ9D$`$E%9D$`9},l$@t$`|$PDD$%9|ԋD$P˼(>ED$0ü+8)9|$0T$,uT$,D$0PD$0|$, $D$ $D$4T$跱|$,D$(D$4$ @GD$89l$8t$$t$ D$$92D$4j$4$|$ƋD$(D$4$ ~8;$)$BT$؉D$ F4$D$Ƌ$4$L$ D$D$4$萳|$8t$,9|$8CL$( $贯D$0D$D$,$l$`|$\l$`$B%9}$ $D$D$\$荲t$H4$D$l$d|$Ll$d$29(D$LL$lD$ $轲|[^_]Ët$ L$P$L$8D$D$蠭HD$L$ F4$D$Ů9|C$$вz$迲$讲$蝲&$$Ol$D$4$$cpD$$հQ$;h$*$x$UUWVS/˴$D$|$$'$@$@%?D$`N L$x9$$GD$\A@ D$d}E‰u %9t#$l$E1Ĭ[^_]É,$D$hD$xD$D$h$l$`l$D$ $zL$dwL$$t$]$H L$t@D$lHL$l|$hL$<$D$p$@t$pD$T$hôl$P.˴>M+8L$D)9|$DT$@D$@D$DD$DL$@ >D$dD$|$H$b$ŬT$@D$u"D$4$D$0D$D$$ƨ뼍$ T$DƋD$4$D$ċD$낃,\$$Lt$(T$0D$0T$$$虙4$D$L\$$t$(,UWVS,D$D$@$D$͋8+)9we."9M|t$l$4$Χ,[^_]ËD$HL$D$ D$DD$@D$D$@$0D9|$덐,\$$@t$(ܪT$0D$0T$$L$4L$$lD$4$8\$$t$(,UWVS,t$8D$@t$$@ŋD$,$D$D$,$ܗʼn9+WT$9L$G"|$GD$ut$FD$,[^_]ËD$~J}w+vuGF@D$F$账֋l$݉l$}w+vuGFD$$eۅ~O8w+9w 0GF@n$ҋ݋>w+9w0GF$ɥ$軥eL$ T$$t(tT$ $蹕ÉL$$•t T$ $T$ $͐UWVS胖Lt$`4$D$,L$}9|D$`t$$蓣t$(L$b8l$$K$*D$D$,$腢|$hG 8L$hAD$$֞T$hBBD$$辞t$hFND$hP 9BT$؉D$ A $D$j|$hGD$dt D$dL[^_]ËD$(pM+)9w7}/~L$(t$(|$d4$ѝ$뻋cl$,$wD$T$4$\T$0|$$Gp$觡$薡T$0$$&D$(UWVS蛒$$D$`AD$\$p+D$XD$l#8/|$`D$l$|%$,|$\D$d'l$4$D$P$D$0|$$ÛD$DŋD$`9$t|$$褛ŋD$D$}T$\$T$ l$L$$ED$HD$\l$t$HD$4$D$4D$HD$\t$0D$T'l$<$T$pL$l9t$4D$Ll$pT$,L$t#t$$>L$4D$|D$P$uD$Pt$\D$Pt$$D$,$ljD$謚L$`9$D$Dt|$ $荚ŋ7T$d|$ l$D$h$T$D$@$ƙD$8D$4XT$8L$HD$DT$L$l|$ l$$`D$D$l|$ l$$/t$@$D$4$͘$70D$l$虘|$D$l$$ǙL$h$D$,D$ D$t$ $BT$4t D$09D$4$…!Шukt$P|$Tl$w:D$4D$09D$4H>t$Č[^_]Í<$~ދD$XD$,$f뮋$F|$D$D$LD$ D$$$i.]7#:L$($A4$D$$r N$L$苘$$t$D$ $^u.D$(7#8; $›#?w7t$(01{,$葛ݍt$$}:t$8D$T4$D$1ƋD$D$蹗L$TT$D$`!ȨtD$Tl$`D$l$4$诏럋ou$D$LCD$hD$@B$pD$D$l$t$ƉD$$?D$`!Ȩtl$`t$l$<$rD$|+$D$pD$|D$(D$tD$xsD$|$+$|$tD$p$Y$D$\Kd*T$h**؍,YӉ4$^,҉T$`$Ə?D$TGD$,$4v1҃$萏r$!$n$]$L蒊ED$,UWVSc}9|?1;l$,}v|$ |$D$(~bFL$ 95D$d4$D$ӖNjD$XD$<$b$Au;l$,|1<[^_]ËT$TD$`<$T$D$L$T$L$AL$\ɉD$$t T$\$T$贃u |$(D$8뙋)ED$+9wmL$ E"qD$hA*u+9w'0E"L$~Nl$$n $<$.녍xt$$裋tD$hxD$$q;$׌UWVS}D$P,D$P0;$l$PD;$~苄$$}1ɋx|$|h@ D$xDŽ$%D$p$t&‹$֙}u܃$ K$*$) R9$t$pT$|D$8L$pD$l~3D$|<D$lWD$l|͸$)$l$8)$D$hMD$`l$\D$t$1D$d'D$TD$XD$d@9T$`|$D$Hl$XE<D$X;|$tD$htD$d9D$`}|$`~$9D$l|$P$tt$ll$pD$|;4\L$h$tt$lD$pl$|;t$t_$D$P9HOO10D$@D$t$xǃ++t$P9 ǃ1D$L>ǃt$t$$$Nv$ʼn<$=v$l${H1҉t'p1҃ cޅN֋$8$"ǃ$8$~'T$xD$$9$|DŽ$$9$ǃD$DD$@$M $|$T4FT$TL$|D$HD|DLAL$D$ G<$D$w|$TǃtT$H9HD$L$ B$D$vwt$$oǃ9iD$xT$T|$|jP|$|4l$$+r$1ƋAD$4$+v~$B4$D$vxǃ9tV1;$}(|$xt$h DL;$|؋|$h$|$,$<u3$$ǃ$$9$$9$t$8!Ȩ($$rNj$$r|$$Lx1ҋHt'p1҃ ޅN֋ǃ$($8qDŽ$$9$U$D$h$19}2|$xt$tD D DDDD;$|1틃;$8ǃ$(F <$D$o$ƋB1D$4$s~$A4$D$sxǃ(tV1;$}(t$tL$\T$tJBBJ")B rDB뽋D$h5mD$<$ pt$q3$ mD$$,$D$oǃ$($!Ȩ$$ mT$D$<$oe҉T$tUl$xEUEEUE9},D$x4~|$xDD$x9͉0|ԉϋD$xl$x+|$4DDt.D$Tt$xD$< Tt$|4D$|BT$D$ F4$D$kL$TtHǃ:D$L$ L$^&L$x|$qtl$xEuEAqA L$xA9QAAA y AAQAy +D$,i ht$$`t$DL$xAiAQA+D$'m$LDŽ$<|$@$$h@ OGGoG GGGOG$EuEE u EDŽ$$Hpx h$P$@$D$@$8$D$$@D$$N$8T$$D$$@$D$ D$D$$+N$8t$$@$$D$$Nt$D$$@Nj$$D$ D$D$$M$8T$$@$$$DD$D$M$@D$|$8$D$D$|$D$$D$ $D$D$$M$ŋ$8|$4$D$MƋ$8D$$T$$D$$$|$ D$L$8$,t$L$L$||$L$ l$$LD$$$|X$D$ T$D$$胷$G%9 'mDŽ$$'mD$8$$E E$4$0$$t$ T$$E$(؃DD$GD$wR$ŋ$4$$D$ $0$D$$(BDD$G$'R$4l$t$$ZN1Nj'mD$x$鋃mNn+NN8X $4$$(D$ $0$D$A$$D$BD$Q$4t$D$<$M$$(Ƌ$4D$ $0D$B $$$D$B؃D$"Q$4T$4$D$UM$$(Ƌ$4D$ $0D$B$$$D$BD$P$4T$4$D$L$$(Ƌ$4D$ $0D$B$$$D$B؃D$RP$4T$4$D$L$$Ƌ$ L$D$ T$4$T$8D$xT$@$$|$@$/$A yy A$F؃F$$LL$@$$<$<$D'm$L$$Gn$ŋ$@ Ńl$toWGՋ$)Ńl$pBrzjD$hB D$d$8JD$L$`$@D$$H$8T$D$TD$$@$D$ D$D$$G$8t$$@D$\T$hD$$Gt$D$$@NjT$h$D$ D$D$$OG$8T$$@D$Xt$dL$`DD$D$6G$@D$P$8t$dD$D$Pl$`D$L$dD$ $D$D$$Ft$Tŋ$8|$4$D$FƋ$8D$D$TT$T$\D$D$X$|$ D$xF$8$,t$L$L$Pl$L$ |$$JFD$$L$5R$D$ T$D$$<$EE%9'mDŽ$<D$D$$P$HGƋm$ED$ Et$D$$$AF;$T~<$E<$D$KEm8hX4$DU$$AD$ Al$D$BD$E$Q;q~{F9$,K$K$ K!$J$Jc$J$JW$J$J$J=$J$qJy$`JT$0T$D'mmD$@l$D)$.Jw$J+UWVSC;lLD$D$D$Hl$H%D$@$@D$4$8L)ՋT$H+9."u9{D$Hl$$H$D$0$GA$$E$$@D$T$,ƋL +D$,u@~F@$t$$<D$$;1Hŋ%91E$@%GU 9}Nj%99|䋃L0$A$B D$8t B|$t$H‹$4$T$D$T5Nj$<$D$&5Ƌ$с9|\19tCD$,T$($<t$@F%9D$@l$\D$,$8Ĭ[^_]Ë$4$D$5u$с9|m$_1),T$,$@t$h9L$DD$TL$$-8_HWH0~+)9b_HWH8F"|$@0n+99_HWH(F,EE0~+9_HWH8F"ot$@~0~+*9_H9F,GD$@x|$Xo Nju)׋WH+9+_H8E%~DEO%? 3HO|$t$8t$$5‹$$D$7l$H$L$l$|$<$D$ $;‹$D$D$HT$$g2$l$$;2;|$<~($1ɋ%9._$z:$D4$D$2.u;|$<~$?$?f$?$?$r?D$X3D$$=JUWVSz0,L$@%9}_BT$DL$@B @ D$$:~&T$Dl$@B @D$D$:5L$@%9|T$DBB (Ǎ )ω|$B+9D$|$,9D$}wt$9|9}\L$DT$@A @D$A $D$99D$}D$u-9|19tD$B9|,[^_]ËL$DAD$D$$B9tD$H4D$$=w6w1륋D$D-h ED$ E 4$D$D$@D$;ύ-<$;븐UWVS.<'@D$,D$Px<$%hD$TD$4D$$9l$$D$(t$ t$|$Pt$$L$PA<D$TpG 9/D$ t$P8F $D$64D$T$PƋB4$D$38~L$PA4$D$8xD$D$T$:tD$$9l$$Q9l$$T$P|$$,By'@0t$B8@)֋T$+9/'@"29}|$PG%9|L$PA t$D$A$3t$4$D$:$78|$P/T$$L$P|i@D>wk|$$~8D$Pt$$ D~D$PT$PH@8w'@t$,01<[^_]Ë+D$<$9ԍ+,$u9>.vD$$+D$$Y9f$:@Ƌ'@l$,(뇋D$TBT$D$ A $D$<69~|$PG D$D$(D$G$1T$Pz $|$1[UWVSS+,<L$@D$%h<81BD$@9x}D$D%9|L$HA<$D$.4T$Hz$|$1t$HNjF @ <$D$5~KD$HH@ P 9%BT$؉D$ A $D$ 5D$<$4t$@F%?D$F$-9|vt$HFD$F<$D$d1l$H}$|$1Nj<8w,D$L<$D$D$HD$_<l$/,[^_]Í($1ċL$@T$DDD$$l,L$HQ<$D$T$.9|J<l$(1똋<L$@DD$B$2HD$L$ G<$D$32=3UWVS):$$ $DŽ$$% $B %$$2:+o $:(G:E@u8 $:0<)L$x:+9 T$x:,2D$$$)$ G:$$$$$$$$$$$$$$:T$t8$$D$"F $n2l$D$$m3OЋ:$0T$,$1t$<$$D$($$D$$0$$:8$i $D$0$:D$t$ t$?$+l$xt$tD$$l$ t$$<$D$4t]:8$,$D$$D$-$t$$R-L$xt$t$L$t$:9t+$:$ EED$x[^_]Ë$ $$r D$pA%?D$l$%$t$ $׉$$$D$ $D$(:$$:+)9 :8 ":7$T$lG,$-$F$n$ :pEǍ )ϋ:+9)} "7$$ ;x:$l$dt$`$l$dL$`D$hrE+)9T$d*k,uD$h,$9$$9~$ ;xk$$I,$ $F$(%x$:@D$|$0ō )͋:+l$\9T$\,2$E%$@/D$TD$Pl$X$ GD$DD$@D$H$(D$LD$<D$@$L$|;$L$,$$T$D4D$H։T$D:>ʼnD$H$:L$7D$$ $D$)$L$$R)L$\T$t$L$T$7Kl$D$D$l$@$#D$TD$\$x*D$PD$<$t$|D$<;|$@$t$@$O|$xD$P<$D$*(l$x¿E%9}L$x%9|l$TE%9}9$ l$T$HD$@TЙE%9|Nj:D$X$$$$ A9=$9&$H9~䋬$ E9~ʋ:8D$x!Ȩ$$$ $D$G$!l$xƉD$,$!L$x‹%9}l$xDE%9|拔$ J%9}'$$$ H%9|ً:$$0$ H:$81$&D$$,$)$L$x%9$}l$PT$xD%9|L$T%9.L$T$ B,,%9|:T$X$*$$ ~t$DD$4$2$*|$<tD$@L$L<$D$L$ Nj::nс9}&D$,D$0%"у9|95MD$pL$\$D$D$tL$D$ T$l$$u뤋$_&$L$0l$8:UD$LՉL$4)ŋ:+9:D$4(upL$0,D$0E;$}L$8L$LD;$|L$L$ADl$TT$DD$\T$@$%D$P$+$+_&|$4$9*{t$D&t$ $*C$+Y$s+$b+a$Q+$@+:>D$$$Q&:Ƌ$,$D$ $t$D$P%;$~9t$pF<$D$-*F:(%<$#L$tT$pAD$ At$D$BD$$L$pQ;i~%N$J*Y$9*4$(*($ &BD$D$ 4$D$($)UWVS,$$$$D$pMD$DD$@L$H͋L$pG|$pD$hB %D$l%pD$HD$>L$D9L$d!Ш[D$xT$$D$T9D$d;l$H}"T$8B9B|;l$H} L$89D}}9|$}1|$8L$G;t!‹|$89};uD$8t$9||$89}L$8D$dGD$4l$T9D$PD$4Dl$|9D$Pl$Tt;D$P>D$d&D$TgfffD$T)‰T$D,8w$D$p4D$@D$,$!,ʋD$TgfffD$T)ыT$PL$DL$T$L$LhD$D$d$l$<$D$RC$l!,8w,L$t,$ |$Tt$P|$4$HD$D$d$L$D$D$@$D$ 뒋L$8|$0t$\$D$;l$H| D$@,X$T$8L$0GD$|$\D$$&;l$H|,$$D$(AD$ AD$B D$B$$qt$q$t$Ɖ$"L$\$A4$D$D$&T$X4,L$($%!$!$!оgfffD$T)‰T$D0$ o|$$A $ $ [UWVS⍀>P'")⍀)P ⍀P⍀P⍀P⍀P⍀P⍀Pxs⍀P_Z⍀PFAl⍀lP-(W⍀WPB⍀BP-⍀-P⍀P⍀P ⍀ P ⍀ P~y ⍀ Pe` ⍀ PLG ⍀ P3. ⍀ Pp ⍀p P[ ⍀[ PF ⍀F P1 ⍀1 P ⍀ P ⍀ P ⍀ Pkf ⍀ PRM ⍀ P94 ⍀ P  ⍀ P ⍀ Pt ⍀t P_ ⍀_ PJ ⍀J P5 ⍀5 P ⍀ Pql ⍀ PXS ⍀ P?: ⍀ P&! ⍀ P  ⍀ P ⍀ P ⍀ Px ⍀x Pc ⍀c PN ⍀N Pwr9 ⍀9 P^Y$ ⍀$ PE@ ⍀ P,' ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P| ⍀| P}xg ⍀g Pd_R ⍀R PKF= ⍀= P2-( ⍀( P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P~ ⍀ Pje ⍀ PQLk ⍀k P83V ⍀V PA ⍀A P, ⍀, P ⍀ P ⍀ P⍀P⍀P⍀Ppk⍀PWR⍀P>9⍀P% o⍀oP Z⍀ZPE⍀EP0⍀0P⍀P⍀P⍀Pvq⍀P]X⍀PD?⍀P+&⍀P ⍀Ps⍀sP^⍀^PI⍀IP4⍀4P⍀P|w ⍀ Pc^⍀PJE⍀P1,⍀P⍀P⍀P⍀Pw⍀wPb⍀bPM⍀MP}8⍀8Pid#⍀#PPK⍀P72⍀P⍀P⍀P⍀P⍀P⍀P{⍀{Pf⍀fPojQ⍀QPVQ<⍀<P=8'⍀'P$⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pup⍀P\Wj⍀jPC>U⍀UP*%@⍀@P +⍀+P⍀P⍀P⍀P⍀P⍀P{v⍀Pb]⍀PID⍀P0+n⍀nPY⍀YPD⍀DP/⍀/P⍀P⍀P⍀P|⍀Phc⍀POJ⍀P61⍀P7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk3Le~ - F _ x       ' @ Y r       ! : S l        4 M f        . G ` y      (AZs$Ë$gUMEsEJEA 0`zRH+_KE+pqk_8-J0oyo_O= { |kR$ udSB1% iV<'fX6~a<ehjfV=D*~rO- ipU nW7/vK3  WuurupumuuuXu=5%uuuE.zuq aY@Q0  oc=TC2!}I4p====`=Z=$=======P+aL==q*=E=9 ( kZ R uyufUD3"j6.uuuu~n`u0] uD8u"uuzuJuu{us\ h\ Ƽ<ug޺p)uڸF/߷ȷv_uuڶösuuյn4y4uŲuu uϱrBu*ɯYu:ɮj˭x?"uuup8uu uvVu<uuu|iH#uuuucuSu1uu ѧduuQuu}uq `O>- أǣraP?."@ՍՍՍԢaU(ۡϡ\֟ՍϞՍĝՍՍtՍiRՍ@/# Ս6ƛՍՍՍtcWՍL@Սؚ`ՍuՍfՍX4ՍՍҙՍjՍUՍėyՍcՍ6Ս ՍՍlR:Ս%ՍՍՍNB/ՍȔՍ_ՍP6Սޓ~/Ս)Ս`ՍՍՍhՍRՍ7Ս"ՍՍՍ͐ՍՍSՍMՍՍǏՍՍoՍSՍ4Ս*ՍՍՍݎՍՍՍrՍSՍ=ՍՍݍՍэ  MތҌ@MMMyMgMϊMbMT.MMM݉ʼnM@M_MH MMMMMtMBM MUMI :)|lZ&݂y.  ށҁ]B)΀u:0 ziXG6`v~~Ev7~'~ v~}v}}}v}v}} vm}a}vG}v;}v}qyv yxxvxvxxxvxpxwwvIwvvvEvv!vvv vuiruuruuuuuLrur6u$uruuttrwtrUtrtrtrsrs@sr+srsrsrr rremrrrqr_r|emMr5rrqqqq emqqemqemqemqqemvqemnqem`q@q'qqempemppp`emppIem+ppooemoooooFoem>oo onnemnempnTn5n'nnmmemmmemmemam NmAm0mmml6}ill}ill}il}illZl}iNl}i)lkkk}ikkkk}irk}i]kCk,kkk}ijjjjjjjzj}irjRji}ii}iiii}iyi liKi;i ihhghghghhguhgmhgah*hghghggggggggggVggPggJg>g,ggg g ffffff ffbf$feffee eeeeee edeeredjeZe&ede eddd ddhd"dd ddd cc^\cclc^\Sc>c-ccbbbb\bwb\lb\b\Qb.baaa\a\a\ja\Xa%a``\`E`4```_\_\___s_a_-__^\^\^^A^\5^\^]]]]q]^\\\\\ \\\\z\n\ATc\R\B\ T)\\\[[[[s[6[&[ZZZZ{ZAZ/Z ZTYTYY]YTBYTX-XTWTWTCWTVTVTVTV}VUTzUTLUTUTTTT TTKT=SS=SzS=S\S=S9S .SSRRRRRRRJR:RR!RR QQQQQ Q}Q6Q\QLQ`6Q2Q QPPP PPP N{P^P>PN0PONOONOeOKOONONNNNNNNNNN dNSN?NNMMMJMJMJMLLJaLJ[LJSL?LJ#LJLJKtJqKJ8KKJJJ JJJ9?JJ`9?dJ9?\J=J9?&J9?J9? J9?I9?IIIII79?II'9?{IsI9?hIZILII9?I9?H9?H9?HH9?H9?zHpH_HQH'H9?H9?H9?GG9?G9?G9?GpG9?`G'G9?GGFFFFF9?FFtF9?hF9?MFF9?F9?E9?E9?E9?QEDD9?D9?DsD]DGD4DC9?C9?C9?hC9?EC9??C9?2CC9?B9?B9?B9?B9?BVBBAA9?A9?A9?@9?@@9?@j@9?d@9?O@@??9?q?A?9?5? '??Q( ??4(>>(>(x>\>==(==={=H=(:=(2=<(<(<(<<s<U<1<<;(;(w; ;(:(:(:::(:::U:($:(:(:(9(99(9(9(99(t9`9(N9B9(09998888888|8(j8Y8H878&8887{(77@(y7j7([7(77(66~6(A6(554Q3(D32(2M21(1(10(0(000W0(@0(0(/y/T/(6//.(R.( .(-(-(-(A- -(,(3,(*,($,++(+u+^+3++**(*(*(t*(J*(D*))()()(t) )(((((( (n(](7((''%'%'r'R'9'%&&&&>&6&%%%%% %%%$$$$ $$####### |#k#Z#3#N!##""m"-""N""N!!N!!    h N+ N NhNbN-NN\NVNJ 9  q/)vP3-!x60&kP+d% dF>& oZ_ZV C5 tlB%~xi yL]]f]Y L, zlA" o^H< UoUdUQ C2" | , @,      {  q d K ? ,        p _    !  ! ! 0 ! * !         u S B 1      @    B (   g%|bzWG% o-^NS-C2@-rbL--b-+-}-M-'----e-_2-) ~ t j\@    kk  gg  cc  __  }[ku[ko j dWR\WRV Q KS9CS9= 8 2O *O $  KK   G G   C C   ? ?   ; ;   7 7   3q {3q u p j/X b/X \ W Q+? I+? C > 8'& 0'& * % # #                            w  w {  v p ^ h ^ b  ] W E O E I  D > , 6 , 0  + %                                }  }   | v d n d h  c ] K U K O  J D 2 < 2 6  1 +  #                                    | j t j n  i c Q [ Q U  P J 8 B 8 <  7 1  )  #                                   p z p t  o i W a W [  V P > H > B  = 7 % / % )  $        { {  w w  s s  o o  k k  gv gvz  u o c]g c]a  \ V _DN _DH  C = [+5 [+/  * $ W W   S S  OO  KK  GG  CC  ?|?| { u;cm;cg b \7JT7JN I C31;315 0 */"/  + +  ''  ##        {isim h bPZPT O I 7A 7; 6 0("               oyos n hV`VZ U O=G=A < 6$.$( #               uuy t n\f\` [ UCMCG B <*4*. ) #            {{ z tblbf a [ISIM H B0:04 / )!        {{  ww  ss  zohrohl g akOYkOS N Hg6@g6: 5 /c'c!  __  [[  WW  SS  OO  KK  GnxGnr m gCU_CUY T N?<F?<@ ; 5;#-;#' " 7 7   33  //  ++  ''  ##  t~tx s m[e[_ Z TBLBF A ;)3)- ( "         zz~ y sakae ` ZHRHL G A/9/3 . (    |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  _=n[W<~yQYDVsf>?mxRk]S^XCAFTOHbwB@pPgN}`lMZGKJIELh\uU|ovqejidcaz_=n[W<~yQYDVsf>?mxRk]S^XCAFTOHbwB@pPgN}`lMZGKJIELh\uU|ovqejidcaz{;tr \m - (8 M X 4m rw v l ̍ D ti  i x l   < ^  QpdT5$##@cpN5%$a0?4S@f\NgQ dQ/een PTLnJxLZ| J%B   t)xCpQ"    C^q#H M 8e=2 z7:%6ot M |  j N.l  :L^)G   T   / G(|_  U k `jT   ?G2eVc,Uv_galoisconj___i686.get_pc_thunk.bx_galoisconj2pol_galoisconj2_vandermondeinverseprep_vandermondeinverse_initgaloisborne_matrixnorm_supnorm_monomorphismlift_intheadlong_matheadlong_polheadlong_listznstarelts_sympol_eval_sympol_aut_evalmod_fixedfieldfactmod_fixedfieldsympol_fixedfieldorbits_fixedfieldinclusion_vandermondeinversemod_galoisconj4_numberofconjugates_galoisconj0_isomborne_checkgal_galoisinit_galoispermtopol_galoiscosets_fixedfieldfactor_galoisfixedfield_galois_group_checkgroup_galoisisabelian_galoissubgroups_galoissubfields_galoisexport_galoisidentify___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_diffptr_pari_compare_lg_gen_2_gmul_cmp_pol_DEBUGLEVEL_gen_1_gen_0_bot_pol_x_avma_mulrr_mulir_group_order_group_ident_group_export_group_subgroups_group_abelianHNF_group_abelianSNF_group_isabelian_fetch_user_var_gmodulo_sturmpart_rootpadicfast_Q_denom_Fl_pow_cyc_pow_cyc_pow_perm_perm_cycles_ZpX_liftroots_FpX_normalize_FpX_gcd_gcmp1_lift_intern0_perm_pow_Fl_inv_factoru_gerepile_const_vecsmall_cgiv_gequal_vecsmall_uniq_vecsmall_sort_FpX_chinese_coprime_FpX_mul_FpXQ_ffisom_inv_FpX_ffisom_bezout_lift_fact_factmod_ZX_Z_mul_scalarpol_vecperm_orbits_gaffect_Flx_is_squarefree_Flx_nbroots_ZX_to_Flx_cgcd_FpX_degfact_factoru_pow_ZX_is_squarefree_normalizepol_i_deg1pol_i_Fp_inv_FpX_deriv_gerepilecopy_vecsmall_shorten_vec_isconst_Fp_powu_FpX_is_squarefree_FpV_roots_to_pol_vec_is1to1_FpC_red_FpXQ_minpoly_FpX_divrem_FpX_add_FpXQ_pow_RgX_to_FpX_znstar_hnf_elts_dethnf_i_subgrouplist_znstar_small_znstar_perm_identity_divis_powuu_modii_centermod_FpV_FpC_mul_perm_mul_shallowtrans_FpC_FpV_mul_addsi_sign_mulss_FpX_center_ZX_add_FpX_Fp_mul_pari_warn_cmpui_divis_rem_diviiexact_mulsi_mpfact_dvmdii_shifti_msgtimer_Q_muli_to_int_polratlift_gerepilemanysp_gcopy_ZX_sub_FpX_Fp_add_FpX_neg_FpXQ_mul_FpX_FpXQV_compo_FpXV_red_FpXQ_powers_mulii_sqri_FpXQ_inv_FpX_FpXQ_compo_ZX_deriv_FpX_red_hensel_lift_accel_brent_kung_optpow_timer2_equalii_FpX_eval_cmpii_gunclone_addii_sign_powiu_ceil_safe_mulsr_gmul2n_addsr_gmulsg_gpowgs_TIMERstart_gclone_ZX_get_prec_gcmp_gadd_indexpartial_ZX_disc_all_logint_disable_dbg_gabs_msgTIMER_TIMER_RgX_to_RgV_RgX_div_by_X_x_divide_conquer_prod_gsub_gconj_precision_nf_get_r1_gen_sort_fprintferr_gdvd_poleval_gdiv_gtopolyrev_lindep2_roots_gisirreducible_gerepileupto_lift_nfroots_shallowcopy_gsubst_checknf_pari_err_monomorphismratlift_fixedfieldsurmer_galoisgen_galoisfindfrobenius_permtopol_galoisgenfixedfield_inittest_testpermutation_s4galoisgen_a4galoisgen_galoisanalysis_galoisborne_reel4.0_mpmul_poltopermtest_galois_test_perm_s4test_galoisfrobeniuslift_galoisfindgroups_frobeniusliftall #1/12 1200774047 0 0 100644 133196 ` gen1.o| NN__text__TEXT@LQ__data__DATA@B__cstring__TEXT @ B__picsymbolstub2__TEXT)A C__la_sym_ptr2__DATALGOvv__nl_symbol_ptr__DATAN$ Q__textcoal_nt__TEXTNDQ @Pp P z|UWVS,D$D$eLT$@D$ Dl$@L$ $&Lt$D$Dt$$KD$D,$KW,$K ;l$@l$|$@l$<$KD$@N0 4$J4$KD$NN7~+vCN8Fl$t$@4$JGD$D$D$D$JG,[^_]$\K믉$7K‹ t$tJ4$D$D$KJ[D$D$D$@$J;l$@t+T$@l$$JD$@D$,$D$eJNۋL$ $/J,$JtXNNu~+v*}Fl$@,$IGD$D$I$aJȉ,$IY;l$@tt$@l$4$ID$@@NrT$DB?%?9D$@$I\$Pt$K0D$$D$D$ $04$D$G\$t$ÃGF$-G\$t$|$(ID$$>$BD6D$D$ $Dt$<$D$C\$t$|$Ð$$$$$$L$ϋ։9 9~"$$$$փvfo(  $$G|$D$ F4$D$@$$$$ĬËHH7V+(T$X(l$X/F$$ow$l$ANjE%G|$D$ F4$D$Al$Ɖ$z@x,9El$؉D$ F4$D$AƋD$Xt$$@|$XGuH )ϋH+9w7H8~Dl$X}D$X$CD뻋HjVD$TtVT$TO1҉tWt$TM9Ή;t$T)ϋL$X ШHEtPωȋH+ v+D$XH:@G@wt$XF$lCNjH$TCb$CC-$2CHH0V+9T$PD$PHEFD$|$$xt$@$?HD$L$ G<$D$w?l$|,$D$>EHH$n+u)9w7H:~DD$PxD$P$%B$B ! $$&:l$ D$|$$-ANH !$$opHl$((F $;D$NjF$:9ljW@T$؉D$ G<$D$=t$($t$:H/$Hсtk$F@tOD$$$A$D$:$$|$ D$,$]>볋$$t$<$g:븋Hu+vS7E$B$y?F$ED$$$>FE $K?F @$?럋H$$9$$I?tv$H0MH+)9w6}$E%~$$3?뼋H0$$p9D$,$$]9T$,)‰OT=$T$<$9$D$ $D$4$9$$&:l$ D$t$$,>$wF%DtrHHu~+vD}F $ED$$$fG$B$l=G$>뮋$HO0сt_$E@tCD$$$G$D$7$$L$ 뿋$|$$7ˋHHu~+v6}F $$F$D$cG$$=뼃rHHu~+vR}F$B$<G$ED$$$GE $;G O$<렋$$D$<$g$Hn7FD$$%$_4빋H$$.D$G$.|$LHD$L$ G<$D$/$D$|6AD$D$|$c.t$D$,$0/$4$c3ty$HuHM+)9w8}$%.)$$J3뺋H$8$2$~-D$@$$e-T$@)‰Ot$$4$'-D$$$ <$D$C a$$- $ LF"Fp##$$$T$l$$|$$zt$$|$ t$$DH$0GD$$$0O$L$o$l$$$D$ |$&:$-T$11$v$10t$ $0$$xG%?9艄$$)$$~dF.Hp##$$$t$T$<$g$@D$H0Hn+v;H(F<$/EL$$L$<$uE$)0뷉|$$<$w,$$xa$$ +$9ȉ$ovVw,$&:$-D$ $L$D$/$9$F..Rw##$$$D$|$,$$$$Qt$D$ $T$ H$0ED$$$-$G8d$$t$|$$$$$JD$L$ 3H$0GD$$?$$T$ e$vՉ$,tɋ$  t$$|$ l$ u$$xH<$D$&$ŋ$pT$$4$+D$$qL$%)$.BH$(%t~$D$$L$G&<$D$b,$$Af1+t$u$ $x$$t$$,΋B<$D$+$$';$t*$$$D$T$<$M%X$$D$t$$q%1 t = $E%.$$7OD$$Z*)Ɓ<$T$t$D$$$$ljt$$<$$$$$$@D$$Hnl$ Hu~+v5}FL$$ $W*GD$ D$$$"$*뽍ov6$ $)a$$|$$$$&:$-D$ $t$D$o*뜃 F.) .) L!1""%.)(.).).)_)_)_)$$BT$D$ A $D$&#$$Ft$D$ G<$D$Y%H$$9npHW+T$xD$xH9GD$|tt$,$$ $$wxE%G|$D$ F4$D$%l$Ɖ$g$x,9El$؉D$ F4$D$~%Ƌ|$xt$<$$T$xBuH )ϋH+9w7H8~Dl$x}D$x$0(뻋HjVD$ttVT$tO1҉tWt$tM9Ή;t$t)ϋH ШD$xEtNH+ v+H8D$x@G@wt$xF$['NjH$C'd$2'/t$,$$|$|GH($$PNBT$D$ A $D$#D$‹GD$$$D$,$"GD$|$&5$$L$$X HHu~+}F |$|$G$D$G$aL$|A$$t!u$ED$G$2G$$AD$B$ t$|F$%a$$GD$F$5!t$$D$4$$&:t$D$ l$$,R%뺋HHu~+}F|$|$$FD$G$g t^$A$9$T$|B$$GD$E$t$|FG D$E $|$|G &:t$ |$L$$,~$$p$?$$FD$G$tmGD$pol$lHFuD$h򋃦H+~v*}Ft$p4$M#GT$lD$hT$$#ȋ$$AD$ GD$AD$G$ $x$?$p?9$t9|$D$ωՁ99H)H+L$d9D$dt$dt$|$BF9|U9|.$F|$|$d<$ D$|$$!l$dD9|믋$$D$$L$d9|x$N"9H)H+L$`9D$`t$`t$|$BF9|K9|%$F"D$`l$$ $$!T$`9|빋$$D$$L$`9|$j!FHH+)9wa.u$9AE||$,$d_$$D$$%D9|$ 둋$J$ρ?$BƁ?9$t[9x3%$$-L$<$D$ $D$c$|$T$,$t$ ?)$|$$$9L"O9$HH >+8)9T$\D$\t$\>t$|$9~^9}<$+$<$D$$T$\9|׋$l$|GE,$j~$$mL$\9~$J$'$$HH+)9wb>uJ7|$|9H$$D$$9|$Y$K됋$$ډ$$$UT$($$%$$$9$$tT9$H$$0G $D$$j$l$$$$D$4$$&:$-D$ $l$D$BՁ9t,$$&:|$ D$T$$,H)NjH+9wKH 879{$$D$$9|L$말L\$l$Etpt$Tn+u)9w7t8~DD$xD$$$ul|$T$|$M~Jt8pw+vt0GF@n$݋pl$t}w+vuGFT$V$؋tp7~+v>t8F t$TF,$D$Gl$TE$GT$X봃,\$t$ |$$l$(L$0tbHDu~+v4}@F GD$0F\$t$ |$$l$(,$뾋t$0F$uXHDu~+v*}F |$0G$fFl$0E|$eȋ|$0G$:_,\$t$ |$$l$(L$0tj@<u~+v<}8F GD$0$F\$t$ |$$l$(,$붋t$0F$t |$0G‹@<u~+v}F l$0EGEw$XUWVS$;$$K$u9"0!Ȩ9~"$$$$׃ZZ PG[$D$$$ [^_]Ë[W7N+$ $F$$hp$l$$^$E%$4$D$D$l$$dD$$$$BW|$D$ |$uL$ +)9w;D$8~D$x$$ 뷋V1t~$1Ht$p[u$҉|$։tVWljL$ +v/T$$:@G@w$G$FËSWt$ $$[$#$$@ [WuN+:$$EF$$FD$$$2Nj@%$|$$ $[0|$$G$ $E$$D$A$ $HPB%t5$D$ t$D$$$ ${zuŋ$L$ $ $σ!$$U׋@$ pЁ )ϋW+9w^}/~$ 싄$x$$D$F$ $G'$$S$$-D$ $T$D$ [ .|$p$h[$F $D$NjF$9lj@T$؉D$ G<$D$ l$$R$[$$|$$hO͉$$GD$F$CF@[nW7~+[8FSWG_G ;.r O;(rEG$uwD$$ $ g$ Չ,$ $ gG@u`[nW2~+v2[8FSG_G W;(5$ Gf;FC$,$c$$hf1퉔$ $$h[$GD$F$D$$~ $|$E ŋ$x9t%u%9|,t Du[$($i$( $ A|$ t$T$$, W΋$+vd[0$@$B$ F$A<$D$=F$E <$D$$F $$d 뎋S$$$tA[$$8$L$,$O4$D$D$<$=$$,D$ $T$D$ 둋$xG%Dt|[W$1~+vH[8F ED$$$GE$D$4$G$9 몋[$l$$$$$O@,$GD$F$vF@[nW2~+[8FSG_G W;(r O;(r=G$uwD$$v$*݉,$q$o$G@[~Wun+vu[S*FE_E W;8r O;8r2E$u u1$k<$$Sz$Gf;FC$<$$xf1 $x[$$AD$F$$D$u $t$}ŋ$x9t%u%9|,t Du[$8$&$`$R?$t$L$ |$$,(P[$0W~+v>[:F $A,$D$G$FD$,$k$봃W[$u$W~+vd}F$B$G$ED$$$G$$F D$ $G $ 뎋$B@[$l$$$$O@,$GD$F$6F@t$G@[~W2n+[(FSE_E W;8r O;8r=E$uuD$$"$݉<$$o$Gf;FC$<$$xf1 $[z$$AD$F$%$D$u $t$ŋ$x9t%u%9|,t Du[$8$$$?$t$L$ |$$,$Wh[0V+9$m$[F$$$@D$G$l$$$D$l$NjF$ƋE%l$4$iD$<$$D$l$uD$$$$A[D$WD$ |$uL$ +)9w;D$8~D$x$$뷋E$WDŽ$tG$V1ɉtN$ $D$Ƌ$$֋$[T$tVWljL$ +v/T$$:@G@w$F$'ËSW|$ $D$ $`$W$[u~+vR}F$A$G$BD$$$ G$$$@렋$h[0WN+8$$[8F$$$pl$$NjE%|$4$$D$l$`D$$$$A[W|$D$ |$uL$ +)9w;D$8~D$x$$뷋VDŽ$tF$O1tw[$u$҉|$։tVWljL$ +v/D$8$@G@w$B$5ËSWt$ $]$%$[W$1~+v [8$勼$G@[$$$D$A$$n$l$D$$$}$[.8$$l$[$7$B[$l$$$$N@,$FD$G$#G@t$F@[W2n+[(FSE_E W;8r O;8r=E$uuD$$$݉<$ $o$Ff;GC$4$$pf1 $[r$$AD$G$$D$} $|$Nj$h9t&wE%9|,t Du[$0$$$>$|$L$ t$$,[$0W~+vS[8F$A$G$B,$D$G$F ,$D$$럍W$F$[$)ŋW+9$wS. $};$|"$D$$$D;$|$3럋$$-D$ $t$D$D$U$0& U[M$ϋ$)NjW+9$wR} $7;$$D$$$;$|$#렋$l$l$L$ $-$49~$$$σ   *Glll$$$,$2$[8э)W+L$@9waD$@t$@$BF9|D$@$"$,$D$zT$@9|$둋$[n0?W~+v[:Fo$Z؋$[qyt$D$<,$<$Nj t|$4$D$D$<$D|$F$nl$$MЋ$l$T$ $-|$1iEuɉ,$pt$4$>E$h4$?9 )ŅG$M  / S! S!g!g!4$\$[(э)W+L$P9wYD$P|$P$BG9| D$P$4$D$:T$P9|$t뙉t$$xP[(T$4$<$+Nj t|$4$D$,$]|$F$~|$$fԋ$t$|$ u4$t֋$$-$h@D$L[0W~+v*[:F,$GD$L$$[ȋ[$}$@D$$$$$pt$Hu@~D$DW+}FD$H$-G$D$DmL$$iƉ tw|$$D$HPF?%?9uԋT$H%9|T$D$4$,$D$*G$?H,$Pŋ$$?99G$.[# w#S! S!g!g!4$$[(э)W+L$49wYD$4|$4$BG9| D$4k$4$D$T$49|$,뙍F$\C$_$r$%,%%%%$<$D$k$,$to[?0/[)W+L$89wUD$8L$81G9A| L$8 $e$D$$L$89|$#띋[ow8$t$$j,$ŋ t l$4$l$F$ynl$$*|$ $|$$uۉ$\tω<$ tw t$D$ $D$ u[$$$D$A$$n$l$D$$ t- u$xp[($t$$$g$2t$,[$t$$$ $D$0[($%tv$D$E$%D$Ƌ$D$4$ʼn4$YEL$0%f1<u u{$BD$$$t^[W$2o?~+v[8Foi$sԋ$[0}W+8)9wZ[(}$9AE| ,$E놋$D$D$$$D9|$zD$$eNj[|$(8Ww+9L$,w:[2GD$(u l$(D$(F$e$W븋[0W~+9w [8$勄$[@D$X$pWt$T7~+v+[:FD$X$GL$TL$$ǃ$$A%9$tL$ l$|$$,P[$/)‹W+($9$$$$ ";$}y|$|$l$|$$MS$$;$D$x|:D$x$D$ $g$D;$|$$<<$t;$|뢉|$$$D$D$x$VD$x$[Wu~+9$w}F"$㋄$9$t,$l$l$t$ $,$[;$$S$|$L$$$44$t;$|ʼnt$D$D$$$8$ƃ"y$9$t,$l$D$ t$$,$$D$ptE%D$p[D$p>)‹W+8T$l9|$pD$lL$lD$p $D$hD$p9D$h}Vt$`SD$`7;$D$dt$\|7D$\D$D$d$t$h|$lD$pt$h9|D$l$44$Xt;$|륉t$L$hD$?D$D$\$軟D$\$s$t%$l$D$ |$$,?[$)NjW+9$wW$> &;$$$@D$D$|;$|r$뛃$t4$B%tT$ l$t$$,`[$.)NjW+(9$wV$> &;$$$D$@$;$|$뜋[$>)ŋW+89$$. &E;$. T$t$$D$$Njt*$$,D$ $D$D$tD$#|;$|$Y$F Cs0J00 13J57 :?:;<JBJmGGJJGJJJ$D$$$D$$T$$$$[o~0WND$ $+$[9F$t|$,$n$$pEz%|$4$z$D$l$GD$$$$[A|$|$uL$ +)9w;D$8~D$x$$뷋VDŽ$tF$O1tw[$u$҉|$։tVWljL$ +v/D$8$@G@w$B$&ËSWt$ $]$%|$,$$E[$$AD$$@$D$$ƋG4$D$JD$$$$E$[V$$$V$$@$E$Ww[$7n+q/F$$$|$$mNj@%%$|$ $|$$$$$$$D$4$ Nj@%$|$$|$$$$$[$0$L$$E$$D$<$EUB%tUD$ t$T$,$zu߉L$E Ap$r~$$[w$$@$}u$x $x$|W+h$|[E$x@ U$|$$p$w$t$$,$]$t$ʼn<$ӖNj$D$$$跖|$$$lj4$JD$,$莖[Ƌl$$t$$j$|At$<$T$|B$t,$|G$q$|FD$$x$x$t$pD$ L$D$$y$|T$$$hN<)$$lFD$E$$B@[j7W~+vs[S:FG_G W;(r O;(r0G$luwi$,$$|$A@u$[j0<$$Af;FC,$$dpf1 $dp[$$$hFD$B$D$} $|$ŋ$dx9t%u%9|,t Du[$h($d1$q$c?$$,D$ $t$D$2$D$$$!$$AD$G$W $$h$`[@$\WVu$X~+}F$`4$G$XmD$$\$0 tO$`PA?%?9u܋$`%9|D$T$ $V,$D$$G$$ED$ GD$ED$G$1^$$hB?%?9t19x$$D$ $T$$$$D$$$f$$nA?%?99$$3$[8W+)9wU.M$F9E|,$$D$$$D9|$S띉 $t;[$7hW?~+$[W}+)9wT.M$F9E $D$$$>D9|$x랋$%$%9$~$$$$$^[$7)NjW+09$[$8$ $$$PF$ @p$$$L$$yŋ$D$$$]l$$j$;$|R;$}$D;$|<$)$<$D$<$9}$D9|;$.}S;$|땃$1$$$$,,$<;$DŽ$PDŽ$T[$H$$щTҋ$P$E$P$S9$T$HDƋ$T)$$;$P$PN9$M$Du $͉$)ʋ$D$$<$D$‹$|$$ $;$$,$K$$I$$$p$P[։$L0W~+9$w<[:F$Lu  $M$?붋$$Pwox[T$,$$<rt$$D<$_$@$D $@ t*$@$DD$<$XD$$<rz$D$N?)ȅ~!$DD$<$t$$„먋$@ C7CVCD^DD E E$DD$$@$EI$D,$t\[$@0Wo?~+v[:Fo$֋$@[8W+)9wZ.M$@F9E| ,$cy$@D$$D$贻D9|$똋$@[}u($Dt$$1<$Nj t|$4$OD$,$s|$F$/~|$$ϋ$@$DD$ t$$-l$H1$Du$t$@$fb$@ $D$@px,$N?)ȅ~ $@Q$D \EEEGFGGG$@$DD$<$g$@$-tM[$D1hW?~+v [8l$ 勴$DW>[+)9wT.9M$DBE|$DD$$@$=D9|O$w랋$D$@xH[(L$4$$D$@|$ l$$@uԉ $tȋ$D$qBjyt$$蘸|$,$w$$l$$yu$$D$4$sV$$$%$B%9$tT$ L$T$$,?[$.)NjW+($89$$8$$8 &DŽ$$t$@%$DŽ$$9$8$$($$[$4$WD$$I+8)9T$=D$|$}~e9D$(4L$$F;D$$tL$$$L$jtd}wFFt$T$(t$BF|$P7l$$D$T(D$, у<[^_]Í$ L$踽뢋9u1΍)$ T$落D$$q|$,l$$…!ʃ딋L$Tu T$4L4$D$w$$ t$D$,1ҋ%%D$,9UWVSx$  /Wjxu 4$Č[^_]Ét$4$賽狃n0N+L$XL$XFL$d$@$茾D$l$$yT$dD$$t$dFu+)9w78~DD$XxD$X $3$%+u~+vI}F|$d$@$蠽l$dE$@$臽L$dAD$d$멍B 7 cp}D$xD$|T$|~EL$xT$$?D$hL$$D$xD$$$ɹD$dD$xuOD$|u1D$dL$hD$ $D$dl$dE% Et$dD$4$BD$d빋l$dD$,$ED$d뛋T$hU4$릋L$t8D$t>)Ƌ+89|$t0D$t t$d$QAL$d%? Ɖql$t$L$dD$t,,$谹1NjD$tD$p9t$Dt$p$$gt$pʉ ɋD$DET$`D$hD$p)t$@D$lq9N9L$lNL$lt D$p)ȋuD$lԋ$D$$趬D$D$`$2zD$`ʋD$`D$$D$pD$`u T$p4uQD$`L$hD$ $萾T$pt$dt$@D$t9Ɖt$p<$l$d͹|$d<$赻C$$T$`D$$yD$`$E$6$-F%?D$H0~+9w>8Ft$Hu w$赿$觿봋u~+vE}F|$d$@$t$dF$@$l$dE$4뭉4$蘵4$r%D$tt.F%9D$tt!t$ t$L$$,ھ|$t)l$<+E9D$tD$!L$D$p$<9 Шu|$pD9|$p|̉ T$L$ L$T$$-&$$jF$պD$TƋl$T +(2D$T@ t$d*$l$hAD$A$tD$`$@$ƸD$$@$t$NjFD$F$ŋ0D$`|$$|$dGD$,$=T$dBD$ t$D$TD$D$h$ö1$D$h$@$$$蠶|$hD$<$脸o7FD$P+D$PFD$p$@$D$Sj$A@tD$pfy6A|$p%4 D$Pp$hu+)98~Dt$P~D$pD$$@ $L$PA D$h$@$D$|$Po $l$D$D$h$Mt$PFD$P$G$D$pD$p$$蹸6/l$L+(0D$L@t$d$@D$`$豷T$dBD$h$@$Nj$@ $L$`ŋA$Zl$$责t$`D$\F $蓷t$\(|$4$ ql$l$h,$D$մ|$dG$T$hA D$A$AƋ(D$4$h|$hl$D$<${l$dE $F D$F$D$$D$`0D$\<$D$Np|$dGl$D$`$7pL$dA D$ t$D$LT$h$D$$˶9u~+v}F|$d$@$׵T$dBED$h$@$}D$`D$t$dFl$`D$,$eD$D$h|$$>`$pUWVSwi$$$$$$$։9$k p  [ oo 5   ]$r$Qׁt%$$l$$Xkļ[^_]Ãyu*݉L$H)D$ D$ U+$9$|$E$A$T$8ō4)t$ +9wiT$$*%E~$D닄$@x$o$E%? @E$뉋E$dz$.足$Pzfxp$pM+)9w/}/~$1$+Ë΋M+)9wS}$E%~$싔$wB?% Ɖwm$蟲럋$$L$$$x$$po8W+$$9G$tl$4$谭"$$hy$F%$t$$c<$D$袮D$t$$o$D$ $̭$BD$D$ l$~L$ E+)9w<D$(U~D$h$$ 붋WnDŽ$tW$$1ɋPt$Hl$ $Nj$$҉l$׉EtVʼnL$ +v/T$$*@E@}苼$G$#Ël$ $H$ l$4$臭$A$D$$F$E$D$E$z$$D$A$D$<$/D$$$茫$F$?$9$$$j$@$|Fn$x0~+8F$$l$$Z$‹@%$$t$$$,$$L$ګŋ$x$|T$$$‹@% $$|t$$芫$|$$xL$$i$x0$|l$$豪G$x$D$,$蔪WGBxQB%t OD$ t$L$<$J'zuڋGD$G $:$A%؁? ʼnioE%? @EW뀃z*zt$$,$$$$$$q$$tz$pxp$d $h$d+($hE$dA E|$$\$t$ӗ$pt$,$$l蹗$t$ʼn<$/eNj$p$tT$$e$|${$llj4$覧,$D$dƋ$ll$$`$d$hA<$t$d$hG$<th$hG$ͣ$hFD$$d$‹0$$D$$t$D$,$$d$\D$ $D$$`D$虦$h$跪N$$FD$E$- $B@$rjy)$T2~+vr8FGG ;(r ;(r/G$T0$ש,$$輩뀋$$Ey9A $XuV+$P$PF$$xi) $Pp$n+u)9*8~D$Px$Xyl$u+0)9D$(u~$XD닔$Pj D$$($XD$G$认$D$F$$XT$D$$詥,$D$ $PG$P$躧B$詧$蘧o$臧$w lj$X$$|$ D$L$$,>$$ED$A$肢tu$/4$$$$$$ $D$ܓ‹$/D$$D$$l$$$$|$ D$t$$,tZ$$$BD$G$詡l$$Go$V$E%$l$$L2~+:F,$G$L$H$t$$30 t0O$$l$<$6$$YU@?%?9uE%9| $D$l$gD$$H$עG$$l$$蓚1$~+8F,$G$1D$$$D$Ɖ t)w$$D$$ $*U@?%?9u‹E%9|l$D$4$L$DD$,$輡G$ѣ"$<$'D$$$T$O$$p?$AŁ?9$9$$$ tZ$n0?~+v:Fo$ۢ؋$0$<$D$!VD$4$q$B$D$$x$L$$+k$$tOu~+v!}F$$G$ы$$D$<$W$$A$D$>$.譡$U8$P$?$h?9g9$,$$0<<$ (Nj$A%? @G$W9}9|$<$D$<$ 0$$D$$$@͋+)9wW>$%F9G| <$u3$$D$$9|$뛋$$$L$t$${$,$$$$њ9$9$$px( t$t$$4$O<$D$袗NWF?%?9uǁQ.~$|$$Ȋt$$|R,$D$$$0A<$D$苊$D$E$$$wHoxL$,$$8pt$$@<$o$<$@ $< t*$<$@D$<$D$$8rz$@$5N?)ȅ~!$@D$<$蜉t$$PQ먋$< Ok  @@$@D$$<$ѕG$@,$Ht\$<0o?~+v:Fo$֋$<8+)9wZ.M$<F9E| ,$w$<D$$@$@D9|$}똋$<}u($@t$$m<$6Nj t|$4$ۇD$,$|$F$軇~|$$lOϋ$<$@D$ t$$-l$ԛ1$@u$肛t$<$`$< $@$<px $艖n?)~ $<O$@ \4 4OO$<$@D$<$g$<$蹙tM$@1h?~+v 8l$薚勴$@>+)9wT.9M$@BE|$@D$$<$ɅD9|O$랋$@$<xH(L$4$$@$<|$ l$$<uԉ $stȋ$@$qBjyt$$$|$,$u$$$踘$D$4$$$$肘$D$ $ѐ$$-D$ $T$D$Ԙ$!Ȩ$G^?%>V"V"^ V"WRX[$$D$4$э9}W+$0V$0uG$$$@<$$,D$VNj$,$pB%$,4$D$8<$D$w$,L$D$$=D$$$蚓$Fl$l$ $,T$xō4)t$ +9wCD$(M~$,D닼$0o$0$Ԗ믋jWDŽ$(tW$(V1ɉtNl$ $ۍƋ$($0҉l$։EtVljL$ +v/D$8$0@G@w$0B$Ë|$ $֕O$ŕ$贕0~+)8F$$$F$D$$‹@%tf$$t$$衒$$0$D$B$uG$$D$A$&zu$$$n+$$u$ )9(M~$$Do$$D$E$WGBx B%zA%؁? ʼniwF%? @FW$͓B$輓)$<$Dtt $.蓓$!Ȩ]$O$"11""#&1+U,03@22$$-D$ $T$D$7#&[#%&N&YQRT>W+)$X$G$$$$@$iD$<$$$B%$$ $D$衎D$,$$D$$|$規D$$$$Et$T$ $t$xƍ,)l$ +E9wAD$0~$싼$w$D$>뱋zU1tu$1ɋPt$H|$ $Gʼn֋$T$tVljL$ +v/D$8$@G@w$G$jËt$ $HN$7$&$$-D$ $l$D$/&+S&()++IJ/NuV+$$F$$$A4$D$$‹@%$$$4$D$虌$$0$D$A$m$E$$D$G$谋$B@xff$PB%t)$$D$ t$$D$zuы$FD$ $xG%؁? O$hE%? @EZz$$1E$$x$+ )9w>(U~$D닼$o$t$f$$$D$F$轇7$D$E$誂$D$t$$>@O$+U$o$G$$$AD$B$x$l$D$$>$$$Bo%$$ $D$ψD$,$$D$$T$ԉD$$$1$Et$D$ $t$xƍ,)l$ +E9wAD$0~$싼$w$r$l뱋zU1tu$1ɋPt$H|$ $uʼn$҉|$։tVljL$ +v/T$$:@G@w$G$蘊Ët$ $vN$e$TZVw}u~+vO}F $$D$E$G$$T$F$G$躉룃gk,0,0B,0FE0FE$P$$B@$.T$$l$|A$D$xB@D$xrHj)Ήt$p7~+vz:FGG ;(r ;(r7Gt$puwD$L$|I$z,$$bu$L$xEy9A D$t2n+(F$T$xzA)X u$@D$lp+)98~L$l}T$tzD$t$)Ƌ+9D$0~L$tu D$L$x8D$tD$A$肃$D$B$跃t$tD$t$$耄<$D$E$蝆c$茆${$jK$~ |$t$$$ht$<$U>)ŋ+l$hov}.GEE $;r$;r2$Et$huu$葅$؄$yr$$D$ |$L$$-H$0101001n??u~+}F$$F$$B$$D$A$$G$$D$E $g$F $bo$80$|$$p~$l$$ d2~2~2W2W2~2~2~2W2~2W2~2~2~2~2~2~2~2~2~20?$$D$$$>o$$>+)9wM.$%9Ed$$D$$D9|7$륋$<$}$ e $$}9艄$r9X  T t3$$t$ T$$-L$l1_$% u$qy( t$t$$WF?%?9u؁Q.~ʋ$|$$$,$g$0<<$y(Nj$A%? @G$W9.9|o$ tx$ ?$ t$$l$ D$$$D$,$$ u$0GD$$$$.+)9wQ>$%9AG5$$D$$H9| $C롃$ $ $   m$xh t3$t$,$$w|$$usG%?;$u$$|$D$8P,$k~‹ tT$4$kD$D$8$T$F$jnl$$2Ћ$0t$}ŋ$p)7~+9L$xM?)ȅ~-D$0L$(D$ $hl$$X0D$L$,G K9g9y9:q:: ; ;|$04$|$t릋D$0$\{tUn1?~+v8FoO$1|֋.)+L$$9wWD$$|$$FG9|l$$,$ wD$D$0$dgL$$9|${뛋N~(D$0L$$L<$azNj t|$4$gD$,$*y]|$F$f~|$$.ϋD$0t$ D$t$$- {1T$0uɉ$zt4$1z$zl$t$0F$afl$0D$E tH $$AD$$$f$jl$$8|$4tRD$$$4$%D$us$$$$D$l$h$D$$wx)ŋ0~+9L$4w9:Fu$ $$|y$ny빋$xW?9ꉔ$A) t?  $%AD$$$f$,$x"$0<<$p(Nj$A%? @G$W9.9|0n+v?(F<$wE$$D$F$EM$x볋$U|$$$Ft|$$m$$pt$Dun+(F<$vE$t$DL$4$D$@ cƉ tu$l$<$W@?%?9uՋ%9|D$|$4$ZuD$D$@$tE$v?$D$,$$]lD$$$Nb$$ipt+0$|$$p$|$7$$L$ t$l$$,3v맋$$L$$D$XpD$T@@D$T$pzh)t$L0~+vz8FGG ;(r ;(r7Gt$LuwD$L$X$Ou,$t$7uul$T$Ey9A D$P2n+(FL$T$zA)U uD$T@D$Hp+)98~L$H}T$PzD$t$)Ƌ+9D$0~L$Pu D$$8D$PD$A$WpT$TD$B$pt$PD$t$$Xq<$D$oE$usc$ds$Ss$BsNt$TNjN L$P$~|$d>o+l$` l$`.G$D$d$D$ $lŋ$PT$\T$dB%L$\D$d $D$)oD$,$hoT$dD$$T$1pD$$$n$Et$D$ D$dt$xƍ,)l$ +E9w8D$0~L$d|$`wD$`ۼ$q뺋zU1tuD$\1ɋPtD$\H|$ $hʼnD$`҉|$։tPljL$ +v)T$D$`:@G@w|$`G$qɋt$ $pZ$p%$p$$$f$4$D$@\$$$e$7D$,$UI$$'jt.0$|$$jj$D$<$$$L$ t$l$$,o뤋$hE%D$$2D$<$$i$@@$$Ph$q)$7~+:FGG ;(r ;(r=G$uwD$$$n݉,$n$no$$Ey9A $2n+(F$$zA)m u$@$p+)98~$}$zD$t$)Ƌ+9D$0~$u D$$8$D$A$i$D$B$i$D$t$$j<$D$iE$lW$l$l$l3$~ $$ $$+0$7$@ $$ED$$$W$$$A$D$Wʼn$kt{$$b?ƉD$$$覵$Bt$,$萵$A|$D$ $$<$D$@g$a,$hv$Lk$E@u  $$:D$4$$e$@@$$Ph$q)$7~+:FGG ;(r ;(r=G$uwD$$$)j݉,$pi$jo$$Ey9A $2n+(F$$zA)m u$@$p+)98~$}$zD$t$)Ƌ+9D$0~$u D$$8$D$A$e$D$B$Ke$D$t$$f<$D$udE$.hW$h$ h$g3$~ $$ $$]$4$$]D$$$AS7$$|$$>@$G+*$$G$$$AD$B$c$l$D$$d$$$|$A$Oc$ŋA%$,$D$;c$ $D$sc$D$$T$9dD$$$b$Et$D$ $t$xƍ,)l$ +E9wAD$0~$싼$w$װ$e뱋$y1Pt$pU1ɉtM|$ $\ʼn$҉|$։tVljL$ +v/T$$:@G@w$G$dËt$ $dU$d$dk$$$Z$,$$Z>$o+vZ.G $BD$$$OE$$G$D$OE6$,$$c똋$p$>W+M$N$.G$$$$hL$<$]$$B%$$ $D$_D$,$`$D$$|$`D$$$A_$Et$T$ $t$xƍ,)l$ +E9wAD$0~$싼$w$邭$|b뱋zU1tu$1ɋPt$H|$ $Yʼn֋$T$tVljL$ +v/D$8$@G@w$G$aËt$ $aN$ua$da$}$$JW$$$MW$4$D$L$uD$ $$$t$$T[ګtF$$80 $|$Z$D$,$p$ $$+$$E $$AD$$$K$$$F,$D$Kʼn$_t{$$V?ƉD$$$贩$Bt$,$螩$F|$D$ $$<$D$N[$o,$\v$Z_$$$D$E$Y$z$|$YD$$$V$ $$+($$@ /$$FD$$$2J$$ AD$$$Jʼn$]t{$$T?ƉD$$ $$Bt$,$$A|$D$ $$<$D$Y$ը,$[v$]$$l$4$$W$ @@$ $xVh)׋$0~+8FGG ;(r ;(r=G$uwD$$钸$\݉,$ \$\o$ $Ey9A $uV+($$F$ $xi)} $p$ n+u)9'8~D$x$yt$.+()9D$0.~$심$u D$$($D$G$W$ D$F$W$T$D$$X,$D$V$G$$ZD$Z$Zr$vZ$ O lj$$4$$EP$$$HPƋ8o+v\*GF$;YEFD$$${EEF D$$$bEE 7$Y떋$~$$Xk$$$9U$X$$X9W+($49$4G$nNju)׋+9wH8~D$4}E$4l$fX$XXT$.GXD$$$$M$D$,$C鼳\\$Lt$P|$Tl$XD$dP   l \6 &    # # # D$dD$D$`$,P\$Lt$P|$Tl$X\ËD$dL$`D$ $L֋t$dYYn0F+D$4L$4YF΋T$dBD$D$`$Ol$$TS4$D$RYFYu+)9w7Y8~DD$4xD$4$[V$MV8D$`YY)U+>T$0oD$0YENjt$dT$`F1L$ED$L|$pD$G$:EL$(QBx6B%tzuL$(͋A D$,$C׋qF%؁? lj~|$(OA%? @AW딋t$pF<$D$=2NE.NT$pBD$$p+)9w62N8~L$$T$(z$vD뼉1)֍ 1$WD<2N0.Nn+v@2N*F |$t$pF$E|$|$pG$E$C벅u*ND$D$p$賍>~J2N(.Nu+v2N0EF@~$xCՋ2N8.N݉w+v2N2GFn$,C׋2N.Nun+vR2N(FL$pA$=BE|$t$pF$E|$|$pG $zE U$B렋2N0.Nn+v#2N*Ft$pF$AW$\Bϋ2NED$@x*Nl$pE$D$B>D$<2N0.Nn+vn2N(FL$r$.>uUWVS\l$pU։ ' wo3. b~ - D$txD$tD$,$7\[^_]ËUu @1ɍtFVtω$T2\$t9|$t|$L~o@@2~+vB@8F,$D$L؉D$6GD$L)D$tl$t,$1G>$(=\$tdE%?D$tD$@@΁)Nj@+9w]@8E%~DD$@uG% D$@GQ2$t$v<$h<$Z<MWu@@t$D2}n+|$H@(FD$tD$tD$D$H$5t$Dt$$`8D$,$ 8E@@T$Dr+)9w4@:~L$D}|$f;\$tD$t$/L$DL$$7L$DƋA%D$D4$D$7D$D$H$7L$DL$D$$8,$D$7@E@t$ D$D$D|$ L$p+)9w2D$ 8.L$D$i:D$HyPD$<tL$HAD$@*GD$L|$HD$<$1Et$t$D4$1E$7)t$tD$HT$t$T$މ|$Lm D$tD$@$!l$$M#@0@~+vN@:FE$6GD$tD$E$GD$tD$E $G $%7뤋@@7~+v5@8FE$;6GD$tD$E$F$6뽁@T$8Ћ)@+L$49T$8wyD$4T$4E%w@<t EB;|$8|l$8D$4l$$1JT$tT$D$t$4;|$8|$ 6v@T$0Ћ)@+L$,9T$0wqD$,T$,E%w@<t EB;|$0||$,<$0t$tt$D$L$,;|$0|$Z5끋D$t}uD$@$@)t$$<$ 4Nj t|$4$ D$,$2|$F$ ~|$$?ύ2$l$41@T$(Ћ)@+L$$9T$(wmD$$T$$E%w@<t EB;|$(},w|$t|$D$L$$Dv;T$(|׋D$$#$ 4념t$|$l$t$$|$ Ft_tQF%DNx=11)Љ։x ȋ|$(؃7Ot$|$l$ڋD$(81$.~3듐UWVSL5l$`T$dD$8ED$$E pB @%T0t$8{5 )΋L$8+9k7D$dMt$4P|$0+t$4ωp9\D$0|$dG D$(D$duhEl$D$ F4$D$T/D$<‹@|$4D$85|$0{5|$ +EvxT$8>w5BG5G D$$;Ers5T$$;r4D$$Gt$ u wL[^_]$1$&1$1wL$@-G-G T$(;Ur ,;r1D$(Gt$ u w$&$f%$&끍t$DD$($t$D$";D$0-|$(D$<$"D$D$$$/#)t$0D$$t$,kzߋD$(|$$"|$<t5T$HB%tu|$$$|$!D$D$L$-"D$LD$Lt$$"t$DD$LHD$L$ F4$D$!l$8D$DD$4l$,D$0zu$$ -|$@8,$$%T$LD$(4$T$D$\!D$,&<\$,|$4l$8t$0&0&l$HD$D$+D$~&8FD$@L$DPA?%?9tu9xHt$D4$Z#Gl$l$D$@D$D$L,$D$!G\$,t$0|$4l$8<ËD$@t$$#GT$LL$Dt$LL$T$뮋D$@L$$!G&T$L0,$T$ OL$$D$4$8!s$M#UWVSD$0(IK%G%}w+uGL$0AFAD$D$4$F$d"u [^_]ËF$!t>G%}+wvuGd$8D$8F$o"ځf?$X"YD$4$!tNK%0G%~+9w"K%8Fd$8D$8GA$!ЋD$8t$4D$4$+K%G%+)9>t$0FGFD$D$4$9G|?9| g?b$ t 9|܋G%? @5L$0$ 9|$!`UWVSw,D$D$L$@))9D$LD$LD$L)D$L#l$L )D$@)ϋ#+9>d$HL$H@t$HwD$D$GT$L9#9~9}L$@$mD$D$tt$L9|g?,[^_]Ë$ut 9|ՋG%? @G$+$ # #7)ω+9ꋃ#8L$@AD$D$D$gD$D$d$HL$H@D$HGt$Dw9|CD$D$9$r.9|T$@$9|뢋#79}T$@$Zt#D$@) ׍L$@)Nj#+9#8u]d$H t$Hw9|-9$.9|L$@$9|$$l$G$#0#~+9w&#}Fd$HL$HD$Hz$-̋##+)9>t$@FG+D$L9D$T$@$;t$~L$@D$D$D$9|-9$!.9|yL$@$9|$I? $GD$@$됐UWVSD$D$|$$sD$D$D$|$4$$[L\$t|$4FD$0$;|$4M|$4|$4$D$<|$4D$,9|$<};gD$<,,$D$HWHpHHHHHHII8IQIjIIIIIIJJ2JKJdJ}JJJJJJK,KEK^KwKKKKKK L&L?LXLqLLL$Ë$????N=<?N=<d?;?(?A=< ??>>>>>>>~>">>==N=< =N=<<<N=<<<9< *<<<"@9;;;;N9;;k;>;*;;N9;::N9:::N9:~:r:e:G:':N9: :9N99N99N99 99{9h9O9N08E99888N08`8N08Q8N08,8 887N157777N15}7s7]7M737'776666N156|6r6f6T6B6(65555555y5N15_5N15H5N15-5 5544444K4Nu0'4Nu0443Nu0?3Nu093Nu0322Nu032Nu0%2Nu02 2111Nu011v1Nu0k1Nu0S1311 1000Nu0~0Nu0q0 V0I010 0//s/N+m/N+e/9/N+#/N+/N+/.....Q.N+>.N+.N+ .-N+---b-V-5-N+-N+ -N+,,,,v,W,N+C,+N++N+++ w+_+1+ +*NY)*NY)**s*NY)]*NY)U*NY)K*:*#*)NY)))))NY)|)NY)U) E)4)()))N(((((M(N((N((N(' '''N!''Y'E'5' '&&&&}&s&@&N!,&N!!&N!%N!%N!%%%F%5%$%%%$N!$N!$N!i$N!7$N!.$N!#N!#N!s#N!i#Q#%##""""N!"N!x"N!"!!N!!! u!^!B!"!     w k 8 ) NNNgU @@\<,   zKyN%KN%BN%N%N%N%N%,N%N%yN%eN%SN%1N%'N%dN%*N%! [+NNN@vl^NXNN8NNNfM NNNN{NuNmYC-NNNNmPN6N0N6%NNNN)NNuN>,NNNuNONIN8* @NNNjT="N NNN|xtpl>hd`\sXTPLH?DD@<8.8     Nrk NrZ Nr< Nr0  Nr Nr  Nr Nr Nr z @rn Nrb  Nr  Nr   p . Nr Nr     @r  Nr Nr Nrh S Nr> Nr6 %  Nr Nr Nr     Nrt Nrn Nrf E Nr, Nr" Nr NrNrNrNreNrNNrFNr;NrNrNrTNrNrcNr]NrRA'NrNrNrNrNrNr~m]NrUNrNrRNr1Nr$NrvNrNNrHNr=(NrNrNr|NrcNrYNrQ+NrNr NrNreNrBNr:Nr,Nr6 r6 r6 rh rh rh r< rh r6 r6 r rl rrDrh r[rFr1rrh rrn J.NNN@gNFN@N1 NoCN&N NNNWNON'NNzNaN[N,NNkNeN]N "@NtY:NNNNyNjNONFNNNwcINNNNNNHN: NNbN\NE7NNNNfN`NT, 92c} NZD vVNK:, NNNNxNrN[G?'NNN}NuNmW?N NNNNNJN NNNN{NpNaNHN9NNxbK8. NNiCN8%p NNN{hR9N. NNNNuNoTHNNxX!NNNNGN.N =N-NNNudNB'NN]NNNNNNsi*N NNNNNNrNeNF3~1NN~h NNNrNlN,NN NNwNlNXNRN%NNN@ePND'NNN:N$NEN5" }NtNP?.xNPN(NNNNNN[MC NNNNNNNgN_G@#NN1N NNNNvVEN.N&NN$NNNy%Nu"@eVB6NNkNa?NNN kkrSN8N0N$N NNpb+NNNZK, NNO4NNN.N[N&@+N#Nr_DN0NNe|x{tpl9hd{ZdJ2@ NNNNwNmNg(PN(NNNN~NcN]N0"NNNNNNN\CNN Nk"NiNcN>-NNNN&NdXNNu]7N,߾NNN½|No;NN޼NؼԼOм̼GȼGļ5ܼG~@l[J6N0N(ڻNʻNTͺNMNN7ܹعԹй̹ȹuĹ@`N\XGT{PLHdD{@{6@ָŸ[NܷNƷNtNg7 NNN޶ͶNNLN2N=N)_NYNN4=0,(߸$ W8߸߸ @zbNWD,NNsN NNɱNNزز|xtpldl'ް"@maI?$NگNN|ZN7N(N ɰɰܮخͮخ{VNNt9- N߬ɬvTNNثN˫Nn@ZNTNJ۩NNNlN[ը]+NNӧNħN4 Nݦ̦NNNR)N@ۥĥNyT<@ ؤyNNNN}N6N NN֢ȢNNxNmN^N>N8NۡơzeN]@*NޠҠi;NNNПN2ޞN~J.NNNY7$N}NwNo!NNNNКĚ}]N6N+NwNoNgNNܘ˘NNNN@T<84`0*,($ '] bD wfR, ؕNҕNǕzhN^N)NܔNϔN|kW?N2 NNNٓvfK3N&NNNCNNؑБNr[INA&ʐNNNl"@ЏNȏN"@veUI ̎NNՍNN"@uh^F-NN݌NNNeM;+܋ NNNJ`NKN8NÉyJN4Ə0,(~$ qd !8ˈ~NxNm_'NNNڇƇNN{Ns\TЕPLHD@v<y8k4X0(0 †@@WQA@W1NW)@@WÅNWINW=NW фNWS @,"@I8gNI8ONI8.NI8"@I8NI8NI8}HҁNI8NI8gNI8+NI8NI8oNI8YNI8S?"@I8y7NI8~~NI8~NI8~u~NI8U~NI8C~NI89~~dI8 ~dI8~II8~!I8~II8}.~I8}~I8}}I8}}}j}J}:}"@I8} }|||||NI8||f|!|NI8|NI8|{NI8{NI8{NI8{{|{U}I8x{U}I8t{"}I8p{|I8l{"}I8h{{I8d{{I8[{d{I8:{.{ {zzzuzNI8SzEzzNI8yNI8yNI8yyyy`yIy=yxNI8xxfxNI8;xwNI8wwXwLw0wvNI8vNI8qvNI8vuuNI8uNI8euNI8SuNI8Iu?u&utNI8tNI8t\tssss5ssrNI8rNI8rr`rAr"@I8/r!rrNI8qqqNI8Zq'qNI8qpppNI8pNI8pNI8pNI8pNI8upNI8hpNI8Bpooooto^o@oNI8:o.ooonnnnnNI8znNI89nNI8 nmm{mNI8nmTm.m mlllNI8|lNI87ll lkkNI8kkkzkNI8tkNI8lkkNI8jNI8j,jNI8j jiiiNI8tiNI8fiNI8Mi.ii%I8iI8 iI8iI8iI8iI8hI8hI8hI8hYzI8hI8hetI8hsI8hrI8hirI8hpI8h)nI8hI8h@lI8hViI8h7iI8hiI8hI8hhI8hoh9hh"@I8gNI8gNI8ggNgNI88gNI82gg"@I8ffofNI8YfNI8Sf;f"@I8f feeemeNI8)eNI8eNI8dd"@I8d}d[d'dNI8 dNI8cc"@I8ccNI8cNI8crcbc:ccbNI8^bNI8HbNI8Bb*b"@I8aaaNI8aNI8aNI8taaaNI8KaNI8CaNI8;a-a`NI8`NI8`NI8````[`NI89`NI8.`NI8`_NI8_NI8_NI8__|_r_]_%_NI8_^NI8^NI8|^f^@^NI8^]]]]w]NI8o]S]]NI8\NI8\NI8\\]I8\]I8\]I8\u]I8\]I8\\I8\\I8\\I8f\J\[NI8[NI8[[YI8[YI8[YI8[-YI8[YI8[[I8[$YI8[[I8q[`[S[B[6[ZZZNI8fZ?ZNI87ZZZNI8YNI8YNI8YYYlYTYJYWI8VWI8V0VI8UVI8UUI8UU"@I8oUOUUNI8TNI8TnT"@I8_TATSNI8SNI8SxS_SDSNI8-SNI8SNI8SR"@I8RRRNI8~R`R;RNI8RQQQQNI8QNI8{QNI8pQNI8aQNI8CQNI8=QNI8 QPPNI8PNI8oPNI8TPAP+PPNI8OONI8ONI8ONI8OOOkONI8eONI8]OONI8NNI8NNNI8NNI8NMMMMNI8lMNI8dMNI8RM0MMLNI8LNI8LLLyLNI8sLNI8kLLNI8 LNI8K}K KNI8KNI8JJJJJJsJCJNI8JNI8JNI8II"@I8IIINI8kIMI(INI8IHHH}HNI8sHNI8hHNI8]HNI8NHNI83HNI8*HNI8GGGNI8GtGTG4GGNI8FNI8FFFNI8FNI8uFNI8jFRF"@I8@F2FFNI8EEENI8kE?E1E'EDNI8DNI8DNI8DNI8DNI8DNI8DNI8DrDhD)DNI8DNI8DNI8 DNI8CNI8CNI8CNI8CCaCNI8YCCC*C CNI8BNI8BNI8BB"@I8BB]BNI8LB6BNI8.BBAAANI8ANI8AA"@I8xAjAIANI8A@@NI8@s@`@NI8U@NI8J@NI8;@NI8$@NI8@NI8@????NI8?NI8?NI8?NI8u?NI8Z?NI8Q?NI82??>NI8>>>>m>NI8 >="@I8=NI8===1=NI8<<z<S<;<NI8.<<;NI8;NI8;;n;Z;NI8T;NI8L;:NI8:NI8::NI8:999]9NI8W9NI8F9,9SI8(9PI8$9PI8 9=I89;I89U9I8909I89=I8 9=I89 9I88W>I88E>I88SI88*>I88>I88=I888I88SI888I8E8 :87Nd77Nd77777Nd7v7Nd7p7Nd7`7 >7-776N\66N\6666N\6n6N\6h6N\6X6 :6$665N005N005N0055N005N005^5N00G5N00?5N00055N00554N004N004N004u4U424N004N00 4N004333N003N003N003^3N00C3N00=3N00.33 3N0032N002N00=2N00521N001N0011w1e1(1N0010N000N000N0000h0500d0500`0 400\0000X0000T0l000P0500E0P000,0 0//N/N/N/{/ @P/1/ @/...N..G.9..-N-N--v-_-8-,N,N++~+9+N3+N(+ +*b*NO*ND*%*))q)N^)N(((q(N_(NG("((' @''''N'NH'N@'(' @'&&&&v&g&!&N&N&%%%%~%Nq%`%O%?%N7%%N$N$Nj$Nb$*$N$N#N####R#5#N#N"N"""Y/"Y/"Y/"(/|"(/x"(/t".p"(/l"+h"(d"+(`"F'\"&X"&T"(/P"%L""H""D""@"(/5"@"#"" @!!!!!b!NU!N.!! ! } V (   wN;N`N ^2NHD@<840,q(L( @~iS9(NN NjH5 @Na<840,($ j@jPNHNN~Z;N3NN{oUNFN3NNfNZN[NPN$NNNNNNNN^PNNxNpCN,NNNaNMN4N$~KN7N% NNe*N$NNwb'N!N  @   x g N_  N N   N   j > N6     N { O : ) N  @{ m 5 N N N    Nq Nk N` O > . N& NNNWNONNNYN N" i    | x tp l h d`X` N|x eTF NNNN~NgNFN@N)tNnNbD2N$N N jN Y;1 N N N fVB6N N N N rbV:  | NLt NLn i c NL[ NLU P J {NiLB {NiL< 7 1 wNPL) wNPL#   sN7L sN7L  oNL oNL kNL kNL gNK gNK cNK cNK _NK _NK [NKz [NKt o i WNKa WNK[ V P SNoKH SNoKB = 7 ONVK/ ONVK) $  KN=K KN=K  GN$K GN$K CN K CN K ?NJ ?NJ ;NJ ;NJ 7NJ 7NJ 3NJ 3NJz u o /NJg /NJa \ V +NuJN +NuJH C = 'N\J5 'N\J/ * $ #NCJ #NCJ  N*J N*J  NJNJ  NINI  NINI  NINI   NI NI { uNImNIg b \N{ITN{IN I CMbI;MbI5 0 *MII"MII  M0I M0I  MIMI  MHMH  MHMH  MHMH  MHMH  {MHsMHm h bMHZMHT O IMhHAMhH; 6 0MOH(MOH"  M6HM6H   MHMH  MHMH  MGMG  MGMG  MGMG  MGyMGs n hMG`MGZ U OMnGGMnGA < 6MUG.MUG( # MTbP#Q:ohCA4B{g@McS=)K! Ik^q98i[&$56yz/.aJjLs;<_DxE1F0,m|}X7H-ZeR`]du"*+wYfl?ONG\v(%r'np~>TbP#Q:tWU32VBQX!_P)m+{l0'(5984<@NNpLKQ0Pj@89,|EpY@6aH7 e^P8RH/NW1>%;IWi^bZ( 2fq#4e<P\Dq5$BIw8+n+t_gred_rfrac_simple___i686.get_pc_thunk.bx_gred_rfrac2_gred_frac2_gsub_gadd_gaddsg_mulcxI_mulcxmI_gmul_ff_poltype_gsqr_gdiv_gmulsg_gdivgs_gmul2n___i686.get_pc_thunk.axdyld_stub_binding_helper_lontyp_gen_m1_DEBUGMEM_pol_x_top_gen_0_bot_avma_gen_1_int2n_vals_gopsg2_diviuexact_divis_cgcd_divis_rem_mulsr_gnorm_divir_gauss_ginvmod_quad_polmod_norm_quad_polmod_conj_quadnorm_gconj_cxnorm_sqcompimag_sqcompreal_RgX_sqr_from_Kronecker_FpX_to_mod_FpX_sqr_equalui_gshift_to_Kronecker_pari_warn_Fl_inv_gerepileuptoleaf_isexactzeroscalar_compreal_compimag_gpmalloc_gerepilecopy_ser2pol_i_RgX_mul_RgX_Rg_mul_cgetp_cgiv_mulrr_mulsi_addsr_addsi_sign_scalarser_ggval_free_greffe_gaddmat_kronecker_shifti_sqri_precision_cvtop_cvtop2_padic_to_Fp_quadtoc_gexpo_divri_mulir_divrr_affrr_divrs_affir_addir_sign_gvar_normalize_normalizepol_i_gequal_cmpii_equalii_addrr_sign_gerepilecoeffssp_gneg_gcmp_1_ggcd_gerepileuptoint_scalarpol_gmod_modii_Fp_inv_Z_pvalrem_addii_sign_mulii_powiu_gerepile_gneg_i_gunclone_diviiexact_gclone_gcdii_dvmdii_gerepileupto_monomialcopy_RgX_shift_poldivrem_srgcd_RgX_divrem_isinexact_RgX_mulXn_polvaluation_gvar2_isexactzero_simplify_i_numer_denom_gcopy_ginv_gcmp0_RgX_Rg_div_gcmp1_content_pari_err_gred_rfrac2_i_addpp_addQp_add_pol_scal_add_ser_scal_addfrac_add_polmod_add_rfrac_sdivsi_rem_mulqq_mul_polmod_div_ser_reel4.0 #1/12 1200774061 0 0 100644 68580 ` gen2.o Xhh__text__TEXT=Dz __data__DATA@__cstring__TEXT`<__literal8__TEXT`<__picsymbolstub2__TEXThD__la_sym_ptr2__DATA DD__nl_symbol_ptr__DATAD__textcoal_nt__TEXT`< @XT PBHM,D$4D$D$D$uD$D$8T$D$$T$0,Å~D$@D$D$,\$l$(l$4t$ |$$8uCD$8$D$T$0t$؉D$w+M9w\0GFT$$a$SZ\0Tn+89&\(F"D$,u_XE\8Tw+v'\0GF@Fu$赔ˋD$,~S\T>w+9w$\0GF@T$,V\$Z΋\D$,؋>D$ T+w9w\0GFT$ $$UWVS,L$@ L$t[$&T$賓|$Df;t$}|$@$\tD$HOD$DM)NjG+9L$D}D$DD$D l$@EGōf1D$ l$oL$@)t$D$@D$D9D$~'9}l$@D;t$D|,[^_]þ;t$}L$@;t$|;t$D.}ыK;t$D|$m$n-$] D$D$b$t$,,\$t$ |$$l$(t$0x8( L   &F1҉t#%vщ uޅN։Ћ\$t$ |$$l$(,$rӉ4$1ɋPt%p1 uڅNʋx8$ۋF$蕐tv$|$1WF $a.tӋv\$|$t$|$  ppe+6eppmuuuGЉЋ\$t$|$ËG$QtUG$BuˋWt1뺋OuBQ%?- ? 9뇋G$1҅uWuOuAR묋G@=G1$u0G $Eփu $U1҅.uِ T$zt1 Ë 9}<.u9|V1T$ B%?= t^É$E\$t$|$t$   LV1ɉׁtʉЋ\$t$|$ËFuDًF1.~Ή4$1뾋F1$=u멋F$E1f~uۋF$ ݋F1$tF 뿋v1uFƐ<\$,|$4t$0l$8|$@d wzDAWW1ɉցtȋ\$,t$0|$4l$8<ËGuD׋Gx1Ή<$ċD$oEl$$D$OL$$܋‹D$뀋G1$uhG$E⋳D$oEl$$D$葋O L$$P닋G1$tG 뜋1D$GD$$‹@uD$1G$D$DӁ1#G$%<\$,t$0l$8|$4D$@l$DUgȉt$t$@l$4$\$,t$0|$4l$8<ËEul$@UډЋ|$@Gt싃Ì΋D$|$)׋T$+9w@Ì:7,$|$}D$ÌED$@<$D$Gv$`벃t$@FuMىEtÌ֋D$|$)׋T$+9w?Ì:7|$L$@ $ňt$Ì0l$<$蔈z$證볋D$@l$$衈v.g!Ȩu/Ì>,$D$D$@$t$և>&$T$0빃t0.t.$L$cD$@}|$$萇~<\$,l$8t$0|$4l$DUCt,4$T$p1\$,t$0|$4l$8<ËD$@l$$躆ڃt uɋD$EuD$D$@$lt$$t$7듋D$@u E끋0~+v88F|$L$@ $z0l$<$q*$茇뺐,l$(t$ |$$D$0l$48uAvYJw?tED$D$0$EЉЋt$ |$$l$(,ËD$0l$$ލBtm|$D$9|$O9ƉD$|19|$.t19|$D낋DL$0D$$.b;t$|뽁t/tL$0A,$D$EЉ.C<D$@l$8l$D\$,9t$0|$4D$t/0M9t2[D$>l$$dz>‰Ћ\$,t$0|$4l$8<Ãwɋg##9#m##'#z#A\D$l$$peT$l$$ރ1҅KET$1D$B$7u(El$D$E$E׋EL$1D$A$tE|$D$G$xEL$1D$A$^tET$D$B$DiE |$D$G 묋EL$1D$A$9D$PE9tD$$ D$l$D\$,D$@t$0|$4l$8\$t$ |$$l$(,Å~Bw+v0GF@n$证Ջ+wv0GF$pڐUWV1Sm,|$@l$Dt6D$ tt<$ډT$~E,[^_]ÅtMG%?D$ɂ0l$~+9w%ɂ8Fd$D$G}$讀͐UWV1S,T$@|$DJt3D@ut$݉l$<~,[^_]ÅtK ?0L$l$n+v$ (Fd$D$E/$ΐUWV1S,|$@l$DWt6D$tt<$ډT$~}E,[^_]ÅtJ?M0ET$~+v%M8Fd$D$G}$6͐|\$ll$xt$p|$t$!$8u$~ !1ɨ>waY5$5XU'555t.u$l$P~1ɉȋ\$lt$p|$tl$x|Ë$l$${Ӄu}L$\8$pL$l$4${y‹9D$\uT$L$T$XHT$l$ $l{‹9D$Xt }8]T$HT$TT$D$l$D$D$L$,{y‹9D$Tu5L$PD$HT$LL$l$${y‹9D$Pu T$H룋}8l$$@$zl$Ƌ$@$z)$@,$D$l$xn D$1ɋFxE?%?97}8D$Ll$D$ D$F$yt$Hl$$t$t$@$yu}}D$ l$D$D$L$y.L$D$Hl$L$$wy.빉l$$@$ tzK$$h{t $勄$D$89ΉL$4|l$T$8$9L;t$4|֋E%!$uB?%?9t)1ɅPi9r 9v,$Sxt-$D$$W}}u9L$@u)ЉL$<4t$D1$l$D$$$w.D$DT$@9s%e9w$<$D$rw$룋D$<$D$kwˍul$$T$y~!Ȩn,$v$ƋG%?9tX)1ɅZD$,%9ƉD$0| L$,5l$$A;D$,MD$,;t$0D$,|D$,$t$Pzl$u$l$ỷl$$@$l$Ƌ$@$$t$(>|$$;t$$Jl$L$($n9L;t$$|$Ut}ul$$T$Ox~UW1VL$$t$ l$(t1҉uƃu^_]É4$u䐐W1Vt$$D$ t1҉u^_É$tV1Ƀt$$T$ F%~^ÉыFD$1)ʉ$ݐUWVSL$Lg 1L$,9.DT$؉9|$`봐L\$w+LX0GF@nt$8t$l$dE<$D$D$4D$d|$4pf1u(L$d AqD$A D$D$8$CO$~S$pScLXDX݋9w+vLX0GF=$#S׋T$dB,$D$|$dG Ot$dF,$D$GD$dx?|$4ׁ~qT$dB,$D$u@d$4D$dl$4h9L$d$D$9|d$4t$dL$4@D$4F붅u/HXt$dEND$t$ T$$,/R\~VLXD$(ƋDXT$( +v!LX0D$(@F@n$Qщ鋳LXDXىL$$L$ + v#LX0L$ AFD$$F$vQϋ|$dG%?D$4T$dB,$D$>u\u@d$4D$d t$4p9L$d$D$9|o$Pd$4l$dL$4@D$4E먅u/HXt$dEND$t$ T$$,P@~RLXDXT$+ v!LX2D$@F@n$t$,$CD$dt$$?T$d$T$@f$D뱋TKT$dL$`D$$BD$A$3?t$`D$D$D$8$>|$dD$ŋD$dx9.u%9|.zDui$B$BYT$4l$dT$ED$D$4$vD$dD$ D$`D$ .Xl$`E$荱t|$dt$`|$FD$dMA$,D$ D$`T$D$BăTKl$dD$$ED$D$`$L$dy9.@p%9|."Du$A׃ .` t$`F $腰tl$dL$`l$AD$dMA$,D$ D$`|$D$AċTK|$`d$(<$D$$D$(D$<T$d$T$D$$t$d4$f;D$,t9TK}D$D$`|$$$<L$d$L$T$$Uqt$`F $覯tL$dL$T$`BD$dMA$,D$ D$`l$D$7@ă    ZT$dD$(%j?D$, K;t~@K;tq|$dT$`G$D$;t$,|-t$`4$tl$dE @L$d$D${;t$,|뱍A$/L$\?t T$dBD$D$`$0t$dF$D$ZD$(T$d%jD$,D$`?$+txt$,uX|$d wt$`L$dA4$D$;t$,l$dD$D$;t$,|v$}>D$d@h딃D  D$dL$`MAD$ L$t$$-,>D$`D$d L$0T$,  t> ,T$`TKjB7,$D$9l$d$l$7TKt$dL$`D$$FD$A$8l$`D$ @ 6z 6 `````PK9T$dr8Kt$d;0vZD$d9D$`.mD$`pd$(9t$(|".HT$`L$du0$799T$dDK|$d;8t{4KL$d;tU0Kt$d;0t/A$/l$8D$dD$D$`$'4A$/|$8빍A$/T$8듍A$/l$8jA$/t$q8AD$`T$dTKhB7D$D$,$5PK7;ul$dt$`ED$ED$F_D$d|$`MAD$ |$L$$,7뺋T$`D$djx9t%u%9|et DuL$`D$dix9.u%9|.qDu`$g7$Y7덋t$d|$`FD$G$6t6l$dt$`ED$E D$F$2|$`WL$dfQD$dMA$,D$ D$`l$D$6뢋T$dL$`BD$A$貰L$`t$di~9t%u%9|et DuD$`h D$dx 9.Xu%9|.:Du)$06$"6덋D$dMA$,D$ D$`|$D$5t$dD$`~hFTKD$,$T$ 0|$$D$ t$dD$`MAt$ D$|$$,s5뚋|$`D$dWxD$(Ձ?%?D$,9)~&D$dt$`MAD$ t$l$$- 5T$dBD$D$`$;t$,|!t$`n@EL$d$D$;t$,|뽁D$,9Ɖt$0?D$dP;t$0l|$dl$`D$D$Z;t$0|CMAD$dL$`T$D$ L$$,04|$`W뒋L$`T$(AL$dyʼnT$,??9)~"D$`MAL$ D$T$$-3L$dt$`A4$D$l$`Euat$,uA |$dw;t$,`l$dD$D$Y;t$,|:$A3D$d@x뫁|$,9Nt$d|$0F9|0;t$,l$dD$D$;t$,|T$dL$`D$$;t$0|뫋L$dt$`AD$F$|$dGD$"d$(D$(t$09t&l$dD$`MAl$ D$T$$,K2;t$0)L$d|$`D$$;t$0|<\$,D$@|$4t$0l$8|$D$th3\$,t$0|$4l$8<ÃmL$@ $,ŋl30d3~+v2l3:F uw$i1$[1l3D$D$@hE @D$E‰$-H4$D$ىL$t0l3D$d3+)9$l30t$L$ $/|$4$,} |$$*NjEhD$G$*wGt$F%?huD D$p|$|$@G $&.l$@D$E$?/D$D$$Z,,$/뮋G%?hu w$/$/$/\\$L|$Tt$Pl$X|$d蜑GD$4G@D$,tGD$,t$`D$h$t$$AF00u~+}0FG0G 0T$4;r 0;r@D$4Gt$,uw\$Lt$P|$Tl$X\$.ى$%+$i.mD$`4$D$D$4D$D$0D$,002n+vf0(FD$0t$,D$(u. t$(ut$4uG E D$D$`$(E$$-$-댋00u~+vb}0F0G0G D$4;r0T$4;rD$4Gt$0$)$-됋F@T$4T$F$舿l$,9|$D$`@$16D$4|$,D$|$D$`@$&VT$T$ h|$B%')u)Nj)+9)8E%~DEw%? ƉwD$<$/l$T$l$Dt$XD$TDt$$D$<$t$D$$8L$ L$$M$D$$T$D$$D$D$$l$D$,${$ zD$,$lHD$$ىL$D$$t$TD$t$D$,\$t$ |$$l$(D$0\F (TTTTTTTՋ!)Nj!+9!L$08%!<tT$0BG9}1rL$8T$4L$T$L$0$9Dv|҉\$t$ |$$l$(,$?m$t$$1L$8T$4$L$T$말<\$,t$0l$8|$4l$@Et$D D )P )NjH +9wHP 8u*7|$,$J\$,t$0|$4l$8<$;$-몋P )NjH +9w4P 8u7|$,$5$$뾋}|$EP MD$H +)9'}Ut$͉T$|$4$MT$B%`tTl$ED$<$$|$uD$@xP T$G%? Ɖw֋ByP )ƋH +9w=P 0.t$D$$t$<$n|$$p$~$p$_P 9GD$H +vHD$P G t$E$|$Gt$E$l$ED$$몍!$t$L ct$,$R<\$,t$0|$4l$8D$@}l>lL$@A%tL$@y))PЋ\$,t$0|$4l$8<Ë|$@G%?֋D$@pN.tȿ%tV))xD$@PB%tr))H)^l$@E$L$@NjA$9M0t$@FPJtAj))‹|$@4G$.L$@NjA $,돍$t$14L$9||$@$9O;t$|ڃ\$t$\{t$ 4$t1҅tЋ\$t$É4$|*Y,ɍQ҃<\$,|$4l$8t$0|$@{ t9$T$9G%?ŋ\t$0T~+vL\8Fuu$d$ t$wЋ\$,t$0|$4l$8<$3$%릋$t 9|S)T$Wʍ4?D$ ց@puwL$1)~uH,79|D$`?1|$$訆T$.9|$U$Gx$6WGg?UWV t$4l$0Uс|LL$)~u],D$xUFׁD$u)E |$%?}ǁ@EljE ^_]$$q땋D$蔅.UHUWV t$4l$0Uс|LL$)~u|,D$xUFׁD$uH |$}e? ^_]ËD$t ֋E%? @E$$~sD$;.3&\$t$t$ Nw t $T$!4$T$\$t$ÐSwT$ t ~-tV $T$1[ËB@B,t$ t$0\$v|$$l$(xrM+)9w>}u%(G7\$t$ |$$l$(,$1$#봍 $T$ s,\$l$(t$ |$$l$0uEti $T$}9}D@u"9|E\$t$ |$$l$(,É$- Ԑ<\$,|$4l$8t$0l$@tuE|$HD$Et $T$;L$At9|D$NjE%9D$Kw;u} D@u/D$D$ DD$ED\$,t$0|$4l$8<É$m ǃ $D$t$떍T |$$T$SUWVStt$0l$8~t $T$L~W9~ $L$+%94W9~D9D$4$ D~D[^_]Í $T$봐,D$0\$st$ |$$l$(L$0ǁ|t, $|$f1\$t$ |$$l$(,Ë( +)9wO.u7(u9|}륋L$0$ D9|$$룃l$0tD$0x)( u~+v}F(G$tڐUWVSsr,L$@ $T$;D$@pD$Dnl$hl$<$bōF9/D$D$@;}4} D@ut4$s D;|$~;|$}>L$D+T$4D$;}} D@u-D$$/ D;|$|ϋD$E,[^_]É$" ɉ$ 낋L$D <\$,Xqt$0|$4l$8D$@xL$t$T$ D$@\$,t$0|$4l$8<ËD$@$UD$+)9 ."uD$@9D$}L$T$D9|D$DD$t$EF9|D$|$@Gl$(,L$T$D$D$uD$T$DL$9|륋D@t$9.}DL$9|$ $ |$t$l$|$$T$ /u7Uڍ uwt$|$l$$G ߅x:ʸ )) @G9W.}9|뤾ڸ )) t$|$l$t$$|$ Ft_tQF%DNx=11)Љ։x ȋ|$(؃7Ot$|$l$ڋD$(81$._ 듐UWV l$0t$4}ʁuv tȁ%9t+ t tt$,$$ ƒ ^_]1 uہ.t؋F9EuD$9|$|뻋L$D$D$ 1҅.tD$9|$|΋m} .,tT$ $$$D$|D$$Z t*T$$1 1$$$ČËD$|t$ t$$D$$$i D$$$ $yL$lj $됐⍀>Pee)⍀)Pee⍀Pxese⍀P_eZe⍀PFeAe⍀P-e(e⍀Pee⍀Pdd⍀Pdd⍀Pddl⍀lPddW⍀WPddB⍀BP~dyd-⍀-Ped`d⍀PLdGd⍀P3d.d⍀Pdd⍀Pdc⍀Pcc⍀Pcc⍀Pcc⍀Pccp⍀pPcc[⍀[PkcfcF⍀FPRcMc1⍀1P9c4c⍀P cc⍀Pcc⍀Pbb⍀Pbb⍀Pbb⍀Pbb⍀Pbb⍀Pqblbt⍀tPXbSb_⍀_P?b:bJ⍀JP&b!b5⍀5P bb ⍀ Pauٗ $=VoӘ7Pi͙1Jc|ǚ+D]vڛ %>WpԜ8QjΝ$Ë$4 XpXpl QC;(ӒaJ9 ڏ\T֎P\ ~tN ڍE {CT4=\4T4\4y=40  #yċ yyu dPH4)~ i)u  ԉWT̉hTTb\TP $P ΈC qc7~pxׅʅx\aTR\$9 ׄ`Ȅ TPdG73d,̂RdȂRdĂRd5d5d5d5d5dRdRd5dЃd5dd5d*d5ddЂd5dwd` =*X $-  ځ\ T \ q`TH.\ T  \ ۀ\ ʀLT ?\ & \ T \ t\ eT R\ L5 H D @ <, 8 4 0P , ",  ~~~&}~~B~P}(~\}~T}}\}}}}}}}}}}}~}}~}}~}}}}}~}}}}}}}}}}}}}} f}J}+}}|||||||>|\u+|Tu|\u{\u{{{{{{{k{Y{<uG{{{\uzz uzzzztzdzBz z\uyTuy\uy\uyTuy\uiy0y yxxuxLuxTuxXuxTux\u{xmxcx6xu#xLuxTuxXux\uwTuw\uwwwww]w\u,wTu&w\uv\uvTuv\uvvvvPvuBvTu7vLu%vXuvTuv\uu{uu{uu {uuzuu9yuuxuuzuuuuuzuuuuuuuu Nu2uutttttttot&t\dntTdns\dns\dnsssdnsssgs[sKs=s<dn'srr\dnrrrrqrr\dnqTdnq\dnqqqdnqLdnqTdn{qXdn`qTdnZq\dn7qqppppdnpLdn|pTdnmpXdnRpTdnLp\dnDp6p po\dnoTdno\dnooxono,odnoTdnoLdnoXdnnTdnn\dnnsdnnsdnnrdnnsdnn@qdnnpdnnsdnnndnnsdnnndn`n ?n.n nmmmm{mXmIm=mm\klTkl\klll\kll\l\kElTk=l\k5llXklk kkkUTTk2k kjjAj*jjUTiiUTi@ihhhUT|hdhUTMhAh/h\ThggUTgg.ggfUTffffeeUTeXTee\T~eneTceSeؕTKe;eǕT3e#eTeedTd8Td<TdLTdXd@TJdXTDdhkT@dhkTkT(d(TT$diT dhTdgTdgTdfTd>kT d(TTdfTdeTdeTcHdTc(TTccTcc Tzc$Tbc?c c Tb$Tbb Tb$Tbbbgb baHTaana=a%aUT```\T``u`^`>`\T1`!` `\T__UTr_[_6_^^^^Tu^:^(^^HT](T]]UTz]_]O]8]\T*]]]\\T\\UT\\WT\WT\\T\"]T|\WTx\\Tt\\Tp\\Tl\\Th\WT_\h\TL\[[\T[[UT[[WT[[T|[[Tx[WTt[WTp[[Tl[[Th[[Td[[T`[WTU[`[T&[[ZZZZ:Z!Z\TYYYvYVY\TNY=Y-YYY\TXTTX\TX\TXXfXBX\TUUUgTUTVTTT0TT4TTWTTWTTOVTTUTTUTTDUTT$UTTTTTUTTUTTTTpTR\TlT[ThTH[TdT3[T`TXT\TWTXTWTTTtTTPT3[TFTPTTT SSSSSS{SkSLS0SRU QR\ QRT QR\ QRT QR\ QoRT QbR\ Q!RQU QQ\ QQT QQ\ QQT QxQ\ QXQT QRQ\ Q5QQ PPPPPP{PcPUOBP\O'PTOP\OPLOOXOOOUOO\OOTOyO\OmOLOcOOO O NNN\GNTGNmN\GTNTGNN\G?N'NUGNXGNM\GMTGM\GMM\GqMTGiM\GZMBMUG6MXGMLLyLPL\G-LTG'L\GLK\GKTGK\GKKUGKXGoK4KJJJ\GJTGJ\GJqJ`JJI\GITGI\GILI5IHHH\GHTGwH\GoHLH\G3HTG-H\GH\GHHXGGG\GGdGNG`GNG\GLGXGKGTGJGPGJGLGUIGHG&IGDGNG@GHGEFF>EF FEE ExE'YDfEVE'YD>EDDUD HDD\lCDTlCCC\lCCTlCC\lCCXlCCChC HC;CC CB\4BBT4BBB\4BBT4BzB\4BZBX4BHB0B BBAAA\4=AT4=fA\4=WAGA"4=+AA@4=@@@@z@j@T@\4=@@+@@@????\4=??\4=?q?N??\4=?T4=>\4=>\4=^>T4=X>\4==>T4=7>\4=/>=T4==\4==bA4==bA4==bA4==EA4==EA4==EA4==EA4==EA4=|=@4=x=@4=t=EA4=p=R@4=l=EA4=h=?4=d=EA4=`=5>4=\=EA4=X==4=T==4=P=EA4=G=P=4=0= =<\8<T8<\8<<8x<Y<6<\8<T8<\8;;;\8;T8;\8;n;E;\8+;T8;\8;::\8:T8:\8:::b:\8K:T8C:\8;:+:X8:9\89T89\899X89I9\829T8*9\8"98\88T88\88<88~<88~<88;88;88;8|8~<8x8~<8t8~<8p8;8l8~<8h8 ;8d8 ;8`8:8\8A:8X898T8;8P8~<8L8;8H8(98D888@888<8~<848<888 8 777\<17T<1q7\<1`7P7<1H7,77\<16T<16\<16666\<1o6T<1g6\<1_6C66\<16T<15\<1555y5T<1s5\<1k5S5=5'54T<14\<14444X<14J4\<164T<14\<13\<13\<13T<13\<1k3\<1a3T<1R3A313X<132\<12T<12\<1f2T<1^2\<1V21T<11\<11k7<11N7<11N7<116<116<116<11N7<11N7<11N7<11e6<11N7<115<115<11q5<114<11[3<116<1|1N7<1x1e6<1t1\2<1p11<1l11<1h1N7<1]1h1<1B181 10\000X00\00 }0>0%0/\./T./\.///\.P/\.3//X./T..T..\.. C./..-X#,--X#,-;-T#,5-\#,--,\#,,_,=,\#,, ,++a+\(C+T(;+\(+++**(****X(*T**\()T()\()X()_)\(@)T(4)\( )(\((T((\(( u(,(((u&''''Xu&'f'\u&K'Xu&C' '\u&&Tu&&\u&&&\u&q& b&#&%%%̔N% %$$$̔${$#$##̔###D#_#ƔO#TI#\-##"H"U"+""!!\!!p!\!   \ X q Xk ; \+ X\%%|%xtpl$hd$`4"\7!X%T!P%LH D@<8/8 \sTh\K.  \STS\SO A\T\ a\HT@\T\X\ T,j^F*\$hN* ]B${$($$n$:|$xtplh$^h8&\ bcRD\T>%\TTT\T\ToTP \TB/!\\T\|i\_I\.T\ iA L\\}dU2\*Qt""0" VG&khchMh6h hhhchhhhhd Dw3   8 8 8 8 8 8 8 8 8 8 | 8 x n8 t c8 p 8 l 8 h 8 d 8 ` 8 \ 8 X 8 O X 8 4      \ } , ( $     0  \  o   p T X T  \ a < , h   \ T \ k \P TJ \:  \T\X\T\l\F\>\\T\]TW\7X X\T\CT8TXTaT[\?/` Pxtplhd`\XTPLHD@<840,($|   \T\X| k=X #T \  \YTYk\YB\Y \YTY\YTY\Y\YfTY^\YU J,\pTp \pTp\pXp~\pl    ߝyߝs n hƝ`ƝZ U O G A < 6.( # {{  bb  II  00      y t n̜f̜` [ UMG B <4. ) #ܞܞ  ؞h؞h  ԞOԞO  О6О6  ̞̞  ȞȞ  ĞĞ z tқlқf a [SM H B:4 / )!  nn  UU  <<  ##        zؚrؚl g aYS N H@: 5 /'!  tt  [[  BB  |)|)  xx  tt  pޙxpޙr m glř_lřY T NhFh@ ; 5d-d' " `z`z  \a\a  XHXH  T/T/  PP  LL  H~Hx s mD˘eD˘_ Z T@L@F A ;<3<- ( "88  4g4g 0N0N ,5,5 (( $$ ~ y sїkїe ` ZRL G A93 . (    m m |xtplhd`\XTPLHD@<840,($  _zvu[ryolIWXpbOj@gxaiKUL`V{h}Y Jq\]T+'SNR^ZMwt|_zvu[ryolIWXpbOj@gxaiKUL`V{h}Y Jq\]T+'SNR^ZMwt|mksefnHd~QcPETLW`\nz@Hl&(*,P0:.`d~ o1*PpuHnf=SFth$ T8}HElAr Bz CXCX 1^7 `W :~m$_ lvB@apNXpN,ԆQO;tk%%EH0PDE,&40$,UfE@ )l}o$^WwMf.;zG6O`_gopsg2_gopsg2z___i686.get_pc_thunk.bx_cgetp_cgetimag_pureimag_glength_matsize_greffe_gtolong_gcmp0_absrnz_egal2n_absrnz_egal1_gcmp1_gcmp_1_gcmp_gcmpsg_lexcmp_gequal_gequalsg_polvaluation_ZX_valuation_polvaluation_inexact_ggval_u_lvalrem_u_lval_z_pval_Z_lval_Z_lvalrem_Z_lvalrem_stop_Z_pvalrem_u_pvalrem_Z_pval_gneg_gneg_i_gabs_gmax_gmaxgs_gmin_gmings_vecmax_vecmin_gaffsg_padic_to_Fp_padic_to_Fl_gaffect_quadtoc_cvtop2_cvtop_gcvtop_gtofp_gexpo_sizedigit_normalize_normalizepol_approx_normalizepol_i_normalizepol_gsigne_listcreate_listkill_listput_listinsert_gtolist_listconcat_listsort___i686.get_pc_thunk.axdyld_stub_binding_helper_top_varentries_ordvar_pol_1_ghalf_geuler_gpi_gen_2_gen_m1_gi_DEBUGMEM_pol_x_gen_1_lontyp_bot_gen_0_avma_sindexlexsort_gclone_gunclone_gprec_gpowgs_equalui_gmul2n_gsub_ginvmod_geval_precision_Fp_inv_divrr_divrs_modii_gmod_gdvd_affrr_umodiu_mulii_powiu_modiiz_gerepileuptoleaf_gerepile_gsqrt_gdiv_gerepileupto_Z_issquarerem_cxnorm_addii_sign_gcopy_shifti_sqri_diviu_rem_vals_gvar_gerepilecopy_pari_warn_ismonome_poldvd_dvmdii_RgX_shift_shallow_gmul_err_catch_err_leave_setjmp_mulsi_cmpsi_strcmp_cmprr_affir_cmpii_gadd_equalii_addsi_sign_ground_gpmalloc_isexactzero_pari_err_affsr_gegal_try_polegal_Z_pvalrem_DC_sdivsi_rem_reel4.0#1/12 1200774073 0 0 100644 113420 ` gen3.o   __text__TEXT 2__data__DATA0__cstring__TEXT}__literal8__TEXT@`__literal4__TEXTHh__picsymbolstub2__TEXTL l؈__la_sym_ptr2__DATAvv__nl_symbol_ptr__DATA4__textcoal_nt__TEXT @ P t}v,\$|$$t$ l$(|$0 wqsTT{G%?\$t$ |$$l$(,ËG@܋Gؾ9|$:9L%9|܍$T$멐<\$,D$@t$0|$4l$8 D LWHWWWaaaD$@xp<$ŋ t!4$~9Mŋ\$,t$0|$4l$8<ËNG?%?9uʉ4$<Ⱦ9}0D$@ t#$9L$@L%9|Љ녋BD$z$D$ t<$9D$MD$벋L$WA?%?9uԉ<$ҋT$@zr9uL$@$\|$@9L%9|J\$t$T$ 6t@$&=t\$t$Í$T$ыB$ϐ|$,~l$y|$+D$\$,|$,D$,у9뛋L$,x ~jŃ? m G|$D19l$D t0u \$,t$0|$4l$8<ËF$9l$D}4$(0D$l$<$D$1L$D$t$L$Ɖ$ to tJe$T$0D$?4$D$GD$D$$#Fu|$(8v묉%.t݋t뙋l$((<$e$T$1D$D19l$D %D,\$|$$t$ l$(|$0t7Xt,"t1ɉȋ\$t$ |$$l$(,ÃuG1ҋtGtź tK t tA1ɃL49}$J.z9|lG1$#t QG$tj1Ƀ2끐,\$|$$t$ l$(|$0dpppЋ\$t$ |$$l$(,ËG1$Lt ЋG$4t1뻉͋<49}$ .u9|ɋ<o49}$._9|뗐\$t$|$0t$   XvF‹\$t$|$ËF1$iuۋF$VEF1$=tԋF ֋vD1뗋v-\$|$t$D|$  pGщЋ\$t$|$ËG1$OuًG$<EG1$#tԋG ֋*1땁փu끋$1҅.kuܐS"T$ wM^ZZ^Z^B^vB$[1;$T$gB@@ɐ|$t$|$  t1҉Ћt$|$ËGtrӋ$1҅.tݐ,\$t$ |$$l$(D$0N׋U)ŋ+9wS (u9|\$t$ |$$l$(,ËD$4T$0D$$`D9|$0럋L$47t't$4l$0|$t$ l$$-1m ,EQt$4|$0t$<$|$0(D$4<$D$lj$ƋD$4$x9D$44$D$e$DL$0D$ $fD$,$T|$4$u4$D$1럋8o+vF*wD$4|$0D$G$ED$T$0B$E$~묋D$4L$0/D$A$Jt$0D$F$L$47L$$WD$t$,$T$4D$07T$ D$l$$- t$0(D$44$D$*lj$ƋD$4$x%L$44$L$|$0D$<$X8|$4$uˋ4$D$z볋D$47$-D$ D$0l$D$  t.L$4%tl$0,$obT$0|$4BWH??)օ9uċu~+vH}FD$4l$0D$E$@GD$GD$E$ G$3몃  Q t+D$47$-D$ D$0|$D$D$4t$0D$D$4$^ uD$4L$0/D$A$VT$0D$B$7|$4D$$|$BDl$4,$JT$0t$4JF%??9't$0>%99|)L$0( $T$4$T$D$4t$7D$ t$$,볋t$4L$0t$ $_D}o+vT*w|$0G$_ED$4D$G$yED$4D$G $cE $8랃./ 7<\$,t$0|$4l$8D$@@N׋U)ŋ+9wS (u9|\$,t$0|$4l$8<ËD$DT$@D$$`D9|$\럃 vvvvOt$@L$D|$(4$|$L$k(t$~E}+v :EG@w$ҋ+ߍuv 0EF~$Iҋ D$D1D$D)D$Dt$DA8G+*D$9D$EwL$@}t$DAl$t$l$$78L$hD$D $D$A/}+9 8EG@wL$T$Al$@}(T$<$t$(|$u t$FD$Y~Bu+v0EF@~$Ջ+uv0EF$vډ1)֍<7N$W D$D1)Ѝ $(*D$Dl$DT$@1)ʼnl$B$El$L$@ƋA$0l$$ lj҉8w+v2GF@n5$ԋD$Du1 t$@cD$ t$|$$-Q1D$D~J}w+vuGF@D$DF$֋l$D8݉w+v0GFn$׋D$Du l$@D$,$,D$D~J}w+vuGF@D$DF$5֋l$D9݉w+v0GFn$׋8o+v\*wt$@F$ED$DL$@D$A$wE|$Dt$@|$F $]E $^떐UWVSD$ g+w9wk0GFT$ $'$D$Pu1c|$TD$|$ T$$-1D$P~Jkg}w+vuGF@D$PF$֋l$Pg݉l$k}w+vuGFD$$<ۋkguV+T$(D$(EF|$TE7ǁ )ϋg+9V}l$TE%~L$TD$TP D$(x|$,t$PD$T|$4$D$譾t$,uct$(FD$(|~Jk(g}+vk8EG@w$ Ջkgދ}t$$w+vuGFD$$F]$Ӌl$TD$4$l$2G%? @G$w$fM<\$,|$4l$8t$0p0lN|$DL$+M9l$p(F1)hL$AD$@҉u'h|$GD$\$,t$0|$4l$8<Å~Jp(l}+vp8EG@w$bՋplދ}t$w+vuGFD$FN$Ӊ1)׍4>#~Op(lu+9w p0EF@~$ҋp(lމt$u+9wp0EFl$n$U$G'UWVSD$0N׋SU)ŋO+9wGS (u9| [^_]ËD$4T$0D$$xD9|$뫋L$4" S8Oo+S*GD$4$, E:|$4%~t$04$E?D$4D$D$0$  !Ȩt2 t-D$4$-D$ D$0l$D$1t$4D$0t$$Ɖ$T$4z?9xuK0$o SOun+8SO/FD$40+)9wfSL$4:%~T$4D$4@x}D$4t$0D$4$G%? @G$$DS|$(wD$$D$D$ $$[Í$ T$J1ᐃ,\$t$ |$$l$(D$0pN׋DU)ŋ@+9wSD (u9|\$t$ |$$l$(,ËD$4T$0D$$`D9|$럋D$4rt-D$4$-D$ D$0l$D$B1ktN&uċL$4t$0D$L$4$;t uD$4l$0D$,$vD|$0(D$4<$D$Ulj$2T$4Ɖ$ xt$,$|$4$uߋ84$D$ǃtn  6 .t <rT$4D$0T$$< L$4|$0D$L$<$4Dt$4(D$0t$$qlj$NƋD$4$<\$,t$0|$4l$8D$@N׋U)ŋ+9wS (u9|\$,t$0|$4l$8<ËD$DT$@D$$`D9|$럃4D$Du1D$ !D$@D$T$$-1fD$D~J}w+vuGF@L$DN$n֋D$D؋}D$+wvuGFL$$ۋD$DL$@D$D$ $t" l$D|$@l$<$}t$D(D$@t$$gƉ$NjD$Dx|$,$D$,$L$@D$ $p<$D$D$D$D>D$$|$9D$NjD$$#D$$|$$NjD$D$$%.T$D$O… Шl$ $qD$D$$|$4$64$D$D$DD$D$@$<,\$|$$l$(t$ |$07l$4tC t˹$L$0D$8l$<$D$\$t$ |$$l$(,ËEt5 t˹$T$땉<$L$8l묋D$8l$<$D$떐<\$,t$0l$8|$4l$@U։;t$t$D,$t$5\$,t$0|$4l$8<ËD$D,$D$ڍNw‰׋)+L$9wFL$ 19|D$낋D$DD$D$%L$9|$묋E%?D$DD$΁)Nj+9w_8E%~DD$uG% D$G$T$$$MUUWVS/\|$p%D$8Ot$8?L$0 l$4+)9D$8D$8 )E7)щL$,+9/D$,L$,%~T$,D$,@`;D$8}D;D$8|t$,1ZwFWP,$\$|$NT$D$N ^fD$LL$D$l$L|$@l$ND$@rXE_L$D$l$L|$@l$ND$@ED$<l$8D$89D$<d$$-UWVScLD$`F #] ] \\] ] ] ] ] ] z L$`QցT$<703n+87*FD$<+73ED$`0+)9wW7L$`8%~T$`D$`@x }L[^_]ËG%? @G$뛋]$+$.vy73u~+v!}FT$`BFBF`$ыt$`$t$襼9730N+/L$0D$07Ft$`nNju)׋3+9wT78~DD$0xT$`BD$B$Dl$0ED$0$;$-N|$`WBD$<B%j730V+/T$,4D$,7Ft$`nNju)׋3+978~Dl$,}7D$`h׋u)Nj3+9wr78~DT$,zt$T$4B4$/|$4GU$0$."730t$8D$8t$+E[D$77D$83@t$`l$FEnu+)978E%~DEO%? O3D$x7t$`l$F E nu+)9wc78E%~DuG%? GD$x$芲T$8D$$$詸$蛸$芸D$`$`|$`ƋGD$G$tl$`E D$E$uߋFHρ? ωxtD$`D$$莱573u~+9w}F&$㍫$l$詷17Ջ3>+8 )9T$wkD$,t$>9}/ñD$D$`49 ȨuT$<9|ۋD$YD$$D$ $뇐UWVS7t$4~L$0$u勻 n)Nj+9wT 8u6/L$0Af1G~T$0[^_]$W$I랐UWVS胴,WD$蝯D$D$D$#D$D _|$D$D$D$ڳŋD$D$ 9D$KD$W8Sw+W0Gnl$nt$D$@$蜳ŋ tQD$D$観,$D$诮ŋ|$D$H,$|$D$芴uD$t$$螱,[^_]Ëm$ d#$T$t$DL$FD$_$L$DD$A$$$$$β tH$$D$$t$$$$$$ĜÉ$t$%D$t$%D$A%?|$D$T$ D$|D$$D$լtL$D$|t$ t$$蓬D$D$L$D$$L$$WT$lj$0$l$<$D$l$臲D$D$$袯$D$D$D$$$Pl\$\t$`|$dl$hD$p|$xlj։%D$D Oo  t>t T$p$a\$\t$`|$dl$hlËD$DD$D$p$ӋD$pPB%?9D$t~t$xt$$D$,D$tD$$L$xD$$T$t|$ppL$T$G?$D$ $l$$NjE t$l$诱9x)D$$D$D$ $Vl$,D$,$述D$ (>+8)9wb0>t$HL$ 9AF|D$Hl$$ȩ낋D$$L$ D$$t$H9|$됍F .Q(xC CCC   D$pp?+D$tt!D$xL$pD$ $t_T$p}D$,DD$H D$HD$xD$D$H$1t$pD$D$pD$HD$Dl$pD$E||$x<$)+)9wg7t$H|$pG9F|D$Hl$$D$xT$pD$D$tD$$Wt$H9|$(닋L$t|$pD$,D$xL$T$$D$D}$D$HD$H|$,D$<$?D$xt$pD$D$tD$D$ŋD$$D$D$H$跬l$$ĬD$H뜃t ܴD$DD$ܴL$pAƁ?+T$t~.D$p$%-҉D$<b A 0 t0$l$ܭQD$x$躻t#Ut$t|$pT$t$G$*D$x$߫NjD$D$x$`T$pD$,$%D$UL$xT$tL$$T$IUD$$|$D$$t$$zt$<|$xʼnt$<$2l$$D$HD$D$,$Vp$L$̬V |$xGȉǁ?ɉL$8D$p9։T$,+у0D$,@~}t$H9|$<L$xD$< $D$9D$D$H$D$HD$Hl$xD$,$D$T$p$D$H$诫VEt$<D$8D$@T$D9~T$@D$(Ft$u u$ $봋D$$謥UWVS,L$DD$wD$Hv$T$OD$H9t$t$)<)L$+9D$,L$)+L$9q1ҋD$҉Pt$D$9D$D< <$T$|GL$%?ڝ|$9|9}AçD$ L$D$D$D$@$19D$@|ξ9|l$@D$l$$1,[^_]ËL$H|$D$D$D$@$9D$@|Ӿ9}9|렉<$T %tD$w$b$Q~$@|$,t$T$ߢD$`Pf|$0 Ȩ<D$`x<$衜Gt$0D$,)ȉt$$t$<|$ |$$~t$$l$`D$ϡtl$$ڋKGl$0+)9D$0!T$07T$t$8)G+E9D$071D$t$+T$$r|$<N9<$^D$D$8$}D$D$$g|$8;l$|Kl$(t$`D$D,$D$˜NjD$$9D$(NT$(9}?l$(D$8L$`)DD$D$4$D$<$D$묋D$<$D$(螞D$D$$躟|$t$8L$D$8$ t$.|$4D$D$<|$$D$D$,l$$B$l$l,\$|$$t$ l$(T$0萜%xddj0`?~+v+d8Fo\$t$ |$$l$(,$؝Njd`+)9wh.uPu9||$0GEt$,$-놋L$0DND$ $3D9|$N$@느UWVS{t$PF9G|t$<$豑RD$TL$PD$$O9|$И럋D$P$]|$PW?+l$T;T$TD$P(+)9wO>t$PF9G| <$D$TL$PD$$9|$ 룋D$P$Lt$PFnD$$D$ D$T$+D$D$@|$TD$$T$,|$$L$$L$Ɖ$[lj$itu,$t$$脕,$NjD$TD$D$D$$$b|$$oL$, $D$Yt$FD$$$菎l$ED$QT$$|$$V4$D$ |$FƉ,$n$t$ƋD$T,$D$l$ ,$D$˔$t$ؔʼn|$$fƉ$tt;D$hD$ $<$D$脔L$AL$t$4$Ē,$t$蟍ʼn<$t$葍$V$l$1JD$P(׍)Nj+9wB 879L$TT$PL$$9|${밃 tD$P$诓D$TD$Phx,$舔D$( t<$~9D$(MD$(ċOE?%?9u؉<$JUWVSK,T$@l$D D$@$&D$;l$T$x+vSt$8Ft$Hu  w<$D$@D$賒,[^_]$a$S럍}t$)֋T$+901ҁ"9>}u'D9||$DDt$D$@$l$H|$l$$|$t$$D$D$$Β'$}d$l?zr<$蔒D$ t4$芑9D$MD$VNG?%?9uՉ4$SӐ<\$,t$0|$4l$8t$@@   $t$ÒD$D$u~+vL}Ft$u"d$ t$w\$,t$0|$4l$8<$I$;릋V8o+vr(G EE ;7r ;0r/Et$Du u:$藑4$t$뀃~Y'$T$XV' nF$覐tT4$w=?D$w)L$4$D$D$DD$ID$l$뿍\$|$ΐ딋Vt???T$wD$4$ч돍D$L$胐֍\$T$kV릐\\$L蠎|$Tl$Xt$PtT$`l$dD$02M  D$`$xtl\$Lt$P|$Tl$X\Ëtp1~+v9t@8FloGl$`,$脏G $芏빋T$`B@%?9T7pVT$,+v΅t|$<p+)9wst(uR u|$`GElE;|$<~OT$`L$D$cD;|$<~$蚍$茍|tD$<)Njp+9T$T$D$ E,$؉D$i@%?- D$>D$뱋D$D;v/<\$,t$0l$8|$4t$@pl$D D`u\$,t$0|$4l$8<Ët4$D$itNjD$Ft$D$ G<$؉D$!h@tt$t01뎉}t|$8uF1$qubl$F$Eލ{c$T$nq띋F 1$ptl$F뺐VSo$esT$0D$0T$$1҅t4L$Q%t31ɋesɉ0uD$1ҋ@%t$[^ËD$4ʉA.x؅N빃,\$ ot$$r|$(T$8D$0T$$hƋD$xD$fHD$L$ F4$D$Xf<$D$Zl\$ t$$|$(,1D$밐\$t$|$D$ lnH$L$t~ t$$elj\$t$|$Ë@%?t$D$4r$h<$D$i빐<\$,t$0|$4l$8D$@ml 0lT$@$n\$,t$0|$4l$8<tt$@4$d֋D$@qpMq+)9w-}~l$@Dy$nD$|$@GD$G$jHD$@PBu q*l$@u. ~?qL$@8l$A$cT$@r$t$l<$D$iq0qN+8L$L$qFqt$@V+T$r)9wVq8~L$t$݉~l$|$@G$gel$ED$$m$ mHqT$@($D$,$diD$L$@AD$A$j`$|$l1׋qU)ŋq+9w<q (u9|CL$@$D9|$0l붐;T$0;T$0~[^_]$Xh$Jh뤐UWVSfWj|$0l$4)ƋSj+9wNWj0u0$>;T$0;T$0~[^_]$g$g뤐,\$D$0el$(t$ |$$l$4$tutXi0i~+v+i8Fo\$t$ |$$l$(,$+gNjii7~+vDi8Ft$04$YftGD$0$fG녉 @$f뮐,\$d|$$l$(t$ h0hl$8~+v]h@8FoD$4$:fGD$0$+fG <$D$^\$t$ |$$l$(,$f땐,\$Hd|$$l$(t$ h0hl$8~+vMh@8FoD$4GD$0G <$D$F^\$t$ |$$l$(,$ye륐D$$D$D$D$ $EÐD$$D$D$D$ $DÐ,\$D$0dcl$(t$ |$$l$4$rt^8g04g~+v18g8Fo\$t$ |$$l$(,$d8g|$8)Ƌ4g+9we8g0uG@nL$0 $/d9F}0g9|^$d$ d덐<\$,t$0|$4l$8l$@0bEU|$DƁ? ~)~(D$H|$,$D$\$,t$0|$4l$8<Łt.D$HD$,$D$Xp p멋ffun+9w>f(Ft$Hu uZ$c$b봋f%D$)f+L$9T$wYL$f t$1EA;t$| D$D$H|$D$D$WL$;t$|$^b뙐t$|$t$(|$$l$t$|$L$ A$&t$|$L$ ŋA$ l$$`t$|$l$Ð\$t$t$ &` t 8 t1\$t$ËcD$F4$%?D$σ uȉ4$_c D$4$L$먃L\$dc(Ft$,u u$^$^봍PR$L$^WE@%?9x-dc0D$X|$D$,$ D$4$]jPR$t$R^뻋t$X|$,$t$9E%?)x+~D$X|$,$D$D$(},$]dcT$$Ћ)`c+L$ 9T$$w]D$ L$ D$$ EA;t$$| T$ T$(D$X|$D$D$L$ ;t$$|$d]땐S[V_D$D$$D$D$ $[ÐLD$P\$9}L$P$\9|n$\뿃 |$PGuN4_(<_08_~+v<_:F"o$[ى<_uэ)8_+L$ 9wbD$ uF"|$ 7uD$P9~ D$ T$P$[l$ D9~$[$[됋t$P4$P9T$P<_juэ)8_+L$$9wbD$$uF"|$$7uD$P9~ D$$l$PD$aZL$$9~$^Z$PZ됉<_uэ)8_+L$(9wgD$(uK"D$(0u9t$&D$Pt$Yl$(D;|$~D$($Y$Y닋T$PfD$.1׋<_͋8_+})9<_0ur,.l$P9 * 9~Ł9}(D$.D$ T$L$.$%N9|% "($X$X_<_8_u~+r}F"$X㐐UWVSVщT$+8)9|$l$D$D$t$ ,;|$}FD$@1ɋBt#%rщ u%ޅN΋D$ ;|$|D$,[^_]$U$UoG$T$Ut$@l$@1򮋻X΋X։+n)9wKX8u-,7t$@9 2 9~?$T$T맋T$@1Bt#%r uMޅNX0X~+vX:F,ot$wT$iT륉 $FTXXu~+r}F,$T,\$t$ |$$l$(L$0HR|$4Ɖŋ V~p tZtL Vx7D$(l$$E%?9D$(;D$(~)l$,D$$t(U|$$|$\O0U,U+)9wZ.Mt$$F9E||$,$-I뛋D$(T$$D$D$,D$$.D9|$FP똋|$,19L$,?T$,t$$D6(UD$|$OD$ 9OωL$(<NjUt$dʁ)΃L$4?L$h?9T$hT$8D$h9D$8~ 0U),U+L$09D$0t$0EF9|Q|$|$0<$GƋD$4u,D$8l$4D$l$$U$9G4$D$ MɋD$hD$D$dD$D$L$09|$NO9.DD$T$wNօ.D$l$VNe\\$Lt$P|$Tl$Xt$`|L .D$dtHP\$Lt$P|$Tl$X\É4$M⋫PP } |$<`UUUpppppׁx/D$hF%?9D$h;D$h~OT$dt=HP;2t(PP|$<98.It$t$<4$I HPPP*)‹LP+(T$89wbL$8PP)F9A|t$8|$4$zE뛋D$hD$D$dD$$L$89|$L됋|$d19L$d L$dD;ՋV|$dʁ)σL$0>L$h?9T$hT$4D$h9D$4~PP:)‹LP+8T$,9L$,PP9F9A|Ql$l$,,$\DƋD$0oD$4|$0D$|$DP$C4$D$Il  Z      D$@ApMA+)9w<}~l$@D\$,t$0|$4l$8<$>붋AL$@8D$A$";T$@j$l$3ƋA8~BD$@HP9t'BT$؉D$ A $D$x4iA\t$@Anl$u+8)9w3A/M~L$D$>뿋AAu~+vU}FT$@B$=GD$DL$@D$A$Gt$Dl$@t$E $G v$=띋D$DT$@B@%?9D$DtqAAu~+vC}FD$DL$@D$A$%GD$Dt$@D$F$ G$<믋l$@E$<2$|$<1ՋA)NjA+9wnAL$@8%A<tT$@BG9.8rL$DT$@L$$@9Dv| $<널D$ D$$ÐS::T$ w=NBBNBNINbЃ[ËB(T$$BݐS9T$ wCTBBTBTOTh=[ËBz(T$$(B ݐSV9T$ wFWBBWBWOWk$:[ËB$(T$$ߋB␐S8T$ wK\BB\B\O\p<[ËB$$:'T$$4ڋB ݐSb8D$$D$D$ $5x .<[Ë*<S*8D$$D$D$ $5~ ;[Ë;S7D$$D$D$ $H5x ;[Ë;S7D$$D$D$ $5~ ;[Ë;񐐃,\$|7t$ |$$l$(P;D$4/$ 3ƋD$0$3t$$~8/tD;\$t$ |$$l$(,ËH;,\$ 7t$ |$$l$(:D$4/$2ƋD$0$2t$$8/t:\$t$ |$$l$(,Ë:S6D$ $7t n:[ËD$$$7u㋃j:ᐐSb6D$ $v7u *:[ËD$$$Y7t㋃.:ᐐS"6D$ $67t 9[Ë9񐐃<\$,|$4t$0l$8D$@5OՋ9)Ƌ9+9wI9 0>9|\$,t$0|$4l$8<ËL$@$a9|$6멍G PD$@$c+d9(9u+92}t$l$@E$|$G9L$@D$A$t$D$9(T$FD$$$FD$D$l$$4|$GD$$5bՁL$@9Q?@D$9D$D$@$5ux9}D$9D$|$D$|$$4D$D$D$$V3L$@ŋ$ll$$O3D$먋t$4$4 $񋃨9)$T$4L$@A$ t$@ŋF$l$$*3g)$|$41J$x<\$,l$8t$0|$42l$@Uq |||||~|||||Ћ\$,t$0|$4l$8<ËE$AtmYx60t6~+v/x68F E$GE$G$X3ËE $:Atmx60t6~+v3x6:FEGE$GE $}G $2뿋x60t6~+v4x68FE$1G .E$2뾉ׁx6)t6+L$9wHD$t$EF9| T$3D$T$9|$1몋p6׋x6)t6+L$9wHD$L$1E9A| T$D$T$9|$Y1몋x60t6~+vSx68FE$GE$G L$G$u/$0럍&$|$01׋x6)t6+L$9wAL$x6 19| T$D$T$9|$?0뱃\$x.t$L20D$ $4$D$,\$t$UWVS?.,L$@T$_"$l$/D$DV"$t$/2|$DD$G$&T$@D$B@$-D$D$D$9D$|D$D$D$$k.,[^_]Ët$D$@L$D,AD$E$*-;t$||T$Dt$D$D$-<$D$c$l$-D$L$|$D$,D$D$$,D$l$D$9l$[:T$DD$D$,<$D$,;t$|Q;T$|$@G%;D$Sdt#"$T$- 2t$D%uᐐUWVS,D$$4t$(L$Tt$D$D$P$T$ T$$4;l$,|;l$,}9|;l$,|D$$<[^_]ËD$$L$(T$T4L$ D$D$D$P$T$L$$9|$=)B|$P|$, Ȩtw$T$)i$(/<\$,|$4l$8t$0|$@'l$Dt0Et l$<$&\$,t$0|$4l$8<ËmۋEtˋ*D$ED$G$&D$ED$G$t&$S&>D$D$$s&|$D$D$$&pUWVSW&LD$`t$d8|$8+*T$4@L$4%D$0)ω|$('*+9D$4CD$(l$(D$4 &ED$<D$49D$<L$0t$$|$L$ t$$T$++t$ 9D$0D$$0D$0 $D$<|$(4;l$0}N#*L$D$8+*0t$,;t$8|FL$,|$ $/&t$u]D$ |$D$@$t$Ɂ@N;t$T$@D$0;t$|$,$xtT$L$@$T$*uڃ|$:"D$)6"+L$9T$D$D$ujD$|$ |$D$@$|$Ɂ@O~;t$/T$@$BL$;t$|$:$,g&$t$D$@l$$O+,\$t$ D$4|$$l$( F  H[׋+)9w[.uL$49AE| |$,$\$t$ |$$l$(,ËT$4$T$0D9|$뗋׋+)9wH.Mt$4F9E| ,$_lT$4$T$0D9|$몋L$4(A$|$4D$ƋG$wt$t$4NjF$b<$T$0$t$D$,$TQ$T$1׋U)ŋ+9w; (u9|tL$4$T$0D9|$뷐UWVS,;|$HD$(}9||;|$H|,$D$M;|$H|D$l$$S,[^_]ËL$D$ t$@D$$,$D$;|$H|몋L$DD$$L$@D$$,$D$9|>UWVS,L$DD$A$T$@D$B@$uD$D$D$H9D$|D$D$D$$^,[^_]Ë|$D$@t$D,FD$E$;t$||T$Dt$D$D$D$ʼn<$L$l$D$L$t$D$D$D$$D$l$HD$9l$[:T$DD$D$<$D$;t$|QUWVSz,NL$HT$DD$AD$B$L$@D$A@$;l$LD$}>D$HD$D$DBt$Au*D$;l$L|͋l$D$,$D$,[^_]ÿ9.}̉L$L$D$GT$@D$$D$D$$9D$.}D$볋D$Au`9.at$H$D$L$@D$$t$D$4$9D$.D$D뮿9t$H$D$}L$ƋT$DD$$bHD$L$ F4$D$_ L$@D$$zT$D$$9D$} D$DuD$DD$$L$D$L$@$'|$D$<$0D$/UWVS',t$HT$DD$FD$B$L$@D$A@$D$D$D$L9D$|D$D$D$$,[^_]ËD$t$@|$H,GD$E$nL$DNjAD$E$V;t$D$T$Ht$D$D$-<$D$:t$l$DD$D$ L$ƋD$|$HD$$4$D$D$D$$D$l$LD$9l$%T$HD$D$<$D$L$DNjD$D$uD$D$$~;t$D$|x,40gvargpolvarnot the same prime in padicprecpadicprecdegreepolleadiscomplex%Mod\gdivmodoverflow in real shiftinv_serinverseincorrect permtuation to inversesubst: unexpected variable precedenceforbidden substitution in a scalar typenon polynomial or series type substituted in a seriesnon positive valuation in a series substitutiongsubstforbidden substitution by a vectorforbidden substitution by a non square matrixsubstvecdifferent number of variables and values in substvecnot a variable in substvecnot a series in serreverserecipvaluation not equal to 1 in serreversederivincorrect argument in O()non-positive argument in O()incorrect object in O()zero argument in O()a log appears in intformala log/atan appears in intformalinteggfloorgceilgroundgrndtoigfloor2nisintgtruncgtosermain variable must have higher priority in gtoservectosmallnonexistent componentthis object is a leaf. It has no componentspolcoeffnon existent component in truecoeffnonexistent component in truecoeffdenomnumerliftlift_interncenterliftevaluation of a power seriesgevalsimplify_iinvalid quadratic form in qfevalinvalid vector in qfevalinvalid data in qfevalinvalid quadratic form in qfbevalinvalid vector in qfbevalinvalid data in qfbevalinvalid base change matrix in qf_base_changeinvalid data in qf_base_changeinvalid quadratic form in hqfevalinvalid vector in hqfevalinvalid data in hqfevalpolevalpoleval: i = %ldvariable must have higher priority in gtopolyt_SER with negative valuation in gtopolygtopolygreal/gimagyPD#@^ ⍀ P l ⍀l P } W ⍀W Pi d B ⍀B PP K - ⍀- P7 2  ⍀ P   ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pojp ⍀p PVQ[ ⍀[ P=8F ⍀F P$1 ⍀1 P  ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pup ⍀ P\W ⍀ PC>t ⍀t P*%_ ⍀_ P J ⍀J P5 ⍀5 P ⍀ P ⍀ P⍀P⍀P{v⍀Pb]⍀PID⍀P0+⍀Px⍀xPc⍀cPN⍀NP9⍀9P$⍀$P⍀P|⍀Phc⍀POJ⍀P61⍀P⍀P⍀P|⍀|Pg⍀gPR⍀RP=⍀=P(⍀(Pni⍀PUP⍀P<7⍀P#⍀P ⍀P⍀P⍀P⍀Pk⍀kPV⍀VPtoA⍀AP[V,⍀,PB=⍀P)$⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pzuo⍀oPa\Z⍀ZPHCE⍀EP/*0⍀0P⍀P⍀P⍀P⍀P⍀P⍀P{⍀Pgb⍀PNIs⍀sP50^⍀^PI⍀IP4⍀4P⍀P ⍀ P⍀P⍀P⍀Pmh⍀PTO⍀P;6⍀P"w⍀wP b⍀bPM⍀MP8⍀8P#⍀#P⍀P⍀Psn⍀PZU⍀PA<⍀P(#⍀P ⍀P{⍀{Pf⍀fPQ⍀QP<⍀<P'⍀'Pyt⍀P`[⍀PGB⍀P.Yr!:Sl4Mf.G`y(AZs ";Tm5Ng/Haz)B[t #<Un6Oh0Ib{$Ë$ueI= l> p`G' k[B g[%eO:51 WBGB> -1xcNA5 z2*$  ;( {Z$l;{)l\QsTPLHD@y<$8y40X'0  plXPM=PPqiY@,P PP{c:PPPUPL e|e~eY@)eebe@ea Q@' nfP8   x|l*# qk[}maD, qQK;! ZZNXB-'A  vZ6\\\\\l\d\\@\\\j\W\5\\\\\|\j]J<(\\ \\\\\\\\\\b\\\;\\c\\\\\\\\|\t|\X /$$$kO$=$3$$$p$cH$*$"$ $$$$$$$$$$$$ $$o$]$D$   ^s^iZ R6*  pFcFYB 8+!   "xf"`"\~"Xq"T~"Pd"L~"Hd"Dd"@~"6@"  6z6t6p6l6h6dx6`6\x6Xx6T6JT62 "( |B(b\0yJ9.ZND@<840,($ 6 H vfB,~~~ddd~d~~~d~d~_IId sZ:˿pQ7/ھ}THÿDÿ@ÿ<840ÿ,(ÿ$ÿ uÿ ÿlLLܽ ĻĻrbOBĻ:ĻĻżĻĻzĻ^Ļ4,Ļ(Ļ$Ļ ĻĻĻ{ĻĻ 0Ļ0Ļ@ĻĻ0ĻĻĻLĻ0Ļ0Ļ0ĻĻջĻ xZTR9TTպTTTs]P?T7TTɹT T T TTTTTTӺTTTTӺT=TTĹTӺT|ӺTxӺTtTktTP 3۸LpW6۷ɷMC%ж``~b@4*ݵ!wZLٸٶٸN ڳ _O`>.` ѲŲP=LoV5аTJ.u5"Ϯ }m bRH0 ĭ gaVL>! ǬvWM)`T ۪AժAͪAAAz[AAAd= 0Z7+ קoeW;Ѧ¦9ݥեͥA9 Ѥˤ }c^Z Q3٣pģpycSpH<&p pppptfEpҡpp]G7p ppl B0ڟ*ڟ֟ W9НН˞НÞНfН`НJ̝ mA2ܜœ _<Λƛ qbD& ޚƚYB:0 }}}y k] ӘŘtAeAFA= 0 jjjjjjtjf D6"ԖŖ RLBΕ lF,4,, ,͔,~C,,,ޓ,֓,˓,o,S3,Ԓ,Ȓ,,,,,,|֔,x,t,p,l,h,d\,`,\,X9,T,P,L,H,?H,( đ ZN. otok VG70% 00Џ00pM0l50h0d50`0\50X0Tt0P50EP0, ^P!č ~lV@$ ҌŒ NЋn6ӊo<!hO<шsU!܇Ç} نφ|ʋxʋtʋplhdʋ`\XTPLHD@ڈ<840'0 хllklXHl@#lȄllsLlll׃llrS&l lԂclЂcl̂clȂFlĂFlFlclFllll؂lFllFll؂ll؂lFllh JB8, ܁ԁjC5 s\T6"  ~ ~n ~_O ~D~~~ ~~~ ~~~t~j ~p~j ~l~j ~h~M ~d~M ~`~M ~\~* ~X~M ~T~M ~P~x~ ~L~M ~H~M ~D~M ~@~M ~<~M ~8~~ ~4~M ~0~~ ~,~x~ ~(~M ~~(~ ~~ }}}|}}|z}|n}|X}H}|||| ||||~|t|p| b|F|#|{ |{{{{{{{{{x{p{{{l{{{h{{{d{{{`{{{\{{{X{{{T{{{P{{{L{t{{H{{{D{{{@{{{<{{{8{{{4{{{0{{{,{{{({t{{${{{{${{{ zzz_z`qBz`q1z!z`qzzy`qyyyy`qxy`qey`qOy`qDy4y``q*y`q y`qyyx|xlx^xKxCx0x$xww`q~w`qgw`q_w`qOw2w$wv`qv`qv`qvvkv`qWv`qDv`q9v+vvvu`quu1`qbu`qOu`qtt`qt`qt`qtt[t`qGt`q4t`q)ttts`qs`qs`qs`qwsas`q3s`q-s`qrj4j"jieddddddd udgdNd5dcpccpcccpccpccpclc Ic9c^.cccb^bb^bbbbvb`b>b2b ba^aaa^ua^ga^Va3a#aaa```^`v`c`2`^_^_^g_^a_^P__^_^^p^^^^ u^d^S^C^\0^^^]]]m]\P]9])]U\\\\\\\\|\ \f\V\\\\\ \[N[N[N[[N[m[2[N [N [N[ZZZNZZZN]ZMZ-ZZN ZYNYNYNYYtYNUYNIYN5Y YXXXXhXXXNMX4XWWNWNWWqWNKW8WVtV\VNLVNVUUUUgUNFUN@UNTT`NTTTTgTJTN:T%TNT TSSS N]SNESN/S#S SRRNRNRqRMRRNQNQQQrQNZQQ [NQ [N Q [NQ3ONQ3ONQ3ONPZNP3ONPhSNPQNPPNPPPiPNGPN=PN.PPPONOOOONfO;ON N2MNNNdNVN3NN2M NM2MMM]M.M LL}KLL}KLLL|LbLVL>LL}KL}KK}KK}KKKK}KKKK}KyK lK^KKJKJJJJJ JJdJ`=!J=J= JIR=II=I=IuITI=>=>=>=d>=K>=C>=>J=>I=>I= >I=>I=>I=>4I==G==I==[F==I==>F==!F==FE==D==BC==D==I==@==?==?==>==I===== =w=f=U=D=4=J:,==<<:n<b<Z<:H<;:;:;o;W;:6;#;:::::: :::p:b:C:7:7 :99998H7m87V87-8787777 77773$6H7$697$67$6666$66$66$6q6M6 6 65`5555+`555u5+`5\5 955525444444x4b4D484(4424333333h32V32<32322 22V2B22221 2111 111X01r191X0(1X01000f0X0T0 C020 0Y-0//Y-//Y-z/Z/N/>/0/Y-$///..Y-.Y-..m.Q.)Y--Y--Y----Y--Y-w-Y-U- E-7-+----,,+,,,d,+S,+G, ,+,+++)+++++K++9+++++ ***(*l*(:*,*("***)))())s)W))()))((((((( k([(%6(P(2( $((''%y'%s'%W'%Q'%F'6'%' '&&#%&&p&[&%@&%8&%&%%%%%%%}% n%`%;%d#%d#%d# %$d#$d#$d#$a$d#[$d#S$0$d#$d#$d##d##d##d#z#d#r#d#`# O#>##""i"i""iq"ii"iM"i7"!i!i!iy!B!i6!i*! i i  #i i  l iU iA i9  iiiiiiie WC)D>+ ydL#@0 i^?!sM.(tlF+#rr66|6xt6ktY@ #}iS=& #E4#lO#ykaP@,#}kX?7# }uaSI3( =1#l/ N>'T< < 8<88< hU($  xL, {bO$ r F(  rZ H0 V V V R R R ' R  V ' '  ' R R R  R R d I "   1 !          q g O 1  )     ^ F    p ` D @  xHD@<840,($ ~ LeL ;5'@  uF@D<D8D4X0,X($X XD   R&~jXqTqPqLgHgDg@X<g840\&0  lhd`\XTPLHD@p<p8.8 ,($  | t n i c [ U P J B < 7 1 s) s#   Z Z  A A ( (       ~z ~t o i za z[ V P vH vB = 7 ry/ ry) $  n` n`  jG jG f. f. b b ^ ^ Z Z V Vz u o Rg Ra \ V NN NH C = J5 J/ * $ Ff Ff  BM BM  >4>4  ::  66  22  .. { u*m*g b \&T&N I C";"5 0 *l"l  S S  ::  !!          {sm h bZT O IA; 6 0r(r"  YY   @@  ''        ys n h`Z U OGA < 6x.x( # __  FF  --        y t nf` [ UMG B <~4~. ) #ee  LL  33         z tlf a [SM H B~:~4 / )zk!zk  vRvR  r9r9  n n   jj  ff  bb  z^r^l g aZYZS N HV@V: 5 /Rq'Rq!  NXNX  J?J?  F&F&  B B   >>  ::  6x6r m g2_2Y T N.F.@ ; 5*w-*w' " &^&^  "E"E  ,,        ~x s m e _ Z TLF A ;}3}- ( "dd  KK 22    ~ y ske ` ZRL G A93 . (j j  QQ |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  ;:GsxeWw,~u$=;:GsxeWw,~u$=}xH4,x 0(+  :|k^ ut 5< gTc|d.1&L0X}"t(*P-ED5:2xzh|Fn@f=x%`X#&:PN6NwtKM\8hDXR\0Tq]: p *h1hJ`CĽP|tbq8yܘV7 <_hj( "4} / Sw^` lJE||Dlğ*ZjLV6tIe'} n_}L7kW$Av^IzB2|El]O-*U\qe O: 8h'oW~3w.\C_gvar___i686.get_pc_thunk.bx_gvar2_gpolvar_precision_gprecision_ggprecision_precision0_padicprec_poldegree_degree_pollead_isinexactreal_isinexact_isexactzeroscalar_isexactzero_iscomplex_ismonome_gmod_gmodgs_gmodulsg_gmodulss_gmodulo_Mod0_gdivent_gdiventgs_gdiventres_divrem_diviiround_gdivround_gdivmod_gshift_mpinv_inv_ser_ginv_ser2pol_i_gsubst_expr_gsubstpol_gsubst_gsubstvec_recip_derivpol_derivser_deriv_tayl_ggrando_integ_gfloor_gfrac_ceilr_gceil_round0_roundr_ground_grndtoi_gfloor2n_gcvtoi_isint_issmall_ceil_safe_ser2rfrac_i_gtrunc_trunc0_mkintn_u2toi_mkpoln_mkvecn_mkcoln_scalarpol_deg1pol_deg1pol_i_gtopolyrev_gtopoly_scalarser_poltoser_rfractoser_toser_i_gtoser_gtovec_gtocol_gtovecsmall_compo_polcoeff_i_polcoeff0_truecoeff_denom_numer_lift0_lift_lift_intern0_centerlift0_centerlift_real_i_imag_i_greal_gimag_glt_gle_gge_ggt_geq_gne_gand_gor_gnot_geval_simplify_i_simplify_qfeval_qfbeval_qf_base_change_mul_real_mulmat_real_hqfeval_poleval___i686.get_pc_thunk.axdyld_stub_binding_helper_varentries_pol_1_precdl_top_gen_m1_DEBUGMEM_gsub_gen_1_gen_0_bot_avma_lontyp_pol_x_sqri_gtrace_gp_read_str_cmpii_glcm_vecsmall_to_vec_strtoGENstr_greffe_normalizepol_int_normalize_powiu_truncr_RgX_shift_shallow_addii_sign_int2n_ishiftr_addir_sign_ishiftr_lg_addsr_absrnz_egal2n_cmprr_affir_floorr_polvaluation_changevar_gdivexact_gsqr_gneg_i_normalize_gmulsg_ggval_gerepileall_gpowgs_monomial_gaddmat_normalizepol_i_gscalmat_err_leave_gdeflate_err_catch_setjmp_delete_var_fetch_var_gauss_equalii_redreal_RgX_Rg_div_gcmp1_gred_rfrac_simple_quad_polmod_conj_quad_polmod_norm_gconj_gnorm_divsr_pari_warn_gopsg2_Newton_exponents_shallowcopy_affrr_addrr_sign_subsr_mulrr_gaddsg_gcmp_gmul2n_gabs_gerepileuptoint_cgiv_absi_cmp_shifti_dvmdii_gerepilecopy_swap_vars_gdivgs_truedvmdis_truedvmdii_Rg_to_Fp_addsi_sign_Fl_inv_umodiu_cgcd_divis_rem_ginvmod_poldivrem_ggcd_gneg_gmul_gadd_gsigne_gdiv_padic_to_Fp_gerepile_mulii_Fp_inv_gcdii_modii_gerepileupto_gcmp0_gequal_Z_pval_gprec_gexpo_gcopy_pari_err_sdivsi_rem__gtopoly__gtoser_op_ReIm_reel4.0_qfeval0_i_qfeval0_qfbeval0_i_qfbeval0 #1/20 1200774083 0 0 100644 92356 ` ifactor1.oH d __text__TEXTd\ __data__DATA$__cstring__TEXT__bss__DATA__literal8__TEXT__literal4__TEXT__picsymbolstub2__TEXTMn__la_sym_ptr2__DATAhY==__nl_symbol_ptr__DATA$z__textcoal_nt__TEXT @\]~Dch P8FP[U1WVS\׉D$(D$pPсыl$pDt$0L$p҉t$ L$|$D$ 8G|$$D$‹D$ PJt441ɋnVtΉ$iƋl$ uމt$E$3|$ G T$E:Ɓ )΋+9u>D$ pFD$0EǍ )ϋ+9}7T$ zGD$$t$tE9t$$D$,~l$[|$pƋGPtl$pE%%tȋ80~+98FG@o(D$0<$D$D$t$@ҋ$t$,D$,(El$$D$‹D$,PJt441ɋFV6tΉ$ZƋT$,rމt$B$$|$,G }t$+)9T$2>D$,pFuǍ,)+E9al$}7D$,xGD$0$u9D$0t$<L$D$$L$t$0D$4|$,7T$$~+9T$:FG@o<$D$D$@D$D$LD$Ƌ@%oD$Pt$$mu&D$$|$T(D$)Ńl$ uUu.D$8l$El[^_]ËL$814$T$,D$2$t$L$,D$ƋA$uMl$ 9(s8wD$t$$ƃu9w$T$̋D$,xG9t)u%9t DuD$,9tiEl$؉D$ B$D$ŋL$,y9t%u%9|t Du1$iڋ($Qa|$,$u|$,G,$D$zuD$,xG|$D$ E,$D$T$,2$t$l$D$$ ~$)D$$$q7uэ)+L$(9w`D$(|$(E%~$L$(苬$Ex l$(t$(F%? @F$뒍cDŽ$l$4kDŽ$L$4$D$A$X\t$Pt$`\$Lf|$Tl$Xe(1\$Lt$P|$Tl$X\ø1tۃtgD$Y4$-utMD$R4$ut3D$վc4$utD$Ԁ4$m(^VL$ t$ L$T$0$|$0D$$D$4D$ D$(D$|$,|$$St?T$09t7l$4t|$ T$;T$u1u.u.wH%Y.~%Yw/.isXb.K͘9.69w.!9^북O&. O&w뙁H둁wQ .wQ wXQm.Qmw.O.w z/$+b .z+b w .eR .Mw g i4$/$T$Bt9t;Jt 31D$)ωHxl\$\|$dt$`l$h|$pt $!fW1ɉ~%Du1ɉȋ\$\t$`|$dl$hlD$Y<$ tD$Y$uD$R<$tD$R$uD$վc<$tD$վc$qfD$Ԁ<$tD$Ԁ$C8L$0|$$L$(D$,G*t$$D$(0Ft$$D$‹D$(PJt4,1ɋEUtΉ$Ƌl$(uމt$E$T$(B D$$(+)9O1.D$(pFD$$0ō)Ջ+9(uL$(iED$ 0D$0*D$D$<4$l$D$`Ƌ@%D$@t$$$u)D$),l$l$Du6u<$DD$ D$ |$,8L$ :t$4$T$(D$2$t$rL$(D$ƋA$uML$9s8wt$t$4$ƃuV$T$̋D$(hE9l$t2D$pE%9tL$DuD$(;T$tzl$El$؉D$ B$D$tD$D$(h9l$t.L$Eq%9|tT$Du1~$֋$JD$l$$@uL$(l$A,$D$%uD$(L$pFt$D$ A $D$T$(*$l$jt$D$$ =~w$I$897l$, )͋L$,+9wI(%E~DGx l$$uE%? @E$멋G$$ZUWVS\|$pED$LD$@t $!T8k|$$؅D7Uэ)+L$<9D$<L$+|$D)9|$D$2>D$8p+)9D$Di2>D$8p)+E9D$D+1>D$8p D$HD$D9D$HL$(|$(t$|$D$Ht$@|$(l$@G@G$ӃwHl$.+( vD$>@G@G$ՉցD>L$>L$D$,$>L$˴Nʉʉ48u9K,$su' >0MEl$ $D$͋D$9tD$l$$}u|$)L$l$);t$w18.D}$SE)ʉl$$D$ l$$T$T$׉+Ճ 9w D$>@G@G$ҐUWVSG,l$@D$Ut ,$Eŋt $!U~ׁEwD$,[^_]ÃcwND$l$lj+( vD$>@G@G$ӃwHl$.+( vD$>@G@G$Ճ wKl$.+( v D$>@G@G_$M҉ցDBL$>L$D$,$>L$Nʉʉ48u9g,$;u+/HE >l$ىD$ $ɋD$9tD$l$$A5u|$)L$l$);t$w18.t>NT$T /<[^_]ÍV|$TJЉ̀ztˋt$(ôl$t$ $c$T$뎸$$$`D$D$ $t$$l$$w$`$=W$$D$X4$$t$ $`T$l$t$<${ 8$`$"$\$$x$/l$LL$L$`/$$T$t$D$ $t$L$TD$$T$T L5T$L$ D$$Hg2$t $Y8U$X$D$D$$t$ $$P4$D$Ez $$XD$l$D$ D$4$z $l$4$L$Bul $T$Tt$$$$$$l$$|$T$t$ l$D$$f $P|$l$$$$TD$$P|$D$t$ l$,$e ;$^$tmL5$P$TD$$L$$>th $$ @;$~8^ $,l$pD$hT$l$$L$d,$$$$$> $$/ @)މL$T$t$T$D$8$DDD$DL$8L$DL L $$D$4$DDD$DL$4L$Dt t $D$TI$$@T$T$$L$TDADAD A $XADADAD A$TT$TB DB$DB(D B,DŽ$d$T$T9$d$$$dL$T L$T$XL$T$XDL$TA$XDL$TA$XD L$TA $d$$9$dr$<$L$T$}q $<$$D$$@$$l$t$L$D$ T$D$$ 5b $<$<D$耉ʉL$D$$@p耉T$ $D$$@D$$@pD$aDŽ$d$9$dDŽ$$d1Ӥ$$@9Չ$$1$$1ҍD $9$ds$$<T$$@D$ $<$L$L5$@$@L$$<D$D $@D$ D D$`@;$J$1ҋ$9$dD5s$<$@T$$4 $<$<D$$@$@t$t*lL$t$ l$D$$<`$d$9$dE8$\$DŽ$$`$x$$$($P,)鉌$$(+9$$ 9$`$$H$$$4$L$8$$8$$$4$L$xD$|$$$`$t$ T$D$D$,$r$`$x9$$);$|V $ 9$`y$(($ $9$},$$$D9N$$$8wVDŽ$0$;r ;r$$-$$($0ļ[^_]kBD$ $y 댉$$كN,$@$d,$d $89BT$؉D$ A $D${D$$$t$$$d$@L$8T9^BT$؉D$ A $D$ D$$z$L$$N$d$@L$8T9BT$؉D$ A $D$藹D$$$t$$ܸ$d$@L $8T 9tgBT$؉D$ A $D$)D$$蚸$($l$$Y뱋68$D$$聸‹@%r$$D$蹸K$(;$|(.2$$L$|$$$$$$T$x$:$4$8l$t$t$$D$D$t$ D$$@Y$$t$ D$L$D$L$l$D$$@Y$$l$D$D$$T$T$D$ D$$@UYC$|$$x)9$$);$|;$,t3$,wE%9|]t$,u8 ֳ$,$`L$ D$t$<$ζ^$5땋$`D$ $蝶6$`@z$г,$^=4$K|WB|$T$ $-$`t$D$${<$$$T$D k$/t$,$$l$D$.T$ D$$L$D$$JW4DŽ$$t$D$<$S $`狼$`)))ω=$Y$`"MD$ $ߴt$$L$X<$赴英D$$蓴$`4$l$耴`I$D$D$$$d..Ѥ$d9$dvQjщ$$`Rzty$l$t$ D$L$$ҳ$|$ D$|$4$贳$l)w$lA $$l҃ $k$ $$lB@BFB,$"w $l$T);|$T$w$EN$]蹯$|$$$u#$t,$D$$蒲˶,$脲.жDŽ$DŽ$Su DŽ$H L…$vc{$,$ DŽ$ $tW$A@L$$́똁뎋8w$$1<$x$UWVS_$HDŽ$>$DŽ$D$de$ $A%tQ))P$$0D$x D$xD$|$D$t0$D$|~$D$|$DŽ$$w2'CsDŽ$>vQ$$D$$߯D$t$D$l$4$軯KD$p8D$lD$\$D$T$D$L ,)U)9G 0)֋l$$)9$D$P $D$P0D$`@@D$`@+)9$L$L 1ҋL$L҉x D$L0@@@T$TD$hL$h)L$HD$h)9 D$HD$Ht$H))t$D9 L$DMl$@l$@D$DE<$̭$D$$L$蘭$ƋD$hEF<$t$D$:NjD$D9|$LES Gl$L|$؉D$ E,$D$ t$\D$4$蓬D$\T$H$D$D$\$Sl$tD$tD$\ l$pD$tvD$l)D$tD$td$t;|$Lt1l$LwE%9tT$LuD$ld$lD$p8vD$l;D$|t$pD$$!Ȩ't$4D$DD$`$ةL$XL$D$$觩T$h$D$`ŋ@l$4$D$F9D$LD$`T$`l$LBT$؉D$ E,$D$-L$X$L$ŋ@%uu}uoD$48Cl$tD$t3D$tt$x)ƅt$|,t$ED$4$l$ 谥$T$d9|$X1$,$t$质?w $1$.TD$tl$x){l$E񍋿D$ $t$ o,$b눋8 0~+9F"u)щL$0+9D$0L$0~DT$0D$0GG1$9t$XtG l$$,$WGGGr$ҧa$|$tt$x+t$tt$DωD$4$L$ 董$l$9D$XD׍T$<$Ҧb|D$X,$D$膦U0~+ Y9F "u)щL$,+9 D$,L$,~DT$,D$,GG Gl$l$X,$ѣGGGl$$$诣GG$G 8O|$tl$x+l$tl$ED$,$t$ y GD$ GD$G4$D$Q$踥$觥n_$ 蚡D$,$u{L$hϋu)׋)9w<:~D|$X/l$h$붋8wpT$d׋u )ϋ)9w18.D$u|$t|$x+|$t辠D$|$E񍋿t$ $貣Bl$4$衣11$D$,$ŋ@%.}.D$tD$\8vD$tt$x)ƅt$|tP;|$P.l$PwE%9|.T$Pu$^躟D$E$t$l$ 订>u8w L$diD$<$w׋$Ԣ$â$誢w$虢P$舢$wUDŽ$DŽ$DŽ$DŽ$DŽ$DŽ$ {$*D$x$$;ll$x$H$ |$x$-D$xo$$$IF8Nj$T(҉T$x/$$H)DŽ$ )$肝UWVS藪$?VDŽ$щD$TD$PD$LD$HD$D< D$ t$$D$\4$D$"4$D$D$X1ҋHƉt4 VщT$dɉ$L$hD$\D$$蜝PD$@t VT$@t$@t$xt$4$b9D$\ @l$\T$؉D$ E,$D$蛞D$$:PD$<t+p1  څO։T$D$4D$0+w9w'?0G"nT$4VF $貚$褚vt$<$?78׊4$ 1DŽ$"貖T$hD$$މD$7$t$ T$D$ $蚙$L$$|t$H $D$|T$$78$;T$p1;D$P};;D$P|D$x$D$.D$tT$\L$xD$$T$ L$$S$t]SL$T;?+9w$D$,|$TG@@pD$,$ιVUUU)ʍ R9D닋D$T?E78?;}o+9wo?(G+uE@?>D$8;+w9w?0G"nT$8Y$$냍t$<$}J78׊4$[1DŽ$/$D$D$xL$މD$$t$ $D$78wD$Lt$lD$LT$lWT$ $Ɩ͉+T$h׉|$h|$l)78wD$Pt$|D$P*T$|T$ $q͉+T$xՉl$xl$|)D$\t$XD$\$l$Pl$$au18w |$81<[^_]Í{z4$`ڋD$Xt& T$0t$$vl$XE뺋 L$닻 u+)9w. 8~D$:$,$z $苉4$΄T$TT$t$$艈1҉ǍFt$T~;L$$tD$8zzt$ $PD$ T$ D$ L$ -wT$o)+T$9ƉT$,D$,oL$,~T$,D$,|$8D$ }9D$(;8wT$o)+T$9ƉT$$wOD$$oL$$~T$$D$$t$8FEF t$8$=룉$+5L$8P$MVUUUύr $)T$Z=$ƀ$赀l UWVS#lD$\$$(VUUU$uˁՉ+))ƋMt$XƉʉL$P)֋ǁ+92D$P7D$P "$PBD$H|$Dt5%zщ D$D|$HمOL$HL$HÁ8xT$X~/$L$X<$%T$T$D$(tDm$T u4$yD$Ttt$TL@ u틄$T$T$0D$Tt;0t.|$H D$Ht$$Y{$2FD$T$$|xÁ8T$T$$D$LED$D$L$}~Á8v(ZorhL荋co|$l$ $}t$T$t;0$1ҋL$8L$,Ft'%vщ ޅN֋D$,t$HHAL$4$D$}l$8E$hu?D$PuL$PD$T|$P8D$\l[^_]$Q}1$?}$D$,[$*M9ƒ|$H!Шt `AL$D$D$H$|At$T$$(DEt;08|$HD$Ht$$y$2F$D$0ǁ9L$LT$L;ˁrE)ȍ)9ˁ(M~L$LDl$0EÁ$. D$\8LorhLȍo|$L$$5{${oD$L뗋;0$p$|$HD$4tE|$HtWˁǁ(u+9w(ˁ0EF@l$Hnt$4${ʋߍol$ $lz@$ǁL$@9;0~T$ˁ)+T$9ljT$(v.`|$0`L΋D$0ShL$D$,$uD$0L[^_]Íh$T$tTy>vh $Wu$u$uVh$L$u$u]SD$$D$ vD$D$D$ $[ÐUWVS~|$dT$D$`D$ D$0$bD$4D$0D$L$d9L$D$,D$$D$(t$ t$l$|$1ҋt$`thD$$D$D$ D$D$,D$ at4;D$0t.|$4tL$1i9t,u1uD$D$d9D$~L[^_]ËT$Bt9t;Jt 1D$)ΉHpЃ,|$`BD$dT$>D$dT$4|$`}BT$U1WV@|$PD$WD9Gt1gD8wcD,[^_]ËD$G5$AڋW[D;cD;UWD;t5$T$B|$뺍L$t$@L$L$4$tދD$@0F^%L;L$r.*t9sBABA D$;s؋D$@0 V D$9щvl$@u~ 9w|$% 29s"׋Et E 79r|$%T9r/t9sABAB D$;s؋l$@u N D$9ʉvt$@ 9wD$D$D$D$@$t$D$@l$t$$u L$@1D|$@7CgD8wED$5<$D$?ދD$@T$0T$N9sj%L9r+t9sBABA ;UsۋD$@0 ~ 9MvD$@0V 9wN9L$rjD$D$D$@$_l$@ExtWDT$9BuT$D$@L$T$gD8D$6t$@D$l$4$ yl$@UBt-WD9Gt gD8D$G6gD8vRVUUU%,)u)th++LL$6|$$;>|$t+D$u$B% zv $8|$ 6밋WD$Y>3$T$>>D$@0H1CUWVSGL$|$ L$D$,$Y+NjD$<@9t'wE%9t DD$|$ l$`8E@.&D$$u:D$41ɋPBt#%rщ uޅNΉL$$D$$D$('$+$u+g[.l$ (D$,9D$($L$d|$(9|$[.W.}w+uGF@D$(Ft$FD$(D$,D$4B%tgS.>wHD$4@D$0>w D$`0*|$(l$d#|$E$D$*ЉT$$$)뤃zuD$4S.@>vs$$D*"G./L$`1D$d0G.FS.8w D$0OL$(|$d$L$$D$c)$)D$`0UWVSC3,*|$H8wD$@t tp!$T$x)D$@*nD$DtD$@A 9rD9v!$T$,)tD$D;8rT$@L9v!$l$(G/D$*T$;tL$@HD$D;0r@FV FFF D$D;0s܃ t=x.D$~F1҃,[^_]ËT$D;2.tߍ"$L$^(Nj*8l$@EHt뱅nt2*;89t9*;8nV*;ta|$G|$D$ B$D$&FFD$D;0V t$D9T$u*볉~wC"D$$`'\9.7"ډl$",$&T$,$!.|[T$$!$l#$L$&wL\$0l$TD$,%ɍtD$,IM|99gW';D$,u ';t ȋ'8w'GM> D$4$%M1AD$@T$(t+%T$r‰ u*T$(؅Nt$>D$ $4%z$%MD$,L$?tpD$,t`''O09ED$,D$,'89o y Eэ T$4$D$$'랋'뜋\$‚8[CfOd_ ?}j.T 'Xr0:l8G@ZV h ~dEXL PP0l ~@ 0!%h)-d2x7T=C8JRZc`myĆd((4MuQ08hI($t5|lZ>0? L^ ȟ T <\a .`* .!e ;(g:i.`e*4e*e.; *g*g&* . m)u*,e*hgj.0g.uj`*!e*uki.ao**(k*+or*rgj . g;he{je*(ne*`on!>2g>0u>8en(.j(g:g: n`e*`u*25g*8g+(k* m.*++#+i.9e.03e+)e+h*`%ge"u*e* .9g<*0.!e: e:`e*e.,g*h.`!m>9 ?{mq*w. j ;;joh*)!nqg+p+4e*ji.(ej%o* jmiller(rabin)found factor %Z currently lost to the factoring machineryMiller-Rabin: testing base %ld False prime number %Z in plisprimePL: N-1 factored! PL: proving primality of N = %Z snextpr: %lu != prc210_rp[%ld] mod 210 [caller of] snextprsnextpr: integer wraparound after prime %lu snextpr: %lu should have been prime but isn't ECM: time = %6ld ms, ellfacteur giving up. ECM: time = %6ld ms, p <= %6lu, found factor = %Z (giant step at p = %lu) (baby step table complete) (extracted precomputed helix / baby step entries) ECM: finishing curves %ld...%ld ECM: time = %6ld ms, entering B2 phase, p = %lu (got initial helix) (got [p]Q, p = %lu = prc210_rp[%ld] mod 210) ECM: %lu should have been prime but isn't ellfacteur (got [2]Q...[10]Q) ECM: time = %6ld ms, B1 phase done, p = %lu, setting up for B2 ECM: time = %6ld ms ECM: dsn = %2ld, B1 = %4lu, B2 = %6lu, gss = %4ld*420 ECM: stack tight, using heap space ECM: working on %ld curves at a time; initializing for up to %ld rounds... for one roundECM: number too small to justify this stage Rho: searching small factor of %ld-bit integer Rho: using X^2%+1ld for up to %ld rounds of 32 iterations Rho: time = %6ld ms, %3ld rounds, back to normal mode Rho: fast forward phase (%ld rounds of 64)... Rho: time = %6ld ms, Pollard-Brent giving up. sRho: time = %6ld ms, %3ld round%s Pollard-Brent failed. composite found %sfactor = %Z found factors = %Z, %Z, and %Z Rho: hang on a second, we got something here... found factor = %Z Rho: restarting for remaining rounds... SQUFOF: giving up, time = %ld ms SQUFOF: second cycle exhausted after %ld iterations, dropping it SQUFOF: found factor %ld^2 SQUFOF: ...but the root form seems to be on the principal cycle SQUFOF: square form (%ld^2, %ld, %ld) on second cycle after %ld iterations, time = %ld ms SQUFOF: first cycle exhausted after %ld iterations, dropping it SQUFOF: square form (%ld^2, %ld, %ld) on first cycle after %ld iterations, time = %ld ms SQUFOF: blacklisting a = %ld on second cycle SQUFOF: blacklisting a = %ld on first cycle SQUFOF: entering main loop with forms (1, %ld, %ld) and (1, %ld, %ld) of discriminants %Z and %Z, respectively squfof [caller of] (5n is a square)squfof [caller of] (n or 3n is a square) But it nevertheless wasn't a %ld%s power. %3ld: %3ld (3rd %ld, 5th %ld, 7th %ld) OddPwrs: is %Z ...a, or 3rd%s, or 5th%s power? modulo: resid. (remaining possibilities) 7th But it wasn't a pure power. OddPwrs: passed modular checks - ruled out checking modulo %ld OddPwrs: testing for exponent %ld OddPwrs: examining %Z ifac_startfactoring 0 in ifac_startIFAC: new partial factorization structure (%ld slots) ... factor no. %ld is a duplicate%s (so far)... factor no. %ld was unique%s stored (largest) factor no. %ld... IFAC: incorporating set of %ld factor(s) ifac_decompIFAC: found %ld large prime (power) factor%s. [2] ifac_decompIFAC: (Partial fact.)Stop requested. factoring 0 in ifac_decompifac_moebiusifac_issquarefreeifac_omegaifac_bigomegafactor has NULL exponent in ifac_findifac_totientifac_numdivifac_sumdivifac_sumdivk[caller of] elladd0SQUFOF: found factor %ld from ambiguous form after %ld steps on the ambiguous cycle, time = %ld ms SQUFOF: squfof_ambig returned %ld SQUFOF: ...found nothing on the ambiguous cycle after %ld steps there, time = %ld ms IFAC: main loop: repeated old factor %Z non-existent factor class in ifac_mainIFAC: main loop: another factor was divisible by %Z IFAC: main loop: repeated new factor %Z IFAC: after main loop: repeated old factor %Z IFAC: main loop: %ld factor%s left IFAC: main loop: this was the last factor LucasModIFAC: found %Z = %Z ^2 IFAC: found %Z = %Z ^%ld ifac_crack [Z_issquarerem miss]IFAC: cofactor = %Z IFAC: factoring %Z yielded `factor' %Z which isn't! factoringIFAC: forcing ECM, may take some time IFAC: unfactored composite declared prime %Z IFAC: untested integer declared primeIFAC: trying MPQS IFAC: trying Lenstra-Montgomery ECM IFAC: trying Shanks' SQUFOF, will fail silently if input is too large for it. IFAC: trying Pollard-Brent rho method IFAC: factor %Z is prime IFAC: checking for odd power IFAC: checking for pure square IFAC: cracking composite %Z IFAC: prime %Z appears at least to the power %ld IFAC: a factor was divisible by another prime factor, leaving a cofactor = %Z IFAC: a factor was a power of another prime factor IFAC: prime %Z appears with exponent = %ld ifac_sort_one`*where' out of bounds in ifac_sort_one`washere' out of bounds in ifac_sort_onemisaligned partial detected in ifac_sort_oneprime equals composite in ifac_sort_onecomposite equals prime in ifac_sort_oneIFAC: repeated factor %Z detected in ifac_sort_one partial impossibly short in ifac_sort_oneIFAC: factor %Z is prime (no larger composite) compositeprimeIFAC: factor %Z is %s avoiding nonexistent factors in ifac_whoiswho/7??_⍀PKF⍀P2-⍀P⍀P⍀P⍀Pr⍀rP]⍀]PH⍀HP~3⍀3Pje⍀PQL ⍀ P83⍀P⍀P⍀P ⍀P ⍀P ⍀P v⍀vP a⍀aPp k L⍀LPW R 7⍀7P> 9 "⍀"P% ⍀ P  ⍀P ⍀P ⍀P ⍀P ⍀P ⍀Pv q z⍀zP] X e⍀ePD ? P⍀PP+ & ;⍀;P &⍀&P ⍀P ⍀P ⍀P ⍀P ⍀P| w ⍀Pc ^ ⍀PJ E ~⍀~P1 , i⍀iP  T⍀TP ?⍀?P *⍀*P ⍀P ⍀P ⍀P } ⍀Pi d ⍀PP K ⍀P7 2 ⍀P  ⍀P m⍀mP X⍀XP C⍀CP .⍀.P ⍀P ⍀Po &?Xq 9Rk3Le~-F_x'@Yr!:Sl$Ë$Ø`jbWEA<;61% fZH=. oM<4(@mQxhH8@- MdMYM;M0"M M`M MM?M9M M:MMMI ;(!!!!!!tl!aY !NF!;3!+!#!!!`!! !!{!qX!I8(!!S!A!/!!!y!a3!!!e!H,!M!{!l&!R!D!/!!kM!UG!!Ͽ!!!`!< !!Ǿ4!!v,!T!F!1!!׼!! ݺȺl\+U UU߹ǹo UUָUU`UZUQ 6&9 99Ʒ99P9O9i9^9I9<9#@99˶9 99۵dT9J9;9-9"9999y95 # ߲ӲIJ`n߱Z> pܯO"Ԯa@۰5<5854+505,ݮ5(m5$D5$5"55ݫ1 !ɪUMC( ֩ve_O1g[ ݧ|vjP@ئ q=XJ0=B:=0=#===ۤ=Τ=ä=={=oc=]U=>=='==N=:=!== ==ޡ͡=ǡ===t=2&=۠TH=@ޟҟƟ=zr=[=A1====О=ma=[B==9  8ŗŗ՜ŗ]UŗKŗ>6ŗ!ŗŗ ŗŗޛŗŗŗ~ŗxpŗYŗ ŗ ŗՙŗym)ŗŗŗۘŗ՘ŗĘŗUŗ>ۗŗ ucS9ӖY*{Z5W rWS =' +Uޒ̒UvUCUUUUxUjB) yUfUZUQ =' a؏Əapa=aaaarad<#arafa] L5/{'ċz ҊƊ s%m]%R:*%"%%d%%؈%҈%%cS%%N%.%! ؆uʅ wdP3ބ rcS3 ܃ƃSA;/ ۂǂ5555k5]I,555R5:51 ! ڀʀ}`}}rO}`P }CO}8P}+}%} }}~}~~~o~ }}}}}} }}}||||||||||| |y|h|W|K|u?|{u{u{u{u{{uu{um{?{u${u{uzuzzzouzOuzbuzuRzu#zuzuyuyyuylyu5y#yx_xuGx7x@u.xOu%x7uxu xwuwtwu.wwvu?vuvuu uuuu9rluIu7ut9rt9r^t9r;t9rt9rt9rs9rIs9r&s9rs9rr9rr9rr9rr9rqr9r5r &rro rqqoqoqoqqomqoeqoRqqopopopopovpogpoLpopopooooo ooioJom/om$omoomnnmnmnQnmmmmmm YmEmi0mllnil`ilyllldl@iYlHl:l likikikikkikkiykinkidkTkBk*kkjijijixjiojiLj3jiiiiii ii!a{isi!abiZi!aMiO!aDi!a%>%c>>==%6=%0=%=% =<%<<%<%<%<%<%<%<}<%i<%c<[<%Q<<%<;;%;;%;;{;%q;*;%$;; ;%::%:~:r:@%l:L:%F:3:%":% :%9%>9=8%-8%8%8%7%76552%h2%:21161100%p0/ %/%/9/..+..-%-s-.-%,1,+%2+%2*`%)%Y(H(% (%'%'%&%_&%I&%% %%#%%#%#p%\%%%#$#$ #$$#$$#$ ## # #w#]#+# " "" """ h" \"B" '"! !! !P! &!    j Y ; ! ia 0$ dB @^V#G:.ui^K@- eY&F=w{d82e?&  xT<+ p`XucN@6!~H=1Gp[ V<"                     |  x  t  p  l  h  d  `  \  X  T  P  L  H  D  @  <  8  4  0  ,  (  $                                                 |  x  t  p  l  h  d  `  \  X  T  P  L  H  D  @  <  8  - 8    @  @  +         U K 4 #    V F 4     X5 w   V@   f RA0 %  n dM<, $o_ M8 *    vS"    i #    } }} } }d}d } yKyK } u2u2 } qqy t} nmfm` [} UiMiG B} <e4e. )} #aa } ]] } YY } UjUj } QQQQ } M8M8 } II z} tElEf a} [ASAM H} B=:=4 /} )9!9 } 55 } 11 } -p-p } )W)W } %>%> } !%!% } z r l g} aYS N} H@: 5} /'! }    }    } vv } ]] } DD } ++ } xr m} g_Y T} NF@ ;} 5-' "}  }  } || } cc } JJ } 11 } ~x s} me_ Z} TLF A} ;3- (} " }  }  } ii } PP } 77 } ~ y} ske `} ZRL G} A93 .} (  }  |xtplhd`\XTPLHD@<840,($  [AqeGIYcOnotC{iFLh_Rsjvg`^MU\a98K>uHxQz?ybZdf<]mT@NrP=Slp|Bk[AqeGIYcOnotC{iFLh_Rsjvg`^MU\a98K>uHxQz?ybZdf<]mT@NrP=Slp|BkwJWX;V:EDHN@TL_ؔmy `,|4 u0h$L.D;JYK ! ~%F }',c:|0ropX}LUaim9_TDj u#`UA %>v2u-X42Ue ;E'>^e$mN_n|,_factor_add_primes_millerrabin___i686.get_pc_thunk.bx_miller_uisprime_BSW_psp_plisprime_nextprime_precprime_snextpr_ellfacteur_pollardbrent_squfof_is_357_power_is_kth_power_is_odd_power_ifac_start_ifac_realloc_ifac_primary_factor_ifac_decomp_break_ifac_decomp_ifac_moebius_ifac_issquarefree_ifac_omega_ifac_bigomega_ifac_totient_ifac_numdiv_ifac_sumdiv_ifac_sumdivk___i686.get_pc_thunk.axdyld_stub_binding_helper_top_diffptr_gen_1_gen_2_DEBUGMEM_gen_0_DEBUGLEVEL_bot_avma_gerepilemanysp_addprimes_sindexsort_mpqs_cmpii_cmpui_gener_Fl_maxprime_check_eng_ord_powiu_roundr_sqrtnr_affir_usqrtsafe_muluu_cgcd_divis_mulss_gunclone_flusherr_sqrt_newbloc_timer2_mulsi_invmod_gfloor_divis_rem_gceil_gerepileupto_isprimeAPRCL_BSW_isprime_small_BSW_isprime_diviiexact_Z_factor_limit_sqrtremi_cmpsi_ugcd_equalui_umodiu_Z_issquarerem_uissquarerem_krouu_gerepileall_modii_mulii_Fl_pow_gerepileuptoint_pari_warn_gcdii_addii_sign_dvmdii_sqri_equalii_Fp_pow_fprintferr_pari_rand31_shifti_vals_addsi_sign_pari_err_pr.0_pr.1_Fl_miller_u_IsLucasPsP_IsLucasPsP_prc210_no_prc210_d1_TB1.2_TB1_for_stage.3_N_ellmult_elldouble_elladd0_elladd2_gl_squfof_ambig_powersmod_ifac_insert_multiplet_ifac_main_reel4.4_u_LucasMod_LucasMod_ifac_divide_ifac_whoiswho_ifac_sort_one_ifac_crack #1/12 1200774088 0 0 100644 31260 ` perm.o `N `N __text__TEXT:K QB__data__DATAL$4 9~\$t$ |$$l$(,$5M$'M럐l$t$|$l$ }t9|Ћt$|$l$ËED$D$L1҅.tԃ9|ƐUWV D$089}u9t$|l$9| ^_]ËL$0D$$LL1҅.uڃ9|Đ,\$Tt$ |$$l$(Ll$0}֍)ƋL+9wSL0u5$9>L$4 9~\$t$ |$$l$(,$K$K럐,\$t$ |$$l$(Ll$4}֍)ƋL+9wVL0u8"9>|$09~\$t$ |$$l$(,$K$ K뜐UWVS _K|$4D$0(֍)Ƌ[K+9wJ_K0u,"9>}|$09|[^_]$~J$pJ먐UWVSo,D$@J8J|$>+8)9|$T$D$D$t$ ,;t$}FD$@1ɋBt#%zщ u%߅NϋD$ ;t$|D$,[^_]$I$IoUWVSL$4 9~\$t$ |$$l$(,$E${E럐,\$xt$ |$$l$(El$4}֍)ƋE+9wVE0u8,9>|$09~\$t$ |$$l$(,$D$D뜐UWVS'E|$4D$0(֍)Ƌ#E+9wJ'E0u,,9>}|$09|[^_]$FD$8D먐UWVS7LD$dDʼn‹L$<)T$8Dt1tL[^_]ËD$`@9 |$hGl$hEUԋt$`T$hƍL$)NjD$4)Љ|$,9D$8D$,L$41t$`L$4$l$D$,1D$D$8D$D$`D$0$19;|$8!Шt5D$4D$,9‰D$mD$h9;|$8!Шu9}T$4T$h9|;|$8}T$,l$hD;|$8|勃D|$<8D$T$h$yB$hBL$ %PÍAT$D$$UWVS3\|$tBw)щT$LUL$H)B+L$<9D$<Eh,T$<2StEt D$<\[^_]Ët$pF9FD$<@@ԋD$<@@B뷋D$LD$D$p$'l$pT$Lt$HD$D|t$<$;l$L;l$HD$@!ȨtGD$DT$L D$@D$pT$T$p9vD$< ;t$L;l$H!Ȩu;t$LL$DT$<;t$L~;l$HD$LL$@t$<;l$H~⋃B|$<8L$D$<$Z@$I@cT$ %uȃÉD$$UWVS,D$@0o@k@M+)9},/L$@9AG}L$@;Dt9|4)։T$~u8,D$07u 7,[^_]$??$1?$#?O$CUWVD$ L$$(%9ʼnƉD$ N9}D$ |$$ 9u$9|1;l$ t;l$ эD^_]9UWVl$|$u%9O9}L9u 9|1^_]9эDUWVS[,L$@>>‰Nj+ՉT$)9wU>0u4 >D$DF;T$|$@D;T$~,[^_]$=$=띐UWVS,L$@=ʼnǁut$=+)9D$wT=D$0u1 |$9>}|$@9|D$D,[^_]$ =$<랐UWVS,L$@T$DS=O=%h%t(D$+)9woS=8uQ,97t$@9~;L$Tl$DD;L$~,[^_]$<<$.<냐UWV1l$|$M%9O9}9D9|^_]ÐVL$t$9} 94t 9|1^U1WVD$ l$ |$(u9t$ }D$$L$ DD$ 9t$ |^_]ÐD$ D$$+ÐD$$D$D$ $Ð L$D$ʃD VL$t$ʃ D^VL$t$ʃ!D^S 8D$D$D$ $Z:[S7D$ D$D$ $.:[Sb7D$ D$(D$D$$D$D$ $9[Ã,\$(t$ |$$l$(|:l$0}֍)Ƌx:+9wO|:0u1,9> 9~\$t$ |$$l$(,$9$9룐UWVS9|$0l$4)Ƌ9+9ws90uU,>L$0)9|<9~D$0)P;T$0+l$0D;T$0~[^_]$8$8|UWVSD$498D$0(֍)Ƌ9+9w<9 90.}l$4Dl$0D9|[^_]$<8붐,\$|$$l$(t$ ,l$08u)Nj|8+9w?򋃀8,89}D9|\$t$ |$$l$(,$7UWVS,7l$@u7+<)9։L$wHL$7,9}|$DD|$T9|D$,[^_]$7몐\$ t$`70D$$D$D$ $.4$D$o6\$t$Ã,\$t$ l$(|$$7}7w+vKuG"D$0FL$04$%D$}.<$D$5\$t$ |$$l$(,$86말UWVS766/u+v~7E"D$0FL$04$%D$-Ƌ%9|6([^_]Ë$%D$5‹%9|$~5qUWVS{\D$DD$HL$p%9D$D5D$D>)ŋ5+8l$@9|$DD$@D$DL$D"L$@D$DD$DD$Ht$p%9D$D#D$p|$HT$<%pD$t҉T$8%D$84$D$3D$LD$4L$4|$49L$LD$PT$,T$055+E+|$09D$,58D$,D$, ,L$DD$@<L$DT$L;L$!l$$+UWVS,D$@pt$P$T$+p )͋++l$9D$"L$1D$D$7|$GD$D$Ձ9}0t$l$D9~ՃD$9l$|ЋD$,[^_]ËL$T$L$D$$T$9~ыD$$e*>$T*D$$$D$D$ $qÐ<\$,,l$8t$0|$4*0|*n+*(F"D$@$*7D$|*~+9wq*8F"t$w}0|*~+9w/*8F,D$DG}\$,t$0|$4l$8<$C)$5)$')0<\$, |$4t$0l$8t)0p)NL$+9l$t)p)(F"0n+99t)(F"D$@$ED$D$t)Ep)7~+9w?t)8F,D$HGD$LGt$n~D$\$,t$0|$4l$8<$($(T$'UWVSLG(|$`D$4E<$D$<ƋD$d$it$<$D$0U$D$,8w<$"D$(|$0D$$ƃE)щL$ C(+9T$ U"D$ 0E)΋C(+t$9zD$"E8D$$D$89ut$4|$(t$<$0t$4|$,D$D$d$t$ NjL$8@%9;t$0~}D$8|$$9|$8~G(C(u~+v@}F"t$ 4$X%GD$$wG|$l$<,$O%L[^_]$&벋T$8T$$DL$;t$0~XD$D$D$,$]D$D$($%9|D$4$%u$q%3$`%,\$\l$("l$4t$ |$$D$ |$0D$l$G$$t&GM\$t$ |$$l$(,Í"$T$$UWVSt$0F+%8ō )͋'%+9wW.,9U| [^_]ËL$0AD$D$4$D$D$0$D9|$3$뛐UWVS3,t$DT$HF%hB%D$$0$N+L$L$$F"$T$t*+)9$8"97t$DF9~;L$)tT$Hl$@BPE;L$~ۋD$xL$Hl$DAD$E$|$GD$,[^_]$"b$"=$"UWVS<#t$PL$TD$,F%D$$A#%ƉD$ D$,)D$D$,+9D$ #L$##D$ # ,E+)9D$ #(D$ "Et$$4$D$#0#~+#8F"L$OD$(;t$ }%D$ }D$8D$ t$#>0#~+vU#8F"ol$o<$;D$$t $T$!D$,|$$ <[^_]$ $ e$ 7L$TAL$(D$D$P$D<$D$D$L$t|$D$D$.ǃD$(D$ 9D$(|$S l$B $1 <\$,,t$0|$4l$8 |$@t$DD$t$<$l$8t$ʼn<$$"l$$ T$\$,t$0|$4l$8<Ð1҉t$|$l$D$ ph>Ow~t1҉Ћt$|$l$Ã~u~ uE D$E$1҅uʃ.t~uED$E $҃띐UWVSg$ED$|AyD$h%D$\$4$kGD$G$D$ D$LD$GD$G$[|$\D$x EE)щL$Hc+9D$H"E0D$lD$G$t$lFD$G$T$lBD$D$L$l$lE |$\D$xD$$$$|$D$t$$gD$pc+L$d)9D$dl$4vD$4l$4D$d "E;t$dgcL$d+)9D$dl$0D$0l$0D$d "ED$`D$d9D$`t$(|$ D$`L$p|$ ,D$(T$,D$,T$$+9eD$(|$$t$,8F"0D$ N+8L$9D$(L$F"0D$ ~|$+89D$(|$8F,8T$ w+9T$(2G"D$F|$~D$$pǾE9ΉL$}FL$tPAD$D$x$U <$L$D$h;t$}E뺋D$,|$$"l$`t$0D$dl$`9l$0D$,$A|$4<$D$1L$lDžtD$l<$D$|$\tT$||$$IČ[^_]D$`t$`pF D$F$tD$`|$`~믋F D$F$tNFFN΋Nv%9.}%9|$pS$_$N$=$,|$pL$t $D$D$xD$T$4;t$d|$yWT$DGD$@o w$D$,$D$9D$@<$D$xƋD$Dt$D$ D$$T$HBt$,$gD$ D$D$D$@$L$HAt$D$8$0D$ D$D$)‹+8T$89|$<XD$8L$8D$< &D$Dl$<9l$Dxt$0T$0D$<:)Ƌ+8t$49|$<D$4T$0|$4D$< $L$DD$8*w+v1 0G"n|$ ~t$l$,,$N <[^_]$ $ $ bT$PL$(D<$D$D$T$ t|$D$D$ǃD$(D$$9D$(|$ $ W$ UWVS,? D$D$@@D$( $B 9}3 L$VL$$4$D$9|׍ ,$4$D$: D$D$$u ,[^_]ËD$$4$D$뎍 $̐UWVS <_ t$PD$,NL$(%D$$C $d4$W <$D$#ƍU<$,4$D$;t$$}14XL$($<$D$;t$$|ՍW,$<$D$D$D$,$N<[^_]É,$<$D$됅~U_ [ T$ + v$_ (L$ AE@u$΋_ ދ([ t$u+v$_ 0EFl$n$H΍Y$S:D$$T$ t,u $ [Í$ T$1$אUWVSLD$d?D$<>D$$)‹;+8T$ 9|$$RD$ D$$-D$$L$ "t$d4$D$4D$(D$dD$89D$4~:|$ 7D$4u t$4T$ 2D$ L[^_]$܋D$<|$(D$<$?D$$.)‹;+(T$9l$$WD$D$$2D$$L$ ,t$PermutationGroup<1|>galoisexportyPD??⍀Pkfv⍀vPRMa⍀aP94L⍀LP 7⍀7P"⍀"P ⍀ Pղв⍀P鼲跲⍀P飲螲⍀P銲腲⍀Pql⍀PXS⍀P?:z⍀zP&!e⍀eP P⍀PPLLLLLMM8MQMjMMMMMMN$Ë$1K KKJJJTNHJPNHJTNHJJJ)J!JIIdIPNHHIIPNHHTNHH HHHpHSH%HGiG GPNFFTNFFF~F@0@@???PNF??TNF?k?K?TNF?B? -?? ?>=PN!==TN!====TN!=U=PN!=O=TN!=.=PN!=&=TN!== =<<<<TN<< <}<PNy8w<TNy8h<\<O<><<;;Ly8;;TNy8;n;TNy8S;PNy8M;TNy8A;:PNy8:TNy8::TNy8:PNy8:TNy8_:LNy8=:LNy89PNy89LNy89TNy8919PNy88PNy88TNy88u8 W87777y7PN.N7PN.7PN.6PN.66666w6g6U6B6.66655555v5c5<55544444q4e4Q4A4-4433333313 32222i2L2320PN.0TN.^0PN.T0TN.N0F0/00///PN.u/O/0/.TN.. ..,.TN-&....--TN-- ---z-W-G-;---,,,,K5+,,TN5+,PN5+},TN5+,TN5++PN5++TN5+++TN5++PN5++TN5++TN5+b+PN5+:+TN5+1+ !++**X*TN)0*PN)!*TN)*PN))TN)) )))P)PN))5)TN))%) ))K(((LK(( (~(m(G(7(('''''PN &'TN &B''&PN &&PN &j&S&K&;&-&&TN & & %%%%TN$|%PN$s%TN$m%^%I%TN$!%PN$%TN$$PN$$TN$$ $$$w$TN#^$PN#C$TN#*$PN#$TN#$$TN##PN##TN## ####k#""PNu""TNu""q" c"R"3"!r!PN=!\!TN=!V!9! *!!~K   s M PNTN TNNuSTNNJ TNTN /zKePNMTNpLxLnKTN o_K:@PN7TN l[TNPNTN\PNTN qV.TNPNTN OPN8FTN84 TN TNYmPNY^TNYU JTNPNTN yTN5bPN5>TN51 TNuPNuzTNuq dVTNPNTN LK wPKrn cKPKFB LTNPNTN TNU|TNU`PNUQ C5TNPNTN PN TN    q TN   PN TN   v O TN  > PN TN   g TN- X PN- 2 TN- )    TNPNTN tfTN PNTN `K8kTN8ZPN8>TN84 TNTNvTNDLNPNTN oTNiX5TNiTNiLNiPNirTNie VHPNTN q/TN PNTN TNPxPNP^TNPL <.TNPNTN %oTN8`PN8FTN84 b HNM~HNMx sb mDNMeDNM_ Zb T@NML@NMF Ab ;__textcoal_nt__TEXT;? @|- PB[\$t$L$ ;|$D$$> $D$7>$7\$t$|$Ð\$|$D$$t$D;7D$D$ D$$A7tD$(\$t$|$É71ꐃ<\$,|$4l$8t$0l$D8uD$@$6D$,$6 rD$)D$b tx$T$6L$@ ~ t$eEFE%tq|$Ht\|$Ht7T$HtD$@$6l$HE:\$,t$0|$4l$8<Ët$@4$<61҅t:΋D$@$5|$HtxEl$@D$,$5|$HD$.tD$Ht::0:n+v$:(F}|$H/D$O$5΋:0:n+v:(F}$5$.z5 tx$L$Z5D$xD$Hl$l$@D$,$4D$H|$H!ȨtN:0:~+vD:8Fd$t$w|$H.HD$H8|$@l$<$C4-$4뮃|$Ht2D$H|$H!Ȩt:t$HD$@l$$믉,$:4$.X4UWVS7L7T$`D$8 $T$4T$`D$d$D$43L$dL$$ 3D$`%ƃ$uHT$877։+ՃrD$87@$L[^_]$3ۋD$dp%tL$di))P1w;1ttt$dVGD$d@86t$`tLt=$t$21l$d$l$n1T$8D$$E14$?ыFF@ѹT$%9}Nj@9|͋D$7t׍)Nj7+9wC$787L$t7Gt 7 $1믋70D$`|$$07D$0T$4T$,)щL$(7+9D$,hL$(7D$,=L$,,L$(7D$,D$$FuD$0AD$47T$<T$L$ D$L$D$|$l$D$ 4$/L$<L$$D$ D$9D$09!ȨuD$9D$09!Ȩu>D$(|$00uL$( 1 $6/$j0݉|$D$0F $&/)ʼnfD$0|$(떃D$0t$(T$0,ƋD$T$$F$0$/$l$/$T$/$/{$(|$/t$d_t,\$D$0t$ |$$l$(Th pD$4D$$-t6EtF1u2Ћ\$t$ |$$l$(,É,$_-D$lj4$4-9lj@T$؉D$ G<$D$,L$4D$$L$,ƋD$8tD$44$D$,1҃.fD$44$D$V,D$4D$$,HD$$L$,9tEEl$؉D$ F4$D$A,D$<$+t$4$t$+2Ӎ$T$-b2<\$,t$0l$8|$4D1t$DD$F%|D$@t$$.*t$$,(%N1tKt<$t$)-1L$D$ $+\$,t$0|$4l$8<É $苼ҋAA@ЉT$%9}Nj@9|D$D1t׍)Nj<1+9wCD1$87D$t@1Gt 81 $',믋@10t$ $̽D$D1l$Ɖ<1+(rD$7@$$+ލ$(T$+럐UWVS,'/T$@l$DD$ $T$`+T$@$l$*$l$c*D$@%ƃGuLD$'/l$Ɖ/+(rD$7@$,[^_]$*ۋu%tU))P1w31tUrugu E%D8t$@tHt9$t$<*1l$$(l$D$,$(%4$衹ՋFF@|$%9}Nj@9|D$'/tL$)Nj/+9wG'/$87D$t#/GD$t / $7)뫋#/*D$@l$$غ#$T$(~$(T$(T$(EG\SD$(L$ T$$t0uT$ $>[Ín$ T$s(1T$ $ӐUWVSG,|$@+%pxEt$4)L$++9D$E%D$iL$&E)΋++9.ul$$>;T$+;T$~D$p|$DD$@|$ D$|$p+?$$;|$ʼnD$HD$,$D$# ƋAL$$D$$D$4;|$|%;|$~l$DD$l$$X#,[^_]Ë+L$@0D$DL$D$ D$,$D$A#4$D$B%$&$&$&$v&]UWVSWL)D$4‹D$`0)8NL$0)+<)9։L$(P)D$(E$L$(&))ϋ)+9)8$7;T$0);T$0~l$(}D$lD$D$dD$ D$`D$D$hD$D$`p)?$u!ʼnD$,)8";|$0>t$0,$t$!Ƌ$D$ D$(4;|$0|;|$0~‹)?wSD$ll$dD$D$(l$$s ?wD$4t$$1#L[^_]Í/ |$8L$<$ Ѝ= T$8t$$ 땋)D$l1D$ D$dD$D$,,$D$. l$lL$dl$ l$`L$l$D$$4$D$"N |$8L$<$ $#,$# $#$#T$8$)aUWVS{L'L$`D$4D$81D$ $nl$0''<+E)9ƉL$(|$('8T$("2D$D$0$G'0~+UR'8FG@t$dwl$`E$(t$ |$t$`t$$;|$0D$D$,J'L$$l$D$0,$D$ l$dQt9G։t$(;|$0|;|$0~&?wST$dD$(D$T$$(?wD$4t$$| L[^_]Í} |$ l$<$Ѝ t$ L$4$땋D$$T$`0D$,T$D$D$l$ $4$D$ D$F$t!$c!K$R!",\$|$$t$ l$(T$0 %xd$j0$?~+v+$8Fo\$t$ |$$l$(,$ Nj$$+)9w^.uFu9||$0GE됋L$0DND$ $]D9|$? $1 딐D$ $L$$L$$ÐD$ $L$(L$$Ð,\$t$ |$$t$0d#l$(/4$lL$44$D$L$/\$t$ %|$$l$(ƒ,Ð<\$,`t$0l$8|$4"t$@l$DD$"V?<~B4$l$Ɖl$ D$l$<$I$l$|$l$t$$"L$\$,t$0%|$4l$8<ÐL\$o+*.GE@D$dE|$`G$}T$dL$`l$T$ L$$H;|$,ʼnD$(.t$ T$,,$T$t$$;|$,y;|$,~֋S ?FL$`A$ ƉŋD$,9D$0}i|$T$dD$$D$0T$t$$l$ƋD$dD$4$2D$|$dD$`|$$Nj%uPD$,9D$0|l$,tS 8wD$4D$4L[^_]ËL$,D$L$4$ϙ)D$,L$|$0D$49wHD$,.tD$d|$D$ D$D$`$2|$d4$D$`|$D$RT$0D$T$$뜍0l$8t$,$RT$ D$dL$`2D$ D$(L$,$D$F4$D$N$$k$HT$8$ <\$,t$0l$8|$4l$@E(%L$E$D$(0 ~+(:FG@D$DGD$ |$D$l$$~|$DL$|$$L$t$Dt$l$$T$(%\$,t$0|$4l$8<$d\$t$D$$,|$>D$D$ $>\$t$%|$Ã,\$t$ @t$4|$$l$(|$8(tT<$%D$|$ D$D$0t$$)%\$t$ |$$l$(,ËD$0|$$$ڐ,\$l$(t$ |$$L0Dn+L(F&0D~+9wcL8F$}0D~+9w(L8F$}\$t$ |$$l$(,$$$TUWVSl$$$D$\$L$XD$P$T$TD$L$D$H$D$D|$Xt$T%9D$<jL$P?l$@gED$4Al$(D$8|$8D$8L$@D$D$\L$$tl$Pl$|$XD$ 7$t$D$\ŋD$XT$LL$PT$L$ D$,D$,$ lj$u;l$H <$1҅DׅtNO$D$ƋT$Pt$|$XT$$yƋ%ǃ;|$<!Ȩul$(D$4ED$P4$D$Ht$44$D$ƉD$ t$|$X|$TŋD$PD$$L$X1D$HL$XT$DD$D$L4D$|$PD$Tl$\T$|$ D$t$,$<$ t$,D$Pt$ $D$ D$UƉ$.;l$H|T$\T$0}_w+9uGF@D$0FW|$Xt$@D$ T$D$S$D$\;|$TƉ;D$D4$D$D$PD$ ,$D$;|$T|$|Xcel[^_]ÐUWVSG\D$pL$tT$xD$LD$|L$HD$@$T$DD$<$D$8D$Ht$D%9D$0jD$L?$l$4 D$L8D$$|$,t$L4$ D$LD$4l$LD$D$@,$D$ |$@T$HD$ |$2$t$`L$@ŋD$HL$ ,$D$(D$D$w+9w40GF@D$FT$4;l$H|$ 뾋$ $ $ ZN$(|$f t$tqVt$$D$ t$$$t$C $t$D$(ƒ^Ð\$t$|$t$$8D$ t$$~t$$ t$D$$ȥp,&<$D$4\$t$|$ÐD$$D$D$D$ $IÐD$$D$D$D$ $%ÐUWVSD$00tL$0$ u~  +)9wa.uIud$4L$4@D$4El$09}L$0D9|[^_]$k $] 둅t L$0Aϋ Ń,\$(t$ |$$l$(|$0 t$4U)ŋ +9wy (u[@uU9|"|$,$C\$t$ |$$l$(,ËD$8$:D9|$$yvUWVS[,L$H |$@t$D%D$A %?D$E+l$)9w} (u_@uU9||$,$\,[^_]ËD$T$LD$D$T$$qD9|$$rUWVSol$$D$\H?L$@T$UWVSc|$$D$\tE$T$6 tE$&L$<$$<$Ɖ$t;$T$NL$F$D$<$Ł։ȉL$X)Ƌ+9:D$X7 EF;|$X}B;t$TttD$T$D$t;|$X|ȍt$lT$hL$dl$Pt$LT$HL$DE%TD$LD$H$8D$DB%P$$t$!ƋE E$$L$9l$HuD$LD$D$P$Yt$hD$@t$<$|$@D$<$%~D$@D$L$$ND$@$T$@l$$D$8NjL$4N|$@%pE )ϋ+9}$7;t$4]/8ꋋ ։Ձ)щL$,+9D$, (l$<$l$4$tD$(D$0%9D$0}VD$ D$t$0l$<T$`Bl$0t$,l$0%9||$,/D$lt(9}D$$9}D$lD$dt 9|D$\|$$|[^_]Ë$9|эL$`$$L$D$()ʼnD$$L$0V+T$9wrL$Fl$$u:T$ r$Bt$(r t$D$`$l$ED$$E$7뀋T$ $ $D$@$L$؉D$RT$($D$)l$4$l$t$t$04$UWVS;<T$,t$TD$(D$D$\D$$D$ T$D$D$`$$|$$D$D$X|$D$D$P$L$$l$XL$ljl$4$ʼn<$T$Xt$$l$T$t$ $LD$$D$D$X $D$D$NjD$9D$L$D$,vD$$D$D$\t$D$4$D$ D$D$XD$D$P$ƋD$L$XD$ l$L$4$|$D$ <$)$t$D$,$‹l$ D$Xl$D$$sD$t$ ŋD$t$$9D$#D$(l$$ <[^_]É4$]L$$T$XL$ l$T$$D$D$$ T$X|$$T$$|$$nD$$ T$$D$|$XL$$$|$L$L$ t$L$4$v}UWVS语,L$DKƉNjEVT$)щL$C+9D$ E8D$t[;t$it$@%9D$tDD$LT$l$DD$ D$H|$@D$D<$D$z|$l$DD$,[^_]ËKL$@D$D$9Ƌ|t$HD$L4$D$ID$K7UՍ)ŋC+9wdK(%E~DwE%? E,$D$D$|$D$<$$"뎋T$hD$l$ G<$D$;t$|L$LT$Hl$DL$ T$DD$D$@$)|$;t$|Z$$,\$|l$(D$4t$ |$$uD$D$0$蟵tM$uNjD$8D$ D$4|$D$D$0$a<$g\$t$ |$$l$(,Ëu+~9w}F$$UWVS軪LWT$w+)9wj0GD$`FT$$VD$4l$8t|$0D$49D$P|$8t$T<L$LD$P9D$\|[^_]$谝$袝D$D$#$艝>D$L$w+)9w&0GD$+8T$@)91.;$t$TDD;$~苔$׋D|$8x0tDD$T$pL$L$4$O؉L$4D$0a^$H0$24$D$$D$dwD$ D$_D$,$KmD$(E )ϋWv+|$9D$E$l$uD$8T$49T$8D$ t$$|$8D$1$<_ƋD$(t$$wglj$~`;D$0L$,t$ $Sg|$$$q4$D$lD$NjD$,$)gt$ t$$_Ɖ$ `;D$0|tl$4${b eCv:wrD$d<$D$\|$8t$D$4|$89 Cv8wT$D$6$|$MOl$,D$P<t$(l$,9|D$P<[^_]É<$E%SD$$ŋ)S+E9D$$wtS0D$$ GF;l$$.yD$D$ 4tt%L$ $L$N4;l$$|:4$nD$mN{D$Pt$UWVS?LQED$4D$`$AU0щǁ)Q+L$(9sD$(L$(E%~T$(G#t$`T$D$w+9QQ0G$L$N|$~t$,D$w+(Q2G&D$0FD$,Ft$ t$8|$`t$D$<$>NjD$8E D$8D$D$($>QT$d1D$T$$IQ1Q;D$dE<$D$$D$>Q1$t$=|$ƉD$D$`$=}u E$QEEEL$dD$h,$L$D$ l$4D$,$IL[^_]ËQl$K$Jr$J$JQD$xhD$ 9Qw+9Q0GF@|$ ~t$QQ0~+9wbQQ8F$t$w|$,0~+9wQ8F$D$dG|$0$I$I$I=QD$M$I1t$(F%? @F$I|UWVSg\D$tt$pD$LD$xD$HF%Ńu s1\[^_]ËL$L|$H $|$BHD$LD$H4$D$D$LD$\?8Ɓ9} t/9|l$HT$L4$l$tT$x^8D$p\[^_]j+B~ċD$HPсD$,}MD$4T$$LE++L$$9ljL$(D$(E%D$ T$(" LE++L$$9ljL$HD$ED$ $D$,8|$Ll$H,$%D$RBD$@D$0D$LD$DD$<D$8l$D$4$'lj<$VGl$8E%tL|$HD$L4$|$ D$l$=|$|$LƉ|$,$+'D$4$Fl$8T$H<$%T$pD$LD$L=T$@L$(tE%tD$<|$4D$D4;t$@D$(|$@0 t$@D$(0L$1ug t$@|$M7Lu~+v/}F"t$(wD$G.<$D$>$F$ F$E`|$LL$Hl$(|$L$D$)<9D|;t$@| l$(DD$D$ 5u 9|͋l$DDl$@T$@DDL$(뤋D$HT$<$D$D$LD$;L$@T$(D$HL$L|$@D$L$t$($m!t[%9}#L$@|$(L$@%9|݋t$;t$@.T$DD$;t$@|Lu3D$Ht$@L$LD$ D$(T$0D$T$L$$Nj$0,$D$i>Ń;t$ |,$+At;D$$t$ 9t$$eD$(;D$L$,D$ $8<[^_]É<$@ul$<$=t$D$4$9D$D$D$,$-Ɖt$<$1y<$D$D$-D$,${-Ɖt$<$1~<$l$D$T-׋D$D$D$$<-l$Ɖ<$K=$t$n1D$(;t$ .|$߉|$l$L$$D$,T$,T$$D;t$ |;;t$ D$l$$|$D$$,L$$T$,D;t$ |JUWVS$%$+$$+;$$,$44$`+$;$~;$$T$T;$aD$T$$$4$$D$,$$*;$~;$~$,,$*,$$*$$f("+F;$@ݜ$I};$1$ fT;$X$$~ك;$~Z*C$$8$݄$f(ݔ$ݜ$ $0 $DŽ$D$\$$~f("+Z*$$$Dl fTtfTfTXf(fTfUfVXf.zt$$$9$4( $$DDݜ$D$\ݜ$9$$YT$$$ $ Ȩ$X;$$$$ \ ;$~܋$$ك*Df("+TDtݜ$ك*fTݜ$fTX$$YYY$f($$$$9$ff("+$$f($,\\$f(DY|\$f(^$\Xd\$\f($fTfTӋDXD$ݜ$9$fTX$^^$$^$t{$$TfTfTfTXDfTYDf(fTfTfTXXYXf.zt$9$$;$1Z*$9ՋTt T;$~׋$;t$\."+$Z*f(/ f)l$pL$X;$T$X;t$\dBD$ݜ$tBDݜ$f($$fTt$pfT\$pfTL$pXXf.zt0$$^^^$$f.f($$YYYXXQf.71f(fT"+f.z;$f(ًT$XfW2+Y\$X$^f(^$$^^$;$^$$l$X$;t$\UEY$X$t-E$YXf(Y\U$D$pD$|D$l9D$p~$l$T$pD$x14V Bt'%zщ ZڅNV1ɋBl$`t+%jщ D$`݅N͋$ωt$ljL$dD$$$t$t$D$$D$|$$|$d0Ł uD$D$dD$$$TL$t $l$$"D$$$!D$D$$l$pT$h|$ll$p9|$|.L$lGxE)Ήt$\.+9D$lD$lT$\ $UwE)щL$X.+9dT$XU*~L$XD$pD$l9D$p4.D$D$D$t$p|$h L$T)l$LD$$"D$T.0ō )͉l$D.+E9D$D0t$TT$DFBD$H%9D$H}Y.l$4D$@???@?ྤp= ף?RQ?ףp= ?)\(?ffffff?ư>;d⍀dP'"O⍀OP :⍀:P%⍀%P⍀P⍀P⍀P⍀Pxs⍀P_Z⍀PFA⍀P-(}⍀}Ph⍀hPS⍀SP>⍀>P)⍀)P⍀P⍀P~y⍀Pe`⍀PLG⍀P3.⍀P⍀P⍀Pl⍀lPW⍀WPB⍀BP-⍀-P⍀Pkf⍀PRM⍀P94⍀P ⍀P⍀P⍀P⍀Pp⍀pP[⍀[PF⍀FPql1⍀1PXS⍀P?:⍀P&!⍀P ⍀P⍀P⍀P⍀P⍀Pt⍀tPwr_⍀_P^YJ⍀JPE@5⍀5P,' ⍀ P ⍀ P⍀P⍀P⍀P⍀P⍀P}x⍀Pd_x⍀xPKFc⍀cP2-N⍀NP9⍀9P$⍀$P⍀P⍀P⍀P⍀P~⍀Pje⍀PQL⍀P83|⍀|Pg⍀gPR⍀RP=⍀=P(⍀(P⍀P ⍀ P ⍀ Ppk ⍀ PWR ⍀ P>9 ⍀ P% ⍀ P  ⍀ Pk ⍀k PV ⍀V PA ⍀A P, ⍀, P ⍀ Pvq ⍀ P]X ⍀ PD? ⍀ P+& ⍀ P ⍀ P ⍀ P ⍀ Po ⍀o PZ ⍀Z PE ⍀E P|w0 ⍀0 Pc^ ⍀ PJE ⍀ P1, ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Ps ⍀s P}^ ⍀^ PidI ⍀I PPK4 ⍀4 P72 ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pojw ⍀w PVQb ⍀b P=8M ⍀M P$8 ⍀8 P # ⍀# P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pup ⍀ P\W ⍀ PC>{ ⍀{ P*%f ⍀f P Q ⍀Q P< ⍀< P' ⍀' P ⍀ P⍀P⍀P{v⍀Pb]⍀PID⍀P0+⍀P⍀Pj⍀jPU⍀UP@⍀@P+⍀+P⍀P|⍀Phc⍀POJ⍀P61⍀P⍀P⍀P⍀Pn⍀nPY⍀YPD⍀DP/⍀/Pni⍀PUP⍀P<7⍀P#⍀P ⍀P⍀P⍀P⍀Pr⍀rP]⍀]PtoH⍀HP[V3⍀3PB=⍀P)$ ⍀ P ⍀P⍀P⍀P⍀P⍀P⍀Pzuv⍀vPa\a⍀aPHCL⍀LP/*7⍀7P"⍀"P ⍀ P⍀P⍀P⍀P⍀P{⍀Pgb⍀PNIz⍀zP50e⍀ePP⍀PP;⍀;P&⍀&P⍀P⍀P⍀P⍀Pmh⍀PTO⍀P;6⍀P"~⍀~P i⍀iPT⍀TP###$1$J$c$|$$$$$$%+%D%]%v%%%%%% &%&>&W&p&&&&&&''8'Q'j''''''((2(K(d(}((((((),)E)^)w)))))) *&*?*X*q******+ +9+R+k++++++,,3,L,e,~,,,,,,---F-_-x------.'.@.Y.r....../!/:/S/l//////0040M0f00000001.1G1`1y1111112(2A2Z2s222222 3"3;3T3m3333334454N4g44444445/5H5a5z5555556)6B6[6t666666 7#7<7U7n77777788$Ë$]OA-!(;;a;(;;> sS<;a;a;a]> OC #m8 mp8;m;m;m;m;m;mT;mK;mE,;mv;mi> WF5$; ^; ?; +S; 9; 3l; M; 2; K; ,; ; ; C; %; zgO[ ; < ; 6   >  "     ;u ;] ;I ;5 ; ; ;    ; ; ; ;n ;G ;A ;4 ;'  ; ;    ; ;g ;K ;2 ;, ; ; ;     ;u ;] ;F ;0 ;* ; ;;;A > SN@"~ "~;~;~v>X#~ ;~;~;~;~X#~X#~R1#~#~8#~X#~#~\#~"~jX#~bG#~X#~#~#~X#~#~@X#~#~Nd#~1#~%`#~X#~#~5;~/X#~#~k\~z> L{mY@2pd1; #;> "{jYH7D!"V;f8(;;zB;;;VF> ]F;;-;;;;;;k;B;7&;;};wX;P;J0;* ;;;;x;J;D;;;;;;;;;s;m;;> v%;;;fV=-"> udFt;x;;;G3k" yR4`H;;_;Y;> 1p_N6~p5'X< x;101;1;1>;1"[y;1h;1;1;1U;1:;1c;1=;17;1{];16;10;1;1;1;1;1;1r`SE7;1;1;1;1;1;1;1xjI;1";1;1;1;1;1;1t;1B;1<;1 ;1;1;1;1t;1gT,;1-> ;k/;%B%g ;;\;RbD+P";;;y_Q;I/!; ;p;5; ;> ;o;X;R;<;"; ;;;;> td "=YM"=A<,!=;=;=wk_E;);=|tB;=9> + ;޾|;޾lY9;޾3 ;޾saYp;޾?7"qgOC.`G1;޾T#޾#޾x#޾p#޾h#޾yhP#޾`SL#޾G:H#޾2"D#޾;޾¿;޾;޾k;޾;޾;޾;޾ھ> ǾD!|t^;D!|kZI8'̼]KC!=5!* ;K!λ;cF2&Y;FϹ;;`I9;;Ըøy"ط;R;2;;;;ص;^+;vW;߳;;;r;;;б̱ȱԱı߱9;ʰD!;> ~n cRA0ȯwfU=ͮuQ;F5ӭh[J9(̬ !;z;hM;٫`;L6#pD;{kX>2* |ӧ˧q;;Ӧi إ;;;dA5̤;Ƥ;qW;;]J>+t;g;Z1 yJ;;8;;;n;a;[I;+;;;+  ;> ԛț;> ]M }B1  ;};};};}j\;}͙;};}v;}h;}8;};};}ߘn }d }Gܗ;};}p;}M;},;}֖;};}Z;}?!;}[ }y> hWF5;Q;;;;> wfNBՒ;;j;> a>Ԑ}oR/;;;׏;я;q;;;5;;;Îl;;q;I> Ԍ]=܋;;;f;`;@ S;$;;;݉> M b|c|;bI5Ès;bg;b^> ,;y ;y҇u3 ybC3;yކ͆{;yF;y@;y*;y";yօÅ}^;ySE4$(y;y;y;y;yxl3# y ڃʃ;yq;yc4;y;y;y;yނ;yÂ;y;y{;yu;ykF;y>ԁ;y;y;y{À y~;yu> q_S(;|~~~~~v~V~F~|<~2~}};|}x}7}|||;||;| |> {{{8{{{> {z{8qro{_{qrK{8{){;qr{;qr{;qrzzzz;qrzzzmz!z;qrz;qryyy;qrx;qrxxxxxsx'x;qrx;qrwwww{w,qrqwv;qrv;qryv;qrgv v;qruuu;uuttFttsqrs;qr{s;qrusisPs@sqr(ss srrrr8qryr;qrmr> \rNr@rr;!mr;!mq;!mq;!mq;!mq;!mq;!mq;!mqsqbqQqCqp;!mp;!mp_pFp p ppoooo;!mo;!mn;!mn;!mn;!mnun3nn;!mm;!mqm;!m\m;!mKmm> ml8aellaelll;aellwlall;aek;aekk;aek\k;aek;aek;aejjjjjjEj;ae&j;ae jiiiii;aei;aeri;aeWi;aeAi;ae;i;aei;aei;aeh;aeh;aeoh;aeRh;ae>hhg;aegg`aeggzgng,aehg:ggffaeef;aeYf;aeSfCf*ffaefeeeeee8aefe;ae]e> =ed;dd> ddd$[dd.[dcc.[c8c(c.[cbb$[bub_bLb?b.bbbaa;[a;[a;[vaYaBa`;[`;[u`;[_;[_;[___;[__;[4_^^[^;[v^;[p^d^K^;^[#^^]][];[u];[o]_]F]6][]]]\Y\5\)\\\[$[[[$[[;[[> [w[f[C[3[[ZxZpZ@ZZYY;WY;WY;WYsYcYKY;Y+YY;WX;WX;WXX;WXXEX;W?X;W$XXW> WWWWWpW`WPW 6U U;TTTTTT;TT> lTKTTSSSS;QRqS;QRUS;QRKSS;QRRR;QRZR;QRMR> >R#R RQQ;OQQQQQQ^QDQ8Q,Q"QPPPPlPPPFP,P PO;OO;OO;OO> OOO{O]OMO=O)OONNNNNnNVN0N;MNNMMMMM;MM;MM;M}M> +MMFMMFLLL;FL;FLLoL,LKKKKKaK;F:K;F&KJJJpJ;FIJ;F?J;F JJ;FI;FI;FmI;FOI;F*IIHHHHxHGGFG;FzG;FtGhGOG?GF'GGFFFFFFFF;FF> FyFBTFAF4FFFEE;BE;BEcE)E;BD;BD;BDD;BD;BuDYDKD%DDDCBC;BC;BCtC[CKCB3C)CCBBBBBBBB;BB> yBhBBB2BBAtA.A;? A;?A@@@@@@;?@^@<@;?#@;?@;?@???> ???n??j?> H?8?_<-?? ?>;<>>>;<>;<j>O>;<>;<=;<=;<=;<=c=X=;<8=(===_<<;<<> <<<<<;<|<> k<Z<?</<<;;b;=;$;;8 ;:;8:b:;86:;8 :9F9;8/9;8)9988> Z8;8T8<88;8 8> 7777m7a7I757766666036;0&6;065;055;05=5544;04~454433s3;0m3:32;022211Q1$1 100> ~0p0W010/;//;//;//> //l/J//;./;..;..> .;-..,.;-&.;-.-> ---\-H-<-"-;--> ,,,,,_),z,i,Y,;)Q,,;)+;)++;)+;)++v+5+;)+;)*;)*;)*;)*;)J*;));));));))));)h)X)D)4)_));) )> (;((((((;((> x(d(9'V(H(8(g9')((|;9'''''P';9'>';9'5'> ''&&&d&T&&%%;$%%%%j%J%4%;$*%$> $;5!$w$k$=$0$;5! $;5!#;5!##u#h# #""""{";5!j"M"C""!!;5!1!> !!! ;P ;P ;P ;P  ;P f ;P ^ ;P L > <  ; ;> z;pl> Y-;t#;t;t;ty;tp> O>- ]-?-@, - ;-m;-M-;-z;-g;-U;-)> ;i;im;ie> ;d;dr;d`> -;';;> hTF;84> #[;U;M;;;> wO? 7';;f@;$;;;;;> p;jYH7&;rdM,; ;;p;M;:;,;;;;;> tcSG%;;b;-;;;> ^~Z> ;+_u u ;u ;u ;u ;u y;u ^;u     gu ,  ;u ;u    _u z ;u q > d T _X L  ;X  ;X  ;X  ;X ;X ;X ;X s ;X     gX  f ;X T > > ;3 #  ;      t Z B   ;> p`_UD4)~!;;;;[;U9;1;;;;;]P@.gJ;D; _;> ;]L;;;@b;K;C;;;;;;|;o@> f;XT> 6,; > e, _i;8Wi;8Q= L, Fe;7>e;78= 3, -a;7%a;7= , ];7 ];7= , Y;7Y;7= , U;7U;7= , Q;7Q;7= , M;f7M;f7= , I;M7I;M7= , ~E;47vE;47p= k, eA;7]A;7W= R, L=;7D=;7>= 9, 39;6+9;6%= , 5;65;6 = , 1;61;6= , -;6-;6= , );6);6= , %;l6%;l6= , !;S6!;S6= , ;:6|;:6v= q, k;!6c;!6]= X, R;6J;6D= ?, 9;51;5+= &,  ;5 ;5= ,  ;5 ;5= , ;5;5= , ;5;5= , :r5:r5= , :Y5:Y5= , :@5:@5|= w, q:'5i:'5c= ^, X:5P:5J= E, ?:47:41= ,, &:4:4= , :4:4= , :4:4= , :4:4= , :x4:x4= , :_4:_4= , :F4:F4= }, w:-4o:-4i= d, ^:4V:4P= K, E:3=:37= 2, ,:3$:3= , :3 :3= , :3:3= , :3:3= , :~3:~3= , :e3:e3= , :L3:L3= , }:33u:33o= j, d:3\:3V= Q, K:3C:3== 8, 2:2*:2$= , :2:2 = , :2:2= , :2:2= , :2:2= , :k2:k2= , }:R2}:R2= , y:92{y:92u= p, ju: 2bu: 2\= W, Qq:2Iq:2C= >, 8m:10m:1*= %, i:1i:1= , e:1 e:1 = , a:1 a:1 = , ]:1 ]:1 = , Y:q1 Y:q1 = , U:X1 U:X1 = , Q:?1 Q:?1{ = v , p M:&1h M:&1b = ] , W I: 1O I: 1I = D , > E:06 E:00 = + , % A:0 A:0 =  , =:0 =:0 = , 9:0 9:0 = , 5:0 5:0 = , 1:w0 1:w0 = , -:^0 -:^0 = , ):E0 ):E0 = | , v %:,0n %:,0h = c , ] !:0U !:0O = J , D :/< :/6 = 1 , + :/# :/ =  ,  :/ :/ = , :/ :/ = , :/ :/ = , :}/ :}/ = , :d/ :d/ = , :K/ :K/ = , | 92/t 92/n = i , c 9/[ 9/U = P , J 9/B 9/< = 7 , 1 9.) 9.# =  ,  9. 9. =  , 9. 9. = , 9. 9. = , 9. 9. = , 9j. 9j. = , 9Q. 9Q. = , 98.z 98.t = o , i 9.a 9.[ = V , P 9.H 9.B = = , 7 9-/ 9-) = $ ,  9- 9- = ,  9- 9- = , 9- 9- = , 9- 9- = , 9p- 9p- = , 9W- 9W- = , 9>- 9>-z = u , o 9%-g 9%-a = \ , V 9 -N 9 -H = C , = 9,5 9,/ = * , $ 9, 9, =  , 9, 9,= , 9,9,= , 9,9,= , 9v,9v,= , 9],9],= , 9D,9D,= {, u9+,m9+,g= b, \}9,T}9,N= I, Cy9+;y9+5= 0, *u9+"u9+= , q9+ q9+= , m9+m9+= , i9+i9+= , e9|+e9|+= , a9c+a9c+= , ]9J+]9J+= , {Y91+sY91+m= h, bU9+ZU9+T= O, IQ9*AQ9*;= 6, 0M9*(M9*"= , I9*I9* = , E9*E9*= , A9*A9*= , =9*=9*= , 99i*99i*= , 59P*59P*= , 197*y197*s= n, h-9*`-9*Z= U, O)9*G)9*A= <, 6%9).%9)(= #, !9)!9)= , 9)9)= , 9)9)= , 9)9)= , 9o)9o)= ,  9V) 9V)= ,  9=) 9=)y= t, n9$)f9$)`= [, U9 )M9 )G= B, <8(48(.= ), #8(8(= , 8(8(= , 8(8(= , 8(8(= , 8u(8u(= , 8\(8\(= , 8C(8C(= z, t8*(l8*(f= a, [8(S8(M= H, B8':8'4= /, )8'!8'= , 8'8'= , 8'8'= , 8'8'= , 8{'8{'= , 8b'8b'= , 8I'8I'= , z80'r80'l= g, a8'Y8'S= N, H8&@8&:= 5, /8&'8&!= , 8&8&= , 8&8&= , 8&8&= , 8&8&= , 8h&8h&= , 8O&8O&= , 86&x86&r= m, g8&_8&Y= T, N8&F8&@= ;, 58%-8%'= ", }8%}8%= , y8%y8%= , u8%u8%= , q8%q8%= , m8n%m8n%= , i8U%i8U%= , e8<%~e8<%x= s, ma8#%ea8#%_= Z, T]8 %L]8 %F= A, ;Y8$3Y8$-= (, "U8$U8$= , Q8$Q8$= , M8$M8$= , I8$I8$= , E8t$E8t$= , A8[$A8[$= , =8B$=8B$~= y, s98)$k98)$e= `, Z58$R58$L= G, A18#918#3= ., (-8# -8#= , )8#)8#= @<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  $%ZVz)o (65  :ypifa!" *v'&ecdg+-r~w`jhknqsmt}[x{u #l_^b|N$%ZVz)o (65  :ypifa!" *v'&ecdg+-r~w`jhknqsmt}[x{u #l_^b|N ]\     ,! $ 0'' (9 G ?S Wa n w | T  о   p     ` X t|$Xik-@(t<],,Hd<.KL 0|B78*X/8)mNO@xM^HRBg ; ;d-x-P)<8t h?{Xehr-4M[| -L  i      K    J 5  }3$u7b  # Du  @8  [+  n % o  # E u}  W \  Q  /N d?M , Z EY S wR c? % <Q _   , z!   :J"SH _27 ? ? _ 2 $w  _gdvd___i686.get_pc_thunk.bx_poldvd_poldivrem_rootmod2_FpX_quad_root_FpX_roots_rootmod_rootmod0_FpX_Berlekamp_ker_FqX_Berlekamp_ker_Flx_Berlekamp_ker_ZX_deriv_FpX_deriv_FqX_deriv_FpX_is_squarefree_FpX_nbroots_FqX_nbroots_FpX_is_totally_split_Flx_nbfact_Flx_nbroots_FpX_nbfact_FqX_nbfact_trivfact_FpX_factcantor_factcantor0_FpX_is_irred_FpX_degfact_factcantor_simplefactmod_col_to_ff_FpX_rand_FqX_rand_FpX_split_Berlekamp_FqX_gcd_FqX_is_squarefree_FqX_split_Berlekamp_FpX_factor_factmod_factormod0_Zp_appr_rootpadic_hensel_lift_accel_ZpX_liftroot_ZpXQX_liftroot_ZpX_liftroots_rootpadicfast_padicsqrtnlift_padicappr_cmp_padic_factorpadic2_ZX_monic_factorpadic_factorpadic4_factorpadic0_cmp_pol_polfnf_FqX_split_deg1_FqX_split_by_degree_FqX_split_roots_FqX_split_all_factorff_FqX_factor_rootsold_roots2_zrhqr___i686.get_pc_thunk.axdyld_stub_binding_helper_gdiv_pol_1_cmpii_DEBUGMEM_DEBUGLEVEL_gen_m1_pol_x_gen_2_gen_1_bot_gen_0_avma_gtofp_assmat_sqrt_flusherr_rtodbl_stackmalloc_init_dalloc_shallowcopy_gexp_gopsg2_gmax_gsqrt_gmul2n_QuickNormL1_dbltor_gtopoly_gprec_w_Q_primpart_gconj_gerepilemanysp_cmprr_gnorm_gshift_gaffect_gneg_i_real_i_gabs_imag_i_gexpo_divrs_mppi_gaffsg_polvaluation_inexact_gsigne_RgX_to_FqX_gequal_Fq_pow_simplify_i_FpX_factorff_irred_shallowconcat_appendL_to_Kronecker_cget1_FpXQX_from_Kronecker_FpY_FpXY_resultant_ZX_DDF_gmulsg_ZY_ZXY_rnfequation_RgXQX_divrem_nfgcd_indexpartial_lift_fix_relative_pol_gcmp_FqX_sqr_timer2_normalizepol_primpart_RgX_unscale_maxord_i_Z_pval_hensel_lift_fact_fact_from_DDF_ZX_squff_get_mul_table_QM_inv_RgXV_to_RgM_diviiexact_nfbasis_ZX_disc_caradj_rowslice_smithall_idealpows_primedec_eltmul_get_table_equalii_ggcd_roots_from_deg1_FqX_red_lift_intern0_Fp_pow_gunclone_gclone_gerepileuptoint_Fq_inv_FqX_eval_Fq_red_Fp_inv_ginv_pol_to_monic_polrecip_i_Z_pvalrem_modulargcd_gdivexact_ggval_poleval_FpX_eval_gtrunc_gpowgs_content_FqX_div_FqX_normalize_FqX_rem_FpXQX_gcd_ZX_add_ZX_Z_mul_randomi_scalarpol_Flx_to_ZX_Flx_renormalize_pari_rand31_RgM_to_RgXV_Flm_to_FlxV_normalizepol_i_genrand_gerepilecopy_FpX_to_mod_sort_factor_sort_factor_gen_poldeflate_i_vals_gneg_FpXQ_sqr_deg1pol_i_pari_warn_gmul_stopoly_gen_incloop_setloop_gcmp_1_gsqr_stopoly_Flx_rem_Flx_divrem_fprintferr_Flx_gcd_Flx_sub_zero_Flx_gcmp1_cmpui_gsub_powiu_FpXQX_red_FpX_sub_FpXX_red_derivpol_mulsi_Flm_ker_sp_Flxq_mul_Flx_to_Flv_Flxq_pow_polx_Flx_const_vecsmall_FqM_ker_FpXQX_divrem_FpXQX_mul_gaddsg_msgTIMER_FpXQYQ_pow_TIMERstart_FpM_ker_FpXQ_mul_RgX_to_RgV_FpX_red_BSW_psp_FpX_divrem_gadd_FpX_gcd_ZX_Z_add_FpXQ_pow_sort_ZX_valuation_modii_mulii_addsi_sign_Fp_sqrt_kronecker_dvmdii_addii_sign_shifti_sqri_equalui_gerepileupto_FpC_to_mod_Flc_to_ZC_Fl_inv_Flx_div_by_X_x_ZX_to_Flx_FpX_normalize_RgX_to_FpX_RgX_divrem_gcopy_gvar_gcmp0_gmod_pari_err_root_mod_4_FpX_roots_i_Flm_Flx_mul_split_splitgen_spec_FpXQ_pow_FpX_factcantor_i_FpX_factor_i_ZX_Zp_root_ZXY_ZpQ_root_QpXQ_to_ZXY_padicff_FqX_split_spec_FqXQ_pow_FqX_factor_i_laguer_reel4.0_balanc_hqr_FpX_factor_2_padicff2_FpX_factorff_FqX_split_Trager_FqX_sqf_split_cmpGsGs#1/20 1200774102 0 0 100644 155740 ` polarit2.o h{ h{ __text__TEXTV ~P__data__DATAVHZ __cstring__TEXT@W `Z__literal8__TEXT b0@e__literal4__TEXTPb pe__picsymbolstub2__TEXT\bc|ex "__la_sym_ptr2__DATAwlz2__nl_symbol_ptr__DATA,{4L~__textcoal_nt__TEXT`{~ @l@`P\ P$$``9UWVSLD$`l$dD$hсL$<B t7W$L$Wwt$`FS{t$hǍ)׉|$,O{+9L$,S{$D$,0Ut>W$T$vUr9DL$,9~D$`D$+8 )9T$wD$|$T$@BG9}Ct$D$L$H0D$DL$D$L$@$4$D$ kt$9|D$l$$j?$lpqՋq+)9wG7$>9|L$HD$DL$D$L$@$9|$3l뫋qՋq+)9wC7&>9}D$HL$@D$D$DD$$9|S$k믋D$@+|$DՋWD$tD$D@D$D$HPD$tD$H@D$qq+)9wG7,>9L$D$L$D$L$@$9|g$j$jm$j*D$DD$$hD$HqD$$D$D$D$ $-ÐUWVSnt$08no+v[n(G ,w~tuu u[^_]$i$i뗃<\$,t$0l$8|$4t$D hml$@8tfD$P,$D$D$HD$geD$‹D$Tt$D$D$L$D$ D$HD$<$D$e\$,t$0|$4l$8<Ëdmw+9whm0G"n$hܐUWVSG\l|$tl$xt$|D$LL$8L$<,$t$dD$@D$D$p$Jdl$ |$D$pD$t$D$$H hL$H@D$D%ǃD$@t$DD$D$$eƋD$@D$4$cL$@lL$ $L$OcT$DtLT$@D$L$L$pD$DL$L$HT$ D$L$,$DT$HD$D$p|$DD$D$@t$D$ |$T$,$lt$8)Njl+9wX"l87t$,[^_]Ët$Ft$D$ E,$D$2acg0ŋ_g+)96cg8E%~DEw%? Ɖw<$D$`|$Ɖ|$$Palj$[L$ŋAL$D$ F4$D$q`T$T$$aD$D$@p|$Og?$Z,$D$VaL$DT$l$D$T$$_ŋD$D$$`Z,$D$al$L$DD$H(n$ia[gUWVS,eT$@|$DD$t $NZD$@L$@q%tQ))hL$DA%tT$DJ))ЍPD$9Neō)Չl$d+E9gD$L$D͉1T$@<$T$Yy<$[NjD$<҅D$tcd$tNx<|$,$D$]NjD$@D$<$X̸D$뻅D$D$HewU)ŋd+9wJe(M~DD$l$$]T$HD$,[^_]$=_먋e|$8؋t$D<$D$t$\F$_t$@<$t$W.D$D<$D$\D$UWV T$0%2D$D$$VNj%D$G%9ʼnD$}`D$;t$}D Qt)u9yD$D$ Ȩu;t$|;l$| ^_]1D$D$$ VRUWVS?a|$4D$0(ց)Ƌa+9a0F`9F}9|D$0t$$\0ǁu6 79| [^_]ËD$D$U9|$]$\W$\2UWVS*D$4`0׍)Nj`+9򋃆`"98}%L$8@t L$49|ۋD$0!Ȩu\7u> 7D$V|$lL$4D$҉L$D$ D$<$T$R>D$0D$4D$$MƋ%x~l$$RxD$,9|$,;D$dD$(D$,L$0,uD$(up t$(uD$,9|$,~Ѓ~9D$00uD$0 0D$0L[^_]$Zޅt1⍻x=$|$lZ$^Z낍T$8$Qt$pT$8$jVL\$VŋD$tD$D$p$Vl$$U$D$p%B |c\7U)ŋ_\+9c\(%E~DGD$p$O,$D$DOƋS\8^$t$$O$N$D$4$jS$$%|c\7U)ŋ_\+9c\(%E~DOz$$$$+,$D$T$$O$$D$JD$$$D$$t$L$l$|$ $tS\>$$$D$$T$ D$$D$D$,$$$ O$>$4$$$D$ $$D$$L$ D$$T$D$$,$D$$D$>O$w$%$$$%9{$$D$dc\D$`D$d8D$$WT$\:M$M<$D$PLT$dD$Tŋ%TB%D$T$D$FRŋM|$P|$L$X $LI|$X|$X;|$\l$dE%D$L$gLc\D$H_\u~+}F1G|$D;l$L+_\D$8|$dt4$O;l$L~ߋc\_\u~+}F|$$Sl$L<$ML$BK$D$@Kt$L|uD$<$,QŋD$DD$D$@$Pl$$tPT$dD$@%|c\7U)ŋ_\+9c\(%E~DWD$@$J,$D$5JƋS\8-D$Xt$$I$It$`D$4$aN$S\>$$$D$$$D$$T$D$ $l$D$$$ >w_$0$u5$ $0|$$F$$[^_]$O뽍:$L$4$K농:$Jl$X::l$ $It$<$IE%? @Eh$MO%[\8$/OG4$IL$8D$$$;$D$ $|$D$ $I$<$2EE%? @Eq$M.[\8$:l$<$G:t$$GrE%? @E4$(M[\8$ M4$GL$hD$lc\0~+9w`c\8F|$L$l ${FT$xD<$D$Kt$txD$|$ F4$D$*FD$tX$nL$`L$$D$$KLL$$K$ƉD$$EI$;$$|Oz[\UWVS+l$B%?D$4wO8x%[lOu)NjO+9O8E%~DE|$LG%$$D$J$$D$PT$LGD$$Iht$TD$$l$B@$L$t$$HD$NjD$T$HD$DwO8OD$0O(D$0)4($D$$t$,$?$D$H‹%D$8%9D$8l$4$$l$D$E?$$D$ L$$D$FŋD$4D$D$H$>l$$?t$TD$H$D$$|$t$L$ D$$D$HwO8DD$<D$8D$@9D$<qD$HL$@4D$Ll$DD$T4$l$D$D$ƋD$PD$$褾 $D$PFnOu)NjO+9YO8E%~DEw%? Ɖw|$(D$Ll$D$0D냋Hj0H?~+vH:Fo$CِU1WVD$ 89| ^_]ËL$ $MAt 9|ۍV,$T$8uÐ<\$,t$0|$4l$8D$@0 D$HVL$@Q%?+D$D~ t$@4$r7\$,t$0|$4l$8<ËG D$tID$@$|$Hu&L$HT$@L$$D$D$$>$BL$@)D$@l$$6D$|$Hut$4$|$Ht&T$@D$H<&T$ D$L$$+Bt$D$H4$D$MƉȉ4$|$HhD$Dl$D$#6D$pf1|$Hu l$ul$|$<$$Aى|$|$HT$ƋG+9wBGD$:@ud$D t$DwD$IA$;A밋G))NjG+9wPG 87L$@9AG}D$HL$@D$D$DD$$P9|c$@뢃 ~D$@G(׍)NjG+9wJG 879D$HT$DL$@D$T$$9|$@먍j&$t$@1GGu~+vS}FT$HD$Dl$@T$D$E$2GD$Ht$@D$D$DD$F$G*$z?럍|&$T$b?$?Vt$ 4$hL$$4$D$^ÐUWVS{,L$@|$D%L$Bhw)щL$B+9w~L$Bu\L$1҉1t$@F΃9AB9~119|$L$D9~D$,[^_]$]>$O>qUWVSD$l$<$D$F:t$$\D$D$$k4,[^_]ËD$DD$$E%;t$l(|떍$(T$`6KWVS謾:T$ 8 t$&T$#6T$ B$t$ [0$t$)ƋD$ $)L$ L$$)‹%tD$ D$T$$g)D$ D$ D$D$$Wu<$T$P1[^_Ë:$D$+Ս$(T$N5T$ 4UWVS蓽$D$,D$(D$$D$ )1҃  $D$$/$D@~$9ΉL$0}t$< ``<$'D$H;D$,MD$,D$,;t$0||$Tut$ptnl$LuCD$Xu;D$\u3D$`u+D$lu#D$tuD$xuD$|u $t1ҁĜ[^_]Ë|$,$8ߋT$Hut$htjl$LuŋD$XuD$\uD$`uD$luD$tuD$xuD$|u$u$D$,|$PWel$Xyt$lmD$|t>t$ $u T$$$u |$lD$\D$t$tKT$ $t$$$u T$,$u |$tD$PD$dD$xt1t$ $u u |$dHD$Lu4D$`u .D$$$|$,$)L$$$D$xs$D$|D$$t+D$$D$G$'1҅.D$L>ol$$D$( .v`]|``D$ t4T$ D$(T$$'1҅.$D$P~D$(D$ $m$D$T;D$,MD$,D$,ʋD$$t\D$$D$A$&1҅.D$ t,D$ L$(D$ $&1҅.D$XpT$(T$ AD$$빋A%;D$,MD$,D$,D$$t\D$$D$A$&1҅.2L$ t,T$ D$(T$$%1҅. D$\D$(D$ AD$$빋8D$ 8D$$D$#D$()G%D$$;l$,Ml$,l$,t+l$$l$G$]%1҅.qD$`GD$$ .B+`KK``:D$ t3D$ D$G$$1҅.D$d~vWT$ $;";D$,MD$,D$,G$!$!~ D$hD$p몋D$$tZD$$D$A$Y$1҅.mD$ t+D$ D$G$3$1҅.GD$lQWT$ AD$$뻋A%;D$,MD$,D$,D$$tZD$$D$A$#1҅.D$ t+D$ D$G$#1҅.D$tWT$ AD$$뻋L$ >D$ D$G$^#1҅.rT$9},9|D$HpD$HH$$$D$|D$D$tD$$$$A$t$D$XB$^ŋ@$:El$D$X$UWVD$$l$(tM Љ)׸ T$ )txT$,$T$,uЃ^_]ÉT$,$T$0D$ $OސUWVS;LD$dHL$,x |$<|$`p ֋)ՉD$4 D$4)  L$0L$,L$8)tGx~D$h|$$T$lNjL$0 9s 8w<|$|$4<$ul$8tD$< D$<0렉L[^_]Í$T$묋D$h|$$T$p뀋t$pL$lT$ht$L$ T$@D$D$`$W뢐S8D$HL$@T$ D$ D$PL$$D$,D$LT$D$(. $D$*D$ D$DD$o8[ÐS覣8D$HL$@T$ D$ D$PL$$D$,D$LT$D$( $D$D$ D$DD$8[ÐUWVSG+8)9T$D$"t$>9}D$DBub9|l$uu8 D$0$|$Pt$H|$t$|D$D$$#,[^_]$N뺉T$L$T$P$D$T$LL$u$1+릾9}|$Du9|9t8wD$P|$H4$D$|$>$L$Љׁ.yt$T$pFD$nl$D,D$8\$ 褟t$$|$(t$4|$0tRL$7+)9wOd$H. |$H9D$HE| l[^_]Ë$$$D$=D9|$룍n$78UՍ)ŋ3+9wJ7 (u9c$$D$$D9|6$;t$H~&$$$t$H$|$H$,$AtD$H$D$4$$$H9t$H|$HX /  .D$HKc& .783w+70G$E$;7F$D$DGD$G$jNj@%t/$|$$HD$D$D$ lj~u$` `730n+l$0D$07FƋ$$E$D$7F3$hu+)9w778~DD$0xD$0$ ${ @+}$F$up7$8tK$E D$E$‹70$D$$zt$D$<$ BD$B뺋$B$v7D$,$$$<$D$(D$ $lj,$eD$$D$$$ Ɖ$ u0<$t$[ $0t$$ <$D$‹GxkNjt5T$(t$$$t$D$<$D$D$,$G$rt뷋G$^t룋7΁U)ŋ3+9wG7(%E~DOx7E%? @E$/ 뫋GhxBxx$E<$׋$$p<$t$$j4$9LʼnD$|$H?|$H|$Hy|$H.t|$HV|$HtT7$8t/$F D$F$‹70$#BD$B֋$F$b$B$H7D$ $$$ $D$D$D$lj,$D$D$$$Ɖ$7u0<$t$$Zt$$<$D$#‹GxcNjt-L$T$L$$D$<$D$D$ %G$t뿋G$t뫋7΁U)ŋ3+9wG7(%E~DGx?E%? @E$a뫋G@xB@x$w<$׃|$H7$$ED$DAD$G$NjD$DEG%tN$$t$ D$T$$,$$D$E$uփ|$H.}|$H78$t$A D$AAD$A|$H t670$$W$|$$s4$D$7T$\$8T$ $Ƌ$D$D$\u+$#NL$$D$<$|$H|$H  / N  G$D$$$G737N+L$@ D$@Fŋ$$GD$F$?$A$$El$@E$t/|$@GD$@7$L$@D$DFD$A$$Nj@%t1$B<$D$D$D$D$\NjD$@x뎃u$$BD$F$<$73u~+vW}F$$GD$F$ZE$$AD$G$PE$k뛋$E$$B$$A$p$F$V7D$<$$$<$D$8D$RNj$$D$4D$$$*Ɖ$Eu0<$t$$ht$$<$D$1‹GxcNjt-L$4T$8L$$D$<$(D$D$<3G$t뿋G$t뫋7΁U)ŋ3+9wG7(%E~DGx?E%? @E$o뫋G@xB@x$<$+׋$$GD$F$|$$pM9NщT$E$7$$<$l$D$DNj@ $QtSt,G$.D$$D$D$Dl$$sD$D$$fGt@<$q7NjD$DGt:G u싔$릋G uL$D$4$늃 $$Nj$$)~a t'7$0,$$L$7L$P8$L$$hƋ$D$D$P p N t3$$D$T$ l$$- 1|$H ti|$H &|$H u$$D$4$|$H u7$l$L8l$ $Ƌ$D$D$L$4$ŋ$$l$$#ŋ$pD$$$T9%$B-|$D$,$$#D$$$ ˃ 73un+7(F|$H t,$$t$ D$L$$-$$AD$G$$D$D$F$b$Nj70A<$D$t$D$,$E$$BD$G$fE$$$$ʼn4$$l$!|$H te|$H ^$#$p$D$9 $*#D$$C|$$$xB-9O|$H $7T$T84$T$$Ɖl$D$T |$H $Ex?|$H |$H $QB%?97$T$D$DG$%t,$$l$ D$T$$, L$D$B$O$Nj$D$F$_|$$7l$X8l$ $Ƌ$D$D$X$B%?973>o+vg.G$G$E$T$DGD$G$Ƌ$D$4$D$D$D$$닋70$3$R77FD$3+LT$FՋ$$FD$G$$A$EL$A%7D$D$x$h,$s<$i$t$Ɖ$tK|$|$G$kl$$_4$D$`D$D$D$l$ED$<$t$lj,$t$뗋/A̋$$FD$G$$a$t$$$$|$ D$T$$-%9L9uiD$T#l$TD$PD$$9s }w)l$T|$PL$(l$ |$D$ $/H$T$-뿋#D$,T$T;T$ tM$%D$D$T‹%tD$(T$$<[^_]Ë|$(>$IދL$D$D$T. 9|,$ZD$T$?ED$D$iUWVSxL7D$$D$,D$`${D$`l$dD$8/D$4+D$(D$$>L$`E9%9L9u_T$$谵$D$$$떋$$ t| t2,$i$$EC$,$&$$P? t.$$$մ$U봋$UA?%?9tP9x($,$舴$E\$ $`$뉋E$%H%P9}.$$$$$ʉ$u $$$ |$l|$,$D$@T$hD$Lŋ$T$$D$P$D$XD$T6D$`)ыt$$茯$D$,$$T$- UWVSwHLt$`l$d4$D$4覽tL[^_]Ël$`L$|$@t$0l$8<$ƳtNt\$,t$0|$4l$8<Ë(D$D<$D$|$L,$D$菳뾋D$D$hu/t$DD$ ƒ  ШtK t0 t ܹkd$D$<$D$膧ML$DUT$ $   ȨuHL$DWA?%?9.9}%D$뱋t$D%|<$l$ٴ렐<\$,$=|$4l$8t$0D$|$@l$DD$D$Hx% NjE Ń|$L|$L~{|$Ltd$ T$FD$u$D$|$$\$,t$0|$4l$8<Ël<$D$?D$觤뺉l$<$뢋D$LuD$l$<$ މl$<$|ЋE%?9D$H}[0|VT$+v*L$FEi%AD$$Lȋl,$D$D$HD$ףD$HlD$,$D$D$蜣1l$H$t$l$뫋G%?t|9D$H}S|T$t$+ v(0D$@G~%F$xʋl<$D$D$HD$D$HlD$<$D$D$Ȣ9t$H$|$t$뫐|\$lt$p|$tl$x$A:0$x$h ƒ  Шu- ƒ  Ш_??9t\$lt$p|$tl$x|Ë$$螞$~%?hD$$$$Ƌ $D$4+$‹%t:DT$$69|$$Lt$*D$D$4$\.$<$֝$D$L1O~)$ƒ!Шuf׋$%H~)$ƒ!Шu'׋$$l$$虣a9t$,}$4 wbQ{{{{F$UqF$Bq;|$,|$%9ljD$($4 wdGG{{GG!{GG{F$pGF$p4;|$({$$09}$։$$$$葿$ $耿D$8D$<$蠞D$u-|$HT$<8l$LD$DT$D$,$>D$T$蟼lj$6D$TD$D$<$趪$$ t*l$ $+$$L$LD$ $O%t?$t>ƒ Шt4$y$$蓩뗋0‹D$T|$$萩D$T:t$Dl$LD$t$$$T$$ܷV t$2l.uNjF$m{$l.uVыV t$k.uF$l$l.jV͋$z%?hD$$$豘ƋD$0$$迺$‹%t2DT$$ʙ9|$$Lt$辘D$D$0ȍ$|$$$~hr$ $K}$$ꐐ<\$,t$0|$4l$8|$@1F  3X<$th\$,t$0|$4l$8<ËpD$D$D$Dx$W?9T$Dt lj<$֛D$D$<$ŋ%tyt4$諧tY%u?D$uD$l$$[G\,$D$?D$"ɉ,$X뵉,$t$a뗋h0끅tv9T$D}MlL$l$+ v"D$.@G}%E$Ћ\<$D$D$DD$胗L$D\D$<$D$D$H.}t$D$|$t$몋pl}w+vuGFF$<ӋT$DT$G$Q$t$ 1p<$D$1D$D$$pT$ЋU)ŋl+9T$wNp( t$ul$t.t$D$DD$D$Dt$D$uى$U뤐D$ D$$eÐUWVS-<D$(D$P t|$T$D$PցnD$PT$$|$PD$蠤D$P$膘D$$<)L$ ߨ+9^L$ 5L$ &D$,9l$,t$ߨD$|$t$|$L$++|$9D$D$8D$D$ $t$,D$ <9~g9l$,|/D$,9l$,~D$ $葐l$(,$D$f<[^_]ËD$$D$$~L$PD$L$$萢D$$럍VD$$T$$f9~w$=G$,"$$ $L$9|$%L$ԢUWVS+\{|$pD$0wD$0<$)L$,< T$8t=փ|$81 Ȩt \[^_]Íf$l$A%1҃D$<.t̓D$g|$<z<$J<$D$<$D$@ЕD$D$&D$D$D$֠oD$Dt$D$Dw+9w*0GD$DF|$H~t$hT$hM$蠔ȃ~uዴ$Ft$D$ B$D$ƒh$\$KuUWVS\D$DD$p t:{$T$D$pωՉT$@)|$<+9L$@D$@l$< .EL$pAE;l$@D$LT$Ht$8D$ T$$|$,t$(|$prFD$||$x$D$D$ |$D$ D$$D$D$tD$t`$t5D$LL$81D$$D$$螑|$8;7u D$LD$D$H$詅$Вu41t T$<;l$@@D$<\[^_]ËD$(l$D(1D$LD$4‹@%t_L$,8t$Ht$0w+9w*0GD$0F|$4~t$HD$Hf$=ȃzut$tFt$D$ B$D$f$%UWVSGl$ED$XD$P$p?L$LB%?D$H%D$Dt$FuHu~+v }Fd$LD$LGl[^_]$:ҋ$$%q|$%IT$$D$|<$ŋ$D$|l$$[$D$ $j$t$\D$4D$89kD$@D$@)<(|$T$(L[^_]Ë|$뜋|$ mwE+)9w/(U~DO$蜆$莆$}UWVS|$%D$\$ Ȩ-$$"@$E$$$$D$`D$X%D$d8$ #l$\t-+,)9#8L$H "D$D|$T#+)9_#:D$H:D$D#|$P)+E9#8D$H,7|$L<$D$P$$$D$D$TL$l$T$ D$T?k|$d~D$Xl;l$`拔$"$uj(#>w+v7#0G"nl$Ln|$T~ D$PFt$XD$X|[^_]$뻋$~S#>w+Mv'#2GF@$FN$萃ˋ#$9݉w+v#0GFn$A׋#t$\+)9wc/uK"ul$Xt$\D69.D$Lx 9~t$TڋD$赂$观돋4$t$ƒ)$!щ$L$@o~l$D$<$$X~t$Tŋ%ƃD$@$L$PD$D$$;$niiD$XL$T$$D$XL$Tt$\0n+9 D$X(F$D$\,;$~$$$T$$GX$DŽ$|$8$$t$H*Y$D$<%X$,$D$DXi\$(d$(8,̉L$PT$P9$;$$$4$ D$ D$D$HD$$D$$$ $DF$t?$$T$$|\$$L$D^D$F$5^F;$Pi8i$1|$@D$LD$xi8iw+9^i2GF@$Ft$$$YD$$$._$ t$$ƋD$<4$PV*D$DZP*YEf.of(\Y$$,;l$PLl$P)|$L$l$$[4$D$UD$$$SUƋD$<$1;l$P‹|$8D$$|$T$ t$$$i8$;l$P~D$xL$$OZ$^i8U%x;|$D ii.u+9i0EF@F9kt$$$S$(%9t>i8a%24D$D$ $U$;|$D$;$i?ii}w+9uGF@$Vt$$$]W$$ $D$$t$|$l$ $Z7Ƌi8i8$l$xD$,$zX$i|$t98sVi8w[$ $$$$D$|T$|$l$t$ L$D$$RD$H$M$T$Q덍M4${VCi8w [^_]ËD$pMD$$ $D$=VЍ$ $>SD$p$[U$ $WD$D$ $SN$U$$L[D$@ $D$AQ.l$@iL$x$8N$t$<$W$iiu~+v}F$$o$Z׍$ $R$҉D$t %D$UNl$%4$D$ $D$T$)D$$$&VD$$SPL$d $D$<D$TP4$D$P\f(4$^P*ȋD$LY$,9MՋl$P+T$L9T$PLD$L);|$PLl$Pc$Y$$4$U,$U&ZP*Y$X<$P\$(t$(,΃$$9T$Zo+.GE@D$LED$X$l$$iQ$D$TnZt$D)NjZ+90Z8 $O7D$TGl$ $I9D$Dt?$T$'UZv+t$h4$L@D$@D$$^O$l$$D$D$P|$,$D$ ƋZ8wD$M‹ BD$HUjl$DUu~+9 }F D$|$HL$h<$D$L$KUF9$I 1$D$t|$TD$pD$d|$t4@$D$t$$DL$T$x$L$T$$>t@<D$`$Q ֋l$dU$$D$x|$ D$$|$$}>t@ D$`)$֋l$d)U$$$$$l$$$0 $$1T$|2d $D$|U0U}w+"uG&$~D$|Ft$$4$$$A%$T$ $0J$W>D$8P$*$@DŽ$9$$U$$4F%DD$4$$BD$0t1%zщ |$0څOT$0T$0l$4U(U8Uw+9U0G nn$$L$4vl$0U$$DL$04I$$$$9$$l$8E$El$$<$$1$D$ $$$UD$$$H$$HugUUu~+vp}F$$w$E<$D$>EED$U$>E$$D$<$5D[^_]$MH낋U/ U$:U~QU8Uw+9w U0GF@n$G݋Ul$$U}w+9wuGFD$$F$rG؉$9lj@xED$$$]=$$$<$D$9=$J֋UU)ŋU+9wGU(%E~DWx]E%? @E$F뫋@pxGH#<$8<$HE$KF,$$t$T$ l$U$8$U|$,U}$t$(w+9wuG D$,FD$(F$E$E>D$4yR$B%Az7 $\E$KE$:EV~QUU>w+9w U0GF@n$D݋Ul$ÐD$(D$D$$$Q)Ð<\$,|$4l$8t$0@Bl$@|$DD$E7vDVv0|$,$ ID$D$$;\$,t$0|$4l$8<É<$ĉ,$밐\$t$|$t$ H LLaLL\$t$|$ËF1$zt ֋F$btV1 t$EuˋF$҉$uV1눐,\$|$$t$ l$(D$0(Y9}tD$04 w\)wwwwYwwF$u,F$u9|1\$t$ |$$l$(,øV t$I.uߋF$뱉$.uŋVԐUWVS{Ll$`?t$dE%?T$(D$^?8w D$8l$D$D$$$9+3L$4D$8%L$ D$T$$T0븋|$8ND$8D$0$D$0 Ed$<L$<@D$0ptl$6$,$DUWVSV|$$%9ljD$dDً$ ;|$d~t$dD$`D69D$`pD$\t$`TT$X%9HT$P}D%9}։9|DT$`DD$XD$L$`D$,$$T$,Tt$PT$TT$`%9HT$L}D%9}։9|DT$`DD$TD$L$`DD$,$$TL$, $D$$t$`T$ D$DD$D$+DT$`$L$Lt$\9L$`|$dD$`D?9D$`T$lt$hljT$Dt$H$zD$HT$D$D$$T$t$ D$L$`DD$D$+Ƌ%~$T$-v4$n-ua $4$D$[*$ƉD$D$hL$$%*D$h$D$lT$t$$*D$lt$`D$h$D$lD9t$`|[^_]Ë$4$D$$D$)$Ƌ$T$ D$D$ht$$)$D$h$L$ D$D$lt$$)VD$D$t$`D$D$HL$D$ DD$D$)$L$`D$DD$D$)UWVSk\/$$L$pD$HD$|(Fr%t$xD$xD$@DL$tt$xD$$|$q($t3$$D$,$&$<$D$t$w%Nj$<$D$I%Nj$H$$|$D$D$4L$ $ &l$,$$T$@l$t$ L$T$$$t$<$t$'|$ŋD$8$'l$$'Ƌ$$$4$D$|$$$$t$b'ŋ$D$D$L$I'L$HD$LT$8/l$$'|$xt$tD$LD$D$4$&L$xl$tD\[^_]Ë$4$D$#i$<$D$#$D$NjD$4L$$$l$,$t$@l$ T$t$$R#$&$4$D$B#$<$t$LD$&#$D$NjD$4L$$$$L$@t$,t$ T$L$$"$r&UWVPD$hL$ll$`D$LD$pL$HD$D$D$tD$@|$dD$xt$|L$<L$= %ldsubresall, dr = %ldsubresallsubresext, dr = %ldinexact computation in subresextsubresextRgX_extgcd, dr = %ldinexact computation in RgX_extgcdresultantducos, degpol Q = %ldsylvestermatrixnot the same variables in sylvestermatrixpolresultantsrgcdsrgcd: dr = %ld discsrreduceddiscsmithpoldiscreducednon-monic polynomial in poldiscreducedsturmpolsturm, dr = %ldnot a squarefree polynomial in sturmginvmodnewtonpolymatratliftpolratliftnfgcdnfgcd: p=%d lifting to prec %ldbuilding treeMultiLift: bad args ### K = %d, %Z combinations .|T found factor %Z remaining modular factor(s): %ld *LLL_cmbfLLL_cmbf: chk_factors failed* Time LLL: %ld * Time Check Factor: %ld LLL_cmbf: rank decrease for this block of tracesLLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld LLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld) DDF: wrong numbers of factorsTime setup: %ld Total Time: %ld =========== splitting mod p = %ldfactorsroots...tried prime %3ld (%-3ld %s). Time = %ld pseudorem dx = %ld >= %ldnextSousResultant j = %ld/%ldnon-invertible polynomial in RgXQ_invrelatively prime polynomials expectedLLL_cmbf: checking factor %ld special_pivot output: %Z h|5@h㈵>9B.?9B.?rZ| ??>@@B蟝^⍀^P鋝膝I⍀IPrm4⍀4PYT⍀P@; ⍀ P'"⍀P ⍀P⍀Pܜל⍀PÜ辜⍀P骜襜⍀P鑜茜w⍀wPxsb⍀bP_ZM⍀MPFA8⍀8P-(#⍀#P⍀P⍀Pݛ⍀Pɛě⍀P鰛諛⍀P闛蒛⍀P~y⍀Pe`{⍀{PLGf⍀fP3.Q⍀QP<⍀<P'⍀'P⍀PϚʚ⍀P鶚豚⍀P靚蘚⍀P鄚⍀Pkf⍀PRM⍀P94⍀P j⍀jPU⍀UP@⍀@PՙЙ+⍀+P鼙跙⍀P飙螙⍀P銙腙⍀Pql⍀PXS⍀P?:⍀P&!⍀P ⍀Pn⍀nPۘ֘Y⍀YP˜轘D⍀DP驘褘/⍀/P鐘苘⍀Pwr⍀P^Y⍀PE@⍀P,'⍀P⍀P⍀Pܗ⍀Pȗ×r⍀rP鯗誗]⍀]P閗著H⍀HP}x3⍀3Pd_⍀PKF ⍀ P2-⍀P⍀P⍀P⍀PΖɖ⍀P鵖谖⍀P霖藖v⍀vP郖~a⍀aPjeL⍀LPQL7⍀7P83"⍀"P ⍀ P⍀P⍀Pԕϕ⍀P黕趕⍀P颕蝕⍀P鉕脕⍀Ppkz⍀zPWRe⍀eP>9P⍀PP% ;⍀;P &⍀&P⍀PڔՔ ⍀ P輔 ⍀ P騔裔 ⍀ P鏔芔 ⍀ Pvq ⍀ P]X ⍀ PD?~ ⍀~ P+&i ⍀i P T ⍀T P? ⍀? Pۓ* ⍀* PǓ“ ⍀ P鮓詓 ⍀ P镓萓 ⍀ P|w ⍀ Pc^ ⍀ PJE ⍀ P1, ⍀ P ⍀ Pm ⍀m PX ⍀X P͒ȒC ⍀C P鴒诒. ⍀. P雒薒 ⍀ P邒} ⍀ Pid ⍀ PPK ⍀ P72 ⍀ P ⍀ P ⍀ P ⍀ PӑΑq ⍀q P麑赑\ ⍀\ P顑蜑G ⍀G P鈑胑2 ⍀2 Poj ⍀ PVQ ⍀ P=8 ⍀ P$ ⍀ P  ⍀ P ⍀ PِԐ ⍀ P軐 ⍀ P駐袐u ⍀u P鎐艐` ⍀` PupK ⍀K P\W6 ⍀6 PC>! ⍀! P*% ⍀ P ⍀ P ⍀ Pߏڏ ⍀ PƏ ⍀ P魏訏 ⍀ P锏菏 ⍀ P{vy ⍀y Pb]d ⍀d PIDO ⍀O P0+: ⍀: P% ⍀% P ⍀ P⍀P̎ǎ⍀P鳎讎⍀P階蕎⍀P過|⍀Phc⍀POJ}⍀}P61h⍀hPS⍀SP>⍀>P)⍀)Pҍ͍⍀P鹍贍⍀P頍蛍⍀P重肍⍀Pni⍀PUP⍀P<7⍀P#⍀P l⍀lPW⍀WP،ӌB⍀BP鿌躌-⍀-P馌行⍀P鍌舌⍀Pto⍀P[V⍀PB=⍀P)$⍀P ⍀P⍀Pދًp⍀pPŋ[⍀[P鬋觋F⍀FP铋莋1⍀1Pzu⍀Pa\⍀PHC⍀P/*⍀P⍀P⍀Pߊ⍀PˊƊ⍀P鲊譊t⍀tP陊蔊_⍀_P逊{J⍀JPgb5⍀5PNI ⍀ P50 ⍀ P⍀P⍀P⍀Pщ̉⍀P鸉賉⍀P韉蚉⍀P醉聉x⍀xPmhc⍀cPTON⍀NP;69⍀9P"$⍀$P ⍀P⍀P׈҈⍀P龈蹈⍀P饈蠈⍀P錈臈⍀Psn⍀PZU|⍀|PAibbbbbbbc1cJccc|ccccccd+dDd]dvdddddd e%e>eWepeeeeeeff8fQfjffffffgg2gKgdg}ggggggh,hEh^hwhhhhhh i&i?iXiqiiiiiij j9jRjkjjjjjjkk3kLkek~kkkkkkl-lFl_lxllllllm'm@mYmrmmmmmmn!n:nSnlnnnnnnoo4oMofooooooop.pGp`pyppppppq(qAqZqsqqqqqq r"r;rTrmrrrrrrss5sNsgssssssst/tHtatzttttttu)uBu[utuuuuuu v#vDT{u?1DT{u?"D DCT{u?CCCCCCsCEC5C%CCBBBB&au?BBB|BlBBB2B BBAAAAA{AKAAD{u?A\{u?@@\{u?@X{u?@\{u?l@T{u?D@@X{u?@\{u?q?6 ^?M?/??>>>>X{;>\{;}>j>K>#>>===u=&== a;<<D{;<<q<C<"<X{;<;;X{;;\{;;6 m;c;S;;;:;;::;::B;::;::;;::;::;::;::;;::;;::;::;:::::6 p:f:W:::":::99}:99D:99}:99:99:99}:99}:99:99:99}:99}:999996 99o9_9*9\{996 98888c8?88f737"77766X{%6\{%66P{%\6L6=665\{%5X{%5\{%5T{%5r5?55T{%5444x4\{%b4X{%U4\{%743\{%3X{%33\{%3X{%3\{%3S3\{%63X{%03\{%32\{%2X{%22\{%}2X{%w2\{%h2W2F2111X{%1\{%1|1P{%W1G18110\{%0X{%0\{%0h0:000/\{%/X{%//\{%/X{%/\{%/4{%{/q/4{%]/8{%U/:///P{%/.X{%.\{%...P{%_.L.0W%?.-T{%-\{%t-X{%l-\{%_-P{%,x,F,,X{%+\{%a+T{%.+*T{%*[*T{%U**\{%*X{%))T{%)m)X{%c)\{%J)7)+))((\{%(X{%(\{%(P{%v(z'X{%#'X{%'\{%''&&&\{%&X{%&\{%&P{%&& &P{%%P{%%\{%%6 %%|%J%9%-%`q %`q  %`q %$$\{q $X{q $n$X{q h$\{q N$\{q $L{q $#####i#X#G#3#`q '###`q ""L{q """y`q ""L{q {"k"[`q _"3"\{q  "X{q "\{q !!X{q o!  L{q  @{q } \{q m 6 _ L T{A |kZB `fKTb>6{Z7_ X{\{_~\{kV>6_+_L{`_vW_`D{\{L{L{8X{2\{#L{L{|\{[X{U\{2L{ L{4Xb&!Hb \{X{\{o\{`L{G8%bL{\xX{r\{@\{,X{ \{\{\{X{T{hX{%X{\{@bPbdPbUMAV+\{X{{\{%8b6 tT{ i?ueJ<,T{ [\{ A0b /\{ X{ \{ X{  \{   6    y h W F 5 " T{  T{   s b Q > T{1 T{& U_ L{   T{ T{    S_ { m " X{ \{ L{  T{     { W ; " \{\{T{Y~YmT{b( _L{\{~X{_\{$ L{\{zX{[\{2&\{X{\{sXX{,\{ X{\{XLD\{UX{u\{e6_\{L{T{Q0\{_L{=5_L{~n^2X{,\{!L{F.jK4o\{\X{@\{\{X{\{nX{d\{9X{3\{X{\{X{\{X{\{sX{d\{^G6 P{V@6 ^9s^9u]^9IL{9CI2sX{9i\{9a@\{9 X{9\{9\{9X{9\{9w\{9`X{9Z\{9RT{9L{9\{9X{9\{9o\{9V\{9AX{9'\{9X{9\{9L{956 %\{aX{a\{aT0T{a\{atZ@ T{a|\{aI\{aX{a\{a]6 T{T{pd^UKP{8(^ qJ:"\{pX{Z\{T'D{\{\{X{\{A)L{\{\{R@{?X{\{h+X{\{6 e5\{i\{iT{iYX{i^in\{ie6 WF3\{M\{M=5\{M\{MvT{Ml\{M$X{MX{Ms^MR\{MI6 = X{\{IX{\{[X{D\{&^6 T{bv^b^6 AX{\{6 SX{<J\{<86 'G^T{\{skB\{0(`^T{$\{T{M^D{\{vbVD-ldH6&rj>6 P{aQG^X{\{6 ]y ^yveJ1rX{yl\{y8\{y!X{y\{y^y]y~\{yu6 gM'\{X{\{\{]{f'X{!\{H{H{eX{QT{G7+H{n\{RT{H@<840,($ Dll  6 ]vT{cN)\{ H{zjPT{oSI8\{ ]T{T{{`T{XH]=D{\{{3L{P{X{\{~\{xhW:Y:::ZG<:8f40f,:(@$f f::ff3\{%T{\{H{]8P{6 aH{J2H{*\{X{H{v^H{V*\{ X{\{H{t\L]\{6 \t>P{t\{tT{tp6 9]]6 |bT{I1X{I+\{I# T{IۿX{IͿx>T{I T{I\{IƾX{I\{IzT{IHT{I\{IX{I\{IX{If\{IE6 :*\P{^R"T{`]T{ֻT{λ}T{rP{f\{YT{Q?%кT{\{ָD{ĸ\{WX{K\{'P{ T{\{6 ue]J7T{1"T{  ]ٶ¶oR5\{׵x ]i D{\{ɴ|_T{MX{6P{,\{ٲT{vcT{N;T{T{ϱ,{T{,{|T{mSB&T{ ðT{~6 >.]J\{JT{JT{Jǯo_N>\J/ݮĮcJ2 \{JԭP{JƭK7\J(߬D{Jͬ\{Jl`N:*ѫūD T{JX{JP{Jت\{JwT{JhsT{Jd<#T{JP{JT{JҨtT{JjF6 \lP{+T{ϦT{eVJ3'ܥťP{^J\;D{\{֤qa֣X{P{bE\{:yDT{6T{6 ءǡsD8נX{\{zU-|cK\8D{ОT{p<X{(\{ P{X{X{vW-X{\{6 ߜu\{9`X{9B\{956 ( ͛X{\{gKX{\{Śh\iL{KT{,($ ggggg g˚gggggg0gי6 }m[\eA16 Ԙ\{`X{`u\{`fVJ\`N5ӗX{`˗\{`×^X{`X\{`P>&\{`Ζ\{`Ȗq`Ėq`q`T`T`T`T`T`T`ɗ`V`T`T`T`T` `T`T`̖`|T`s|`\6 >"\{ȓX{ȓɕ\{ȓ<\ȓ/X{ȓ%\{ȓX{ȓ\{ȓ~\{ȓ`LÕȓHÕȓDÕȓ@ȓ<ȓ8ȓ4ȓ0ȓ,ȓ(ȓ$ȓ ȓȓȓȓxȓ ȓȓPȓȓȓՓ<\ȓē6 qgA P{ג\{4\uP{oZ@\{)P{ĒĒĒ1ܑؑԑБ̑ ȑđ'6 {_D4\{Ԑ\{ԐА6 P{d`J\{d.*\dT{dʏ\{d|o]\{dX{d؎\{dЎ9d̎9dȎ9dĎdddddddddduddcdddԎdd{d`6 D4\{ԍ\{ԍЍ6 `2xh"\]T{PA+\{ 0{P{\{z.\{X{\{֊\{̊"\{V0{0{͉݉x\XTPLHfD`@f<8/8\{6 ӈˆZ>.&ۇӇÇjP{%^T{%D*\{%!6 ӆP{9xU\{9M=\92D{9\{9wRX{9>\{956 „\{yX{y\{yZ7\{yT{yσGX{y.\{y Â\{yX{y\{yu6 i\{X{\{DX{+\{!ƀW6 m\%hA0 T{%hvT\{%h2~X{%h~\{%h~~\{%h~~~n~L~~X{%h~\{%h}}\{%h}}}}j}\%hJ}.}\{%h||\{%hP|H{%h:||H{%h{{{{{{{n{\{%h_{A{!{ {\%hz\{%hzX{%hz\{%hzzH{%hziz>zH{%h8z,zzyy\{%hyy}y\%h>X{)>>X{)>4>X{)>.>\{)>%>6 >T{];>======(=H{];<<<r<V<F< <X{];;\{];;X{];;Y;6 K;:;); ;:::\{e9:X{e9y:\{e99X{e99\{e999x9a96 S9E99T{88\{88X{88\{886 r8`8@808ZD4(8877X{D47\{D477ZD47o7=7\{D4+7X{D47\{D4666\{D46X{D4o6\{D4g6Y6%6\{D46X{D4555w5_5ZD4H5-544444\{D44@46 4333\{23X{2z3\{2r3d32X{22\{226 }2j2T{+_2221WZ+1111Z+1s1T{+h1U1T{+J110\{+0X{+0\{+s0`0O0;0DZ+/006Z+0/L{+/|/D{+g/\{+ /\{+.X{+.\{+..@.L{+6..---k-?-X{+3-\{+$-L{+--,,,,B,\{+/,X{+,\{++L{++6 +T{+t+d+B+4++***\{*\{***T{z*T*H*YB*6*Y"*T{*)))Z)) Z)T{[)I)9)))((((\{(\{(s(`(T{U(/(#((Y(Y('Y''Y''s''L{'&&&L{&&&\{r&X{V&\{4&(&&%%%%X{%\{%v%X{=%X{3%\{-%$$$$$`$\{#N##L{"""""P"\{="X{!"\{!!!!L{!!v!\{c!X{G!\{"!!!    X{ \{x a X{( X{ \{ paY+\{6 Y~YUL{A1! (b bV6 iRD6&iYgFL{6 \{X{\{6 L\{X{\{6 m\{YeG\{YX{Y\{YXJX{Y\{Y~^\{YU6 DT{9H{bXF\{X{\{c7'6 @YY}mAX@!X@XqX]MW,W\{6 \{X{~H\{3X{\{P{u4 \{6 \{ uX{ [O! \{ 6  q \{I Z X{I N \{I E 6 7      m X{x g \{x   X{x w \{x o W  X{x \{x    B X{x : \{x  x x x u x x x x x x x x x 8 x x x x x x x x x  x x x t 6 ,  T{ |6 dF*\{4W\{X{\{6 rZ4WTP6 :X{4#\{\{Y\{5X{\{6 X{\{iC\{\{X{\{6 uRW jZ@W O>0 \{ \{ \{ \{ uT{ ]5wcY\{ Q'T{ }\{ X GW \{ X{ c\{ K;@W 6 D@<840,($ __ Y'{wQ'{wK5 F_ @#{w8#{w25 -_ '{yw{yw5 _ {`w{`w5 _ {Gw{Gw5 _ {.w{.w5 _ {w{w5 _  {v {v5 _ {v{v5 ~_ x{vp{vj5 e_ _zvWzvQ5 L_ Fzv>zv85 3_ -zv%zv5 _ zfv zfv5 _ zMvzMv5 _ z4vz4v5 _ zvzv5 _ zvzv5 _ zuzu5 _ ~zuvzup5 k_ ezu]zuW5 R_ LzuDzu>5 9_ 3zu+zu%5 _ zluzlu 5 _ zSuzSu5 _ z:uz:u5 _ z!uz!u5 _ zuzu5 _ ztzt5 _ zt|ztv5 q_ kztczt]5 X_ RztJztD5 ?_ 9zt1zt+5 &_ zrtzrt5 _ zYtzYt5 _ z@tz@t5 _ z'tz't5 _ ztzt5 _ zszs5 _ zszs|5 w_ qzsizsc5 ^_ XzsPzsJ5 E_ ?zs7zs15 ,_ &{zxs{zxs5 _ wz_swz_s5 _ szFsszFs5 _ oz-soz-s5 _ kzskzs5 _ gzrgzr5 _ czrczr5 }_ w_zro_zri5 d_ ^[zrV[zrP5 K_ EWzr=Wzr75 2_ ,Sz~r$Sz~r5 _ Ozer Ozer5 _ KzLrKzLr5 _ Gz3rGz3r5 _ CzrCzr5 _ ?zr?zr5 _ ;zq;zq5 _ }7zqu7zqo5 j_ d3zq\3zqV5 Q_ K/zqC/zq=5 8_ 2+zq*+zq$5 _ 'zkq'zkq 5 _ #zRq#zRq5 _ z9qz9q5 _ z qz q5 _ zqzq5 _ zpzp5 _ zp{zpu5 p_ j zpb zp\5 W_ QzpIzpC5 >_ 8zp0zp*5 %_ yqpyqp5 _ yXp yXp 5 _ y?p y?p 5 _ y&p y&p 5 _ y p y p 5 _ yo yo 5 _ yo yo{ 5 v _ p yoh yob 5 ] _ W yoO yoI 5 D _ > yo6 yo0 5 + _ % ywo ywo 5  _ y^o y^o 5 _ yEo yEo 5 _ y,o y,o 5 _ yo yo 5 _ yn yn 5 _ yn yn 5 | _ v ynn ynh 5 c _ ] ynU ynO 5 J _ D yn< yn6 5 1 _ + y}n# y}n 5  _  ydn ydn 5 _ yKn yKn 5 _ y2n y2n 5 _ yn yn 5 _ yn yn 5 _ ym ym 5 _ | ymt ymn 5 i _ c ym[ ymU 5 P _ J ymB ym< 5 7 _ 1 ym) ym# 5  _  yjm yjm 5  _ yQm yQm 5 _ {y8m {y8m 5 _ wym wym 5 _ sym sym 5 _ oyl oyl 5 _ kylz kylt 5 o _ i gyla gyl[ 5 V _ P cylH cylB 5 = _ 7 _yl/ _yl) 5 $ _  [ypl [ypl 5 _  WyWl WyWl 5 _ Sy>l Sy>l 5 _ Oy%l Oy%l 5 _ Ky l Ky l 5 _ Gyk Gyk 5 _ Cyk Cykz 5 u _ o ?ykg ?yka 5 \ _ V ;ykN ;ykH 5 C _ = 7yk5 7yk/ 5 * _ $ 3yvk 3yvk 5  _ /y]k /y]k5 _ +yDk+yDk5 _ 'y+k'y+k5 _ #yk#yk5 _ yjyj5 _ yjyj5 {_ uyjmyjg5 b_ \yjTyjN5 I_ Cyj;yj55 0_ * y|j" y|j5 _ ycj ycj5 _ yJjyJj5 _ x1jx1j5 _ xjxj5 _ xixi5 _ xixi5 _ {xisxim5 h_ bxiZxiT5 O_ IxiAxi;5 6_ 0xi(xi"5 _ xiixii 5 _ xPixPi5 _ x7ix7i5 _ xixi5 _ xixi5 _ xhxh5 _ xhyxhs5 n_ hxh`xhZ5 U_ OxhGxhA5 <_ 6xh.xh(5 #_ xohxoh5 _ xVhxVh5 _ x=hx=h5 _ x$hx$h5 _ x hx h5 _ xgxg5 _ xgxgy5 t_ nxgfxg`5 [_ UxgMxgG5 B_ <xg4xg.5 )_ #xugxug5 _ x\gx\g5 _ xCgxCg5 _ x*gx*g5 _ xgxg5 _ {xf{xf5 _ wxfwxf5 z_ tsxflsxff5 a_ [oxfSoxfM5 H_ Bkxf:kxf45 /_ )gx{f!gx{f5 _ cxbfcxbf5 _ _xIf_xIf5 _ [x0f[x0f5 _ WxfWxf5 _ SxeSxe5 _ OxeOxe5 _ zKxerKxel5 g_ aGxeYGxeS5 N_ HCxe@Cxe:5 5_ /?xe'?xe!5 _ ;xhe;xhe5 _ 7xOe7xOe5 _ 3x6e3x6e5 _ /xe/xe5 _ +xe+xe5 _ 'xd'xd5 _ #xdx#xdr5 m_ gxd_xdY5 T_ NxdFxd@5 ;_ 5xd-xd'5 "_ xndxnd5 _ xUdxUd5 _  xVC?H$"%#[NW\M+q,P=*l  '(6G)5|S@E1OL9,FB2K4FSA<@T]YQ /. !D&U ;7J^Z*.3XR-I8R:>VC?A0 B 0  V 0 !X,h 1dB:%HcR|;_l?r9:LDGK,NKaa^L``L@(c(4hHap  ^[JZmT\4LZPDLLAT8p2p|8`Z%DȍqLĜpNd0M@ SHB -qP` i=*@0bQ m y    r          ]       i  X    1      } Q "=/  _ s H < X  d g | ` / R CA X   H    R  V&-  O l 8ok   K  U; un5Z d  r  #  # F _=f} :  4 |  <]~L( M  F   ly)   -  G G  @      &[  6 @ M iFOu  @  " 4 v f | 2 q  _polsym_gen___i686.get_pc_thunk.bx_polsym_sort_factor_gen_aux_sort_factor_gen_sort_factor_sort_vecpol_gen_sort_vecpol_centermodii_s_centermod_centermod_i_centermod_Newton_exponents_hensel_lift_fact_bezout_lift_fact_polhensellift_factor_quad_logint_special_pivot_GS_norms_chk_factors_get_LLL_check_progress_cmbf_precs_combine_factors_DDF_roots_poldeflate_i_checkdeflate_gdeflate_poldeflate_polinflate_ZX_DDF_ZX_squff_fact_from_DDF_factpol_nfrootsQ_factor0_concat_factor_merge_factor_i_deg1_from_roots_roots_from_deg1_factor_leftright_pow_u_fold_leftright_pow_fold_leftright_pow_leftright_pow_u_divide_conquer_assoc_divide_conquer_prod_factorback_aux_factorback_i_factorbackelt_factorback0_factorback_gisirreducible_gcd0_ggcd_glcm0_glcm_RgX_gcd_simple_RgX_extgcd_simple_content_primitive_part_Q_content_Q_primitive_part_primpart_Q_primpart_Q_denom_Q_remove_denom_Q_muli_to_int_Q_divmuli_to_int_Q_div_to_int_gdivexact_revpol_pseudorem_pseudodiv_subresall_subresext_RgX_extgcd_resultantducos_sylvestermatrix_i_sylvestermatrix_resultant2_polresultant0_srgcd_poldisc0_discsr_reduceddiscsmith_sturmpart_gbezout_vecbezout_vecbezoutres_ginvmod_newtonpoly_matratlift_polratlift_nfgcd___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_1_lontyp_gen_m1_gi_cmpii_diffptr_DEBUGMEM_pol_x_DEBUGLEVEL_gen_1_gen_0_bot_avma_powgi_element_pow_element_mul_idealpow_idealmul_idealpowred_idealmulred_RgM_to_RgXX_sqrtremi_FpM_to_mod_RgXX_to_RgM_FlxX_to_ZXX_FlxqX_safegcd_ZXX_to_FlxX_ZX_resultant_ZX_disc_ratlift_free_gdivgs_gpmalloc_bezout_gauss_smith_RgX_shift_shallow_truecoeff_check_ZX_qf_disc_ismonome_det_gsqr_addshiftpol_gerepilemanysp_gunclone_gclone_gerepilecoeffs2_row_i_normalizepol_approx_approx_0_isinexactreal_gassoc_proto_gvar_gred_rfrac_simple_ggval_ginv_is_rational_isexactzero_monomialcopy_polvaluation_isinexact_monomial_ground_gabs_checknf_checknf_i_gerepilecoeffs_gsubst_delete_var_factorff_polfnf_fetch_var_manage_var_factorpadic4_gmul2n_gnorm_cleanroots_roots_factmod_Z_factor_pureimag_Z_pvalrem_gpowgs_mulcxI_gconj_cornacchia_equalui_cxnorm_gcdii_lcmii_deg1pol_i_boundfact_gboundfact_gsigne_mkpoln_precision_RgX_divrem_modulargcd_derivpol_ZX_valuation_factoru_poltoser_ser2pol_i_gcopy_cgcd_FpX_split_Berlekamp_Flx_nbfact_Flx_nbroots_Flx_is_squarefree_ZX_to_Flx_divis_rem_ZpX_liftroots_FpV_roots_to_pol_FpX_roots_addsi_sign_mulsi_gerepileall_pari_warn_FpM_image_gequal_shallowconcat_gscalmat_vconcat_gdivround_gexpo_gscalsmat_dbltor_ceil_sqrt_gaffect_rtodbl_glog_log_cmprr_TIMER_lllint_i_FpX_center_FpXV_prod_FpXQXV_prod_divrr_hnfall_i_hnflll_i_poleval_equalii_int2n_cauchy_bound_gsub_denom_Z_issquarerem_shallowcopy_ceil_safe_gmin_mulir_mppi_powrshalf_addrr_sign_affir_gcmp_vecbinome_sqrtr_QuickNormL2_fprintferr_binomial_diviiround_modii_sqri_FpX_gcd_FpX_is_squarefree_scalarpol_lift_FpX_Fp_add_FpX_neg_FpX_sub_FpXQ_mul_FpX_normalize_gerepilecopy_FqX_normalize_powiu_msgTIMER_TIMERstart_FpX_divrem_FpX_red_FpXQX_divrem_FpXQX_red_gneg_i_FpX_Fp_mul_Fp_inv_FqX_Fq_mul_FpXQ_inv_FpX_extgcd_FpXQX_extgcd_FpX_mul_FpXQX_mul_gcmp0_gerepileupto_mulii_diviiexact_normalizepol_i_gerepileuptoint_shifti_addii_sign_absi_cmp_dvmdii_gen_sort_gen_sort_aux_gerepile_gneg_gdiv_poldivrem_Fq_mul_Fq_red_gadd_gmul_gmulsg_QXQ_inv_Fq_inv_gcmp1_pari_err_MultiLift_BezoutPropagate_reel4.0_affsr_root_bound_cmbf_LLL_cmbf_polidivis_DDF_poltype_gauss_factor_zero_gcd_pseudorem_i_nextSousResultant_issimplefield_issimplepol_RgXQ_inv_polcmp_BuildTree_HenselLift_RecTreeLift_chk_factors_leftright_sqr_leftright_msqr__domul_idmulred_idpowred_idmul_idpow_eltmul_eltpow__agmul__apowgi_scal_lcm_vec_lcm_gauss_cmp#1/20 1200774115 0 0 100644 134484 ` polarit3.o M M __text__TEXT*0 Q __data__DATA,00L3__cstring__TEXT`03__literal4__TEXT6<9__literal8__TEXT 60@9__picsymbolstub2__TEXTP6p9ȷ__la_sym_ptr2__DATAnJ8Mh__nl_symbol_ptr__DATAM,P__textcoal_nt__TEXTM P @tjl PUWV t$4l$0~D@uUс|LL$)~u],D$xUFׁD$u)E |$%?}ǁ@EljE ^_]$I$I땐UWVS3,D$@|$DT$79} |$@t$lj֋MD$U)L+L$9T$D$ED$l$ ET$@BED$9t$D$9D$}{D$t$@M,Lu+)9M8~DD$L$<l$D$9|D$|$D$<$ t ,[^_]Ël$4M0D$@hL~+?9wM:Fo$G$G%D$L$@, AL$D$ E,$D$Gl$L$9l$|$GTUWVS9D$(M苃J+8l$ )9|$ T$D$ |$ >|$D$(9D$,L$PAGD$$|$(9|$$}\Jl$$D$P D$T9tBT$؉D$ A $D$F|$$T$D$(|$$9|D$,9D$$}{D$$t$PJ,uǁ )ϋJ+9J:~DD$$t$<l$,D$$9|D$(9D$,t{|$t D$<[^_]ËD$ 4JD$P7~hJ+?9wJ8Fo|$$|E׋D$ |$D$<$D$h$QE T$TL$BAD$$D$,9D$$}]JD$$T$Pl$T T9BT$؉D$ A $D$Dl$$|$L$,l$$9|D$(9D$$.D$$t$TJ,uǁ )ϋJ+9wbJ:E%~DEw%? ƉwD$$L$<l$(D$$9m,$D됋*$DUWVSƋdCl$D$G$>Ƌ\C;0tDl$G$>4$D$>D$l$$d>D$D$$;>[TGWl$T$$=tj|$dC`CwM+)9w,}/~L$$u>ƋD$D$l$$=E<$D$=D$tNdC(`C}+9w"dC8EG@D$Gw$=Ћ\CA,\$t$ |$$l$(t$0p|$4Ct.#$T$=1҉Ћ\$t$ |$$l$(,É|$4$\<ڃtu|$4$<|$F$1<1҅t|$F$<|$$;놋Fv<$D$;.tV1ɉt NL$<萐<\$,|$4l$8t$0|$@l$DuS? P  t."$T$f<1҉Ћ\$,t$0|$4l$8<ËGD$|$D$H<$D$!뾋D$H|$D$<$:D$@%?9{D$Ht$D$4$l:D$D$l$$?:T$_D$HD$ l$D$D$$9x D$Hl$D$G$l$D$D$HD$G$l$D$D$HD$ l$D$l$$}9G%?9t$H<$t$9L$HD$ L$l$SD$H<$D$t$$:UWVSD$0O>8K>+)9wX.uL$09AE||$,$8[^_]ËD$4L$0D$$SD9|$?:UWVSD$0=8=+)9wD."9M| [^_]ËD$4L$0D$$D9|$9UWVSSD$0#=8=+)9wD.$9M| [^_]ËD$4L$0D$$;D9|$'9UWVSD$0<8<+)9w`.uL$09AE||$,$6[^_]ËD$8L$0D$D$4D$$D9|$8UWVSD$0;8;+)9wh.uL$09AE||$,$<6[^_]ËD$8L$0D$D$4D$$#$5D9|$7UWVSo"D$Hp2?GL$Du\$,t$0|$4l$8<ËD$@$+G|$D.tӋL$LA%D$LT$@D$D$H$D$-G D$@t L$H%9}QD$9l$|hD$LT$@L$D$ D$HT$D$D$Ct$9t$|D$9l$.}D$t:t$HD$Lt$t$D$${T$9t$|mD$Ht$LT$D$D$@t$ D$D$L$q뻋yD$H|$$6*L$@ʼn|$ $$*|$ |$Dl$$|$)$)a$E-$4-V8t$@T$D9}@ֹ~3*L$(*Qf.z"u T$(^,ʍT1Й8^ $-)\$D$ʐUWVS_7L$09AG};D$0tED$8D$ $D$D$4D$9|ŋ<$%D$[^_]ËD$8$D$$4h<\$,|$4l$8t$0l$@|$DD$Gu,$%??9OD$HD$<$ŋD$HD$}|$ }|$$L$D$LD$D$H $D$@% AL$D$$6\$,t$0|$4l$8<Ð,\$|$$L$0|$4t$ l$((q|$ $?$L$|$D$8 $D$A@% A,$L$\$t$ |$$l$(,ÐUWVS?D$0( +)9wm>7L$09AG|<$%D$[^_]ËD$9~􋃗 t$D$XD$D$($l$T}$?|$D$D$,$<[^_]$*p$OUWVS讬<~|$Xl$TD$,%9D$(D$PP~GG$D$KL$(t$\|$ L$t$L$$+D$D$,$t<[^_]ËD$\T$D$D$P$9~UWVS<l$X|$TD$,E%9D$(D$PP~OE$%?D$hL$(t$\l$ L$t$L$$:D$D$,$<[^_]ËD$\T$D$D$P$.9~뎐UWVSW|'$D$\$x?|$X%D$P$HT$P?L$T%D$L Ȩu~D$Pu D$Lt*L$LD$PL$D$ t$T$$$l$l4$l$D$f$D$H $Y '#2~+9# ':FD$XG#|$D2|$<~+9 '9FD$TG|$@|$8|$l:1#V+)T$4y D$4'EF@@xD$l$D$4$D$lD$?$$t$$@$$p$,$|$ t$D$聸$$D$D$T$ t$D$ $T}D$@$|$4T$DD$$|$$D$ t$$@L$ t$D$,$D$D$4D$D$@$Q}x|$<$t$D$$D$D$,T$ t$$袾$T$4D$|$ t$T$$[}$t$|$D$ D$@$D$@D$?t$@D$4$D$@D$?D$D$D$D$DT$HT$t$8l$@D$Dt$,$&D$@'L$D($ $D$#$t$`$D$D$@$$t$l$|$\$T$d<$D$`D$ r|[^_]Ë$AL$$D$uD$ $D$E$5$$D$E$t$X$l$TV$A%$$t$Dl$ l$D$'E$T$P$$T$L$ T$|$$$D$\C|$Ht$D$`$D$ D$E$t$T$$t$T$l$ t$$Nj38)D$\L$lT$hD$D$L$$D$$|$L$T$l$ t$$KD$DL$L$D$ $L$T$|$$l$Tl$$ŋ$T$TD$ D$L$D$D$hT$t$$Nj$<$D$]p,$t$t$ʼn<$$$L$T$PNj$$D$ D$LT$D$D$lt$$\$L$|$$$l$t$$D$D$`$Ƌ38C|$L*)‹?+(T$,9QL$,C(l$,"uU;t$LC?+)9.u}$}l$X;t$L~738wl$XD$dl$$|[^_]Í4$ԋD$D|$,D$D$HD$$WD;t$L~$r$W$l$,D$DD$D$\$L$,;t$L~$I$8<$#Z$A$ $D$@D$t$@D$<$t$$D$8D$D$T$@|$8$T$ |$l$$@L$@|$Pt$8L$|$t$ |$$CD$\D$`D$H$l$@$t$@o$ك$tD$X$$!ȨtL$0~+vz8Fo$}$$:D$ $|$D$9D$|$8 T$8)+|$(9OD$(D$Lt$PvD$L$P1$9΋<;t$T!ШtxD$$ȉl$$,EL$@u6ST$H|$H+9$w>t$HFo$`ك! $tD$\7$$!ȨtP$W0S~+W8Fo$}$W$UD$$4$T$HD$$$$W0$L$|$$fD$D$Ht$$茵$FQWS7~+v W88$ 勃W$8D$`+D$\|$HD$XB%4$蕺D$<?l$HWS.t$X+( )9W8W7|$d$FG$D$d$T$`D$d,ƋD$<9|$Dr$$|$D$$,$D$8L$D|$D$ $|$T+|$\t$dl$Tl$\l$(9l$T$Wl$`D$@ S|$@T$@)+|$49KD$4l$TD$Ptmt$,L$T1$9΋,;t$X!ШtsD$,ȋ$<$D$T$ D$D$d$諲$L$ ,$D$D$舰;t$T;t$X!Ȩu$W7D$$,$D$ܴŋ@YT$Ttt$4l$T7l$,$D$TD$L)D$@D$LD$L|$@ D$d@Gt$l$<$.D$@L$TƋD$@4L$TID$0WD$T$*l$D,19;t$X!ȨtuD$0$D$T<$D$D$ D$D$d$8$L$ ,$D$D$;t$T;t$X!ȨuW$$:L$D$,$i|$D$D$D$+|$Tt$@l$0|$TD$l$ l$,L$l$D$$t$8D$4D$8l$@$LD$8D$0$<L$4D$0T$0D$$t$@l$|$$L$DT$HD$ w|$4$8t$0$0D$8\[^_]ËT$0<\$,h|$4l$8t$0L$Dl$@D$q $衯ǁH?,$萯?H?D$H$D$v|t$D$l$ƭL$HL$<$D$D$D$$K\$,t$0|$4l$8<Ð,\$gt$ |$$ĵl$((D$4|$8D$D$0|$$Ɖ$蕤D$|$4$|$$|$4$D$ D$j,$D$诮\$t$ |$$l$(,ÐUWVS[gD$ 9D$}L$T;|$ |9}9|t$Tl$ $_UWVS^LD$lD$$0L$pD$HD$L$ E,$D$ǧ…҉t\T$<4$T$艥~.;t$lttL$lAL$؉D$ F4$D$Ƌl$0T$`|$44D$$D$4t$(9t$4D$0D$,9D$0}D$$L[^_]Ël$E$5UWVS\<t$Px+EL$,!D$,D$(l$1ҋL$(t$TD$(L$$ŋD$T)Ɖt$ L$>w+9w{0GF@|$ ~t$$L$,ud$XL$X@D$XAD$(uL$(l$,D$(ED$,<[^_]$"$t$UWVS[,|$@cO>)Չl$_+E9D$T5D$D<$T$D$T$ɤNj@ud$HD$L$H@L$HHuD$(D$,[^_]$%$k\\$LZt$P|$Tl$Xl0T$`t$D$$$t$$L$(T$8D$4L$8l$41$V+}T$<9l$D$$$l$$$ƅ$D$@4t$|$9|$|9$tBD$@$D$D$HL$$Ƌ@d$x% D$xFĬ[^_]Ã$l$H$D$,DD$t8ō )͋+9.9UL$tAE|$,$wH0D$$$)$$|$$u$D$@4L$L $7u݋$$D$D$LT$$|4$D$$l$$译똋$L$tD$D$,D$$%jD9|$D$L$蟊$$D$D$Ll$$4$D$X$|$$$L$tD$D$0D$$iD9|J$KD$L$~$$D$D$L|$$A4$D$蹐$L$$t6$L$tD$D$D$l$p$l$<$A}$ƅƒ|$d!Шl$lT$X4D$|D$h9HT$|9T$ltGL$tl$pt$`Al$4$%?D$ D$XD$|‹@d$x% D$xBt$`T$lD$t8́+)9.,9UL$tA@E|$,$V|(D$$$)$|$p|$|$ɉƒ|$d!Шu|$lD$X4T$dD$pL$$D$}L$p4$D$L$JD$pD$L$tD$$腂D9|=$eD$pL$D$D$d$}ljt$p+D$PT$pL$tT$D$$D9|$mD$pL$D$D$d$}t$pD$hT$pL$tT$D$$賁D9|f$蓊*$肊$qg$`$$O ?D$9k  ÐU1WVS?l$DŽ$EDŽ$$$$$$L%$%$$F%?$G$%?$(DŽ$$$DŽ$DŽ$DŽ$D$T$DŽ$$$L$TϋE+)9duD$T%$:D$T ,$$E)+9D$Tu$$$$EǍ )ϋ+9}e,7$|$T+E)9D$T$$l$TD$T$ ,$)+$9D$T$}$$E$?m$H$L$<$$v$0$)Ɖ$$t-$($M؋$$tSm$$ED$$QvD$E$?$y8$D$$$}$$$5$$$$D $l$|$u$0$D  $Ku$DJ$, 2J $( $0G$% $G$$$($,D$\8w+vZ2G"nD$\$0F$7|$ l$$D$4$~$0l[^_]$跄똋$0$D$ $}s2A$% AA$% A$D$D$D$$$s$҉$0.$su$$L9s.$<Ѓ$9͉$Lrԋ$DŽ$(DŽ$,DŽ$0$HMD$$l$$$M$ y8Y1ɋ$ QP,$\$($<$4L$(YuXu^u $orټ$&$& f$$٬$$߼$٬$&$$r$8DŽ$D$Hl$DT$@|$<$|<B$L$H$҉$L$l$$~$$F%?D$$LD$$$|$퉄$ $DG$%P;$)$:$DŽ$%9N9$$*$$$$9~֋$%DŽ$$9$$$L$$){D$$$t$L$w$$Bp$'+)98w,9$$L$$T$D$t$D$ D$<$0O$Ձ;$t$$9$$$E%$.$$.|.y8jDŽ$$DŽ$9$t$HD$L$$L$$(D$$$t$T$v$$Gp$+)9n8w,9$$$$$D$LL$$L$$D$$4$D$D$L$$|$ D$M$$$|ul$L$$$9$$L$$D$$$D$ t$,$T$YO$$h$A$w$$0uE%;$$tQ$LD$$${$L$L$$t$8o$L,$|$D$Ynŋ$$0%$LD$`8w+0GF@|$`~$D,$$$L1t$D$$$0tQ$L$D$$l$$d$$,$Ll$D$ $?$(y8vP$DB%tj))H$Lr|$ L$D$$st=$DB%tr))H;$ .$9q$0$D$,$(8$P$T$X$\w3$$P$҉l$$T$i&r$L$t$z $DD$$L$l$0Ƌ$Ll$D$$Dt$ D$$Nj$tl$L$,t$ D$$D,$D$$D$$(!Nj$Lt$ D$$D $D$$D$!lj$D$L,$D$h.y8wDŽ$$r<$D$uӋ$$$D$L$$[p9|$D$$$l$$f$<ƅƒ|$x!Ш*$D$p4$D$t$+l$|l$h,$>+)9.,9M$B@EW|$,$ fl$P)ω}D$$$4$|$e$8ƅƒ|$x!Ш$T$p4$D$|9 $9$t9$l$p$Al$t$%?D$ D$t$;el$t$Dt$<$t$d8+)9.,9U$A@E|$,$d(t$d)>D$$$|$$d$4ƅƒ|$x!Шu$D$p4T$x$L$$D$rf$4$D$L$3뷋$D$$D$$jD9|,$s$L$D$D$x$elj$$$D$D$hD$$jD9|t$fs9$D$xL$l$$elj$D$|$$T$D$$jD9|$r$r2$r $r$r]$@>$L$l$a>$@x҉$$L1)*׋$Lʃ$͋$$L݉w+9w p0GFn$ h$g{D$t<$$D$MZ,$Nj$D$D$t|$ D$D$dD$¹|$tD$L~$1):&$D$HL$H$$E $%D$]ip$$D$F$=$%D$$$]D$$D$ D$D$D$ $QÐ<\$,`t$0l$8|$40hT$DL$l$@D$L$$ SƋD$u t$,$\$,t$0|$4l$8<É$RNjD$$R‹@%tit$D$ T$,$ƋG%t:E<$%D$\4$D$cƋD$t$$cfuzD뉐UWVS_,/g|$@<$D$VL$DL$ D$D$<$ŋ%t4$%\%tl/gu)Nj+g+9wY/g8E%~DEO%? OD$l$$b,[^_]$b뙉,$t$PM'g00D$ D$$Ð,\$t$ |$$t$0el$(/4$TD$4$bP/%\$t$ |$$l$(ƒ,ÐUWVSeD$t$D$deD$d)L$`$  tL$&T$a$G Fu$$I^Ĭ[^_]Ë$$|$$eOL$$T$\T$/O$4$L$5Ol$\$l$$O$$a L T$ $N$$$pE?%?9t;L$L$`$%T$%DT$$TSD$x‹@%x$$:́9}$$$$e$DŽ$L$lD$h4$Ǎ$D$$<$ȋD$xʅ$tD$xT$$u^t$$T$,$\$$$$D$[$$D$$t$$'Rŋ%D$pL$l97D$x$D$D$x$]L$pƋ$D$D$]$‰L$,$T$Pt$l9t$p{e8vL$B%tJ))H$]LL$D$$:V$D$$$PL$$D$|$l$D$D$|L$(D$ $ $D$蓱t0D$xjD$tD$tD$D$|$}[yjL$|el$`$9(se8w,$t$(D$hT$ t$D$$BWD$\$D$BW뾋$$J|$t$<$Z$D$$$X|$dD$<$Y{$D$L%t$PD$HeD$De(D$H9D$tL$Ht$PD$,$D$[e0ŋ)щL$@e+9L$@eE%~DT$@E^T$@BT$$D$nTD$D$D$4[$D$TD$8%t$<D$4eD$0e(D$49D$8L$4t$L$LD$P4l$4$/GD$HOD$L9D$L|$$D$$D$F$Su#{e|L4$pUi$D$D$$$qF$St$F,$%?D$$D$ e$$)D$Xeu+v1e0EF@D$XF$l$pl$l$WX$,$D$E$pe?$$ꉔ$u~؉늸),[^_]ÐU1WVS,T$@Bt'%rщ ޅNTD$l$$8TD$D$D$$KD$D$$/ |$Dtl$TD$?$8T-T$TD$?Ƌ$8t$$ŋTD$D$$l$$A;t$D~ ,[^_]ÁO?<$D$@l$D$诸;t$D~$OUWVS|SS$D$d$D$`$Et:$L$OD$`ID$`D$`WT$\D$X$;l$X.$׋h)Ѹ )ȃ9<$;@ D$DdD$DSS@t$$ʼnD$8SS:,$|$4|;uL$4SSl$8֋SS$|$h2|$l$$=SS0L$hɉL$0D$0uD$4SS멍~OS|$,L$(+99|$,SS8F8T$(w+9DSSOS2GF@nD$,p:w+9SS0GF@|$0~D$,p$<:H1҉t'p1҃ ޅN֋D$$t$4׉0D$8D$E$BCS8+D$8,$D$D$S9$l$$tD$@|$Dŋ%9D$@T$@D$DD$8,$D$D$1$l$$zmD$@|$Dŋ%9D$@T$@D$DDW虉1)L$0$$D$Bj<$]0KKD$D$ D$$D$ 0H?D$ D$$D$/D$<D$D$D$ D$$D$/9},KJ?$D$D$t$pD$LF%?D$HD$xH?L$DW>T$<8T$@T$|B%t$+)9/"K>uT$DED$$|$@W>8t$|D$pL$x,$t$ D$L$l$|l$$/D$8W>8|$8%;D$$t9t$pK>L$Ht$"l$$D$ D$|D$9D$8D$D$L$K6T$|T$|$xD$8G$8g>0NjEō)Չl$(c>+E9D$(g>EL$(%~T$(D$(g>c>HG%? D$(HE|$$+)9D$$Lg>*D$$%L$$&D$$Et$8FED$(D$F$*4L$|t$tL$D$4$.L$@ωDh,$-Ƌ%9|(D$H4$D$/|$L<$D$4\[^_]Ël$Dl$$3.%9|벋T$@t$xDD$D$|3T$|T$ƋDD$D$t$-t$$93L$|L$$4-D1$X7$G7$67i&$!/Uv&<$/t$tT$F$H-ED$tL$@pD$<L$$9.D$$T$|D$tt$T$$ -ƋD$DD$4$,D;|$$~s$63$q6BD$4D$D$t$,l$DD$0t$l$,+)9B/#"u|$,<$,ED$$t$@uzW>8w_T$4D$pT$$x2Njt$xD$4D$4$b2L$4,$|$L$ D$Kl$4$l$+$u+v&<$o-둋D$,t$0D$F$+ED$)|$,T$d4$D$,T$D$!D$t$dT$tD$ t$dT$ D$(|$(l$,&D$Xtw|$,tAD$d|$TD$D$,D$G$R!Ƌk4l$(D$t$d<[^_]Ël$PD$ et$dD$Xt$\D$ e t$dD$Tp뱋|$`t$$Ձ9~ׁu D$`81$.t$D$D$(0k4T$ɋT$$L$`;<D$(D$H*//L$D/VSL$ t$$t$uI1y*[^Ë $%D$␐<\$,|$4t$0l$8p*D$D/$u/1\$,t$0|$4l$8<ËD$D7T$D$D$@T$$7L$tD$D $D$$1ҋHt#p1҃ u;ޅN֋p*׉(D$HD$D$D$C$&뷋D$D1)Ѝ dUWVS,l$(l$0\$Ht$ |$$t\8w+v/0GF@n\$t$ |$$l$(,$7Ë P     d  Rg_to_FpRg_to_FlRg_to_FpXQnon invertible polynomial in FpXQ_invFpX_FpXQV_compo: %d FpXQ_mul [%d] powers is only [] or [1] in FpX_FpXQV_compoFpXQX_gcdnon-invertible polynomial in FpXQX_gcdFpXQ_sqrtlFpXQ_sqrtnfflgen1/0 exponent in FpXQ_sqrtnbad degrees in FpX_ffintersect: %d,%d,%dFpM_invimagePolynomials not irreducible in FpX_ffintersectpows [P,Q]ZZ_%Z[%Z]/(%Z) is not a field in FpX_ffintersectFp_sqrtnFpM_kerfactor_irredfactor_irred_matFpXQ_matrix_powsFpX_resultant (da = %ld)polint_triv2 (i = %ld)FpV_polintresultant mod %ld (bound 2^%ld, stable=%ld)ZY_ZXY_rnfequationFinal lambda = %ld Degree list for ERS (trials: %ld) = %Z bound for resultant coeffs: 2^%ld Trying lambda = %ld ZY_ZXY_resultant_all: LERS needs lambdaresultant mod %ld (bound 2^%ld, stable = %d)ZX_resultantbound for resultant: 2^%ld modulargcddifferent variables in modulargcdgcd mod %lu (bound 2^%ld)bound 2^%ld. Goal 2^%ldmodulargcd: trial division failedQXQ_invQXQ_inv: mod %ld (bound 2^%ld)QXQ_inv: char 0 check failedffinitFFInit: using subcyclo(%ld, %ld) non positive degree in ffinitFF l-Gen:next %Z matrix cyclopol[Frobenius]subresall, dr = %ldpseudorem dx = %ld >= %ld?9B.?X@\(\?9B.?X@\(\?⍀P⍀P~y⍀Pe`⍀PLG⍀P3.⍀P⍀P⍀Pq⍀qP\⍀\PG⍀GP2⍀2P⍀Pkf⍀PRM⍀P94⍀P ⍀P⍀P⍀P⍀Pu⍀uP`⍀`PK⍀KPql6⍀6PXS!⍀!P?: ⍀ P&!⍀P ⍀P⍀P⍀P⍀P⍀Py⍀yPwrd⍀dP^YO⍀OPE@:⍀:P,'%⍀%P⍀P⍀P⍀P⍀P⍀P⍀P}x⍀Pd_}⍀}PKFh⍀hP2-S⍀SP>⍀>P)⍀)P⍀P⍀P⍀P⍀P~⍀Pje⍀PQL⍀P83⍀Pl⍀lPW⍀WPB⍀BP-⍀-P⍀P⍀P⍀Ppk⍀PWR⍀P>9⍀P% ⍀P ⍀Pp⍀pP[⍀[PF⍀FP1⍀1P⍀Pvq⍀P]X ⍀ PD? ⍀ P+& ⍀ P ⍀ P ⍀ P ⍀ Pt ⍀t P_ ⍀_ PJ ⍀J P|w5 ⍀5 Pc^ ⍀ PJE ⍀ P1, ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Px ⍀x P}c ⍀c PidN ⍀N PPK9 ⍀9 P72$ ⍀$ P ⍀ P ⍀ P ⍀ Pӿο ⍀ P麿赿 ⍀ P顿蜿 ⍀ P鈿胿 ⍀ Poj| ⍀| PVQg ⍀g P=8R ⍀R P$= ⍀= P ( ⍀( P ⍀ PپԾ ⍀ P軾 ⍀ P駾袾 ⍀ P鎾艾 ⍀ Pup ⍀ P\W ⍀ PC> ⍀ P*%k ⍀k P V ⍀V PA ⍀A P߽ڽ, ⍀, Pƽ ⍀ P魽訽 ⍀ P锽菽 ⍀ P{v ⍀ Pb] ⍀ PID ⍀ P0+ ⍀ P ⍀ Po ⍀o PZ ⍀Z P̼ǼE ⍀E P鳼讼0 ⍀0 P隼蕼 ⍀ P遼| ⍀ Phc⍀POJ⍀P61⍀P⍀P⍀P⍀Pһͻs⍀sP鹻贻^⍀^P頻蛻I⍀IP釻肻4⍀4Pni⍀PUP ⍀ P<7⍀P#⍀P ⍀P⍀PغӺ⍀P鿺躺⍀P馺衺w⍀wP鍺舺b⍀bPtoM⍀MP[V8⍀8PB=#⍀#P)$⍀P ⍀P⍀P޹ٹ⍀PŹ⍀P鬹觹⍀P铹莹⍀Pzu{⍀{Pa\f⍀fPHCQ⍀QP/*<⍀<P'⍀'P⍀P߸⍀P˸Ƹ⍀P鲸譸⍀P陸蔸⍀P逸{⍀Pgb⍀PNI⍀P50j⍀jPU⍀UP@⍀@P+⍀+Pѷ̷⍀P鸷賷⍀P韷蚷⍀P醷職⍀Pmh⍀PTO⍀P;6⍀P"⍀P n⍀nPY⍀YP׶ҶD⍀DP龶蹶/⍀/P饶蠶⍀P錶臶⍀Psn⍀PZU⍀PA<⍀P(#⍀P ⍀P⍀Pݵصr⍀rPĵ迵]⍀]P髵覵H⍀HP钵]6v666666 7%7>7W7p7777778888Q8j8888889929K9d9}999999:,:E:^:w:::::: ;&;?;X;q;;;;;;< <9<R<k<<<<<<==3=L=e=~======>->F>_>x>>>>>>?'?@?Y?r??????@!@:@S@l@@@@@@AA4AMAfAAAAAAAB.BGB`ByBBBBBBC(CACZCsCCCCCC D"D;DTDmDDDDDDEE5ENEgEEEEEEEF/FHFaFzFFFFFFG)GBG[GtGGGGGG H#H+ M}M}GM}AM}M}M}M}M}M}M}qM}[M}>\5}M}y kU%M#M#M#yM#s]M# M^M^iZ <(M oM=iBM=9 'MMMl@/?55MMMi]G/ 5|MfB,MbR5D 5MM MEMEMEMEn$MEMEMEMEZR+#4EME lP&4EMElZJMEMEMEMEMEUEMEMEMEME~MEO?%MEMEe/4EMEr-yLME4Ee;$V4EV4EhMEMMEA M M9M*MMM weY3 M ^5MMsL:0MtcB:4qUG!MMMMMMdMPM4M%-4 MMj4+MMMMMiC,MMe=3H6+@6#86MMMM MMM2!MMMMl2MM MMMMMMRMMI ;3G|kZ$MG3Goc3GGMGMGq`D vZ1NMGDMG_ MGMGxMGMGMGMGmMGMMG#MGMG^D@3G"3GMGp: 3GMGMG2GfMGY4MGMGMGkT6=MGMG{MGRMG(MGMGMGu&MG=MGH>06G6(6G. 6GMGB#|:MG#MGMGN MGMGMGWMG/MG"MGMGHMGBMGMGMGcMGWMGC ,M  MϿrU9 оU)ؽMʽM%MMP$ϻMMVM:M&MM޺MκM_6Mعǹ`MAxgK%HM)MMݶ~PMM۵^MM7MMMMMMG ²MM6M'MM ѱ^MF26FаWMFKMFB .ί¯MYM9M+ޮή2M}MuS;+ȭl7M1MMެMŬ zaA1٫ɫIM!*M! ުnM.4M.M.ө2.ĩM.M.sgL(M.M.kM.YM.I* MPMPMPӧǧ2Pm]Q$MPզŦiMPMPMPMP^MPL :,٤MmvMmi XHM1=/M1M1<M16M1- qOME)MMաMϡMM<, M}MhWGMϟMMpMUM,M&՞MMMJ:" MivOMiE-MiMiMiʜMiĜe TC5M1M1M1M15M1+M1sM1:M1- ƙMM|MIMۘMM v^RB8M  ֗—MPw^MPL ܖ̖MAl\T MAMAhFMA= .MђҔ”{G7Mђדϓwk3Mђ'Mђ֒Mђ͒ MMM{N&M ґÑM}M}jM}EM}(M}ϐM}y k6#My ڏMygR9̎sV;"MyMyݍč[G'My MyXԋMyyMyȊMyx2MyMyfVMyˈMyMyMyPMyH5MyMyMy ͇MyMyjMyLMyDMyMyrMy[MySMy"Myu gTMzI4"ӄxpXG6&˃oMzaMzF-|MzZ.MzԁMz" MzMz*Mz Mzb/Mz~Mz~Mz~Mzh~Mz5~Mz~Mz}Mz}Mz}}Mz}n}MzU}MzO}MzD}3}&}}|Mz|Mz|Mz|MzR||Mz{{Mz{Mz{Mz|{\{Mzz zzz*zM1yyM1yxyM1y-y y yxxxxxxx-xM1vxM1v xM1vwwHwM1vBwM1v"wvM1vvM1vvM1vvM1vovM1v>vM1v-v vMuvvuuu ouM uguWu1uu tttMmtvtMmtit ^tEtsMssMss sshsMUs^sMUsQs Fs-srMrrMrr rrr[1T![MT[[ZZZMTxZMTQZMT>ZMT&ZMT ZMTYMTYMTYMTYMT{Y^YDYMT>YYXXXMTXX^X@X"XMTXWWWWJWWMTWVVV|VQVMT0VMTVMTUMTUMTUMTUMTxU]UAU1TTMTT TnT^T>TSMSS SSSSWSMRSNS 8S'SSSRRM%RRM%RRM%RrRM%RhRM%RbR*RM%R!R RRQQXQHQr1ZL=Q-Q1ZLQPPPPP}1ZLPMZLPPr1ZLtPDPMZL6PMZLPOOOgOMZL]O!OMZLOwNMZLmNXN5NNMMZLMMZLMMMlMJMMZL@MMZL2MMLMZLLLLr1ZLqLMZLVL I.IHM1HHM1HHM1HHHXHHH6HM1H-H HHGMGGMG|G nG`G3GFMFFMFF FFgF'FMEEMEE EEEECEMEEME EMED DDDDDD{DQDGDMC5DDMCCMCCMCC CC{CkCJC5CMBCB<0BB BBeBHBBAAAApA?AAA@@M@@ @@a@Q@%@@???M?~?M?e?M?I?1?? >>>>>>M=>== =O=MF<@=MF<'=MF<=MF<==<<<B< <<;;R;J;&;;::::e:@09_:D09Y::M99 99999Y9I9%9H089L088M88 88@155888\84887M55777t7,155U7,7M5566666K66M555M5555i5:5M5515 #5 55M344M34M34M344^4M3L4/4 4M33M33M33 333My2u3My2_3My2N3My2C3533My222My22My22My2u2 g2O2 21M11M11 11m1G161M 11 0000|0B0M4000 00//l/MY/b/MY/U/ G/7/ /......=..-M,-M,v-M,D--M,,M,,M,, ,,l,U, ,M+,M++ +++M*+M*~+X+4+"+M**M**M** **w*g*+*!*M)*$)M))M)) )(P0(( (((({(T0'j(X0'H(8(0((('M''M'' d'8'(' '&&&&&M&& q&U&=& &MQ$%MQ$%%%%~%n%7%MQ$ %MQ$$MQ$$MQ$$MQ$$o$MQ$M$ <$,$$#M}"####}#"M}""M}"""M}"y" a"U"I"1"!!Mx!!Mx!!Mx!t! d!!M!    { 1j ^ ,  0uMfZ"6M  q!FMMM oOMJF $M 0`fM`\ H3#MyMyu hFM|&M|M|x T6Y? xTD M-M-@M-6M-)  MMMj3MMM ia:MM LM9BM95 *MM 4M!*M! MM} oc:nC+  r0 L 0 $      i0 f Ml ^ 6 Ml Ml  Ml    Ml ~ Ml p N > *   Ml   Ml    `0l h G $  MP MP MP  MP k MP ` MP L +   8MM MenMea Q<MMMo2MMMMMMMwMMM rdEM(MMMyMpMMM ,($ i MZJ MZJ i MAJMAJ i M(JM(J i MJMJ i MIMI i MIMI i ~MIvMIp ki eMI]MIW Ri LMIDMI> 9i 3~MyI+~MyI% i zM`IzM`I  i vMGIvMGI i rM.IrM.I i nMInMI i jMHjMH i fMHfMH i bMH|bMHv qi k^MHc^MH] Xi RZMHJZMHD ?i 9VMH1VMH+ &i RMfHRMfH i NMMHNMMH i JM4HJM4H i FMHFMH i BMHBMH i >MG>MG i :MG:MG| wi q6MGi6MGc ^i X2MGP2MGJ Ei ?.MG7.MG1 ,i &*MlG*MlG i &MSG&MSG i "M:G"M:G i M!GM!G i MGMG i MFMF i MFMF }i wMFoMFi di ^ MFV MFP Ki EMF=MF7 2i ,MrF$MrF i LYF LYF i L@FL@F i L'FL'F i LFLF i LELE i LELE i }LEuLEo ji dLE\LEV Qi KLECLE= 8i 2LxE*LxE$ i L_EL_E  i LFELFE i L-EL-E i LELE i LDLD i LDLD i LD{LDu pi jLDbLD\ Wi QLDILDC >i 8L~D0L~D* %i LeDLeD i LLD LLD i L3D L3D i LD LD i LD LD i LC LC i LC LC{ v i p LCh LCb ] i W LCO LCI D i > LC6 LC0 + i % LkC LkC  i LRC LRC i ~L9C ~L9C i zL C zL C i vLC vLC i rLB rLB i nLB nLB | i v jLBn jLBh c i ] fLBU fLBO J i D bLB< bLB6 1 i + ^LqB# ^LqB  i  ZLXB ZLXB i VL?B VL?B i RL&B RL&B i NL B NL B i JLA JLA i FLA FLA i | BLAt BLAn i i c >LA[ >LAU P i J :LAB :LA< 7 i 1 6LwA) 6LwA#  i  2L^A 2L^A  i .LEA .LEA i *L,A *L,A i &LA &LA i "L@ "L@ i L@ L@ i L@z L@t o i i L@a L@[ V i P L@H L@B = i 7 L}@/ L}@) $ i  Ld@ Ld@ i  LK@ LK@ i L2@ L2@ i K@ K@ i K@ K@ i K? K? i K? K?z u i o K?g K?a \ i V K?N K?H C i = K?5 K?/ * i $ Kj? Kj?  i KQ? KQ? i K8?K8? i K?K? i K?K? i K>K> i K>K> {i uK>mK>g bi \K>TK>N Ii CK>;K>5 0i *Kp>"Kp> i KW> KW> i K>>K>> i K%>K%> i K >K > i K=K= i K=K= i {K=sK=m hi bK=ZK=T Oi IK=AK=; 6i 0Kv=(Kv=" i K]=K]=  i KD=KD= i K+=K+= i K=K= i ~K<~K< i zK<zK< i vK<yvK<s ni hrK<`rK<Z Ui OnK<GnK<A <i 6jK|<.jK|<( #i fKc<fKc< i bKJ<bKJ< i ^K1<^K1< i ZK<ZK< i VK;VK; i RK;RK; i NK;NK;y ti nJK;fJK;` [i UFK;MFK;G Bi <BK;4BK;. )i #>Ki;>Ki; i :KP;:KP; i 6K7;6K7; i 2K;2K; i .K;.K; i *K:*K: i &K:&K: zi t"K:l"K:f ai [K:SK:M Hi BK::K:4 /i )Ko:!Ko: i KV:KV: i K=:K=: i  K$: K$: i K :K : i K9K9 i J9J9 i zJ9rJ9l gi aJ9YJ9S Ni HJ9@J9: 5i /Ju9'Ju9! i J\9J\9 i JC9JC9 i J*9J*9 i J9J9 i J8J8 i J8J8 i J8xJ8r mi gJ8_J8Y Ti NJ8FJ8@ ;i 5J{8-J{8' "i Jb8Jb8 i JI8JI8 i J08J08 i J8J8 i J7J7 i J7J7 i J7~J7x si mJ7eJ7_ Zi TJ7LJ7F Ai ;J73J7- (i "Jh7Jh7 i JO7JO7 i J67J67 i J7J7 i J7J7 i J6J6 i J6J6~ yi s~J6k~J6e `i ZzJ6RzJ6L Gi AvJ69vJ63 .i (rJn6 rJn6 i nJU6nJU6 40,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  c`>gGe10U/T F.6 *=a3NO(V5^h7WD [4&PX8;$d[R+ZQ9AbCS`%'Knkm*j) <2pq@_,LU:\]E.J%vHfI-?yBYJc`>gGe10U/T F.6 *=a3NO(V5^h7WD [4&PX8;$d[R+ZQ9AbCS`%'Knkm*j) <2pq@_,LU:\]E.J%vHfI-?yBYJ" #M!L  ` L \ "T#d$-,06d < B L X d pP | h'*,&/DSyQ5Ls nSGdtp>s)TmBp8,^,5$(0P//1u9D=R3ThQhl'UP(H\HLG<(+r+*i8ul!`x&P|zt"ȒbTat`$Pt" r&p`D,k6FCtG DC)E:1AlBH$HA_xu/BA`;,@?(>=>h@@$<ux0_t UP i 6(RAK4 'Dpc"y9\Dh218<` M M Mb(4n(vt<Fp2P3o J(Sd~(y\K= 6  -      8   L(  <  c     A g z   E{ E S D K   W 3    Y      W XO 1j        % }  @  f   ; y { v I Zc   U 3 t P)- :|  s   q oU,<  o   W x?T# _   O  t  `) g N  2| hDd p  t   d1 / ! ng   F   ! _ZX_renormalize_ZX_add___i686.get_pc_thunk.bx_ZX_sub_ZX_neg_ZX_Z_add_ZX_Z_mul_Rg_to_Fp_Rg_to_Fl_Rg_to_FpXQ_RgX_to_FpX_RgV_to_FpV_RgC_to_FpC_RgX_to_FpXQX_RgX_to_FqX_FpX_center_FpX_neg_FpX_add_FpX_sub_FpX_mul_FpX_sqr_FpX_Fp_mul_FpXQ_invsafe_FpXQ_mul_FpXQ_sqr_FpX_Fp_add_FpX_rescale_FpXQ_inv_FpXQ_div_FpXV_FpC_mul_FpXQ_powers_brent_kung_optpow_FpX_FpXQV_compo_FpX_FpXQ_compo_FpX_eval_FqX_eval_FpX_chinese_coprime_FpXQ_pow_FpXV_prod_FpV_roots_to_pol_FpXX_red_FpXX_add_FpXQX_from_Kronecker_FqX_red_FpXQX_red_FpXQX_mul_FpXQX_sqr_FqX_Fq_mul_monomial_monomialcopy_FpXQX_gcd_FpXYQQ_pow_FpXQYQ_pow_Fq_add_Fq_sub_Fq_neg_Fq_mul_Fq_neg_inv_Fq_invsafe_Fq_inv_Fq_pow_Fq_red_FqX_mul_FqX_sqr_FqX_div_FqX_rem_FqX_divrem_FpXQXV_prod_FqV_roots_to_pol_FqV_red_FqV_to_FlxV_FqC_to_FlxC_FqM_to_FlxM_FpXQ_sqrtl_FpXQ_sqrtn_FpXQ_matrix_pow_Flxq_matrix_pow_FpXQ_ffisom_inv_Flm_Frobenius_pow_FpM_Frobenius_pow_FpX_ffintersect_FpX_ffisom_FpX_factorff_irred_FpX_to_mod_FpV_to_mod_FpC_to_mod_FpM_to_mod_FpX_red_FpXV_red_FpC_red_FpV_red_FpM_red_FpX_normalize_FqX_normalize_from_Kronecker_to_Kronecker_FpX_divrem_FpXQX_divrem_FpX_gcd_FpX_gcd_check_FpX_extgcd_FpXQX_extgcd_FpXQ_charpoly_FpXQ_minpoly_ZX_init_CRT_ZM_init_CRT_Z_incremental_CRT_ZX_incremental_CRT_ZM_incremental_CRT_stopoly_stopoly_gen_FpX_resultant_polint_triv_FpX_div_by_X_x_FpV_polint_ZY_ZXY_ResBound_swap_vars_FpY_FpXY_resultant_init_modular___i686.get_pc_thunk.dx_ZY_ZXY_resultant_all_ZY_ZXY_rnfequation_ZX_caract_sqf_ZX_caract_ZX_resultant_all_ZX_resultant_ZX_QX_resultant_ZX_disc_all_ZX_disc_ZX_is_squarefree_modulargcd_QXQ_inv_ffinit_rand_FpX_direct_compositum_FpX_compositum_ffinit_Artin_Shreier_init_Fq_ffinit___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_2_diffptr_gen_m1_pol_x_DEBUGMEM_gen_1_DEBUGLEVEL_pol_1_gen_0_bot_avma_u_lvalrem_RgXY_swap_subcyclo_mkpoln_vals_factoru_pow_order_uisprime_FpX_is_squarefree_FpX_is_irred_FpX_rand_Flx_extresultant_Q_primpart_ginvmod_ginv_RgX_divrem_primpart_absi_cmp_Flx_normalize_ggcd_check_ZX_primitive_part_diviiexact_denom_numer_Q_primitive_part_gexpo_caractducos_gpowgs_delete_var_gerepilemany_Flx_is_squarefree_divis_rem_maxprime_check_ceil_subresall_gmulsg_Q_remove_denom_fetch_var_Flv_polint_Flx_resultant_Flx_renormalize_polcoeff_i_poldegree_Flx_pow_gerepilecoeffs_Flx_mul_Flx_neg_revpol_dbllog2_gnorml1_sqri_zero_Flx_Flx_add_Flx_Fl_mul_Flx_div_by_X_x_Flv_roots_to_pol_gsub_gdiv_absi_equal_RgX_div_by_X_x_roots_to_pol_Fl_pow_Flx_rem_mului_derivpol_gneg_i_Flx_extgcd_gcdii_Flx_gcd_i_FlxqX_divrem_gerepile_Flx_to_ZX_inplace_Flx_divrem_poldivrem_RgM_to_RgXX_FpM_mul_FpM_inv_FpM_indexrank_RgXX_to_RgM_Flm_to_FlxX_Flm_mul_Flm_inv_rowpermute_Flm_indexrank_FlxX_to_Flm_cgcd_gsubst_FpX_factor_cyclo_Fp_sqrtn_invmod_gaddmat_diviuexact_gener_Fp_local_u_pvalrem_shallowtrans_FpM_ker_Flm_to_ZM_Flm_ker_polx_Flx_ZM_to_Flm_RgV_to_RgX_FpM_FpC_mul_Flv_to_Flx_Flm_Flc_mul_Flxq_mul_FlxV_Flc_mul_Fl_to_Flx_Flx_eval_Flx_to_Flv_gerepilemanysp_shallowcopy_poleval_RgX_to_RgV_gtopolyrev_FpM_invimage_FlxV_to_Flm_RgXV_to_RgM_msgtimer_timer2_Z_pvalrem_Z_factor_addsi_sign_mulsi_powiu_bezout_gcmp1_gaddsg_Z_to_Flx_FlxqV_roots_to_pol_FlxqXV_prod_ZXXV_to_FlxXV_Fp_pow_FlxqXQ_pow_FlxYqQ_pow_gerepileall_pari_warn_RgX_shift_shallow_FlxX_to_ZXX_FlxqX_safegcd_ZXX_to_FlxX_gcmp0_gerepilecopy_deg1pol_i_divide_conquer_assoc_leftright_pow_Flx_to_ZX_Flxq_pow_gadd_gmul_modiiz_Fp_powu_fprintferr_sqrt_FlxC_to_ZXC_Flxq_powers_ZX_to_Flx_gcopy_gerepileupto_RgX_sqrspec_RgX_mulspec_Fp_invsafe_RgX_sqr_RgX_mul_gunclone_cmpii_gclone_shifti_simplify_i_normalizepol_i_gequal_equalui_padic_to_Fl_Fl_inv_umodiu_equalii_padic_to_Fp_gerepileuptoint_dvmdii_Fp_inv_modii_mulii_scalarpol_addii_sign_pari_err_fflgen_intersect_ker_FpX_factorgalois_Flx_factorgalois_FlxX_subres_Fl_mul_Flx_resultant_all_FlV_polint_all_trivial_case_fpinit_check_ffinit_nofact_reel4.0__sqr__mul__FpX_mul_FpXYQQ_sqr_FpXYQQ_mul_FpXQYQ_mul_FpXQYQ_sqr__FpXQX_mul_FpXQV_FpX_Frobenius_FlxqV_Flx_Frobenius_FlxX_pseudorem_mkintmodu_utoi#1/20 1200774128 0 0 100644 184156 ` rootpol.o $PH __text__TEXT__data__DATAH__literal8__TEXTX__literal4__TEXTX__const__DATAx__cstring__TEXTH__bss__DATAH__picsymbolstub2__TEXTt. 4__la_sym_ptr2__DATAxJ^^__nl_symbol_ptr__DATA __textcoal_nt__TEXT<  @L P)) 5gUWVSLT$dl$`J;?L$(YuI/+u~+v}FGL[^_]$׃L[^_]D9/8D$(,$|$$׃)ljD$0D$[L$0|$D$|$$}$NjD$XD$L$(ƋA$D$t$$B|$$6D$h$T$,BE$D$NjE$ D$|$$u t$$$D$0OT$,B L$(A$ D$c|$(w $t$7T$(NjB$D$7$8ƋD$XD$!t$$`|$$TD$$L$,AE$D$NjE$D$|$$ u t$$$D$mT$,B|$(G$D$O L$$ŋG$D$]$NjD$XD$G|$$l$$zD$$t$,FW|$4Ew)щL$$S+9D$$ED$$0@@D$89|$8O|$8D9׉|$8~D$@D$8D$t$,L$8<1%9ƉD$ |=D$8l$|$8~΋D$4TD$$T$$l$0D$,$:D$D$TD;t$ |$$$[$$S$2Wt$o+9w-.GD$ u D$ ED$$$1n+vR(F L$`D$\L$D$G$,ED$`t$\D$t$G$,E-$#렋GtsD$\*)Ƌ+(9l$\wAD$\0u!L$\D$\t$<$$$뱋7~+9w98Ft$` u wY$O$A%D$hƋ)+l$T9D$hL$TD$h L$XGAD$dD$h9D$d.D$\|$`t$L t$HD$P|$D$pl$d<t(<$/|$dl$TDD$h|$d9|o0n+9wR(F L$`t$\L$t$G$k*ED$`D$D$\D$G$M*Ek$렋Gt_L$L++l$P9D$\w4D$\.uD$\ El$<$$$뾋T$H>o+9w-.GD$u t$uD$7$)$ B D$B$$^$=,$D$$NUWVSGLL$`D$<T$uD$Pu%D$Ll$pul$$4${$$$$$$so$b>EL$t++t$9$w7uD$@uD$<D$xpD$<$$$ $$$h$*$i$$$$W+1T$09t$0o0G M$AL$D$ B$D$:t$0Fokmu+)9w7o8~DD$0xD$0l$$8El$D$ B$D$菶(gdg $薶P<$%i$HG|$D$ A $D$(oEk$FD$Hp+)9w2o8~L$H}$$ҵ}okuV+)T$L9L$LoF o$El$D$ B$D$&t$LFkoou+)9w7o8~DD$LxD$L$$Ҵ8G|$D$ B$D${gg$肴<$E$zl$D$ G<$D$l$`Eok$n+u)9w3o8~DD$`x$ɳ$軳Eok>W+1T$d9t$do0G M$AL$D$ B$D$t$dFokmu+)9w7o8~DD$dxD$d$ɲ$軲8El$D$ B$D$dGg}g9$kk<$$M$<UWVS裱D$()‹׳+8T$$9|$(D$$D$(uyD$(t$$ F@19|2;t$T}l$PDD$(T$$D$$԰<[^_]ËT$XL$PD$$虰9|$Iv$8U}۳|$ >)‹׳+8T$9|$ D$D$ ukD$ t$ F@1;t$T| 9}T$XD$ T$ T$XL$PD$$ͯ;t$T|${$mf۳u)׳+L$,9wyD$,u]D$,019@@|D$TD$D$,$tT$XL$PD$$;t$T|$ȯ$躯vt$,$赪 $q$c빋D$\$,t$0D$@|$4l$8<|"UWVS语,$@$DEZ{$%f.ʉ$)كݜ$uV+8$$ZUFEY$$$\$كZݜ$T$*$$^$$^,$$賫\$݄$d$$Y$d$ 苫Z{\$\$ $D$YX,˃$F9G Z$Y$$$݄$$$\$Xd$^$$$\$$DŽ$ \$DŽ$|$4,l$0$D$4݄$D$$\$$$*$ݜ$fW(,$M݄$m؋$El$D$$$踥D$$菥;$t3$p%9t$샄$ $9$ Z*$f(d$ $^$ $莦$\$+$|$ \$*^$Y$<$$$>$\$*$t$ $Y$X$Z{\$$$D$D$|YX$,̃L$xD$<Z\$\$X$6$\$|$,)t$x |$x1|$|D$t%9D$tD$p D$0D$`t$|D$tD$lD$p+D$tT$l$D$xD$h D$lP?D$h,΁)Nj+9NL$l8%~T$lG% Gl$tt$|D$pl$t9$$|$$胢)$$$T$$$D$$$ͤZY$$f.$v كݜ$݄$$諢$\$كݜ$T$ك$\$H^$7nD$Ҳ\$PD$8D$<jV)**^D$@$$\$\$X\$P\$PD$p\$D$f.D$8zt t$P\f(^l$@]l$Hl$HyD$H$d\$|$,*͍u\L$Hf.G$D$`$D$ڣ$ɣ$踣t$l\D$hT$lD$$蒠߯jUM?T$hT$d΁)Nj+9^8E%~DD$dG% D$dGL$lAiUE%?D$hD$\֋)Nj+9wh8E%~DD$\u!G% D$\Gl$lED$lHL$`$L$$$ULD$hD$A$ў룋D$`$D$¡$象$蠡MOT$hl$lT$E$z߯$G0n+8(Fl$$$ÝEƉǁ?+$uK }$,$蘞\$D$fWYD$D$,[^_]$蜠$莠R$Z$d$$t\$t$fW2,Ή$a$$T$$99|6$~$@@p$Gw$谟DE$Pt5ׁ?$$uj $$x}$W׋$?,u $x$ $$Y$ܞ9$˞Z^$UW1VS$$%$$$D$9} 9$M$9O$1ɅEI$ōq_I+)9M(uxE`9EU}D9||$,$D$辖$߉E|$$4$膖$ļ[^_]$Uw$DV݃ $\$$F$$D$ $L$D$$$tp$<$蔙$$Uցn95T-ڍrt$$$ $9~֋$$lP<$1$+$$I$$$)$_ L$4$肚$$$$$l$ |$D$ $xP$E%9ljD$h$tt$D$D;|$h~$E%9ljD$d$tt$D$賚D;|$d~$$ۗ$Nj$$×$lj$)$$D$$$$$D$$$.M(Iu+v^M2E |$$$D$E$F|$$$D$G${FF$딋$FtkMI+)9w;.u#}l$$$$謙$螙뷋MI>o+9w1.G$ u}$O$AME$)։t$|I+9$'D$|E$l$| E$$BEDŽ$$9$.$ t$p L$tt$lD$($$D$xt4t$x4$$T$|$$9|`MI.u+9wXM2E |$$L$xD$A$4F|$$l$xD$E$F]$貗뚋l$xEtcMT$p++l$t9w:.u"Ml$D$x$蓓$O$A븋MT$l(u+9w3M2ED$(u D$(F6$$$Ӗ$,$G݃ $\$$e"$$D$ $t$D$$$_nt1$$$$E$ۏ$ $$D$\Uׁo95T-ڍrt$$$_$9~֋$$lP<$p1$+l$\$Il$`RD$P$)|$P_ =$4$D$LD$`$$L$Ll$ |$D$ $I$E%9ljD$4$tt$D$aD;|$4~$E%9ljD$0$tt$D$D;|$0~$$F$Nj$$.T$\lj|$`)T$`D$`D$$$-$D$`D$$$ $M(Iu+vXM2E |$D$P$D$E$F|$D$P$D$G$F[$葓뚋$FtkMI+)9w;.u#}l$$$g$#$뷋MI>o+9w..G|$P u}$ɒ$軒ċMET$X)։t$HI+9D$XD$HED$Xl$H El$L$BED$TD$X9D$T. D$P t$< L$@t$8D$,D$T$D$Dt+t$D4$蘐l$TT$HD$Xl$T9|MI.u+9wRM2E |$D$PL$DD$A$F|$D$Pl$DD$E$Fl$V렋l$DEtcMT$<++l$@9w:.u"Ml$D$D$7 $$븋MT$8(u+9w3M2ED$,u D$,F6$蓐$腐$w$$D$$$l$L$ D$|$$SVt$ t w ^1uF$tF$uҐUWVS7\T$LD$pT$$D$@|$L%p19&Dƒ ШK9~ڋo1%PpT$8)щL$0k+9L$0o"D$00;D$8gt$0;T$8~<$ |$H|$$D$4D$<%9D$<D$0D$DD$@u D$D\[^_]ËT$pz<$薅-L$tىL$,ok0N+/L$$D$$oFt$, D$$opkl$DEl$@%ŋ+ )9wjo:uL"7D$@)D$D;t$@D$$;t$@~9}L$D|$D$v$h$Z<$I<$|$pD$(t$@|$@D$,%h9D$p|<$"t 9~<$贉T$()‰Й;D$,MD$,D$,ҋD$tL$<|$4D$$szT$믐UWVS觊MNjAuL$D$ F4$D$|$$#L$NjAl$ L$D$ E,$D$ŋߌ0D$9D$ L$AL$L$ ؉D$ A $D$螉L$(9AtVEl$؉D$ G<$D$q|$(GD$ D$$t$l$$0D$(<[^_]Ë׌‹׌닉|$E$3t$(F|$E$|$(G$!-tyߌ0FD$,ی+vHL$,ߌF G,$D$贈t$,FG,$D$螈L$,AD$,0$蛈몉|$,$t D$=Wǁ<ǁ@ =ǁ<ǁ@= ǁ<ǁ@}=ǁ<ǁ@Kǁ<ǁ@2UWVS[,L$@%ƒ)ʍiT$<+)9ʼnt$`D$19}L$@|$D9|ꋓt$)+9D$1;t$8}L$@D ;t$|t$l$4$_<$D$D$D$KD$%ph+)9ws8uUG@719G~T$|$$,[^_]ËL$D$萅D 9~$X$J|$9$(D$@$蹄댃<|$4|$D\$,st$0HD$@l$8$誂D$D$@)|$_|$|$ t8D$l$D$D$@l$$D$D$\$,t$0|$4l$8<Ë׋+)9wS.Ml$t$@F9E}D$L$@D$D$D$$eD9|k$럐UWVSg|݄$$\$hUT$\%D$dD$\D$LD$\+9t$LD$\u@"uN+L$H9MD$HEF"u~+}FG`GFT$d$D<$D$D$`ƋD$d$+D$`D4$D$Ł|$`L$H|$`~ʋq4$ςL$LAD$4$s‹^x$|$<$0*L$dx\$@L$8D$`T$@T$4D$$^T$Pl$`t$H,$D$;l$`}?D$$L$HD$`tT$LD$$ـ<$D$;l$`|щ<$t$`l$LDD$<$舀‹tD$4$D$:T$4$Gwx\$D$f.D$`D$$|$`"D$Pvoxf.t$hw%T$d$l$\D$P(|[^_]l$@d$h^l$PfWgzXl$8$$l$@Z\$(D$h$1Z[y\$T$@\$Y\$(\$(XL$(^T$@D$@$$\$|$,ωL^D$8$~*D$`\$l$^,$~\$P\$d$_\$P$$$$`$كWyUWVSB݄$$ݜ$P%$<~$<$~;$<$} Z:u$ ;$<|苄$<$P$z*ȋ7^$@E$`|4ك:u$ݜ$(݄$@$\$ݜ$ $݄$(^Z>u$<݄$ ƉD$$(݄$@$X$ \$ $$Y$$݄$\$X$8;$<|!9$<3$<93$8݄$$ݔ$ N9P$<7$9$<bt)9N*X  $A|$<)btݜ$9N*X$|$\$8ZFu9$|$8^$\$W$ YX$($ZBuX$^$ $<)\$()$*9^N$@D$$݄$@$\$ ݄$\$襀$8‰+$8)9|\9tF݄$$8$ݜ$($(X$@$@݄$@>$8;$<~݄$$8$ݜ$ $ \$@4$(YX$ $(Z>uX$ $Y$$ $\$($@#$ Z>uX$(;$<Y$6Z:u$f.zt\$;$<~f(bv$*$<fT$ZBuYfWRvZJu^Ztf(XfT,$f.̉$4"$y$x$$41틌$I$4 $(x$$)$_$$ $<$y$$4$1҉$L$I$4w$L$)$_$$U  n$<$y$$4$$D$ $=$ŋ%p$4$|$x݄$@D$$8l$$$T$ |$\$t$ l$$踌$<1틼$L$$4<$I$4zv$4$L)$4_$0$0 $L<$w$,$,1$,t$4$x$LI$4$$u$L$)$_$$U 8$L<$Xw$$4$$D$ $y$$E%p$1$ $I$u$$)$_$$    $<$v$$$1$4$|$L҉$$I$4ot$L$)$_$$U O$L<$u$$4$$D$ $$$E%p$1틼$ɉ<$I$s$$)$_$$ t1$<$+u$$$Č[^_]Ëzvu~+vg}F $$D$$D$F$`G$$$T$D$E$5GW$u닋$Gz$)Ƌv+9$wK$7u.$$t$$$q$Ju$w+9w^z2G $$D$|$E$F$D$$D$E$FT$:s딋Etrz$++$9$w>$>u!$ |$,$o$r$r봋zL$|>o+9w/.GD$xuD$xE$pr$br$Tr$D<$D$+p$<$$D$ p zvu~+vg}F $$LD$$D$F$G$$$LT$D$E$G9$yq닋$LGz$)Ƌv+9$wK$7u.$$t$$L$3m$p$p맋zvu~+9w5}F$ uw $p$p뽋zv$+)9$$C$$$ $$LBFDŽ$$9$.$$$ $$D$t$$L,Et3,$6n$$$$9|$zv>w+9w^z2G $$D$|$E$aF$D$$D$E$=FT$n딋Etrz$++$9$w>$>u!$ |$,$j$nn$`n봋z$>o+9w/.GD$tuD$tE$n$n$mzvu~+vg}F $$D$$D$F$G$$$T$D$E$輽Gx$[m닋$Gz$)Ƌv+9$wK$7u.$$t$$$i$l$l맋zvu~+9w5}F$ uw $ol$al뽋zv$+)9$$C$$$ $$BFDŽ$$9$.$$$ $$D$p$$,Et3,$j$$$$9|czv>w+9w^z2G $$D$|$E$CF$D$$D$E$FT$j딋Etrz$++$9$w>$>u!$ |$,$f$Pj$Bj봋z$>o+9w/.GD$puD$pE$i$i$i$D<$D$g$<$$D$g!zvu~+vg}F $$LD$$D$F$膹G$$$LT$D$E$[GP$h닋$LGz$)Ƌv+9$wK$7u.$$t$$L$d$ph$bh맋zvu~+9w5}F$ uw $h$h뽋zv$+)9$$C$$$ $$LBFDŽ$ $9$ .$$$ $$D$l$ $L,Et3,$e$ $$$ 9|;zv>w+9w^z2G $$D$|$E$F$D$$D$E$辶FT$]f딋Etrz$++$9$w>$>u!$ |$,$3b$e$e봋z$>o+9w/.GD$luD$lE$e$e$tezvu~+vg}F $4$LD$$0D$F$hG$0$4$LT$D$E$=G$d닋$LGz$0)Ƌv+9$0wK$07u.$0$0t$$L$`$Rd$Dd맋zvu~+9w5}F$4 uw $c$c뽋zv$<+)9$<$(C$($<$( $,$LBFDŽ$8$<9$8.$0$4$  $$$D$h$8$L,Et3,$a$8$($<$89|{zv>w+9w^z2G $4$0D$|$E$IJF$4D$$0D$E$蠲FT$?b딋Etrz$ ++$$9$0w>$0>u!$0 |$,$^$a$a봋z$>o+9w/.GD$huD$hE$ra$da$VaD<$D$4_D<$$D$_zvu~+vg}F $$D$$D$F$G$$$T$D$E$G$`닋$Gz$)Ƌv+9$wK$7u.$$t$$$B\$_$_맋zvu~+9w5}F$ uw $_$_뽋zv$+)9$$C$$$ $$LBFDŽ$$9$.$$$ $$D$\$$,Et3,$E]$$$$9|zv>w+9w^z2G $$D$|$E$pF$D$$D$E$LFT$]딋Etrz$++$9$w>$>u!$ |$,$Y$}]$o]봋z$>o+9w/.GD$\uD$\E$]$]$]zvu~+vg}F $$D$$D$F$G$$$T$D$E$ˬGp$j\닋$Gz$)Ƌv+9$wK$7u.$$t$$$$X$[$[맋zvu~+9w5}F$ uw $~[$p[뽋z$)׉$v+9$C$$$ $$BFDŽ$$9$.$$$ $$D$X$$,Et3,$'Y$$$$9|[zv>w+9w^z2G $D$$D$E$RF$$|$D$E$.FT$Y딋Etrz$++$9$w>$>u!$ |$,$U$_Y$QY봋z$>o+9w/.GD$XuD$XE$Y$X$X$jU$IU>$@ZNu$8^܉D$$$@$$p݄$@l$L$\$ $h;$<ݜ$كRuݔ$ݜ$ f(bv$ZJu\$f(fTf.P $rU$TD$$Q$Rbv$Uf(\$8$ZBuL$8fTXf.$ ;$<J$*$<$fTZBufWRvYf(݄$^ZtfTZJuXݜ$h݄$,ݜ$`$f.܉$4 $iT$S$4$1틄$I$4$S$$)$_$$ Y$<$ U$$4$1҉$L$I$4R$L$t)$t_$p$pU XR$<$}T$l$4$$lD$ $$ŋ%p+݄$pݜ$P݄$hݜ$H݄$`ݔ$@E%p<29$8S$4\$$݄$H\$$|$xD$݄$P$8L$t$\$D$,$a؉,$zO݄$@\$$݄$H$\\$$4݄$P+$8$XL$\$$|$l$t$|a$\$5N$x$X$N$|D<$D$ORD<$$lD$5Rzvu~+vg}F $t$D$$pD$F$/G$p$t$T$D$E$G$S닋$Gz$p)Ƌv+9$pwK$p7u.$p$pt$$$]OJ$S$ S맋zvu~+9w5}F$t uw $R$R뽋zv$|+)9$|$h>$h$|$h $l$LBFDŽ$x$|9$x.F$p$t$` $\$dD$d$x$,Et3,$`P$x$h$|$x9|zv>w+9w^z2G $t$pD$|$E$苡F$tD$$pD$E$gFT$Q딋Etmz$`++$d9$pw9$p7u$p t$,$L$P$P빋z$\}w+9w.uGD$du D$dF1$>P$0P$"Pzvu~+vg}F $$D$$D$F$G$$$T$D$E$G/$O닋$Gz$)Ƌv+9$wK$7u.$$t$$$DK$O$N맋zvu~+9w5}F$ uw $N$N뽋z$)׉$v+9$>$$$ $$EFDŽ$$9$.$$$ $$D$`$$,Et3,$GL$$$$9|zv>w+9w^z2G $$D$|$E$rF$D$$D$E$NFT$L딋Etmz$++$9$w9$7u$ t$,$H$L$vL빋z$}w+9w.uGD$`u D$`F1$%L$L$ L$H$nHf)\$@ $fJ\$8f(\$@T$8X$$"$AH$ Hf(bv݄$$$8ݔ$($89$<c$$E݄$@\$$7*U1WVSJ$%9‰$5$Ft!;$$Du1;$$$$|tG$$$x>$$t\$$3Z?T$(T$(fT@f.2"$G$F$t$\1$\I$t$F$P$\)$P_$L$L 3-$\<$\H$H$t$H1$l$I$tQF$l$()$(_$$$$U $H<$G$ $t$$ D$ $$4$E%pI$41$E*$$f(Z?X$+$x$|$@Gd$@Z?\$(t$(YX,I$tLw_EǍ )ϋL+9}hG`9G}9|G%  GL0LN+($$LF"y7L+)9L*%E~DGu%? Ɖu$h1틼$G$|@$B B$g@$A$t$44$I$tC$$4)$_$$ <6$4<$(E$$|ك?ݜ$`DŽ$pDŽ$h9ω$$$,$D$_?ƋL(F$QBZ?$`>Xf.G$`f.>w2$|!Ȩt f.>w;$Z$h$$DB$Y>Z?$^>+$x$h$$݄$`X$$|$,L$\$ 1퉄$t$p$tD$t$$t$pI$t$A$$p)$_$$ w q  $p<$C$$$|CʼnD$$$=l$$$1$o=$H $$?$l$x)$$$@$Ƌ$$@$lƋ$$I$$tx@$$l)$_$$ <6$l<$A$$t$$D$ $$ŋ%p$1($$l$$t4$I$t?$$l)$_$$ 1+$l<$ AD$|$t$|$|D$ $G$ŋ%p$(Ĝ[^_]ËD<$D$@D<$D$|D$?뼋LLu~+vg}F $$lD$$D$F$G$$$lT$D$E$ΑG$mA닋$lGL$)ƋL+9$wK$7u.$$t$$l$'=q$@$@맋LLu~+9w5}F$ uw $@$s@뽋LL$+)9$l$x%D$x$t$x t$|$lBFDŽ$$9$.v$$|$p |$lL$tD$h$$l,Et0,$?>$t$x$$9|LL>w+9w^L2G $$D$|$E$mF$D$$D$E$IFW$>딋EtlLT$p++|$t9$w>$>u!$ |$,$:$>$r>봋LL$l>o+9w/.GD$huD$hE$$>$>$>D<$D$;D<$$D$;LLu~+vg}F $$lD$$D$F$ƍG$$$lT$D$E$蛍G$:=닋$lGL$)ƋL+9$wK$7u.$$t$$l$8f$<$<맋LLu~+9w5}F$ uw $N<$@<뽋L$)׉$L+9$C$$$ $$lBFDŽ$$9$.b$$$ $$D$d$$l,Et3,$9$$$$9|LL>w+9w^L2G $$D$|$E$"F$D$$D$E$FT$:딋EtrL$++$9$w>$>u!$ |$,$s6$/:$!:봋L$>o+9w/.GD$duD$dE$9$9$9LLu~+vg}F $$pD$$D$F$訉G$$$pT$D$E$}G$9닋$pGL$)ƋL+9$wK$7u.$$t$$p$4+$8$8맋LLu~+9w5}F$ uw $08$"8뽋L$)׉$L+9$C$$$ $$pBFDŽ$$9$.'$$$ $$D$`$$p,Et3,$5$$$$9|LL>w+9w^L2G $$D$|$E$F$D$$D$E$FT$6딋EtrL$++$9$w>$>u!$ |$,$U2$6$6봋L$>o+9w/.GD$`uD$`E$5$5$5݃>4$T$0\$8l$0\$(D$(\f.$`~$`$h$$pX4$/݃>$\$ՆL(\$(T$(LLu~+vg}F $$4D$$D$F$G$$$4T$D$E$˄G$j4닋$4GL$)ƋL+9$wK$7u.$$t$$4$$0f$3$3맋LLu~+9w5}F$ uw $~3$p3뽋LL$+)9$$C$$$ $$4BFDŽ$$9$.b$$$ $$D$\$$4,Et3,$'1$$$$9|LL>w+9w^L2G $$D$|$E$RF$D$$D$E$.FT$1딋EtrL$++$9$w>$>u!$ |$,$-$_1$Q1봋L$>o+9w/.GD$\uD$\E$1$0$0$0Q$0$0$0g$4D<$D$w.$4<$$ D$W.tLLu~+vg}F $($HD$$$D$F$QG$$$($HT$D$E$&G$/닋$HGL$$)ƋL+9$$wK$$7u.$$$$t$$H$+$;/$-/맋LLu~+9w5}F$( uw $.$.뽋LL$0+)9$0$C$$0$ $ $lBFDŽ$,$09$,.$$$($ $$D$X$,$H,Et3,$,$,$$0$,9|LL>w+9w^L2G $($$D$|$E$}F$(D$$$D$E$}FT$(-딋EtrL$++$9$$w>$$>u!$$ |$,$($,$,봋L$>o+9w/.GD$XuD$XE$[,$M,$?,LLu~+vg}F $P$\D$$LD$F$3|G$L$P$\T$D$E$|G$+닋$\GL$L)ƋL+9$LwK$L7u.$L$Lt$$\$a'o$+$+맋LLu~+9w5}F$P uw $*$*뽋LL$X+)9$X$DC$D$X$D $H$\BFDŽ$T$X9$T.k$L$P$< $8$@D$T$T$\,Et3,$d($T$D$X$T9|LL>w+9w^L2G $P$LD$|$E$yF$PD$$LD$E$kyFT$ )딋EtrL$<++$@9$Lw>$L>u!$L |$,$$$($(봋L$8>o+9w/.GD$TuD$TE$=($/($!($$$$UWVSs' $ %$D$5$ݜ$$ D$5$\$T$\Zf.$&Zf.v 1 [^_]݄$$%*$d$0ZYL$0L$D$wZf.$]كݜ$D$01$}%$$\$$ \$$X$,ˍt9$I~#$$ )$_$ C=$ $%$$$$DD$D$=$$ى$L$$,$$D$L$)$$D<$"$$$1$q498$D$e"9~ۋ$D$!uy 9$O1ҋ)y)$IЋEr_+)9 )(E`9EU}D9||$D$,$|$$$<$$$$1҉$$I$I!D$|)|$|_|$x$ m$$"D$tL$t$1퉌$4$4#$D$`$I$ D$T)l$T_l$Pl$`U t[D$`$V"D$Lt$L$t$$$(ET$L$T$$$,))u~+vQ}F D$Tl$PL$`D$l$A$gsGl$t$TT$`t$B$IsG@$"롋t$`Ftq)D$P)Ƌ)+9L$Pw?D$P7u%L$PD$Pt$D$`$$w"$i"볋))u~+9w2}Ft$T uw)$"$ ")T$\)׉|$H)+9D$\D$Hl$HD$\ El$LT$`BED$XD$\9D$X.D$Pt$T|$@ |$uD$P |$,$ $T $F 뺋)T$<>o+9w/.GD$,ut$,u$$$))u~+vW}F D$|l$x$D$l$A$oGl$t$|$t$B$oG+$T뛋$Ftt)D$x)Ƌ)+9L$xwBD$x7u(L$xD$xt$$$!$$밋))u~+9w2}Ft$| uw#$~$p))$+)9$l$p D$p$t$p t$t$BFDŽ$$9$.D$xL$||$h |$dD$lL$($$,Et0,$A$|$p$$9|F)8)w+9wR)0G L$|T$xL$T$E$umFD$||$xD$|$E$WmFc$렋Etc)L$h++|$l9D$xw8D$x>uD$x |$,$$$뺋)T$d>o+9w/.GD$(ut$(u$;$-$$$$$$$T$ L$|$$$1$~$$ŋ$$fŋ$ $U,$)ŋ$T.$ $$$I$$$)$_$U t)$4$$$$9))}w+vguG $$D$$D$G$jF$$$T$D$E$jF_$Q닋$F)$)Ƌ)+9$wI$7u,$$t$$$ q$$멋))u~+9w7}F$ u ws$e$W뻋))$+)9$$?$$$ $$BFDŽ$$9$.$$$ $$L$$$$,Et3,$ $$$$9|I)8)w+9w^)0G $$L$T$E$8hF$$D$|$E$hFT$딋Etm)$++$9$w9$7u$ t$,$$J$<빋)$}w+9w.uGD$$u l$$n1$$$))u~+v`}F $$$ D$l$A$fGl$$$ t$B$fG$>뒋$ F)$)Ƌ)+9$wK$7u.$$t$$ $_$$맋))u~+9w5}F$ uw $R$D뽋))$+)9$$D$$$ $$ BFDŽ$$9$.[$$$ $$L$ $$ ,Et3,$$$$$9|)8)w+9w^)0G $$L$T$E$%dF$$D$|$E$dFT$딋Etr)$++$9$w>$>u!$ |$,$v$2$$봋)$>o+9w/.GD$ ut$ u$$$݄$$Z\$D$^D$0X$|$0ݜ$Y$$W*$l$0UWVS$$ $T$%$" $%l$$9\$(d$(Y,H$$w$lj,$f)Nj$$*$ \$($*$T$(,҉$$,:DŽ$L$L|.D$D1$L$8D$LD$1$ $$$ 0$$$I$ $$)$_$$ S$<$$$1I$u_E )ϋ+9}G`9G}9|$<$D$ @@$$$L$|$f,$$$ $EǍ )ω$+9W $E0 "$0$ $ $$_|$HT$ $L$$ $ ŋ$$n9? ;$}+$$)$$D̋D$H$$%$$$p )͋+$9 $o "$0DŽ$$9$$$$$ $0~+9 8FG@$OD$|$$$t$ $1;$4 $$$$9$2$D$$l$DE$$1퉌$$I$$u D$x$)l$x_l$t|$t 5|$D$pT$p%P|t$pF@$$D$D$p$ $<$D$8)$ \$($l$(,؍t*9LxF8w$$($t$D$$ŋ$D$X%*D$\<$ 1\$(t$(,t7t$d~!$c$[^_]Ë0݉~+:FG`G @w|$$l$\l$$ D$$D$$D$`t$\D$T9t$`D$Tt$d$D$D$`t$ D$D$\T$$^$|$X;D$XƋ$OD$`|$X݋<t,l$`$D$\l$`9pD$XG$9|}1FD$P+9wHL$PF l$G$jt$PFl$G$j|$PGD$PX$H 몉l$G$j6W%?L~uf8o+9w5 (Gu u$$뽋_U)ŋ+9w5(uul$<$$N$@$2_$!$|$$$8}w+v[uG D$xL$t$L$D$E$sjFD$x$D$D$tD$G$NjF$i뗋$Hu}?l$x09|$xO+~9w5:F u w$$뽁$9T$t[D$t/)Ƌ+(9l$tw@D$t7u&L$tD$tt$$ $$^$P벋$)׉|$l+9$D$l$t$l t$p$BFD$|$9D$|.r|$hL$|$<t$|$|t$l$|$|9|'.u+9wR2E D$xl$tD$l$G$ hFD$xD$D$tD$G$gFi$렋Wuy?t$xL$h9|$xO8o+9w5(G u }$$뽁9L$tD$tM)Ƌ+9L$tw7D$tuuD$t t$<$V$$$$<$D$$;$|$0$$t$^$$yZ$D,$D$P$9|($_D$HL$_|$HE+ )9}G`9G/}9|7U)ŋ+9wD(%E~DGu%? Ɖuk$?$1C$ #$$$(>+8 )9$wa$"$>9$| $$44$$4$K9|$T$F#$5u~+vg}F $$$T$D$E$)QG$$D$$D$F$PG5$닋$A$/)Ƌ+(9$wK$7u.$$>t$$$W$$맋u~+9w5}F$ uw$$뽋$)׉$+9$C$$$ $$BFDŽ$$9$.$$$ $$D$4$$,Et3,$U$$$$9|>w+9w^2G $D$$D$E$NF$$|$D$E$\NFT$딋Etr$++$9$w>$>u!$ |$,$$$봋$>o+9w/.GD$4uD$4E$.$ $(UWVSk݄$$DŽ$ݜ$9ZY$Z%$$Y$,$$*$^$$$$<@$$$Z\$Y$)^T$$XZY$,$fW$f(ڋfT%f.ˉD$xo$$,$D$t1D$tI$$;D$hD$t)l$h_l$d|$d m|$t<$D$`$$,$D$tD$|t$x+)9/u$GET$xt$||$`DփD~1L$|D<$D$zD<$D$`D$ϋt$|F<$D$JE$$X$݄$$\$l$^$,$Z\$H$$\$\$HZL$DŽ$^X,9$$$l$,$%9})$tE%9|݉<$&$)Ɖ򋳣T$D%D$@)͋+9D$@D$@. EGE;t$@$$E,$%)NjD$,D$9ǹL)$$I$$/$$$$ $o$${p$,$D$ZZ$Y$$*$4L$8^$,$Z\$Y$ZD$^X)$Y|$8$,9$$$ك8\$01$%y*,$[^_]ËD$VD$0v\$0%9~D$DD$$:D;t$@|$$ $u~+vU}F D$ht$tD$D$dD$F$FGD$dT$hl$tT$D$E$FG*$I띋|$tGtqD$d)Ƌ+9L$dw?D$d7u%L$dD$dt$D$t$$$볋u~+9w2}Ft$h uw)$y$kT$p)׉|$\+9D$pD$\D$pt$\ t$`l$tEFD$lD$p9D$l.L$dD$h|$T |$PL$XD$(D$l|$t,Et',$Xl$lt$\D$pl$l9|p>w+9wR2G D$h|$dD$|$E$DFD$hD$D$dD$E$wDFl$렋EtcT$T++|$X9D$dw8D$d>uD$d |$,$ $$뺋L$P>o+9w/.GD$(uD$(E$[$M$?$$U1WVS݄$$\$h݄$\$`݄$\$X%9‰D$T2$Ft;T$T$Du1;T$T$|$T$L$PD,$D$D$X$T$|\$D$PD$`D$L$ t$T$\$,$b$+)9Ɖ|$HD$H|$H7$FG$+)98pZT$t7|$t$AL$xG0$D$tt^L$h,N|$|L$L$TUWVS ݄$4$(ݜ$E%u$*ȉ$$0$Y,L+$ =m<$$<${$t$1$I$$w$X$)$X_$T$TU n9h87$4$$P$P$t1<$D$$$$҉$$(I$$$($4)$4_$0$0U 432$(<$A$,$1$$$$$,$$E%$E$ $ )ЅI$$w_$  )922}2G`9G}9|7U)ŋ+91(%E~DGu%? Ɖul$$$L$k$,$D$$D$)$$$D$$$D$D$$$$,$DD$$$D$$$$$$$Ƌ$T$$:D$t$$>$$9Es8>w5$$$ t$ T$D$$$L$볋$ D$$DŽ$$$9$h$$ ZTf.zf(⋃ZfTf.쉄$$$Ɖ$ʼnt$$$D$xD$߉|$ E,$D$*l$$$ŋ@%?@$Uu)Nj+98E%~D$@G% $G<$$D$$D$Ƌ@uCZZ$$ Y Nj$0$1FUP,$$3\$8FL$8%?- *YX뇍$L$e#$T$C$$$Z $,^$D$$$$ ݄$T$D$\$ $;$ݜ$كݔ$ݜ$,f($ \$f(fTZf.\,$$D$$$'$\$8f($L$8ZfTXf.$+;$J$$ZfTfW݄$Y$f(Z^fTݜ$$݄$X$ݜ$,$f.+$$$$1틄$I$$$$)$_$$ (&]&$4$e$$$$1҉$I$$$L$$)$_$$U I#C"!$4$$$$$D$ $[$ŋ%p!$$$$T$ t$$D$݄$$ݜ$݄$ݜ$݄$ݔ$%p,79$, $\$$݄$\$$$D$݄$$,l$L$\$D$$$1$$$$ɋ$$|I$$$x$$l$|)$l_$h$h $|4$$d$$x$dD$ $%Z$xŋ%pq$$1$P$$$L4$I$$@$L)$@_$<$< mg$L4$'$8$$P$8D$ $HY$Pŋ%p@$1$$$I$$)$_$$$ QK$4$_$$$$$$$,$$$$M$%ʉσ$$)Љ$1I$p_)9}G`9G}9|7U)ŋ+9J(%E~DGM%? Ml$$$D$$$D$$D$=$$$$$D$D$$D$$$$DD$$$D$$$$$$Ƌ$D$$$ND$t$$R$$9Es89w5$$$t$ L$D$$$t$볋$1D$$$*$$$$$$$$$$E%Mʉ$$)Љ$$I$w_)9 } G`9G/}9|7U)ŋ+9" (%E~DGM%? Ml$$$D$$$D$$D$H$$$$$D$D$$D$$$$DD$$$D$$$$$$Ƌ$D$$$YD$t$$]$$9Es89w5$$$t$ L$D$$%$t$ 볋$1D$$$5$ $$CD$$u$$,$t$$D$$$_$$+$,D$$$D$$$$$$$0$$$I艄$$$)$_$$  $4$C$$<$18$$$$I$($$)$_$$ tW$4$$$@$D$ D$$<$l$$ [^_]Ë}w+vguG $$D$$D$G$&F$$$T$D$E$&F1$/닋$G$)Ƌ+9$wI$7u,$$t$$$q$$멋u~+9w7}F$ u wE$C$5뻋$+)9$$C$$$ $$BFDŽ$$9$.$$$ $$D$|$$,Et3,$$$$$9|>w+9w^2G $$D$|$E$$F$D$$D$E$#FT$딋Etr$++$9$w>$>u!$ |$,$h$$$봋$>o+9w/.GD$|uD$|E$$$}w+vguG $$D$$D$G$"F$$$T$D$E$r"F|$닋$G$)Ƌ+9$wI$7u,$$t$$$q$${멋u~+9w7}F$ u w$%$뻋$)׉$+9$D$$$ E$$BEDŽ$$9$.$$$ $$D$x$$,Et3,$$$$$9|f8w+9w^2G $$L$D$E$F$$|$D$E$FT$s딋Etr$++$9$w>$>u!$ |$,$I$$봋$>o+9w/.GD$xuD$xE$$$$y$h^$W>$F$56$$}w+vguG $$D$$D$G$F$$$T$D$E$F$닋$G$)Ƌ+9$wI$7u,$$t$$$Fq$$멋u~+9w7}F$ u w$$뻋$$+)9$$$C$$$$ $$BFDŽ$ $$9$ .M$$$ $$ D$t$ $,Et3,$I$ $$$$ 9|>w+9w^2G $$D$|$E$tF$D$$D$E$PFT$딋Etr$++$ 9$w>$>u!$ |$,$$$s봋$>o+9w/.GD$tuD$tE$"$$D<$D$D<$$8D$}w+vguG $@$LD$$<D$G$F$<$@$LT$D$E$F$8닋$LG$<)Ƌ+9$<wI$<7u,$<$<t$$L$q$$멋u~+9w7}F$@ u w$L$>뻋$H+)9$H$4C$4$H$4 $8$LBFDŽ$D$H9$D.1$<$@$, $($0D$p$D$L,Et3,$$D$4$H$D9|>w+9w^2G $@$<D$|$E$ F$@D$$<D$E$FT$딋Etr$,++$09$<w>$<>u!$< |$,$q$-$봋$(>o+9w/.GD$puD$pE$$$D<$D$D<$$dD$vY}w+vguG $l$|D$$hD$G$pF$h$l$|T$D$E$EF$닋$|G$h)Ƌ+9$hwI$h7u,$h$ht$$|$q$\$N멋u~+9w7}F$l u w$$뻋$t)׉$`+9$tC$`$t$` $d$|BFDŽ$p$t9$p.$h$l$X $T$\D$l$p$|,Et3,$$p$`$t$p9|y>w+9w^2G $l$hD$|$E$F$lD$$hD$E$FT$G딋Etr$X++$\9$hw>$h>u!$h |$,$$$봋$T>o+9w/.GD$luD$lE$z$l$^؉$׻݄$\$$݄$$\$$݄$+$,$L$\$$l$|$t$$$蒺$$$|$D<$D$謾D<$$D$蒾}w+vguG $$D$$D$G$F$$$T$D$E$aF$닋$G$)Ƌ+9$wI$7u,$$t$$$躻q$x$j멋u~+9w7}F$ u w$$뻋$+)9$$C$$$ $$BFDŽ$$9$.U$$$ $$D$h$$,Et3,$轼$$$$9|>w+9w^2G $$D$|$E$ F$D$$D$E$ FT$c딋Etr$++$9$w>$>u!$ |$,$9$$봋$>o+9w/.GD$huD$hE$薼$舼$z}w+vguG $$D$$D$G$n F$$$T$D$E$C F+$닋$G$)Ƌ+9$wI$7u,$$t$$$蜷q$Z$L멋u~+9w7}F$ u w?$$뻋$)׉$+9$C$$$ $$BFDŽ$$9$.$$$ $$D$d$$,Et3,$蟸$$$$9|>w+9w^2G $D$$D$E$ F$$|$D$E$ FT$E딋Etr$++$9$w>$>u!$ |$,$$׸$ɸ봋$>o+9w/.GD$duD$dE$x$j$\$$f)\$@ $蹶\$8f(\$@t$8X$$$蔴$sf($ٷL$ȷ$跷u~+vg}F $4$(D$$0D$F$G$0$4$(T$D$E$G$닋$(G$0)Ƌ+9$0wK$07u.$0$0t$$($ٲ$蕶$臶맋u~+9w5}F$4 uw $3$%뽁$<)։$(+9$<D$($($< E$,$(BEDŽ$8$<9$8.$0$4$  $$$D$`$8$(,Et3,$$8$($<$89||>w+9w^2G $4$0D$|$E$ F$4D$$0D$E$FT$致딋Etr$ ++$$9$0w>$0>u!$0 |$,$]$$ 봋$>o+9w/.GD$`uD$`E$躳$謳$螳}w+vguG $X$D$$TD$G$F$T$X$T$D$E$gF$닋$G$T)Ƌ+9$TwI$T7u,$T$Tt$$$q$~$p멋u~+9w7}F$X u w$$ 뻋$`+)9$`$LC$L$`$L $P$BFDŽ$\$`9$\.0$T$X$D $@$HD$\$\$,Et3,$ï$\$L$`$\9|>w+9w^2G $X$TD$|$E$F$XD$$TD$E$FT$i딋Etr$D++$H9$Tw>$T>u!$T |$,$?$$봋$@>o+9w/.GD$\uD$\E$蜯$莯$耯u~+vg}F $|$$D$$xD$F$tG$x$|$$T$D$E$IG$닋$$G$x)Ƌ+9$xwK$x7u.$x$xt$$$$袪$^$P맋u~+9w5}F$| uw $$뽋E+$)9$$pD$$p }$t$$EGDŽ$$9$.$x$| $h$lL$X$d$$$,Et3,$詫$$p$$9| 8w+9w^2G $|$xL$D$E$F$x$||$D$E$FT$O딋Etr$h++$l9$xw>$x>u!$x |$,$%$$ӫ봋$d>o+9w/.GD$XuD$XE$肫$t$f$U鳾UWVS軪$/+( )9T$h` D$h= "D$h0;$;$$$D$$聩D$t$hPNjD$tT$\  ,l$t,$D$XD$XD$$#|$h;$X$$,l$<,$ܦPƋD$$$t $D$%9|ȋ$$c$)ŋ$t$L/Ǎ )ϋ+9>9$AG$$$ $$$,$D$\$$ZXXY$$$ZX$$$$fWא$ $^׎XT$@ԒZ\$D$\$$Ǔ|$@\$$\$E\Y,$Hw_ )ϋ+9=}G`9G}9|$<$D$肒$$$9$l*$4$ɒZݜ$$$$D$4$Y$$$^$݄$\$7d\$$d$8^$X$d$D$[^_]$訓$藓D$L$D$$裐9|:$]$L3$;u~+vU}F D$pl$|D$D$lD$E$8GD$lT$pt$|T$D$F$GJ$赒띋|$|GtqD$l)Ƌ+9L$lw?D$l7u%L$lD$lt$D$|$舎$D$6볋u~+9w2}Ft$p uw)$$בT$x)׉|$d+9D$xD$dD$xt$d t$hT$|BFD$tD$x9D$t.L$ll$p|$\ |$XL$`l$uD$l |$,$e $!$뺋L$X>o+9w/.GD$<uD$w+9wR2G D$x|$tD$|$E$FD$xD$D$tD$E$Fi$X|렋EtcT$d++|$h9D$tw8D$t>uD$t |$,$=x ${${뺋L$`>o+9w/.GD$@uD$@E${${${$_M+)9}G`9G/}9|7U)ŋ+9wK(%E~DGu%? Ɖu$${z$mz<$\z$KzM$:zx$)zR$z$z?$_M+)9}G`9G/}9|7E+)9wK(%E~DGu%? Ɖu$^$y$x<$xUWVSKx$%$$s$X$$_D$ct$|$$7t$t$$$zz$$$$$ŋ+)9$$z$uq$1z "z$$I$w_+,)9 z}G`9G}9|$8$p;$$TzT$(D$x$$<$|$t$Dzw$GD$|z8w+9D$x0G $N|$|~D$(0;$D$(g1;$}4$$4$$1r;$|1;$}4$$4$$u;$|݃$+$$$_D$q$|$$fq$EqD$tz$z+,)9z8n"7$$ $$$t$$$1$ $I$q$D$h)|$h_|$d|$dU    $<$0sD$`D$`$o$z$L$Pz+E)9$ $7%D$L $z".$++t$P9$8 7D$L .z$++t$P9$ 7D$L .z$++t$P9$ 7D$La .z$++t$P9$$ 7D$L .$|$`$G$;$}{z$;$|苔$$BE$;$}{z$;$|苴$zz lj$L$H)+E9)z8%D$Dzz"/$++|$H9z8t$D/$;$({z$$ ;$~ދoz$1$I$u_zE )ϋz+9}G`9G}9|1퉼$;$$$$D$z;$h$$DD$D$j$gD$$$ l$$$D$$j$vgD$$$k$;$^;$$$DD$D$-jD$$$\k$$$D$$iD$$$k$;$n$$f$;$|1;$6$$D$$ai$;$|$T$`D$D$(i$;$~{$$D$$h$D;$|̾;$$$D$D$h$;$|$j${j$jjX$Yj3$Hj$7j$&j$j$j$io$i2$i$i$i$im$iDzzu~+v[}F D$h$D$D$dD$F$臹GD$dT$h$T$D$E$bG$i뗋$GttzD$d)Ƌz+9L$dwBD$d7u(L$dD$dt$$$d$h$|h밋zzu~+9w2}Ft$h uw#$+h$hzzT$p+)9D$pl$\D$\zt$\ED$p t$`$BFD$lD$p9D$l.D$hL$d D$,zL$XD$Tt$l$,Et',$el$lt$\D$pl$l9|z8zw+9wRz0G L$hD$dL$D$E$8FD$h|$dD$|$E$Fl$f렋Etezz++|$X9D$dw8D$d>uD$d |$,$b $Xf$Jf뺋zT$T>o+9w/.GD$,uD$,E$e$e$e$e$e\wz$zz_M+)9}G`9G/}9|򋫃z7zE+)9wHz(%E~DGu%? Ɖul$t:$d$d?$d$d$zd $id$Xd~$GdSwz$zz_M+)9}G`9G/}9|򋫃z7zE+)9wKz(%E~DGu%? Ɖu$$Ac$3c<$"cUWVSbL݄$t$lDŽ$$8ݜ$($`$d$<%$d$d($)<($L$`L$$0D$$`$]$4$<$"_$ $p9$ $DŽ$ $p)$ $0$^$$4$^4$^*$$݄$$H$o+9w-.GD$\u D$\E>$bU$TU$FUddu~+9wg}F $$$L$D$E$6G$$D$$D$F$ G$T닋$Ad$/)Ƌd+(9$wK$7u.$$>t$$$dP$ T$T맋ddu~+9w5}F$ uw$S$S뽋d$)׉$d+9$E$$$ $$EFDŽ$$9$.$$$ $$T$X$$4t44$bQ$$D$$9|rdd}o+9w^d*G $D$$D$F$苢E$$|$D$F$gER$R딋Fttd$E++$9$w?$}u!$ |$4$M$Q$Q볋d$>o+9w-.GD$Xu D$XE,$9Q$+Q$Qddu~+9wg}F $$D$$D$B$ G$$$D$l$F$G$P닋$Ad$/)Ƌd+(9$wK$7u.$$t$$$;L$O$O맋ddu~+9w5}F$ uw$O$O뽋dd$+)9$$D$$$ $$BFDŽ$$9$.$$$ $$D$T$$4t44$:M$$D$$9|dd}o+9w^d*G $$D$|$F$cE$D$$D$F$?ER$M딋Fttd$E++$9$w?$}u!$ |$4$I$nM$`M볋d$>o+9w-.GD$Tu D$TE,$M$M$Lddu~+9wg}F $$D$$D$B$G$$$D$l$F$躜G$YL닋$Ad$/)Ƌd+(9$wK$7u.$$t$$$H)$K$K맋ddu~+9w5}F$ uw$hK$ZK뽋dd$+)9$$D$$$ $$BFDŽ$$9$. $$$ $$D$P$$4t44$I$$D$$9|dd}o+9w^d*G $$D$|$F$;E$D$$D$F$ER$I딋Fttd$E++$9$w?$}u!$ |$4$E$FI$8I볋d$>o+9w-.GD$Pu D$PE,$H$H$Hddu~+9wg}F $$$D$$D$B$轘G$$$$D$l$F$蒘G$1H닋$$Gd$)Ƌd+9$wK$7u.$$t$$$$Ct$G$G맋ddu~+9w5}F$ uw$@G$2G뽋d$ )׉$ d+9$ D$ $ $  $$$EFDŽ$$ 9$.k$$$ $$T$L$$$4t44$D$$ D$ $9|d8do+9w^d*G $$L$D$F$E$$|$D$F$ES$E딋Fttd$E++$9$w?$}u!$ |$4$bA$E$E볋d$>o+9w-.GD$Lu D$LE,$D$D$Dddu~+9wg}F $@$LD$$<D$B$蕔G$@$<$LD$l$F$jG($ D닋$LAd$</)Ƌd+(9$<wK$<7u.$<$<t$$L$?$C$qC맋ddu~+9w5}F$@ uw$C$ C뽋d$H)׉$4d+9$HD$4$H$4 $8$LEFDŽ$D$H9$D.$<$@$, $($0D$H$D$L4t44$@$D$4D$H$D9|dd}o+9w^d*G $@$<D$|$F$E$@D$$<D$F$ǑER$fA딋Fttd$,E++$09$<w?$<}u!$< |$4$:=$@$@볋d$(>o+9w-.GD$Hu D$HE,$@$@$}@ddu~+9wg}F $h$tD$$dD$B$mG$h$d$tD$l$F$BGs$?닋$tAd$d/)Ƌd+(9$dwK$d7u.$d$dt$$t$;$W?$I?맋ddu~+9w5}F$h uw$>$>뽋dd$p+)9$p$\D$\$p$\ $`$tBFDŽ$l$p9$l.$d$h$T $P$XD$D$l$t4t44$<$l$\D$p$l9|Ydd}o+9w^d*G $h$dD$|$F$ÍE$hD$$dD$F$蟍ER$>=딋Fttd$TE++$X9$dw?$d}u!$d |$4$9$<$<볋d$P>o+9w-.GD$Du D$DE,$q<$c<$U<ddu~+9wg}F $$D$$D$B$EG$$$D$l$F$Ge$;닋$Ad$/)Ƌd+(9$wK$7u.$$t$$$s7$/;$!;맋ddu~+9w5}F$ uw$:$:뽋d$)׉$d+9$D$$$ $$EFDŽ$$9$.$$$| $x$D$@$$4t44$r8$$D$$9|Kdd}o+9w^d*G $$D$|$F$蛉E$D$$D$F$wER$9딋Fttd$|E++$9$w?$}u!$ |$4$4$8$8볋d$x>o+9w-.GD$@u D$@E,$I8$;8$-8ddu~+9wg}F $$D$$D$B$G$$$D$l$F$G$7닋$Ad$/)Ƌd+(9$wK$7u.$$t$$$K3&$7$6맋ddu~+9w5}F$ uw$6$6뽋dd$+)9$$D$$$ $$BFDŽ$$9$.$$$ $$D$<$$4t44$J4$$D$$9|dd}o+9w^d*G $$D$|$F$sE$D$$D$F$OER$4딋Fttd$E++$9$w?$}u!$ |$4$0$~4$p4볋d$>o+9w-.GD$<u D$o+9w-.GD$8u D$8E,$/$/$/Y$|$*vUWVS+/$݄$$ݜ$$c1E7Z$%$Z$^щ$*$$Y$4$-Z$\$Z$\$^$X$$\$ }-T$ \$1L$XY$,ʉ$$I$r_)щ$_1+9$$9G`G}$9|닃c1,$$$_D$u*$D$$$+$$L$$I$*؋$$$$DŽ$%9$$w$$$<)Ջ$Wt#ց?l w$$9$~Z$^$4$+Z$Y$\$p$݄$$X*$J+DŽ$\$d$Xd$p,9$$ $L$<$%9})[1$(tE%9|݉<$($)Ɖc1l$lŋʉL$h)Ջ_1+9D$h. EGE;t$h:t$<$,$t$()$$%$$$ $$蒣D$$$*$L$$$*$*$$d$`)T$`\$$$L$D$$^щ$X$($$D$\D$X%9D$XD$TeT$XD$\l$T<)Ջ$_Wt#ց?l$ wD$XT$T9T$X~*$Z$#Y$d$@mZ$]Y\$@$$(#\$Z$|$^$X$|$ O(l$ \$$$t$XYl$@,9$$$c1$$0Y#$݄$[^_]$3)wt$PVt'ց?T$LuX t$LD$PpOL$HQց?|u l$HuW$($(뚋D$lD$$%D;t$h|$h(m$W($w$Vt0ց?$u^ $$pOL$|Qց?|u l$|u$'$'$')$'UWVS&$83)$ $/)($4$)<($4$D$$%$0D$$L$!D$)$%$$#$$<DŽ$$@$$<9$~ $~F$<1؉9$$ D$$$~%[^_]Ë3)$9s<#)8$ $$|$ t$D$$:!$@$1+$$$I$"$$)$_$$ zm$$1$$$$ 1$ $I$&"$$)$_$$U $$#$$$1L$4$"$$$0I$$~!$$0)$_$$U   ] $0$"$$1$ $I$ $D$l)|$l_|$h|$hU <$$"D$dT$d$D$$D$\$$@$$$$ |Et$P4$9N1ɉ$I5 D$DD$P)l$D_l$@|$@ kzD$P$!D$<$t$o+9w-.GD$(u D$(ED$$$3)/)u~+9w[}F D$l$D$D$hD$B$nGD$lt$h$D$t$E$nGT$&뗋$Ftt3)D$h)Ƌ/)+9L$hwBD$h7u(L$hD$ht$$$$$밋3)/)u~+9w2}Ft$l uw$K$=3)/)T$t+)9D$tl$`D$`D$tt$` t$d$BFD$pD$t9D$p.L$hD$l|$X |$TL$\D$$D$p$|t(<$$|$pl$`DD$t|$p9|3)0/)n+9wR3)*F D$lL$hL$D$G$`lED$ht$lt$D$G$BlEk$렋Gt_3)T$X++l$\9D$hw4D$h.uD$h El$<$$$x뾋3)L$T>o+9w-.GD$$u D$$ED$,$$3)/)u~+9wg}F $$0D$$D$B$kG$$$0D$t$E$jG'$t닋$0F3)$)Ƌ/)+9$wK$7u.$$t$$0$.$$맋3)/)u~+9w5}F$ uw$$u뽋3)/)$+)9$$2$$$ $$0BFDŽ$$9$.$$|$| |$x$D$ $$0|t4<$2$$D$$9|3)0/)n+9w^3)*F $$L$D$G$\hE$$t$D$G$8hES$딋Gtk3)T$|++$9$w:$.u$ El$<$$p$b븋3)L$x>o+9w-.GD$ u D$ E8$$$3)/)u~+9wg}F $$D$$D$B$fG$$$D$t$E$fGi$^닋$F3)$)Ƌ/)+9$wK$7u.$$t$$$$$맋3)/)u~+9w5}F$ uw$m$_뽋3)/)$+)9$$>$$$ $$BFDŽ$$9$.$$$ $$D$$$|t4<$$$D$$9|N3)0/)n+9w^3)*F $$L$D$G$@dE$$t$D$G$dES$딋Gtn3)$++$9$w:$.u$ El$<$$Q$C븋3)$>o+9w-.GD$u D$E2$$$3)/)u~+9wg}F $$D$$D$B$bG$$$D$t$E$bG$<닋$F3)$)Ƌ/)+9$wK$7u.$$t$$$ /$$맋3)/)u~+9w5}F$ uw$K$=뽋3)/)$+)9$$>$$$ $$BFDŽ$$9$.&$$$ $$D$$$|t4<$$$D$$9|3)0/)n+9w^3)*F $$L$D$G$`E$$t$D$G$_ES$딋Gtn3)$++$9$w:$.u$ El$<$n $/$!븋3)$>o+9w-.GD$u D$E2$$$f$T$ MUWVS<;D$,D$P0 ~$ ;ŋ)щL$(7+9/1D$(;91D$(9}SNT\9\Ӊ)L)\*^f.vf(щу9~׋D$(9|L$T|$(4uT$(tT$TD$(u|$(t;|$,Z8T)\T*^X$b \$L$<[,^_]ËL$PD$"\T$(9~$ j@{Gz?j9B.???9B.?j0?? ?333333?9B.??]9?{Gz??9B.?&?+eG@@9B.?ht @9B.?333333?9B.??Q @9B.?9B.??P/ A??BP@@?@??PG@?P??@B AB@@?P@F @?@>?AB?P?P??PB? A??@@@B@@??PGP@@@@@@?@??FFTinitFFTcauchy_boundisrealapprrootsroots (conjugates)invalid coefficients in rootspolrootsoverflow in real shiftall_roots: restarting, i = %ld, e = %ld conformal_polparametersrefine_Frefine_H) ⍀) Psn ⍀ PZU⍀PA<⍀P(#⍀P ⍀P⍀P⍀P⍀Pl⍀lPW⍀WPytB⍀BP`[-⍀-PGB⍀P.)⍀P⍀P⍀P⍀P⍀P⍀P⍀Pzp⍀pPfa[⍀[PMHF⍀FP4/1⍀1P⍀P⍀P⍀P⍀P⍀P⍀P⍀Plg⍀PSNt⍀tP:5_⍀_P!J⍀JP5⍀5P ⍀ P ⍀ P⍀P⍀P⍀Prm⍀PYT⍀P@;⍀P'"x⍀xP c⍀cPN⍀NP9⍀9P$⍀$P⍀P⍀Pxs⍀P_Z⍀PFA⍀P-(⍀P⍀P|⍀|Pg⍀gPR⍀RP=⍀=P(⍀(P~y⍀Pe`⍀PLG⍀P3.⍀P⍀P⍀P⍀P⍀Pk⍀kPV⍀VPA⍀APkf,⍀,PRM⍀P94⍀P ⍀P⍀P⍀P⍀P⍀P⍀Po⍀oPqlZ⍀ZPXSE⍀EP?:0⍀0P&!⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pwr⍀P^0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd}$Ë $Ë$ÕnH"8f8M448.8, kl8dVH88r4e83V4P8H:48|4f8I348J8B4&8f8P4C844.8&48Z4D8'48}o+8#8tJ844'84848D4.848ugY8 8pL864)8V4P8H:484x8_I$48o8gYK8848]48R4L8D6#48L4F8$}bU,&i3("8 y$oT*48, .R+8iMGW34^8M-"0|sQ84nbZ# 8, buE8u=/8u[8u=4u78uF4u#8u 4u8uO4u98u4u8urd8u8u]38u4u8u4u8u4u8u~k'4u8ui4uc8uXJ<8u8uoY5 8u4u8u4u8ur4ul8udVC4u8uA4u;8u0"8uY8uG1 8u4u8u4u8uJ4uD8u<.4u8uc4u8u8u|18u 8u4u8ue4u8u{m"4u8u4u8u|f;4u8uһĻ}8uugT 8u8u}4up8u>~4u[8uSE4u8u޸˸4uq8uT>ɷ4u÷8uU8uM?,8u϶k8uM4uG8u94u38u+Ҵ4u̴8uĴ_4uI8u,4u8ut-8u%8umC8u%4u8u4u 8u4u8u{74u!8uïy4us8uhZL8uܮ8uiE8u4u8uŭ4u8uڬ̬4u{8useR4u8u۫ūP4uJ8u?1#ߪ8uתɪz8uhR48u4u8u4u8u4u8u|i14u8uʧ4u8u֦\>ӤvF; l%ȡ; ~5(u$8u2u*՞uɞr*ٝ4uʝ8uq, cRD8М4Ȝ8c4]8I,>- ؛ʛ|8Y4Q848Қ,ǚC8;-4ޙ8̙t8^4Q8,48v4p8hZ48 48nI 48֖Ŗp_N=, ҕPҔaKړ?)ђpI=$e ُ48$0j8@4:8848ō00444f4(48.8 48يSӉ848 8ʈ488J4>8#, 38Aq4Aq8Aq4Aq8Aq,Aq~m\K:) 8Aq4Aq8Aq)4Aq#8Aq,Aq8Aqy?8Aq-Ճ8Aq4Aq8Aq4Aq˂8AqÂr4Aql8AqdVC 4Aq8Aq߁Ɂd4Aq^8AqSB1 ܀ˀ~cSG=5# AqAq{mAqJAq~~~Aq~s~O~'~Aq~~}}}}}{}e}AqB}}Aq||||Aq|o|Aq[|K|3||Aq{{{WAq{Aq{s{8AqN{AqF{Aq2{zz(Aqz8AqzzzVz.zAqzzyAy#x4Aqx4Aqw4Aqsw8Aq\w4AqVwAq(w0Aqv4Aq7v4Aq+v8AqvuuuuML4iL8iLLLL8izLlLYLL8iKKKK8i}K4iwK8iFKJ4i`JRJ J4iJ8iIIII4iI8ifIPI%IH4iH8iHHHH`iHHUH@H8H)HH HG8iGGGRG8i@G*GGF8iF4iF8iFE4iE8iEEGE4iAE8i9E+EED4iD8iDDbDD4iD8i DCCC8iCC}C4C8i"C CBB8iB4iB8ijBA4iA8iAqA)A4i#A8iA A@@4i@8i@o@D@?4i?8i?????6?'?? ?>8i>>>P>8i>>(>>=8i=4i=8i=<4i<8i<<E<4i?<8i7<)<<;4i;8i;;`;;4i;8i;::::n:8if:X:E:98i99998ii94ic98i29U84iO88iG89874i78i77774ij78iM777 764i68i666q6c668i66558i55\5258i54i58i444i38i3334i38i33p3,34i38i222r24il28ia2P2?2.22 211118i11m1$18i10008i04i08iZ0/4iv/8in/`//4i/8i /...4i.8it.^.3.-4i-8i---w-8io-a-N--8i,,,,8ir,4il,8i;,^+4iX+8iP+B+*4i*8i****4is*8iV*@**)4i)8i){)$)((T(A((('''$i''''Ii~'L'(i3'''&&&&x&8ia&8&%8i%4i%8i7%4i%8i$$$$$Ii$W$(i>$*$$#####8il#C#"8i"4i"8iI"4i"8i "!!m!(!! K # t\g>6pilipi|iw|iX`iRJB2*li`ixiotiYQB1 ipi8ipihi}m8i4i8iyg]U8`i0li(8i hiIik(iR>"8iW8i4i8iQ4i28iZ8iT1Q* 4ihi8ie, V8L<\ 8sdk`@\\\O\, nA `s e8s P8s !$s Xs 8s 8s 4s 8s ^4s O8s Io , ] U F 8 *  8    8o Y ;  8 4 8 ? 4" 8   4 8   e 4R 8< &   4 8   v : T8<H@D8P0Z478&0DPz].4~8xZP@LcH[8D@XX, ~0MseW8M8MtP&8M 4M8M4M8M4M8Mr_4M8Ma4M[8MP?1 4M8MveTF8M4M8Mf4MD,M( q`14M8M8M8M~hJ&8M 4M8M]4M=8M5'4M8Mq8MO4M=8M4M8M0M|dSE7) 8M4M8M8M4Mx8MN=! 8M4M8MQI8Mq4Mg8M# M8M M~tlmM 8M8M4MW4M8M$M4M8MK4M48M{ 8MPMzI, 8i8aS@88k4^8-O4I8A348z4d8G1 48Q8I;-8n8X4K8<468. 48g4Q84484wfXJ88y[78!48#4848]4J8148G8?18z8d4W8248{m*4$848i,4&8 pPd814(80|iT$|(g4G00,(, yqdVH8c8c{eA8c4c8c4c8c4c~8cvhU4c8cW4cQ8cF8*8co8c]G#8c4c8c4c8cf4c`8cXJ74c8c94c38c!<8c4&8c~T8c74c18c#4c8c4c8cN4c88c4c8cw8coc8c] 8c8cta8c8c4c8cN4ck8ccU4c 8c4c8ciS(4c8cl8cdVC8c8cg4ca8c0p4cM8cE74c8c~4ch8cK5 4c8c}oa8c8cc98c4c8c 4c8c4c8cK4c58c׾4c8c|e)W/ԼoY=(0@c!c(cHc@c(c$c~q8ci cze8c4cԸ8c4c8cD4c*8ccηcW˶pG?-0cc0cص_, J7 ٴ|n`88^4848 4848r.48t4n8cUG8گ8iE848Ǯ48ܭέ48zlY48̬[4U8C) ҪNéSG0(Ш ZK /Χ <84&ʦ8~T87418@4848N488ڣ48ug88`68484848t048v4p8^D/!ʞ8žX8F0 8ŝ4848O4I8A3 ܛ4ƛ8h"488:8(ę848p48w14+8#48uJ48̖K8C5"ٕ8Ǖc8F4@824,8$Г4ʓ8“]4G8*48v-8%8oE8(4"84848?4)8 ˎ48mM1#ύ8Ǎ]8K58ʌ4Č848W4Q8I;(4Ί8p*4$8a9݈;χsE-҆3 $~ He Ӂ 0}oQ8, {n;~~{~~~{_~8{D~{~{}}}}}}l}"}{}}}{||||:|4{ |4{{4{{8{{, {k{ {4z{8zzzz, nz]zLz;z-zzyy0xy8xy4xy8xyuyIy8x2y4xy8xx8xx8xx4xx, xL xxH x|xL xrxH x_xL xUxH xBxL x8xH x#xL xxH xx- wwwww8Yuw4Yuyw8YudwOw9w&w0Yuw0Yu wvv{v8YusvIv=vvuuu8Yuu8Yuu4Yuuu8YuUu, Gu9ut4tt8tt, tt4pt8pwtbtQtsssIs>>e>89[>7>/>>==89=49=89u=0=<<89<49<89m<<;89;~;G;;89;:::::89p:89':899499899, 9e9U9E99:99, 98*8888*84*88*8|8k88777777x7g7#77766666s64*e6T6.6&665555558*x54*r58*j5\558*44*48*448*44*x48*K44*C434*38*3338*34* 324*s24*m28*H104*08*/j/4*/4* /8*.......B.4.#.-:,4*4,8*+L+=++++*+*4**8***8**, g*G*);*+*)))C*))C*))C*)))*)))*)))*))C*)))*))C*))C*)))*)))*)))*))))))*))"*)))*))"*))"*)))*))))), e)T)D)'8)')('(((}('q(8'](U(+('%('4''8'', ''''j'\'N' '8A'&&&8A&&e&A&8A+&4A&8A%%8Af%4AQ%8AD%6%%8A$4A$8A$$$$8A$4At$8Ab$L$.$ $8A#4A#8A####8Ax#j#\#!#8A#"""8A"4A"8Am"!4A!8A!!e!4A_!8AW!I!6!!4A 8A   c 4A] 8AR < * $A  A&8A hK?+j8A=, - 480p8V4C81!, N8+4#848,|kZ488{4m8848Y4N8<4$, ]Q;+|eF5v[IA1# m 848Y8, qiYM?3#, i;\T<4 O, {mO8 4 8    H 4> 83 %    4 8 | n P  4 8  4     i Q A  0 4` 8S C 7 +         y i ] Q ; "  {oV@4|i[@448xh^N4848{dTJ:4884w8^G7-84c8ZL4 8L, x-0 0 t8 Y4 28 , ~8 xj/4 )8 H , * $   +  u u+  \\+   C C+  **+  +  + { umg+ b \TN+ I C;5+ 0 *"+  { {+  bb+  II+  00+  +  +  {sm+ h bZT+ O IA;+ 6 0("+   +  hh+  OO+  66+  +  +  ys+ n h`Z+ U OGA+ < 6.(+ # +  nn+  UU+  <<+  ##+    +  y+ t n~f~`+ [ UzMzG+ B <v4v.+ ) #rr+  ntnt+  j[j[+  fBfB+  b)b)+  ^^+  ZZ+ z tVlVf+ a [RSRM+ H BN:N4+ / )J!J+  FzFz+  BaBa+  >H>H+  :/:/+  66+  22+  z.r.l+ g a*Y*S+ N H&@&:+ 5 /"'"!+  +  gg+  NN+  55+  +    +  xr+ m g_Y+ T NF@+ ; 5-'+ " +  mm+  TT+  ;;+  ""+    +  ~x+ s me_+ Z TLF+ A ;3-+ ( "+  ss+ ZZ+ AA+ ((+ + ~+ y ske+ ` ZRL+ G A93+ . ( +  yy+ tplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  y:8UOuwFBYnLKPGZ9~po?<}\riJb=MtsSN7A[qI@f>gEHQzXVj^TxR{]_vldmWekc;y:8UOuwFBYnLKPGZ9~po?<}\riJb=MtsSN7A[qI@f>gEHQzXVj^TxR{]_vldmWekc;|5a6h`DCO]iH{9TNLHR8aPdppPu t,{9xOxXcXltzu~D`h (Eqe,2[v@: Z!___i686.get_pc_thunk.bx_dbllog2_logmax_modulus_bound_FFTinit_FFT_cauchy_bound_isrealappr_roots_roots0_cleanroots___i686.get_pc_thunk.cx___i686.get_pc_thunk.axdyld_stub_binding_helper_lontyp_DEBUGLEVEL_gen_1_DEBUGMEM_gi_gen_0_bot_avma_rootsold_sort_isexactzero_ZX_squff_Q_primpart_polvaluation_inexact_fprintferr_divsr_roots_to_pol_gsqrtn_gunclone_cget1_poldeflate_appendL_gclone_gneg_i_sqrtnr_divri_divir_dvmdii_cmprr_gcmp_RgX_shift_shallow_monomial_translate_pol_pureimag_gpowgs_gnorm_polrecip_subsr_mulsr_addsr_addmulXn_scalarpol_mkpoln_gconj_sqrtr_abs_polrecip_i_poldivrem_gshift_real_i_ginv_derivpol_gerepileall_pari_warn_addrr_sign_divrr_gsqrt_gsqr_exp_Ir_divrs_Pi2n_mulcxI_mulrr_affrr_gcmp0_gprec_w_mpexp_dbltor_affir_gexpo_polvaluation_shifti_addsi_sign_gfloor2n_ceil_cos_exp_log_gaffect_rtodbl_gabs_gmul_gdiv_floor_stackmalloc_init_dalloc_exp2_log2_gcopy_gdivgs_gsub_gmulsg_gerepilecopy_gneg_gadd_normalizepol_i_gerepileupto_gmul2n_sqri_gerepilecoeffssp_addii_sign_mulii_pari_err_pariINFINITY_karasquare_KARASQUARE_LIMIT_CX_square_spec_RgX_addspec_cook_square_COOKSQUARE_LIMIT_reel4.0_logmax_modulus_fft_UNDEF_split_complete_split_0_mygprecrc_isvalidcoeff_roots_com_mulCC_real_0_bit_lower_bound_set_karasquare_limit_graeffe_split_0_2_split_1_mygprec_split_2_all_roots_dual_modulus_conformal_mapping_logradius_split_fromU_root_error_mygprec_absolute_mygprecrc_special_parameters_dft_refine_F_logpre_modulus_affsr_logmodulus_refine_H_newton_polygon #1/20 1200774130 0 0 100644 31972 ` subcyclo.o X,G,G__text__TEXT;J>__data__DATA;>c__cstring__TEXT<3>__literal4__TEXT4@C__picsymbolstub2__TEXT<@Cdh__la_sym_ptr2__DATAFH@o<<__nl_symbol_ptr__DATAGIx__textcoal_nt__TEXT$GJ @sdw P D qUWV0D$D|$THL$,@|$D$(D$P$ED$ ŋD$L|$$T$HD$$D$P9D$$#t$$|$ D$(<D$P9Ɖ|$ t$$~D$$D$ 9D$$|$$;t$P}>T$(JL$u*|$;t$P}T$(D$ș|$t֋D|$,$t$@T9}DD9|DD$D$L$T$HD$$L$ 9L$$b0^_]Ð,D$@L$4D$AL$%D$D$D$D$\$ t$$|$(,Ã,D$,[^_]$>돐UWVSD$ǃ)щL$)>+9L$1>,T$1>:,$D$W<D$NjD$9D$V<$t$<ul$4$C;u܋D$T$4t$ |$L$H,$L$D$D$9D$~1>t$0D$,[^_]$;M$;$UWVS,<0<N+L$l$<<(F"<T$@B @hu+)9wf<8~DD$xl$@E$9T$B|$@G $9t$F D$,[^_]$:$:0UWVSL$$"S1T$$Gt$,DD$E$,G;t$,~)L$(iyD$Tt W1A D$(<[^_]ËDD$G$,;t$,~$i.g$X.FDD$E$L,D;t$,~$".$.r$.,$- $*\$L$UWVS|$*$HQȉL$l@D$h%f.ɍ@T$dnhZ'..X,t$`uV+8T$\D$\.EF"D$`D$XƋE+)9D$X|$TT$TD$XUD$Xt$T ".F|$h<$x*L$TA;|$`l$Ll$d.D$Dl$Hl$TT$LD$Dtt$P2++l$H9L$dT$LD$P*D$D$h$l)l$LL$lu$L$*T$T;|$`~..l$X+)9D$Xt$@D$@.D$XlL$X"l$@.|$X.}ED$`t$T,2D$dD$<)Nj.+9L$d.8D$hl$$(.T$lu$T$&)L$@A;|$`.D$<.T$0D$,t$(t$@D$@L$0n1l$8D+l$,D$4D$(+9T$dw_D$0L$4(D$8L$$'l$0T$lu$T$(L$@;|$`~D$T|$\Gt$@wD$\|[^_]$*$*$u*$d*X$S*$B*G$1*!$ *$B&\$L$UWVSl+D$T$I+$%PƋBD$Dt1%jщ l$DڅOT$DT$DF l$X$,(D$@F$6(T$\D$D$$D$ +wv(D$0G"nL$$Nl$(n L[^_]$!ʋE%? @E:$!Gx$|!KU1WVSm|"$$D$lD$X1$$Dʼn$$  uՁR t Q$t$ 1|[^_]ËV tQ$L$ V % Btm$t$l U B1ҋ@Ht'p1҃  ޅN։T$P|$P8 $."q c  Ћ$W$l$kD$H""u~+}F,D$HG|$TD$lD$Pp|$TT$P|$$ŋ"83t$E $"D$lT$Pl$$Ƌ$9t$Pt,$t$ʼnt$P,$D$L"8"w+"0GF@D$PF4$PD$4t1p1 <t$4څOT$4T$4t$49t$LD$4l$D$D$P$"NjpN1Ƀ|$lT$P"0L$$D$|$D$ D$PD$l$$D$4$D$]L$\t$`D$ D$LL$D$D$4L$P $t$|$LD$T$P$ƉD$v|$D$ D$Pt$l$$$t$$|$qt$$L$tl$XD$,$""un+9"(F"<$E|$Pu}"E딋t$P~P""8w+9w!"2GF@D$PF$ы|$P""ߺ|$(>w+9w"0GFD$($$zD$LD$D$44$|$LD$X|$ $A/${"|$X$}5$D$D$P$o$u"FD$0+9T$0UF"<$Kt$0FD$Pu}"l$0ED$0L$P~F}"w+9wuGF@|$P~$0֋D$P}"غwD$,+9wuGFD$,F$$$l$PD$,$$$M|$X"$8t$u"D$y"$$""0n+9wp"(F"<$"E"8w+9w'"2GF@Fu$$낋"D$XEu }"~J"T$X|$X+ v}l$XEG@w$EӋ"T$X+t$X߉у vD$Xu@F~4$Ӎ=<$J@lND$4$e $;|$P}&yT$8|$E $Bu;|$P|䍻~<$x{D$8|$$cҋt$PD$T$t$0D$T$$/Al$PD$,$5tx$H"T$hD$PuT$D$ $ut$hx4|$P4$|$t$L$t$HFD$P1)Ѝ4뾍$L$m"׋".+( )9T$D4D$D,8D$T$E%9.D$Pt$@t$P1)Ɖt$<$,EtXt9$t$1L$D$%9|ED$D$P$timD$@T$d0D$PT$,$D$L$@l$P1l$t$dD$<N4$Dt$l$<_$T$|$t$G%9t$t$tgE$%9t:-$L$,$$l$$D$TNE %9u̍m$T$R끋$$D$T%9.L$Tl$T|$P҉TxT$T%9|D$Pt$T,,ً"|$X8$D$u"D$y"$$gT$l4$T$ƋF1҉t#%vщ u0ޅNօ҉T$P $|$6$%‹y"$Q$ T$UWVSL l$`D$4D$hID$h|$dD$hD$d ȨD9l$d ȨF,$x@Hw%ƒ!Шtk $L$2 |$48D$dl$$);L$dș|$d҉D$,? 8w+  0GF@n4$ PBD$(t1%rщ t$(څOT$(T$(D$dl$D$D$($t$4D$0 0D$,$D$,t$8D$|$(D$D$0|$ D$D$,D$D$D$d,$D$\D$D$D$4$L$<|$,D$ D$dL$t$|$D$,$xD$,$Ƌ8D$0t$L$dt$(D$D$,t$ |$D$L$,$Ƌ8wUD$h4$|$D$ Ƌ8w$|$4$ |$4D$<$=L[^_]Í $R ̍ ,$B 뛍 $2 K$I$D$ D$$D$ hd$h l$hh_ $T$NYD$h,$D$ / $T$ $T$^D$D$$ UWVS<l$TD$,D$P $l D$(@%B(0~+:F"o|$|$(G$o0Ł+)9wp"89|l$,|$,$ <[^_]ËD$XD$L$(D$ D $D$)%9|$ 낋t$XD$t$ @D$D$($l$,D${$C ~K8w+v 2GF@n$ ҋ݋8w+v2GF$ ڋT$(BD$ ug2D$D$ D$$7;D$,D$Xl$l$PD$,$Fh~M8w+v 0GF@n^$ ҉߉|$>w+v0GFL$N$ ӋD$P~MT$,t$,+ v"T$,7BF@D$PF$< ЋL$,t$P+މʉt$$t$, vD$,7@F|$$~$ Ր<\$,|$4t$0l$8|$@G7ou G F%HD$DD$ыVTT$FD$‹%tGT$E$=EGt\$,t$0|$4l$8<ËED$G $h EՉ$;SubCyclo: conductor:%ld SubCyclo: new conductor:%ld SubCyclo: %ld not found SubCyclo: testing %ld^%ld padicsqrtnlift.Subcyclo: val=%ld Subcyclo: borne=%Z Subcyclo: prime l=%Z bnr must be over Q in bnr_to_znstargaloissubcycloPlease do not try to break PARI with ridiculous counterfeit data. Thanks!wrong type in galoissubcycloSubcyclo: %ld orbits with %ld elements each Subcyclo: orbits=%Z znstar_cosetsznstar_conductorSubcyclo: complex=%ld Subcyclo: elements: %ld generators must be prime to conductor in galoissubcyclowrong modulus in galoissubcyclonot a HNF matrix in galoissubcycloMatrix of wrong dimensions in galoissubcycloN must be a bnrinit or a znstar if H is a matrix in galoissubcyclodegree <= 0 in galoissubcyclonon-cyclic case in polsubcyclo: use galoissubcyclo insteadroots_to_polsubcyclo_cyclicsubcyclo_rootsdegree does not divide phi(n) in subcyclosubcyclo??迿⍀P髿覿⍀P钿荿⍀Pyt⍀P`[⍀PGBn⍀nP.)Y⍀YPD⍀DP/⍀/P޾⍀Pʾž⍀P鱾謾⍀P阾蓾⍀Pz⍀Pfa⍀PMH⍀P4/⍀Pr⍀rP]⍀]PH⍀HPн˽3⍀3P鷽貽⍀P鞽虽 ⍀ P酽耽⍀Plg⍀PSN⍀P:5⍀P!⍀P⍀Pv⍀vPּѼa⍀aP齼踼L⍀LP餼蟼7⍀7P鋼膼"⍀"Prm ⍀ PYT⍀P@;⍀P'"⍀P ⍀P⍀Pܻ׻⍀Pû辻z⍀zP骻襻e⍀eP鑻茻P⍀PPxs;⍀;P_Z&⍀&PFA⍀P-(⍀P⍀P⍀Pݺ⍀Pɺĺ⍀P鰺諺⍀P闺蒺~⍀~P~yi⍀iPe`T⍀TPLG?⍀?P3.*⍀*P⍀P⍀PI@b@{@@@@@@A*ACA\AuAAAAAA B$B=BVBoBBBBBBCC7CPCiCCCCCCCD1DJDcD|DDDDDDE+EDE]EvEEEEEE F$Ë$;;;{;B; G4;0; ;:G17:z:G17j:E: G17&:G17 : G17:9 G179G179 G1799 G179G179 G179n9 G17f9G17O919 G179G179 G17 98 G178G178 G1788z8[8/88 G177G177 G1777 G177G177 G177G17\7R7G1767 G17-7 77 G37G366*@366@3666@3}6e6G3Y6 G3N6=6,6$6?366?3 66?3555G355G35s5G3k5\545544 G34X4=4 G3"4G34 G333 G333?333 G33 32<$2 G$222C?$k2V2E2;2 G$/2G$2 G$111?$z1g1_1O1>$(11>$000`>$00 >$0~0Y0#00J=$/G$/ G$v/f/`>$I/9/ >$.//. G$......>$n.[. >$O.B.=$5.).=$.. .=$.-G$-t-G$c-G$R- G$J-<-- G$, G$,G$,, G$,G$, G$,, G$,G$t, G$e,T,C,',,+G$++G$m+G$X+'+G$+* G$**=$**=$**=$*s*Q* G$0*G$** G$*) G$)G$) G$)G$)) G$})G$w) G$l)P)D)-))((((}( G$K(G$E('' G$'G$' G$''M''G$''G$&&G$& G$&&J=$\&1$X&%$T&%$P&0$L&/$H&/$D&%$@&%$<&%$8&%$4&%$0&%$,&%$(&%$$&%$ &%$&%$&%$&%$&`&$ &%$&`&$&%$%&$%%=$Y%I%<$*%%<$$ G$$ $\$9$#G!"# G!"#"G!"o" G!"W"G"<!","" "!G !}!G g!V!E!#!    G  G  G  ^ G I G A G 5  G G  G  G G  G r`J1  G  G G  G G \G : G G  G  G  G G  G  G 3)G  G  ug-G9 G9 G9}k G9VG9* G9  G9 G9G9 G9OG9+ G9G9G9 G98@95  xTG3  GG G G>G G4@ G < xcSG < z< zj< r^G  G  G  G G vW G :G - G '  G G G  G G s8G & G G   v GQp_;Q- GQGQ GQGQfGQZ GQM ?.H6GG G sc[KC;    G  s W       G) c > G) 2 G) %       G% h G% Y G% S G% 2 G% * G% !     G   r b GD G- G G G1O<1G16<1G1zZA5<1-!<1 G1G1zG1H6 G1-   GqGqv Gqm _N6GQo GQ\M <+G G U/G G t(c GFGF c GEGE c FEFE c FEFEy tc nFEfFE` [c UFEMFEG Bc <FnE4FnE. )c #FUEFUE c F -+(;;"$GR(G"$(7  3m(|H0 (hj8HP \| 9 /|h+ i?_9zu Z&XPl`b[Suk-!MGt~)1eH:_znstar_partial_coset_func_znstar_coset_func_znstar_partial_coset_bits_inplace___i686.get_pc_thunk.bx_znstar_coset_bits_inplace_znstar_partial_coset_bits_znstar_coset_bits_znstar_partial_bits_znstar_bits_znstar_generate_znstar_elts_znstar_reduce_modulus_znstar_conductor_znstar_cosets_znstar_small_znstar_hnf_generators_znstar_hnf_znstar_hnf_elts_subcyclo_complex_bound_subcyclo_cyclic_subcyclo_orbits_subcyclo_start_subcyclo_complex_roots_subcyclo_roots_galoiscyclo_bnr_to_znstar_galoissubcyclo_subcyclo_polsubcyclo___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_gen_1_gen_0_DEBUGLEVEL_bot_bitvec_set_avma_subgrouplist_dvmdii_gener_mkpoln_FpX_center_FpV_roots_to_pol_phi_vecsmall_append_divis_rem_equalsi_deg1pol_checkbnrgen_vandermondeinversemod_cyclo_group_elts_abelian_group_znstar_exp_Ir_divrs_Pi2n_sqrt_gmodulo_msgtimer_padicsqrtnlift_Fp_pow_gener_Fp_powiu_logint_shifti_mulii_binomial_powuu_addsi_sign_isprime_timer2_gcopy_modii_gadd_greal_gmul_ceil_safe_supnorm_gtovec_real_i_roots_to_pol_Fl_pow_lift_gtovecsmall_cgcd_fprintferr_factoru_gerepileupto_vecsmall_sort_group_order_gerepilecopy_cgiv_bitvec_test_bitvec_alloc_const_vecsmall_pari_err_reel4.0__subcyclo_orbits#1/20 1200774133 0 0 100644 20396 ` subgroup.o| L0L0__text__TEXT)2__data__DATA)L,t@__cstring__TEXT)x,__picsymbolstub2__TEXT+\.@__la_sym_ptr2__DATA/+2G''__nl_symbol_ptr__DATA002N__textcoal_nt__TEXTD02 @XJ<(Ml P , IS$$)L$$$D$l$L$$ tj$|$L$D$X$t$LD$"0t$ L$p<$D$+4$$<$+$$$ČÍ)$T$.{UWVS#$c/L$\}L$$e$%D$@+4$D$XD$l*D$`$L$`D$d($$$t$p$$$$4$D$h#D$hƉD$D[/}+8)9L$<D$<E"D$<0D$T|$D9|$TEl$4D$X0$t$X)t$\T$4<)[/+l$89L$8D$4&T$82D$L$ 9~S/|$LED$84l$\|$L9~D$Tt$D9t$TT$X$'D$<[^_]$+z$+Y~Oc/[/8w+9w c/0GF@ns$*݋L$$l$(c/}w+9wuGFD$(F$]*$O*$>*zD$\N$$*$*$*]$)9)$T$)dD$$D$ D$D$D$ $ÐD$(D$D$ D$$D$D$ $ÐVt$ D$$NPBA$%F@^UWV0D$@@PD$,D$DL$,D$$($%T$,D$(Bt<89}+D$D$($6% 9} l$,EՋ|$(D$%pƉt$  $f%|$,D$G T$D$T$$PD$ t$9t$ ;t$ eD$L$ l$(D$1ҋD D$D$At#%yщ uJ߅N׋l$D$$;t$ ~D$ t$9t$ ~D$T$,B BD$@@@0^_]$'먐UWVS?(D$x$$h,EL$dt%t"$T$`',$%ŋD$dD$t9D$tD$$}Q8"(L$`t$tTD7D$D$$%7s(;D$tD$$9D$t||$dcE@7{(E$$w(@|$d$0t$h(+)9D$dL$\D$\D$tD$pD$hD$l9D$t|$Tw(t$X|$PL$XT$P++|$T9D$dQD$X$8D$t4t$|;t$d7;t$p~ D$tt$pD$lt$tT$\<D$ht$t9|D$lT$\L$l4$$<|$|$FD$pwT$|BD$Lt1%zщ Q|$LڅOT$LT$LL$p()׋w(+9>t$Lw;t$pj$zB8$$U|$h,$"D$tNjD$d9D$t`7D$t9 t$t7$H<L$<G$FHD$<$$D$ D$!$G0D$t%9D$tD$@$|$tl$$@0D$4 L$09,$y!D$,D$(9|$,}Js(D$,t$(T$0 49} 9|;T$d} ED$,9|$,|l$tD$4L$( D$@l$t9U$G8(D$@/)Ƌw(+(9l$@SD$@7 "D$tt$xT$@9T$t{(8wcD$xL$|$D$L$,${(u($Ĝ[^_]Ë$S"GD4$D$"ȋD$|"D$$"$G0$p$|$tE0$L$tD$@L$t9|D$tD$@9D$t $t$tL$pE0D$E$[$t$tz0D$@t$t9|$!$T$|$L$T$E8$$(t$80w(n+9L$x<+)9D$`2p)+9I0D$`p D$8D$09D$8I;|$4t$`Vt$8; ;|$4~D$`W|$8HD$0|$89~ )΋+9:7&.l$`u(D$8D$09D$8t$,|$ D$t$D$`L$ T$x(++t$9D$,D$ D$,0D$, $l$84;|$4Vl$`t$8E(D$0n+9(FL$,;|$4~D$8|$09|$8@D$8D$49D$8!t$`T$8F$D$4T$89~D$8D$09D$8!|$`L$8G l$0L$89~ߋT$`;8hD$`P;r.L$`A$,u ;r~A 4A$ $D$L$`A$l$`U뼉${q$ $ n$ I$ $ y<$h t$`L$$99(T$L$$D$D$$/ 9~⍳4$ $% $ m$ -$ $ $ e$ "@+BT$`z4 $. T$`r0uD$$RLl$`D$EH$. |$`ŋG489.,$D$ D$D$`$PL9.T$`B4΅~OL$<|$<+ v$8D$<@G@w5$ ΋L$<+t$<߉̓ v$D$<2@F~$p UWVS|$$$@D$l$)$l$hp$t$d$W T$`iL$hl$\@D$X$x+ |$TV(~ D$8T$P1T$@l$dL$@u9։t$<)B)t$H$B$t D$`,;L$<ڋ' 8D$D;l$@wD$DT$X)t4L$\TL$TMD$ @09 80@080<0s40kE@0?))@0 WO)tcR8'@0@080@0udI 00@080@040]408040@0@0,8080L)3#@0 )r40D) ; +0/+0/ ; '0f/'0f/ ; #0M/#0M/ ; z04/r04/l g; a0/Y0/S N; H0/@0/: 5; /0.'0.! ; 0.0. ;  0. 0. ; 0.0. ; 0.0. ; /l./l. ; /S./S. ; /:.x/:.r m; g/!._/!.Y T; N/.F/.@ ;; 5/--/-' "; /-/- ; /-/- ; /-/- ; /-/- ; /r-/r- ; /Y-/Y- ; /@-~/@-x s; m/'-e/'-_ Z; T/-L/-F A; ;/,3/,- (; "/,/, ; /,/, ; /,/, ; /,/, ; /x,/x, ; /_,/_, ; /F,/F,~ y; s/-,k/-,e `; Z/,R/,L G; A/+9/+3 .; (/+ /+ ; /+/+ |xtplhd`\XTPLHD@<840,($  '&6$35(1#*90:,/-.+4)7%8"2'&6$35(1#*90:,/-.+4)7%8"2! )h(1,;HxP [ )a $FD0H04&.a@'~w Pq{j9H^_forsubgroup___i686.get_pc_thunk.bx_subgrouplist_subgroupcondlist___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_1_gen_0_bot_DEBUGLEVEL_avma_hnf_gauss_hnf_readseq_free_diagonal_i_gpmalloc_pop_val_push_val_isdiagonal_outbeaut_gmulsg_dethnf_i_matid_divis_shallowcopy_gcmp1_Z_pvalrem_muluu_factor_timer2_mattodiagonal_i_equalui_mulsi_msgtimer_mulii_matqpascal_dvmdii_Z_pval_cmpii_powiu_log_gaffect_rtodbl_gtomat_shallowconcat_gmul_fprintferr_pari_err_reel4.0_get_snf_subgroup_engine_subgrouplist_i_std_fun_list_fun_parse_bound_dopsub_dopsubtyp_loop_dogroup #1/12 1200774136 0 0 100644 100756 ` trans1.oH `d\ __text__TEXT dl __data__DATA Hp V__literal8__TEXTX`__literal4__TEXT(__cstring__TEXT%D__bss__DATA\__picsymbolstub2__TEXT iV__la_sym_ptr2__DATAMPo__nl_symbol_ptr__DATAT`__textcoal_nt__TEXTP @wȁ P7Nps <ǂT@D ÐUWVSLt$`t%94$D$,<D$8[Fl$8U؍ D$0)͋+l$$9D$$|$$9G`G}l$$D9|틫M+)9u}UG`9G/}9|G%  G<$ D$<Ǎ @% G)͋+l$ 9D$ l$ 9E`UE}|$ 9|L$ A% AD$40D$t$(|$$l$L$0L$$7T$0L$LBT$D$ A $D$T$LT$$7t$$El$D$ F4$D$T$$$T$D$4D$<D$D9D$<|$@9|$<5D$ l$$t$D$ D$X)ŋ+89|$XSD$X.2D$X ENjL$$l$ $T$,L$ A%tz|$ GD$,$]$l$D$ px7T$D$X,$T$,D$T$Pl$(D$D$,,$D$E%? M밋Ay)Ƌ+9w=0>t$|$ <$It$,$l$$J$$$xD$XL$TD$ $Ƌ|$X|$4$D$,D$X|$TD$G$18Ł9D$,L$,)щL$L$,+9wMD$$t$9| l$l$[D$XD$D$T$PL$9|$륋DT$TD$B$bD9|LD$T$t$Xt$$T$Pl$(D$,$Yd$t$T$XD$TT$$T$P׋ցU)ŋ+9wC (u9|iL$XT$TL$$T$PD9|$믍~$T$j4<\$,|$4t$0l$8|$@xxxxxxxY\$,t$0|$4l$8<Ë0N+L$l$(Fou+)9wF8~DD$xt$FD$F$$`un+vA*FG$EGx?E$뱉<$91<$<$T$tiG%9D$t$l$D$$;t$d$L;t$|Au~+9L$w}F&$ፓ$T$1z<$ST$$L$ u [ËAuxD$T$ $ͥuݐS.(D$4T$0D$D$@D$u b([ÅufT$T$D$D$$ZVL$t$tt9w 9v^\l$Xl$`\$L|$Tt$P|$ha|$d5|$0l$4D$8ΉD$<ȃ +L$,L$,T$00AF@nD$l$d4$D$ T$l$Ƌt$D$,t$$c\$Lt$P|$Tl$X\ËE+)9w7(u}4$l$$$ $)Ƌ+9w90u>t$,$&$$빋M+)9w{uubF`9F.}9|l$d~ u ~[$$$tM+)9wRuu9F`9F.9|$k$]렐D$$T$ tD$$$$D$쐃,t$ t$4\$<|$$l$(|$8l$0}|xM+)9wHu9F`F}9|\$t$ |$$l$(,$t몉|$4$~Ɖǃt)t$,$t|$$뙉$돉t$,$끐l|$d|$t\$\0l$ht$`l$pE @x=U~$D$|$,$\$\t$`|$dl$hlÅdD$Dtup0FD$@l+vDT$@p߉FT$Ht$DrD$|$,$臟|$HGD$Hf$뮃}uD$DI\`x h$.d勃p0lV+T$<D$G%?0~+vD8F uw\$t$ |$$l$(,$ž$跾뮅x <$w‹0n+v,(F <$?EEw$PƐUWVSsƉ$t4$\EE<[^_]ËG$G4$D$dD$$$ƉD$D$($`E4$D$D$(D$G$菳t$(D$4$"ED$bG4$D$D$$蘰$ƋG$^xVD$(t$$εED$4$D$(PD$G$|$(D$<$萵EiF%? N$胸=<$D$(蟶D$UD$D$<$蹲,$t%|$ L$۪A|$$D$F  D$t1%vщ t$څOT$T$,$2Nj@f1̀G<$t$,D$t$D$UƋ tLEl$%?l$D$$4$D$pƉD$D$($79|$uE%? ǁ@~$ڶ$̶!~$T$覶F}4$?|$l$DƋ@1t#%v utޅN0~+v>8Fud$ t$w$޵$е$µ{nM$L$蜵F/D$,|$D$$<$!<$~uN+(L$$9L$$FWT$ +r)9wf(U~L$ Dt$$nl$G$ìtD$$pD$$$3芴$|$n<,\$|$$l$(t$ l$0|U|$4ы0tD|$$$l$m$L4$D$\$t$ |$$l$(,Ã}u.+()9w:0u>t$$т$}$o븃}7+0)9wV(u8E`9EM}D9|$$뜐L\$<t$@|$Dl$HHt$TD$(4$D$ T$,D$$T$ <FD$D$PD$E$aT$,@;~L$P|$FT$L$D$ E$gD$,ŋD$ x9t%u%9|5t DuHt$$0D$ \$k8Fud$ t$w$营$肥$t{nMW$T$NF/ $|$01D$`$`Dt$lt$lD$`$ԞDt$dF$D$`$-kgl$l2~+݉vYk8F u.wD$htD$lD$D$d$T$h $N$@뙋D$`$\D$$Gkgu~+v}Ft$$ \$ٍL$<|$d$L$|$sD$$$.责L$`D$l $D$蠞|$d$|$ȝt$lt$$gl$8D$,$萡D$`PсE|$`7.+kg/+()9l$lwUD$l7u;D$lF`F ;D$l};D$l|F$轢$询띋l$hD$d|$`l$D$<$M&D$h$T$eD$lL$`D$ $裠|$lt$hl$d|$ t$l$$(L$dyjl$ht_t$hQ~T$`$ǟD$`$^$t$D$dPUWVS۴$0NL$|@%?)щL$h+9>D$hL$hZ~c*D$`YCYKd$XX\$X\$XT$X^f(Qf.1ҹ@)T$L$*$1t$Pl$GV^SPY,$\$T$ D$^,$蟖T$ \$\$X\$Pf.f(ZXX\X,,Ɖ|$tD$pt$|D$|>)‹+8T$L9|$|MD$LD$|(D$|L$L A`A;D$|}t$L;D$||싳D$|>)‹+8T$H9|$|D$HD$|D$|L$H A`A;D$|}t$H;D$||T$H%L$|)ω|$D+9D$|D$DD$|D$|L$D L$$$'|$DG%? @Gt$pt'+l$pƍ o l$DuT$tD$l0t$dT$x D$8D$D0|$@ T$D 2$D$xD$|$lH$?)ϋL$HL$ t$l臝0NjD$@ 7D$lŋD$L;l$|Ol$|d$l0L$<U L$L1|$D$ D$ $-T$HNjD$<2 D$H0<$D$贜l$x|$dt$8|$x>D$D0D$| t$|l$Du,$D$HD$藜D$xNjD$p9D$xE7D$|u^ t$|7|$$谒<$D$OD$xL$p9L$x~T$h<$T$jt$`0D$hČ[^_]$k$]B$L$;$*P$$$$$՛e$ě@$賛$袛$1BVP,$$苑Z\$d$PT$Xl$YKD$p\X^X[,ʉL$t $d\$T$9$ ,\$t$ |$$l$(L$0Au]ŋ\0X?~+v(\8Fo\$t$ |$$l$(,$臚ʅ~ $Ћ\( $ljD$$FHD$<$蓙,$D$[UWVS[\D$pHD$@? )xNE )΋+9wRuu9F`9F}9|\[^_]${$m렋D$p@8o?N94,+)9ljL$8t$80 D$4T$pB%?- $衎O\$L$,L$^,щT$@ʋ+)9D$,]0D$,6D$, t$D$p$ԗD$,$T$@$D$THD$ىL$ F4$D$D$p@D$8)+E9wf0L$49F`F}9|l$@~ u ~$蔗$膗댍t$Lot$,$D$H1D$DT$Ld$D)|$D~t$DE )ϋ+9}7|$D$p$Qu<$($D$轌OCD$4$ڔD$D$0D$0+UD$4)'+L$ 9T$4D$ D$4ED$4L$  |$,|$,~|$,$詋tl$,ߋD$,l$0|$ TT$,F)%? @GT$ l$4t$(|$$BD$89l$8}"#l$8|$$D$0l$89|t$49t$8T$0L$8IډD$T$+#T$$/t$0D$ƒL[^_]É$}$}$}$}$}R$v}$e}$T}X,\$pt$ |$$l$(M|$0+)9wMuu4<$t$$N|\$t$ |$$l$(,$|$|륐UWVS׏|$~7;0~<$aq|[^_]ËG<$%?- D$d'qD$dugn0ݍ~+v28F uw${${4$D$D$d$zK,L$h)鋫UL$8)T$hl$h;t$hL$8FUD$`ՉT$l)ʼn+9D$`D$`(iD$` E<$l$Dl$zD$D@`D$X|$DOuD$X |$XLt1W1P,$\$HQW,$$p*\$T$HYokL$\Qf.T$Hf.L$HmZkY\L$H,,~D$\v`D$`ƋT$`+)9D$`D$`0D$` t$,$^yt$DD$Xl$\9l$XL$D $znt$Dʼn4$Sn$l$yD$@$+yD$<D?D$XŋL$`+)9D$`l$4 D$4D$`D$`|$4 G`G;D$`}T$4;D$`|싳l$DD$hE%E|$4%<$D$XD$wL$D$L$7xD$Pl$D$Tp_s+)9$O_s2l$P*>D$Tp_s$$L$\G$Ei$$$l$$!dpŋ@4$D$liFt$l%?- D$dF%?- 9D$dD$`cEL$d+T$`D$Lp T$HD$D% t$DD$L pML$@q |$@wD$HD$h+sl$D$$(c_sUD$,$T$( hD$ ƋED$~ )|$ )ϋ[s+9L},G`9G/}9|D$,<$D$hD$$e_sŋ$D$D$,L$$$Qt$ljl$<$eƉ$guh4$g<$f);t$ |N|$,$yh$D$0eL$ŋ|$4$D$$i$t$$β|t$$_s0l$l$(,$k$Nj$D$|$$yg$x@4$D$l\$hT$hD$$lhD$l$ G<$D$lƋD$XuBT$TB4$D$bl$TE|$lD$<$b_sT$\D$T|[^_]ËD$l$e~%$$謄L$lD$ $dD$l뉋$$臄T$lD$$ g$Al$0l$l$lE D$ID$D$$e\$,t$0|$4l$8<ËD$@p G|$$D$_l$@lj,$^L$@|$t$ŋA$bEFt$$D$;_|$$`[$D$\,$H$|$Uc@Z$T$fSz|$$wD$(D$D$ $a[ÍX$ T$f1UWVSy,D$Dt$@D$F$:`tv̋hT$; i8io+ i(G 4$D$D$YE i4$D$Yl$l$$7‹ i0$D$B]t$t$D$4$dG,[^_]$elT$4$ك i4$D$cfxX$L$8e<$X|$$a_w?$t$XŋG$_tl$l$,$c>D$D$G$/,$D$_ȉ$^{`D$t$D$T$44$OFx)t 4$X$T$Jdۋ i8io+v3 i(G 4$bE%$&|EL$c뿍X$|$cU<\$,t$0|$4l$8T$@vJ? f)xE )΋f+9w^uuEF`9F}9|\$,t$0|$4l$8<$c$c딋 ft$t$$D$FƋD$wR++t$$XD$L$$j_W f}t$$]X4$D$aPup f?0f~+v5 f8F u wd$a$a뽉$a<$D$^/t$$ U f8t$$W4$D$.aP f?0f~+vN f8F u#w@%? ljy{$ a$`뤉$`<$D$]밐l\$\t$`|$dl$hL$psZh<\h'rD$p$\$\t$`|$dl$hlÍR$l$R`D$p$Zt:t$p$t$ZD$ptD$p뤍R$l$ `L$pAl$q$,8t$[~…!Ш1.x4cD$D$p$_WD$(cE(tNw<$t$(^T$T$Ɖ,$[t$$YD$D$b$}Su|$l$<$C]t"L$҉u:Ft$$D$V<$ƉD$?TxD$$|$Vt$lj,$Tht$DD$$l$Vt$|$$ZVH1҉t%x1҃ u&݅NՋD$D@)/$^̋4c0cl$t+)9D$t|$04cL$0D$t%D$,Rt$tD$04c0L$pD$@Njt $V4c8t$t0c+oރvk 4c*Gu@ul$D$p$W$gL$0$L$R4c|$@8D$0$]$\뇋|$pT$pO4cL$(BD$$)0c+E9D$t+4c8D$,74c)|$l$ t$(4$[T$$B%btVT$$BD$<$D[$|$[D$$px4cT$ G%? ʼnoԋBy4c)Ƌ0c+9w=4c0.t$D$$$TZt$<$[|$$[n$[$[$[$r[$a[m4cD$@D$p$Yt~$Uu]Mx9D$tL$L|$HD$ L$|$,$HPD$Lt$@D$4$OqR$2T$Z믉l$$4UDD$pl$tD$Ol$$B}!D$p$S4c9Ɖ0cDt$t+o4c0c(G T$<+)9~4c8T$8S0c D$4}4c++|$<94c>D$8D$4}D$tt$pD$F$YƉ$-UNt$L$ x$|$@YD$$PNjFt$؉D$ G<$D$ YT$HƍL$LD$tT$L$D$ L$pA$pND$L<$D$hU}$|$ND$HD$4$IUM$L$Nm$X$X$X$Xq$X-<\$,t$0|$4l$8L$@kQu]ZՋ0Z?~+v(Z8Fo\$,t$0|$4l$8<$XʋZT$T$ $D$;ƋD$mmZ8t$$M4$D$4WPZ?0Z~+vGZ8F uwt$L$4$T$W$W뫉$V<$D$S뷉t$$.J륋Z8t$$L4$D$VVPZ?0Z~+vNZ8F u#w@%? ljy$1V$#V뤉$U<$D$R밉t$$Kl\$\t$`|$dl$hL$pijx<\x/rD$p$\$\t$`|$dl$hlÍ-H$t$fUD$p$3Ot:D$p$D$OD$ptD$p뤍HH$l$UL$pAl$q$,8t$Q~…!Ш1.xHXD$D$p$/TWD$D$8D$4}D$tt$pD$F$eƉ$9JNt$L$ x$|$LND$$FNj@|$؉D$ F4$D$NT$HƍL$LD$tT$L$D$ L$pA$|CD$H<$D$tJ}$|$CD$LD$4$UJM$L$Ce$M$M$M$Mq$M-UWVS`u,+)9w[P8u=G`9G}9|D$X8<[^_]$L$L$LFP|$,E|$ $D$j0UNjD$,T$Cco_2,|$$Bt$XP0|$$A<$D$KPP?8Po+voP*G uD}T$TD$XT$Tl$ D$$|$D$T$ D$ l$|$$A$NK$@K냉 $K4$D$ H돉|$$ Al$TEP0|$$@<$D$JPPP?9o+vRP(G u'}T$X A%? Ɖq$`J$RJ렉$J4$D$G몉|$$v=l$XEP0|$$?<$D$IPutP?8Po+v9P(G u}T$T$I$I빉$CI4$D$IFÉ|$$<t$TP0|$$(?<$D$HPutPP?9o+v9P(G u}T$X2$H$H빉$qH4$D$wEʼn|$$v>X|$$a>|$$;t$XP0|$$.><$D$GP.P?8Po+v P(1$G|$$;,\$Z|$$l$(t$ $Ju J~+v]}F VD$0nT$$l$L$0AtЋ\$t$ |$$l$(,ËG4$D$&<$G땐UWVSCZ$E^'zKRzKzrz $,$D$;$I$)΋I+9$$7$L$hl$l$$0$L$l$D$<$$D$D$h$;$ED$D$l$;D$<Č[^_]$Eg$EC$$,$|$D$볉,$>$IEIt$T0~+9II8F T$TT$,+)9D$TtD$TI%2D$(HD$TI D$$wI++t$,9D$TI2D$(D$$Iw|$h$>I7~+9II8F ++t$,9D$TTID$ 0D$(+D$$Iwt$ ++t$,9D$TT$ 2L$(D$$w|$l$8$T$E$舵lj$\?w|$t$ H$L$oCD$$+;D$\pD$މt$ G<$D$9CT$`L$dD$X$T$L$D$ E$>D$`D$D$\$Bt$hn$l$ 9D$dD$D$X$B|$hO$L$8D$dD$D$\$Bt$ln$l$8|$ l$XIu+)9wgI:E%~DEO%? O<$D$`D$B|$lo$l$.8c$EB$7B"$&B$B$B$A^$A$A$A$A{$A5I0,$t$$l$4,$o>눋D$Pjl$Ht$Ht$Dl$@|$@~L$@t$4$:tl$@ۋT$@D$Pl$D||$@I)I+E9D$DD$D7D$D t$l$0L$H+E)9D$HD$H7 t$h$2|$4L$lG%? @AwI0D$lpoD$hhD$Tt$P9t$TD$TD$L9D$T}"{I|$TD$l14D$L|$T9|T$Ll$D9T$T.6׋I{I+|$PD$L$|$I{ID$ux*t$$l$L$T$-$T$7T$<$7U$7G`=D$ Od=L$++|$,9D$t+d=8D$(7d=)|$l$t$ 4$5T$B%btVT$BD$<$$6$|$6D$@xd=l$.G%? ƉwԋByd=)Ƌ`=+9w=d=0.t$D$$45t$<$5|$$5n$6$t6$c6$R67$A6d=l$Dt$@l$t$D$4D$t<$D$ 9d=<$D$4D$tD$<$ŋD$tD$l$l\$\l$ht$`|$dl$pHE}<},8L$LT$H>L$T$,$D$H.D$D$L$4l$D$<$3\$\t$`|$dl$hlÍ($T$5,8,$D$4:3$.um~xID$tl$DT$@D$ l$T$4$D$@D$D$D$.t$4D$4$2W($2L${4럍($l$c4xD$tl$D$$$V|$t,8(8|$,+)9D$tt$0,8t$00D$t%D$(t$tD$0,80L$4ϋEt,$,,8:t$t(8+WT$$ރ D$$,8Gu}|$$w,$|$ .,8L$8t$<}L$$t$D$8uD$D$<$i2t$<$D$x1t$0$t$(|$4}D$0$2r$2@U,8T$ E(8D$+E+|$,9D$t,,88D$(7,8l$ |$L$,$0T$B%ctWt$FD$<$ 1$|$1D$@xT$,8UG%? ʼnoӋBy,8U)ŋ(8+9w>,8(ul$L$ $-0l$<$0|$$0k${1$m1$\1$K1V$:1&,8|$Dt$@|$t$D$4D$t,$D$ J,8,$D$4D$tD$L$tljL$,$|$$ +D$D$4$$|$t$l$|$$T$ /u7Uڍ uwt$|$l$$d0߅x:ʸ )) @G9W.}9|뤾ڸ )) t$|$l$t$$|$ Ft_tQF%DNx=11)Љ։x ȋ|$(؃7Ot$|$l$ڋD$(81$.|/듐D$$$.ÐD$(D$D$$$+Ð<\$,t$0l$8|$4l$@\BUL$Dցttte18L$D$D$D$ ,$+Hd$H? L$HHD$<$+\$,t$0|$4l$8<É,$+֋1)Nj1+9wD18~DEd$H%? D$HEt$!.뮋Et $J+뺋D$H~ 141D$$L$ D$A$Q Ã,\$t$ |$$l$(t$4@t4$L$0Q\$t$ |$$l$(,ËFT$0%:9|Ћ/00B/B E+)9w:0(u}4$l$+o$-$,븐UWVS@,L$@D$%D$D$DkD$uD$D@D$d$D҉utu%D$[/)NjW/+9[/8T$79t$@FG}S/9|D$DL$t$@D$D$(L$ɉt?$E(‹D$PO/;t4$T$ (ƋL$y4D$,[^_]É|$$+W$+2$|$m+D$D$Dh[/W/\$Du~+v}F|$^$+ߐUWVS7>,L$@QT$DT$Ai@D$Dw-s-7~+vuw-o-:FGk-G s-;(r W-;(r2Gt$u w,[^_]$G*,$($/*z$.*Lt$Dl$4$:&w-2D$s-~+|$D$w-FD$@P D$T$|rǍ)׋s-+9Bw-8~L$|$t$@|$N4|$ D$w-pu׍)Njs-+9w-8~DD$xL$H w-l$D|$@0Gx4T$L$D$T$L$h$D$4$%t$FD$$L$$Y$\$D$a(]$P($?(|$@ft9D$,$D$RL$ $D$$D$D$$$D$l$$#t$$'UWVS:,D$@@D$D$@fxt $'T$@B@D$D@+*'*u~+v^}#*F'*G*G D$;r *T$;rD$GG,[^_]É$$$&$.&eD$D$D$D$v"+*1'*D$V+}T$uD$+*FD$t$@n uǍ)׋'*+9+*8~DD$@T$+*HL$̀J'*D$p+)9w_+*8~L$D$h xl$D$Dt$@D$F$$!l$ED$r$m%$_%t$D$t$$OD$,$9!D$D$$#"$%zUWVS78L|$`l$d,$"O?94D$h<$D$,$D$!L$hL$$L[^_]Ëw4$xk',$D$Cw'D$(E7)щL$s'+9D$El$UG%? @E|$0l$,nl$ ~t$0$t䋃k'|$,D$$D$ 9D$$w'D$D$w'o'L$,D$8D$T$4D$$t9l$$D$$O9cT$(<$T$D$D$$؉$L$0D$<$T$L$$D$D$4$D$4뎋L$T$$D$49T$$b|$D$D$8$h!t$$|$,D$ D$t$$9D$$"it$<$D$4 t#$|$"k'L$4AEtED$hl$4$D$OD$t$L$|$$l$ƋD$$$t$$[Ƌ|$(,$|$ ( u+vL 0EF@l$,nt$<$:~D$ 4$D$%ك$UWVS3/$$P.DŽ$Ё%?- $$3Ƌ@% Ft$$D$ B$D$1HNj?% 9N=9B F% Ft$<$$Ƌ@n$P$T$xO$$$$0D$xupso7ݍ~+v;s:F uwĜ[^_]$x$j뷋$(ou $s>+8)9T$de}T$d*ρY Z L$hXD$hD$h^ Qf.f(‹$1X f(D$XFUP,$\$T$0t$^,$\$+$\$Xd$Z \*\f.T$0Z Z XX,Y,ԉD$|$$s$>)‹o+8T$T9$uD$T$M$L$T A`A;$}l$TD;$|苳s$)‹o+T$P9$D$P$$t$P F`F;$}|$P;$|鋳s$.)o+(L$L9$D$L$$|$L $T$t$|$L$|$D$|t0GljƋD$|?)u D$Lx|$L%<$$‰D$HT$L$Pp ?)1h D$P0D$x$$$t$Ht$@T$L2 D$L0$L$@L$ T$xƋ@%?4$)‹D$P׉D$ |$xL$TNjD$x;$O$d$x1%D$D D$T0Gt$T|$4$D$؉D$ NjD$P0D$DD$P 0<$D$"T$ts$l$@$l$PE%?xK D$Pp0$ $L$P1D$L0 $T$L2$D$PD$DŽ$t$|9$u7$ $7|$$ <$D$NNj@%?h@u3 w$l$|9$~D$d<$D$C D$d$V$Hl$7 $&$$3$$K$$z$$$S$|+$k$Zz$1FUP,$$d$ = \$Z L$ t$Y \$h\Z D$|XX^X,ʉ$$ \$T$$U$T$h+4$D$2$xD$߉|$ A $D$$Pׁ? $N%|$)$2$L$D$$$ÐD$(D$D$$$ ܖ,l`t^2Xl9B.@|?5^ @9B.6@9B.?iW @?@9B.?UUUUUU@9B.6@9B.?+eG??@?@@@??a transcendental functionincorrect precision in transcgpowgpow: underflow or overflowgpow: 0 to a non positive exponentgpow: 0 to a forbidden powergpow: nth-root does not existgpow: modulus %Z is not primegpow: need integer exponent if series valuation != 0%Z should divide valuation (= %ld) in sqrtnvaluation overflow in sqrtnsqrtrodd exponent in p-adic sqrtsqrtnrsecond arg must be integer in gsqrtnnth-root does not exist in gsqrtngsqrtn1/0 exponent in gsqrtngexpp-adic argument out of range in gexpagm of two vector/matricesnon positive argument in mplognot a p-adic argument in teichmullerzero argument in palogloglog is not meromorphic at 0zero argument in mploggloggcosp-adic argument out of range in gcosgsinp-adic argument out of range in gsinnon zero exponent in gsincosgsincoscan't compute tan(Pi/2 + kPi)gtangcotancotan0 argument in cotandegree overflow in pow_monomeser_powpadic_sqrtmpsc1 ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P~yv ⍀v Pe`a ⍀a PLGL ⍀L P3.7 ⍀7 P" ⍀" P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pkf ⍀ PRMz ⍀z P94e ⍀e P P ⍀P P; ⍀; P& ⍀& P ⍀ P ⍀ P ⍀ P ⍀ Pql ⍀ PXS ⍀ P?: ⍀ P&!~ ⍀~ P i ⍀i PT ⍀T P? ⍀? P* ⍀* P ⍀ P ⍀ Pwr ⍀ P^Y ⍀ PE@ ⍀ P,' ⍀ P ⍀ P ⍀ Pm ⍀m PX ⍀X PC ⍀C P. ⍀. P}x ⍀ Pd_ ⍀ PKF⍀P2-⍀P⍀P⍀P⍀P⍀Pq⍀qP\⍀\P~G⍀GPje2⍀2PQL⍀P83⍀P⍀P⍀P⍀P⍀P⍀P⍀Pu⍀uPpk`⍀`PWRK⍀KP>96⍀6P% !⍀!P  ⍀ P⍀P⍀P⍀P⍀P⍀Pvq⍀P]Xy⍀yPD?d⍀dP+&O⍀OP :⍀:P%⍀%P⍀P⍀P⍀P⍀P|w⍀Pc^⍀PJE⍀P1,}⍀}Ph⍀hPS⍀SP>⍀>P)⍀)P⍀P⍀P}⍀Pid⍀PPK⍀P72⍀P⍀P⍀Pl⍀lPW⍀WPB⍀BP-⍀-P⍀Poj⍀PVQ⍀P=8⍀P$⍀P ⍀P⍀P⍀Pp⍀pP[⍀[PF⍀FPup1⍀1P\W⍀PC>⍀P*%⍀P ⍀P⍀P⍀P⍀P⍀Pt⍀tP{v_⍀_Pb]J⍀JPID5⍀5P0+ ⍀ P+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk3Le~-F_x'@Yr!:Sl4Mf.G`y$Ë$Ë$e<0raP?. va@~R\L<@j<T@<@hD@s<bT!@<@P l@QU<QM@QB+ 4Q}q_J<2 Q<Q4Q8Q@Q@Q<QrZ4QM =" zz|\D4<z@zv a4V>.! h<W@1@<@ oG4A1 eS8 @@4m<I@C54' m_C@<@@v<>@<@  4<8g<a@7 |kY=1@@<@J@2<@<@Q G<<4(8"@ <@ <{@_OD3 48@n<[@ տǿ@$u$l<$f@$`$  ,ؾ4ƾf@R<9@/޽LнPȽ@ cPh߻ɻ@@p_Q@4( @<@@pT@>@<@ԹĹ@zV@)<@ @ø@<@iYQA6&з·@lR@LǻHD@<8P40&0 ض¶@ܱ@ܱziXJ9-!@ܱ<ܱ@ܱ@ܱfN@ܱ8@ܱ@ܱ <ܱٴɴܱz^@ܱX0@ܱ<ܱ@ܱij@ܱ@ܱw<ܱq@ܱbZ ܱC9)ܱʲ@ܱܱxܱ^R4@ܱܱܱ ܱkܱܱܱkܱܱܱر kR@G7#eްt@nV@*د˯8ïa%ծɮ`P4(ҭ8̭@8@w834<@r7 ѫ@[G9@. ٪Ȫvc@<ԩrH"<n@H<B@(@ <@֧@§<@t<n@P@B<3)ئ<<&@P7/777ܥ h3<*@ @9¤<9@9}@9q\G5)@9<9@9@9wcWM?@9<9@9Ϣâ@9zl"@9<9@9ߡӡ@9~m@9<9@9ҠƠ@99e9P9;9k999|9s|9V?@94&ş@9<9@9f<9X@95 'ОiE5 ݝ@@<@l<_@C<5@/$%֜œr@gVE4& @ԛ<@@}qB*@@<@Ԛƚ@i@H<:@,@ߙ@<@SC%{i]K34 @ߗ@rfV%<0j,'(p$ T4p  іU@X<<X(@X@XڕΕĕw@X^<XJ@X4(@XX ŖXXXXŖXXXٔÔ@X@Xp<Xf@XT 3"ܓ͓uQA!@ Β@ < @ x< k@ O< A@ ;*(  ڑƑv@ kZI8* @ ؐ< Ő@ @ uF.@ @ < @ ؏ʏ@ m@ L< >@ 0 @ @ < @ WG) }q_G4 4"@ Œ zj PD~ @3 <t 8 4h 0H , (t (  ۋыË}@ d< P@ :.@ ؊@ < ~@ l`M@ B0   K $ K   $  ԉ@ ̉Y< =@  5Έ@5<5@5r5gE80,5͇5hZ@5I8 @5ӆ@5ʆ@5<5@5z5k1 # ܅̅rYK@ vjP@&ǃsX@4@ł |l`OZK . ʁ@{lYK=}mXH5@{kY@{J7 ~~~~~~@{~~7~<{~}@{}} {&} }||@{|@{|@{s|<{N|@{|<{|@{{<{{@{{ {{{{{x{g{K{;{{{zzz@=wzzzezzyyjy@=wKy<=w9y@=wx<=wx@=wxxx@=wxx<=w9x@=wx<=w x@=wxwwww@=ww<=wzw@=wdw9w (wwwvvvvuvdvSvBv1v vvuuuu@)pu[u uttctsss@)p]]\\\\~\8[x\@[0\8[\4[[p[<[Z[@[4[[ [ZZ~ZpZVZHZZYYYY4YY@YYDY,YY YXXXX@RXXXxXgXVXIX8X'XXXWW@RWWtWNWBWW@RV@RV<RVIV<R/VVVUUU<RU@R[UFU8UT@RT<RT@RT~TnTbT7T@RT<R TRS@RSS@RS<RS@RrSR_SQSR<RR@RR RRwReR[R@QSRERR@QQ<QQ@QQ QQQ%KqQp%KSQ%KKQ*QQQPPPPPPPPoPaP@P@%K:PP POOTONN\N@%KNM<%KM@%K:M<%K'M@%KL<%KL@%K|L%KPL'Lx%KKp%KKh%KK%KK%KhK<%K4K@%K!K KJAJJJ4AJJgJWJA;JJJI<AI@AaIQIAI1IIIHH<AH@AHH~HeH-H@AH<AH@AGGGGGA~GnG,AXGJGA4>@@@@@@>@(@@@>?????m? >^?4>S?8>D?<>>?@>)?<>!?@>>4>>@>> ~>m>_>A>@<==4<=S=&=@<=<<< c<O<<;;;;r;j;^;/;;@;; ::@9:T:89J:0:49::@99 999@8o9<8]9O9?99@89<88@888888@88 ^8P8B8 87@%27<%27@%27<%27@%2u7_7R7J78%207 7,%2 7666@%26<%26@%2H6&66,%26555554%2g5A544%244{4%2k4]4@%2I44 433@%2333333z3k3R3@%2L3:323"3 32222222@%2r2<%2j2@%2[2!2 22N.111@.1<.1@.x1l1F1:1*1000@.0<.m0@.@0&04. 0//@./@.{/<.s/@.]/O/E// ./4..<..8..@..<..@... |.d.8l-[.J.@l-3.<l-+.@l-#...-@l--<l--@l--~-Hl-h- E-$---,$,,,,@$},<$u,@$,++,$++|+p+f+4$=++**$*q*F** *$))$))))$)w)V)(<$(<$((a(Q($I(3(#(''''''w'c$l'\'@$D'6'('&<$&@$&&$[&S&C&2&"&&&%%@$%{%%<$%@$$ $$$$$< "t$@ "l$@ "f$/$, "$4 "###8 "###C#@ "#< ""@ ""< ""@ ""$ ""j$ ""j$ ""j$ ""j$ ""j$ ""j$ ""j$ ""F$ ""j$ ""j$ ""5$ """ ""j$ ""# ""j$ """ "i"I"" !!!!!s!]!2!@!<!@ !    < @ @ y @<@SE)@<@x<p@hU80,@<@4sD !@ < 8} 4 0 ,] ( $  \n H  fX<@ oa<|@|K<|E@|=/@|<|@|@|i<|c@|I-D|H|@|$|(|<|@|x * 84 8v4vr dL<4<@ylZ0TJ&0@<@4@M<G@&<@4W::::uh:P:PP:: bR|J@|<|@||y]D<|@|u@|mTC5$ @|<|@|y@|h\)<|@|W%<|@| ||||||q|||q||]||||||||||@|x hZ8.L$<@ |kZ0      ~ n X L : *  @    | l Z : *     @   L s ] @> .       | f Z H 8 ( @     { i I 9 #   @`D@)<@@<@N@(X<@@L ~Y98<@ dZHP<@ wiM@EAHE;+uaQp4@E<E@E<E@E<Ewi@EJHEA ,L H\ D D@<840,($      | v qn qh  c ] XU XO  J D ?< ?6  1 + &# &           | wt wn  i c ^[ ^U  P J EB E<  7 1 ,) ,#             }z }t  o i da d[  V P KH KB  = 7 2/ 2)  $       } }  y y  u u  q q  m mz  u o ijg ija  \ V eQN eQH  C = a85 a8/  * $ ] ]   Y Y  UU  QQ  MM  II  EE { uApmApg b \=WT=WN I C9>;9>5 0 *5%"5%  1 1   --  ))  %%  !!    {vsvm h b]Z]T O IDAD; 6 0 +( +"                 |y|s n hc`cZ U OJGJA < 61.1( #             y t nifi` [ UPMPG B <747. ) #             z tolof a [VSVM H B=:=4 / )$!$            }}  yy  zuuruul g aq\Yq\S N HmC@mC: 5 /i*'i*!  ee  aa  ]]  YY  UU  QQ  M{xM{r m gIb_IbY T NEIFEI@ ; 5A0-A0' " ==  99  55  11  --  ))  %~%x s m!he!h_ Z TOLOF A ;636- ( "       ~ y snkne ` ZURUL G A<9<3 . (# #     |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  rwmk{juns][0*7b`46Z ?h"ot_U\<;VN|'yx}%&SRYTQvlIgJ(~iazq1pc^rwmk{juns][0*7b`46Z ?h"ot_U\<;VN|'yx}%&SRYTQvlIgJ(~iazq1pc^WXPOfde\l ܿ( .7ClOȼ[ Yb [jl`pHz XlR_X P4 X Tejejk+<EK_t^,$ܖ2=A{4w} pqXRPQ8uoL<0.(>:<!pxh89h5lAP-zp0jrnF\g]b~/H! 16LZ(C&I8VtvET{{=.=:@E26h P+S3w?_!kSb_pari_init_floats___i686.get_pc_thunk.dx_constpi___i686.get_pc_thunk.bx_mppi_Pi2n_PiI2n_PiI2_consteuler_mpeuler_transc_powiu_powuu_upowuu_rpowuu_powrshalf_powrfrac_gpowgs_powgi_gpow_sqrtr_padic_sqrt_gsqrt_rootsof1complex_rootsof1padic_padic_sqrtn_ram_padic_sqrtn_unram_padic_sqrtn_sqrtnr_gsqrtn_exp1r_abs_mpexp1_mpexp_gexp_agm_constlog2_mplog2_logr_abs_logagmr_abs_logagmcx_mplog_teich_palog_log0_glog_mpcos_gcos_mpsin_gsin_mpsincos_exp_Ir_gsincos_gtan_gcotan___i686.get_pc_thunk.axdyld_stub_binding_helper_mulur_gsqr_gsub_LOGAGMCX_LIMIT_gdiv_LOGAGM_LIMIT_EXPNEWTON_LIMIT_ghalf_DEBUGMEM_top_mului_sqri_gen_m1_pol_1_gen_1_gen_0_bot_avma_bernzone_gpi_geuler_gerepileall_subsr_divrsns_floorr_integ_derivser_cxnorm_garg_cmpui_equalii_diviiexact_gopsg2_gtofp_divsr_subrex01_addrex01_absrnz_egal2n_gerepilecopy_gneg_i_gerepilecoeffssp_normalize_mulsi_hensel_lift_accel_rtodbl_affr_fixlg_addsr_log_log2_sqrt_isinexactreal_gerepilemanysp_gneg_Z_pvalrem_padicsqrtnlift_cgetp_divri_gmul2n_gerepilemany_modii_dvmdii_addsi_sign_Fp_sqrt_pari_warn_shifti_addii_sign_resmod2n_int2n_Fp_sqrtn_BSW_psp_ground_gexpo_precision_gsigne_real_i_monomial_shallowcopy_gfloor_gcmp0_ispower_isinexact_gdivgs_gaddsg_gmulsg_isexactzero_gadd_gcmp1_leftright_pow_qfr_pow_ismonome_Fp_pows_ginv_Fp_pow_Z_pval_Fp_powu_Fp_inv_mulii_equalui_z_pval_gmul_denom_cgcd_gerepileuptoleaf_gerepileuptoint_leftright_pow_u_int2u_perm_identity_qfi_unit_qfr_unit_matid_gvar_gcopy_poleval_cleanroots_gerepileupto_toser_i_quadtoc_gerepile_affir_mulir_mulss_gaffect_divrs_mulsr_gunclone_divrr_affrr_mulrr_addrr_sign_sqrtr_abs_newbloc_pari_err_glog2_affsr_puiss0_powiu_sign_powps_pow_monome_powp_ser_pow_sqrt_2adic_sqrt_padic_sdivsi_rem_exp_p_serexp_agm1_palogaux_mpsc1_reel4.0__sqr__mul__rpowuu_mul__rpowuu_sqr__sqri__muli#1/12 1200774138 0 0 100644 60268 ` trans2.o @ @ __text__TEXTcx `__data__DATAdxH{`__cstring__TEXTx_{__literal4__TEXT |8@__literal8__TEXTX|px__picsymbolstub2__TEXT| __la_sym_ptr2__DATATtll__nl_symbol_ptr__DATA4$__textcoal_nt__TEXT8X @00 P )pp;8~qH8Do+vDH(G u|$ },$%D$~xD$$|$$d~$~뮋D$ t$$G}$Gny%$zO|$L$ p$t$|뉋H4$D$(D$TD$]z$I|l$(D$,$ |_r$L$~H4$D$({1Pс]tft5D$T$D$z}l$$z|$(D$<$zD$TD$G$ ʉ<${D$D$8$yt$Tt$$yʼn<$z$1yl$$zo?$l$RzŋG$xtftD$(l$$Ir$2t$|D$Tt$D$r$y\\$L|$Tl$X|$`t$PL7l$d<$x0/<$w~y~0|~ݍ~+vD~8F uw\$Lt$P|$Tl$X\${$|{뮉,$wƋwW~T$t$D$,$rT$(t$$uL$($L$lv\$v$v$v~0l$<$Trl$$4$D$:n$|$rv1ml$|$$Ns?n$T$:v<\$,|$4t$0l$8|$@7T+x(<$stt$Urtf~tVD$D4$D$ qlj$qD$<$r$D$pD$,$r\$,t$0|$4l$8<É4$0sl$Dtg|$l$$LrƉ<$qW?ЉT$- ~Ix8 xo+9wx(GD$Ec$t؋xMx x+)9wOuu6F`9F.}9|$ht$Zt룋x<$D$olj$opD$t$ G<$D$rƋ@%?hu ~t$D$$sX$s؍Vx(D$D<$g$L$s<\$,|$4t$0l$8|$@@ttu(<$'qtt$otf~tVD$D4$D$snlj$nD$<$+n$D$4nD$,$p\$,t$0|$4l$8<É4$pD$D|$D$d$oƉ|$G?t$uEtu0pu~+9wtu8Foo$Trًtu֋puE+)9Ɖl$;D$tuL$EM|$L$}]+D$t0ȋpu+)9tu(ul$<$ ql$l$,$m$ljD$ppD$t$ G<$D$oƋ@%?hu* ~4$D$D$ptuL$D$#$q$pC$p$pQjtuT$D(T$<$L\$<|$Dt$@l$H|$PXh.r(<$;n$lt4$n\$|$}d|$)the)׋T$+9le87|$,$_D$$]D$$_D$$^$ZƋ@%?hu ~t$l$,${_#$_$_\$_7t$LSU$L$_1lel$D$D$\e$[D$D$Te$[$D$\t$Dt$$Y$D$HZ|$D$<$ES1Ƀ`tD$9B|D$9BMȃ[ÐUWVSL|$dD$`$|$\L$`ID$`D$`Ǎt4$XD$(0D$(*0T$`xP`D$,D$(L$0H $D$( D$G&`9xD$4;p7`|$4D$`!Ȩl$(T$0 ET `E)΋`+9urF`9F}9|4$D$[l$(u$| |$\D$4D$`9D$4L$4`ɉD$L$|$4T$(D$$D$ l$Jt D$$t$D$ $Vt$$.[D$$D$ T$(BL Vt$T$ q $t$ZuL$(D$4T$0AT D$4A4$T T$[T$(D$4L$,Bt `:l$D$,$X|$$|$kZƋ@ljŁ?+|$ nl$(D$4T$0ET D$4E4$| |$[D$,L$D$D$4D$`9D$4s`u0`u`|$,8D$(L[^_]É$T܍Pt$8L$4$T$ [H$Z}$Z]D$`P|$ D$D$4 $D$TT$8$Tt$(D$4l$0Fl D$4Fl D$4l$Ջ2FL $YD$4El$4;h~uD$4h$CZ$2Z,t$ t$0\$|$$l$(|$4xt[\$t$ |$$l$(,|$V$\E \+)9wJ\(u,[}l$p| <$X|$^Y$PY먋\ \M+)9wHuu/>t$$9!F% F$X$X몐,D$0\$t$ |$$l$(dtZ\$t$ |$$l$(,ËZZun+89wpZ(FZZEZ>w+9w'Z0GF@Fuh$W$W낋ZZ0n+9wkZ(FZZEZ>w+9w"Z0GF@F\$HW$:W뇅ZZ$Sz$PuUWVS,|$@XwU)X+L$9D$ED$"ʼn0fXXun+99/XX(FXXE>w+9XX2GF@FuD$h 2n+99XXX(FXE>w+9w?X0GF@Fut$nXEFD$,[^_]$TU$FUg$5U$$U6$ND~|$@,[^_]X*$T8$TVt$$T$ N$t$2S^Ét$$!SN$L$ސVt$$T$ N$t$M^Ét$$MN$L$ސSHT$Xك&IL$PT$D$uzL$݃^ID$كH[L$D$u9z7\$fInId$fTfUfVd$D$f(T$ L$0^$$RT$0\$Z&I\$f.T$ f(wf.vX^ID$f(\^IꐐS 8D$@\$(D$H\$ T$(\$ YYX$:LZ.H\$D$PD$YD$ \$D$($D$T8[Ã,L$0T$8YYXQf.zuD$D$, $Q\$D$ܐT$ L$(YYXT$D$ÐUWVS<[^_]$OQn$>QIKT1GTFD$,+9L$,KTGT F L$(+)9AKT0%D$$GT D$ D$,pKT++t$(9KT0T$$L$ T$,rD$`KTt$\wt$2GTFD$+9wWD$KTF D$D$E$IT$BD$D$E$HL$AA͋t$Xn$O$OC$O$O$O${OfB$KtL$T@D$T|$t$l$D$ |$$9})4,%) ~u),uD$ |$$dNt$|$l$$NɃ<\$,|$4l$8t$0l$@lE|$D   P77 777  E1L$t'%uщ uYD$څN1)Ձ1#|$D<6\$,|$@t$0|$4l$8<8A$L$M$M뙍A$t$M$A$L$M?|$l$$}J\$,t$0|$4l$8<ËPD$|P,$D${J6|$$_DD$D$t$$2D먐\\$Lt$Pl$X|$Tt$`l$d  @c +Ft$$WC؅~?$T$LF1҉t#%vщ u,ޅN֍zl$<$)C\$Lt$P|$Tl$X\$7Lƍ?$T$LY?$L$LO84$It)l$$ B$l$(GD$<$HpP>l$t$$HUF$D$RBt΋VJ%/tx1trxZڅN1)с2~?$l$>K1~l$d\$L|$`t$P|$Tl$X\5$K똋By멉l$D$4$b#FD$)уtP9~D$l$$D$D$D$$?4$D$FD$,$B9~빉$9E뤋l$4$l$iB|$|$$6$ E$H $HL$@NGNG T$<;UrN;D$D$(1)Йڃ|$(OЉكN3T$(i<$B\1$.F됋l$ D$,$CH$~FA1$[Fx$DR$=F$,FED$4t1%} |$4݅Ol$4l$4O|$8OD$0|$,+EU>t$0NFGNG D$<;ErNT$<; D$$B$BUWVSS,|$@#CwwG D$D|$4@ T d$9؅~ D$DD$D$<$~,[^_]ËD1ҋD$Gt'%w ޅN֍j,$7DŋL$D)΋D+9D$DwQD$D7u7L$DD$Dt$,$=4$2<D$D$$@E$>A$0A$"AV5$T$A5$L$@D$D|$D$3$=D<$D$>.tfxt5$2|$@wDt$D$$<D$@f=0>%|$D$Dn0D?~+D8Ft$ wt$?D$D$5<$D$<‹D$D$$9t$D$4$<L$D4$L$5t$$8<$D$<D$D$$8z$O?X$>?"5$T$#?L$At$Dt$6$l$>UWVS諷@D$P8'$$$T$$$|$t$ L$$3D$\$@$]$l$x|$p$=D$\\$H$6$=t$H\4T$@\$4$l$|$L$pl$x $l$f\$(d$(_#4$$6$\$(Z3\$(*YY+4*\<$t$06Z3\$(d$0l$(XX^$$5\$(\$@Z3L$(Y,t$XOD$X @D$XT *^34Y\_Qf.\D$H$(5\$(|$(,׉T$TOD$TD$T@8o$@$ NjE)΋@+9$uF`9F.}9|D$\D$D$T$94$D$s9D$d@|$dD$<$1D$l'7;|$T/D$\|$TD$<$_9$$t$w6l$$6D$h@8D$d$:9t$XD$`@~4$D$l$D$;t$$9!@8D$`l$$4|$hD$<$>6D$hD$PuzT$ht\$L$h@D$A$$@|$hD$G$@$E$Ĝ[^_]Ë$$D$ɋ$$6ŋD$\D$,$3$$t$>0,$D$3L$hD$ $u7D$h-24$1$<$D$|$$8l$l$`Ɖ,$Y3t$$7ɉt D$D$l$6ߍ2$1D$\<$D$474$D$6,$D$6t;|$T|L$lD$ $w6$U9$D9D$T2D$D$X $D$E3n $8\$(D$(B2$l$8zD$\D$PD$@$3D$\$)1$-J1\$t$|$t$ D|$$  PlPl|$4$4\$t$|$Í,$T$7,$T$7)|$t$$4묃|$t$l$|$$T$ /u7Uڍ uwt$|$l$$w7߅x:ʸ )) @G9W.}9|뤾ڸ )) UWVSׯ$EL$|uTŋ 909?~+v 9:FoĬ[^_]$6ӋE,$%$Ɖ$j6 9$;8~} 9889ΉL$t+ vDL$t 90A ~n4$$l$5@D$D$t$5?$5뮋E%?- $Ћ$D$l~$$$ 99$+)9$|$hD$h 9$$|$h 9 9׉T$x)lj+9E 9: 7|$,$z4G%? @GD$lF%?- ${*g,\ы$Z ,Z,YZ,f(DŽ$DŽ$*f(X\f.sPZ,\f(Yf.Qf.X,\,艌$$$$l8 9$)͉l$d9+E9$ $D$d$L$d 4$L$3DŽ$$79$t$t|$`D$dD$$42D$$ 28ƁY $>4$1D$$18Ɓ $>t$D$d${1t$d$t$L2$$D$tT$`9$LT$dT$$1 9D$p$.DŽ$)Nj9+(|$\9$dD$\$<$L$\ A`A;$}t$\;$|L$\ 99%$+E)9$|$Xl$X 9$(u$|$X %$D$\$WT$/l$$0L$pA 91%?- $D$t$$> 9D$P|$LT$p2$ $D$p0D$t$X4$/+$M$ƋD$\$O̓)9$N$$8T$T) $D$\8$T$LT$.~t$߉|$ H$L$.ƋD$X8D$T $L$X94$L$}/D$tt$P$l$L$l$pu$P $|$p7|$D$X$.ƋD$\8 l$\ $}Ft$؉D$ E,$D$-D$D$d$/.$Ƌ@%?, ~D$luFD$|x%D$h4$D$L- 9l$x(D$h$F%? N‹$$D$~.~t$߉|$ p$t$,z${.\$j.$Y.$H.0$7.$&.<$.z$.L$-$-$-$-$- $-T$0 $d$ ,\$ T$0\$f(D$E^DŽ$X,É$@4$,$i,o,\$D$^$0,\$T$V|$$\,$,$,$,X$,*$$D$[,t$|H\\$Lt$P|$Tl$XD$`|$dPO։D$<͋F.?0?B.)Չ~+vDF.8F uw\$Lt$P|$Tl$X\$+$+뮋t$`%$'뻋%D$D$`(9l$Ml$l$??)ʃ~QD$`<$D$)$)Zl$,$_'L$$$T$$$;$. $0|$$D$@멍$T$*$0$݄$CD$$\$ D$,$$\$(D$(f(\$@Y^ $L$`ݜ$|$`Z$Z\$@Y$$_fTfUfV$A$ UWVSL$$F L$4D;t$d|ɍUD$`$D$nD$D$<$+ l$D$Gt$4uw\$t$ |$$l$(,$ى,$ $nND:x8# < gatangasingacosrfix (conversion to t_REAL)gargzero argument in garggchgthgashgachgathsingular argument in atanhBernoullicaching Bernoulli numbers 2*%ld to 2*%ld, prec = %ld argument too large in ggamdggamdgamd of a power seriesargument too large in ggammanon-positive integer argument in ggammaggammaGamma not defined for non-integral p-adic numbernon-positive integer in glngammaglngammalngamma around a!=1p-adic lngamma functionBernoulli sumsum from 0 to N-1lim, nn: [%ld, %ld] non-positive integer argument in cxpsigpsipsi of power seriesbernvec for n > 46340gammaoverflow in real shiftBernoullisproduct from 0 to N-1non-positive integer argument in cxgammalim, nn: [%ld, %ld], la = %lf ?????@?@@?C&DT! @&DT!?&DT! x?ư>9B.6@&DT!@,4l?&DT! @&DT!@ư>9B.6@&DT! @?3 ⍀ Pr ⍀r P] ⍀] PH ⍀H PԂς3 ⍀3 P黂趂 ⍀ P颂蝂 ⍀ P鉂脂 ⍀ Ppk ⍀ PWR ⍀ P>9 ⍀ P% ⍀ P  ⍀ Pv ⍀v PځՁa ⍀a P輁L ⍀L P騁裁7 ⍀7 P鏁芁" ⍀" Pvq ⍀ P]X⍀PD?⍀P+&⍀P ⍀P⍀Pۀ⍀Pǀ€z⍀zP鮀詀e⍀eP镀萀P⍀PP|w;⍀;Pc^&⍀&PJE⍀P1,⍀P⍀P⍀P⍀P⍀P⍀P~⍀~P}i⍀iPidT⍀TPPK?⍀?P72*⍀*P⍀P⍀P~~⍀P~~⍀P~~⍀P~~⍀P~~⍀Po~j~⍀PV~Q~m⍀mP=~8~X⍀XP$~~C⍀CP ~~.⍀.P}}⍀P}}⍀P}}⍀P}}⍀P}}⍀Pu}p}⍀P\}W}⍀PC}>}⍀P*}%}q⍀qP} }\⍀\P||G⍀GP||2⍀2P||⍀P||⍀P||⍀P{|v|⍀Pb|]|⍀PI|D|⍀P0|+|⍀P||⍀P{{u⍀uP{{`⍀`P{{K⍀KP{{6⍀6P{{!⍀!P{|{ ⍀ Ph{c{⍀PO{J{⍀P6{1{⍀P{{⍀P{z⍀Pzz⍀Pzzy⍀yPzzd⍀dPzzO⍀OPzz:⍀:Pnziz%⍀%PUzPz⍀P⍀>PBy=y)⍀)P)y$y⍀Py y⍀Pxx⍀Pxx⍀Pxx⍀Px||} }9}R}k}}}}}}~~3~L~e~~~~~~~~-F_x'@Yrր!:SlЁ4Mfʂ.G`yă݃(AZsׄ ";Tmх5Ngˆ/H$Ë$ZxLxBxxww(ww ww0ww4ww0ww4ww w4tyw[wJw(wwvvvvvhvXv4v%vuuuu}u0u0tt4tt ttttLt2ttss4rsss{sjs\sBs4r8s(srr4rr0rr4rUr4rl4_+l0_l4_kkkkrkakPk@k|{_5k$kkk|{_jjjj|{_jejRj.j&jji4_iidiCiiihhhsh4_`h0_Eh4_hhg4_g0_g4_Vgf4_f0_f4_hff4_f0_e4_eee~eke_eQe_Bee_eddddd_vdSd_Bd/ddd4_cv{_cc0_Yc4_Cc_cb|_bH|_bD|_qbObP|_GbbH|_bL|_aP|_aa|_a|_{a|_ua[a|_/a|_``|_``````(_[``___ _|_0\v_4\k_[_`{\P_?_.__^^^{^[^O^#^4\]0\]4\]](\\0\\4\\ \Z\D\<\'\ \[[[[w[;[4Z"[0Z[4ZZ ZZzZiZXZEZ&ZZ|)PZYYYYwYfYUYDY3Y"YYYXXXXXXHX4)PBXWWW=W WVoV*V4)PU4)PUUU4)PQU0)PKU4)PT0)PT4)PTnT^T3T#TTSSmS0)PQS4)PR@|)PR<|)PR8|)PR4|)PR|)P@RR4)PQ4)PQ0)PQ4)PQ0)PQ4)PHQ7Q$QQ4)PP0)PP()PP4)PP,)PPPmP4)PPP0)PHP4)P%P OfOVOtxNPO@OL{N:O*OG{NOO>ONOTONOTONNTONN(ONN ONNTONNTONN(ONN ONNTONNTONNNNN NN}NsN(UHXNHN {UH%NNNzUHMMMMMM}MuMzUHkMFM:M(MMMLzUHLLLLLqL4UHkLNLLLKUHKKK4UHKKUHKzKgKGK+K4UH!KKJ0UHJ4UHJUHXJ(J|UHI0|UHII,|UHII|UH|I(|UHfI\Ix|UHJI.IIp|UHIHHH]HUHQH CH3HzDHHzDGGGGGGGGnGbG&G4DG0DF4DFF$DFFzD~FpF4DeF]FxxDKF;FzD0F FzDFFEEEEE0DE4DE@E4D2EED1HDD$HDDnFDDnFDD9FDD$HDDDDDnFDDDDD DD|DpD_DQD)D40,:>4,:J>9>)>!>>======m===4,:<<<~<N</<#<;;y,:;;v;|x,:k;_;S;C;9;4,:3;#;(z,:;;z,:;:::y,::h:W<,:d:><,:`:7;,:\:;,:X:!;,:T:><,:P:l:,:L:7;,:A:L:,:(: :999894899x899y89w9y8o9a9Q9y8K98988988988988988988988988u988988888988888 r8V877777x7j7G7-7744604644644644604d6447604164460464455555c544M544:504'54454 4Y4/4$|3'43 3X|23X|23 |23Z3h|2R3`|2'3X|23 |22 2222a2P2D2#222111(I014I0~14I0o10I0i1(I0c14I0#10I014I014I00 I000I004I000I004I0i00I0R04I0E0 70"00x. 0(x.///4x./0x./4x./(x./4x.q/0x.k/4x.c/U/(/4x. /0x./4x.. x..4x..0x..4x.. x.t. `.R./.-0$--4$-----$--4$-}-0$-t-4$-n-G- $- - -,,,v,^,`y}(O,>,-,,,;y}(,+4}(+}(+}(+U+B+++4}(+***6*4}(*))0}()4}(V)}(')}(!)(4}(((y( I(B(>( &(((''#''$#'4#''y#'w'i'X'&'''&&&4#&0#}&4#r&a&Q& y#I&5&&%%%%%4#i%0#a%4#E%&%4# %0#%4#$$x#$$y#$$$f$M$A$7$/$$#$##4## #{#i#]#M#=#/#40$##y0""""""t"c"P")"40"00"40!,0!!!!40!!!!a!P!407!001!40'! !  x0  y0 k N 2    aS40, 4 eX4( {k]4LRByL)4L}qN4L20L4L0L4LxLryLh\54L\H 2" y4hI4044y0f4XH/404404xnbRJ8(4 v4_N=/4w4[0$404404~vxbF:*4  y$t4$`O4$n0$_4$U24$0$4$x$z^PF4$  x x x 4 ~m_N>.4 0 4 4 a0 0 p_Q@0 4 0 4 4  S  0 4    4 0 n 4 c S C 3 x   x 4   q 4 U 0 J 4 @ 0  ,  (  $                  <  4 <    xo _ x6 )       $     9 + 4%  x 4o\6404,4} m=074404n4) 0x ,x (x $  x x  8 x x  4}xg_M<)404,4C8404f4J0B4.&xx~td\$J*4 4$~x$jLDx$-x$ PF4$ D@<840,($  @z @t o i 'a '[ V P H B = 7 / ) $  ܆ ܆  Æ Æ x x ܈_ ܈_ ؈F ؈Fz u o Ԉ-g Ԉ-a \ V ЈN ЈH C = ̈5 ̈/ * $ Ȉ Ȉ  ĈɅ ĈɅ      ~~  ee  LL { u3m3g b \TN I C;5 0 *"  τ τ        kk  RR  {9s9m h b Z T O I|A|; 6 0x(x"  tՃtՃ   pp  ll  hh  dqdq  `X`X  \?y\?s n hX&`X&Z U OT GT A < 6P.P( # LۂLۂ  H‚H‚  DD  @@  <w<w  8^8^  4E4Ey t n0,f0,` [ U,M,G B <(4(. ) #$$   ȁ ȁ      }}  dd   K K z t2l2f a [SM H B:4 / )!  ΀΀        jj  QQ  z8r8l g a܇Y܇S N H؇@؇: 5 /ԇ'ԇ!  ЇЇ  ̇̇  ȇȇ  ćć  pp  WW  >x>r m g%_%Y T N F @ ; 5~-~' " ~~  ~~  ~~  ~~  v~v~  ]~]~  D~~D~x s m+~e+~_ Z T~L~F A ;}3}- ( "}}  |}|} x}x} t}t} p|}p|} lc}lc} hJ}hJ}~ y sd1}kd1}e ` Z`}R`}L G A\|9\|3 . (X| X|  T|T| |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  WgPvx"`c?nG'@V!Ci={~3<p\1ImrRaB9oz.J->e_uH/lb[^w5hNdykfMYKqQALjOX}| 2ED4s7F6Zt,0WgPvx"`c?nG'@V!Ci={~3<p\1ImrRaB9oz.J->e_uH/lb[^w5hNdykfMYKqQALjOX}| 2ED4s7F6Zt,0+U]*:QSlT);8 PZlO\ r _tdx#wU<( 8 <7ph.f-z@0LHh4232l24I '. C< O#4x8:DN9>^t(0C4yI0'eCYhUe/. VOZ_er:$w{B}Jo8)lk|P6;2Ro@G@sv]+_gatan___i686.get_pc_thunk.bx_gasin_gacos_garg_gch_gsh_gth_gash_gach_gath_OK_bern_mpbern_bernreal_bernfrac_bernvec_divrsns_divgsns_darg_dcxlog_dabs_dnorm_trans_fix_arg_affr_fixlg_ggamd_ggamma_mpfactr_glngamma_cxpsi_gpsi___i686.get_pc_thunk.axdyld_stub_binding_helper_top_DEBUGMEM_gen_m1_ghalf_DEBUGLEVEL_bernzone_gdiv_gen_0_gsub_gen_1_AGM_ATAN_LIMIT_bot_avma_gerepileall_gpowgs_u_lval_gcotan_mpeuler_szeta_mpfact_gmodgs_gmulsg_cmpii_gtrunc_equalui_cmpui_gerepile_divri_shifti_vals_seq_umul_gsin_ceilr_msgtimer_mulur_pari_warn_mulir_addsi_sign_ceil_imag_i_real_i_gexpo_timer2_addir_sign_floorr_gtofp_precision_log_gdivgs_gmul_diviiexact_mului_bernfrac_using_zeta_gunclone_msgTIMER_mulsr_TIMERstart_fprintferr_newbloc_PiI2n_cgetimag_gneg_i_pureimag_glog_logr_abs_exp1r_abs_absr_cmp_gmul2n_gexp_ginv_mpexp_affir_quadtoc_gsigne_gcmp1_gneg_mppi_gsqrt_gopsg2_gcmp0_sqrtr_subsr_transc_gerepileupto_gadd_integ_derivser_gaddsg_gsqr_gcopy_toser_i_gerepilecopy_mulcxmI_mulcxI_addrr_sign_divrs_divrr_sqrtr_abs_addsr_mulrr_sqrt_log2_atan_rtodbl_divsr_affrr_gerepileuptoleaf_logagmcx_Pi2n_absrnz_egal1_pari_err_mpatan_mparg_affsr_mpach_bernvec_old_gammahs_cxgamma_gadw_reel4.0_zeropadic#1/12 1200774141 0 0 100644 101164 ` trans3.oH d __text__TEXTd __data__DATA8T__cstring__TEXTy$__literal8__TEXT@0__literal4__TEXTp@__const__DATA0__picsymbolstub2__TEXTBD@Tl__la_sym_ptr2__DATA"Ho__nl_symbol_ptr__DATAl@$__textcoal_nt__TEXT @yP P/=0t4UWVS|D$d$c3sqqq$$B$‹$D$D$$$|$$Nj$D$$$$L$$t$|$$ D$L$$dtl$Ll$D$d$|[^_]Ë$$L$$‹$|$<$Zg$\$T$hL$Y7L$PL$Pf.rf(^?,tt$hT$l$T$$63D$l1)|$$D$hO<$D$$$O*YG^|$P|$XX}D$X<$XD$@mO\$l$@d$Xt$X1^X,$d$85T$8\$D$XL$X^X$D$XO\$l$Xt$$X2l$^f(Yd$P,N$D$$|$ $7$L$$wD$D$L$t$dD$4$>~M/}+v 8EG@wI$)҉>݉w+v 0GFn$ҋ$$;D$h!ȨD$h$D$<$$$T$w$$$$t$lt$$lt L$l1)uD$|$$%<$D$ $D$~D$~YD$0ŋT$0 +v$(D$0@E@uu$΋ދ(t$,u+v$0EFl$,n$<΍$T$$1Z$$l$F$(ǁ9||$|$d<$$D$A$S$L$ D$$$L$$9|뢉Ջ+T$4)9w`d$4> l$49D$4|$$D$ $D$D$$$9|$뒐D$(D$D$ D$$D$D$ $ÐD$(D$D$ D$$D$D$ $ÐUWVSl$tk$T$j$AD$@t1%q  t$@مOL$@L$@D$@* $q   $$3T$@T$D$H$$$ʼn4$D$$$b$|$$[$l$u|$@ƋD$@O$L$4$D$|$$l$HD$,$l[^_]Ë$$$4$$E/|$L37V+T$<MD$9|N$$D$D$$$g9|$럋$D$$k$$|$$t$$hUWVS D$ll$L El$d+)9D$dT$H D$HD$d%D$D |$dD$H8$+)9D$dT$@N D$@T$D+ D$@8$+)9D$dL$< D$<t$D D$<8+)9D$dL$8 L$8D$Df D$88+)9D$d. 0D$D >t$|+)9D$d D$d0 D$d t$x$,$$D$D$tD$p*ȋ$Y;$L$0‹8 $|$<$\$L$Qf.  YCt$dXD$04$,ȉL$\ɉL$`ŋD$\T$T6 $G؅$D$$,$ljD$@$$t$9<$$D$$l$`${L-8L$h$D$$D$hD$hD$$%L$t$L$/‹$$D$$l$$$t$|$$D$$l$h퉄$u$uD$$$d|$L|$$Au$$`l$LD$,$T$P$T$L$XD$PĬ[^_]ËD$hT$tT$$ |$`,$|$$t$$$$l$`)΋+9$$7$ ,$t$4$${l$`T-퉄$sT$h$D$hXD$hD$$1t$t$t$;$ $މD$t$$$T$lj$$D$<$$$D$L$hD$ $l$h퉄$G$/D$$$CL$HL$$ $/D$$t$H$$4$D$ŋ$D$$$l$$l$`݉$l$L$@$L$D$dT$T)‹0T$,)t$Tl$Tl$T9l$dD$,D$dL$dD$,T$dD$D$`$̔$D$,$$D$l7t$T|$(D$ |$,$|$Nj@%?- |o8D$,D$$$$D$<$ʼnD$t$(O.<$T$0<$l$$$L$$L$8D$<7 $D$T$8T$$0$D$8t$$T$|7$D$L$|L$$$7t$8D$4$Nj0D$x|$$L$xL$$[2<$ƋD$x$<$))9~D$T$$|$|l$xD$xD$$T$:$|$$$)<$$t$$tW$1)Љ$$D$$El$4$%D$ $D$D$p$D$ $t$$6$1)$D$$$$$$щ$Y$$|$l$t$ $yD$|NjD$lu5$t <$D$$$<$ދ$$l$D$ $|$$ ,$$$؉D$Wŋ$$$4$މ|$$蔻$t$}$D$$e$L$$D$,$ƋD$|D$4$$D$,$,$T$~T8w+v'0GF@$V$ˋ$؉D$D8w+v0GFT$D$֍Ǹ$T$rd$|$W1$$l$F$ֽ0Ł9| l$D$D$A$茽$L$ D$$$L$${D9|막֋+T$H)9wbd$H/ t$H9D$HE|$$D$ $D$D$$$D9|$.됐D$(D$D$ D$$D$D$ $ÐD$(D$D$ D$$D$D$ $}Ð<\$,t$0|$4l$8dl$D|$HD$D$@|$l$$$0|$ƋD$@l$$~t$$D$D$$\$,t$0|$4l$8<Ð<\$,,t$0|$4l$8l$D|$HD$D$@|$l$$$臷|$ƋD$@l$$t$$sD$D$$舻\$,t$0|$4l$8<ÐD$(\$t$L$$t$ T$,tV~;t$Y$ T$l1\$t$ÉT$L$4$uƉT$L$4$̉T$L$4$9뺐UWVS$$x$DŽ$$=DŽ$$$%E$ɉ$1u~+}F $D$xE++t$x9$$uT$t$ D$pwE++t$x9$BuD$t"l$p.w$$$/T$$$$$袹$$$4$D$ $D$Ϻ$$N7n+9/F $4@t$l$t$h++t$h9$$7%D$d$ D$`u++t$h9$\7D$d=D$`u$7n+9/F ++t$h9$7D$dT$`uL$\++t$h9$f7D$dGT$`u$7D$\n+9 /F T$lL$\$T$X+)9$ $7%D$T $ D$PuL$\++t$X9$W 7D$T8 T$Pu$7~+)9 :F +E+t$X9$ uD$T D$Pw++t$X9$Q 0D$T, L$Pw$un+89 /F T$L++t$X9$ $7%D$Hx $ D$DuT$L++t$X9$4 7|$H D$Du0$~+*9 }F E++t$X9$ uD$Hm T$DwE++t$X9$2 uD$H l$D.w$$D$8*ȋ$YD$$L$0$$$t$$‹ $|$д<$\$L$Qf.R L YXD$0/,ȉ$ɉ$$B؅\$$W$$L$D$$蘴$$$D$A$$8$D$ $,$D$,$Nj$D$|$$˴$t$$踴M$L$萴$|$$薴D$t$ $ϴ$u$$l$$Z$$$t$$&$$[^_]Ë$v0$$$l$D$4$,t$D$$$#$$$$$,$D$苳,$Nj$D$v|$$Q$|$$>M$L$$T$Ɖ$$D$#4$$$D$$lj,$t$|$$$:$$/T$$蝲$L$$w$/D$$$n$t$$$T$$L$.$$)‹0T$,)$$$9$YD$,$1$D$,$(D$$$=t7$|$(|$,$|$貭Nj@%?- |8$D$,4$D$fD$$=ʼn<$D$O<$蠱$T$$$D$($|$$蹬$$D$,$د$D$$$蹯$T$,t$$$$D$(L$$D$|$)|$$蘰$t$$lǍU$$D$m$$L$A|$$耰$NjD$,t$$1l$$$T$$0<$l$ȯ$|$$軮$0$ $D$謯$|$$膮$0$$t$w7D$$$觯$L$$6$7$D$4$'2ljD$$$U$L$$0<$菬Ƌ$$~<$)O)9~D$|D$$$$$$$L$$$$$袮/D$D$,$?t$,t$$$T$,(AL$؉D$ B$D$J$hGt$8%??)Ÿ)9.v$0$X$G$~N}w+v uGF@$~G$ҋ$8݉w+v0GFn$藭ԋ$$+( vD$7Bt$$$"o$$4$D$Ψ$" $ʨ\$D$$p$$$Ѭ$b$诬 $螬$荬$|w$kN$Z $I$8$'^$8$$$$ҫT$+$谫$蟫$莫$}K$l,$[$J$9$(M$$$$D$@++t$@9$$7%D$<$.$++t$@9$7D$<u.$++t$@9$;7D$<.$++t$@9$7D$<.$++t$@9$7D$ӟ+8L$L)9KD$L.E` EE;D$L}D;D$L|D$Ll$8l$%D$LD$HD$L)‹ӟ+8T$,9|$LD$,l$pt$,E%T$L~t$p|$,D$,l$pHE%? D$,Hŋt$H}9|\$,t$0|$4l$8<$芉$|땋D$%$裆$V<$4l$ t$D$܌$Dt$$uwxD$D$$φ_D$$0ِUWVS|$݄$\$X)ω|$T+9$D$T$u$L$Ty Zgz/*$‰D$Pg)8D$X^f.T$@l$Luz$*YL$X$*t$0D$0$l$X\$L$\^l$0l$XD$X$$|$nD$n fD$ll$l|$`l$nD$`D$<$2$$؋$D$,E)΋+9$#$u$F`F ;$};$|D$,n D$(% l$(nt$$W;t$<1PV,$$藄\$\$Y\$@$ ~$\$|$,)ʉЃD$$4$D$},$D$荁HD$ىL$ E,$D$輀ŋD$L9s'8wrT$T,$T$܀L$PT$H0$~r|$$)ză0-${${띉|$|$HD$<$UWVS蓌;~D$`(~8$$$T$$$L$$|$t$ xqD$|$y^3~D$D$|$w$x $t D$|D$`D$3~$_wD$|$s‰$$T$$p؅73~T$`D$tu8$l$tD$,$x;~$$ļ[^_]ËD$|$y$Nj$D$v$t$|$$xNj$D$D$|${o$l$$xL$tD$ $y|$$y$D$t$D$vt$|t$$x$$l$nD$D$t$xD$$/yD$t$$$D$D$|T$ |$$6C$$p$;~$ƍ )͉l$\7~+E9W D$\4 l$\9E`ME}|$\9|;~$,)7~+E|$X9 D$X;~ "D$X0~$8 D$|$w;~D$P7~$+)98 ;~2 .$9B D$LyD$LF4$4$t$k4$Nj$D$i$D$k|$$.kD$4 $%D$5a|$4|$4$D$0a?oL$|$4$\Q|$t$$HWoHT$l$Ic͍]T$T$1cUWVSt\D$pl$xlD$pue$b\[^_]ËD$t$ja'e|$pD$<D$t$aD$Duxe+)։l$D9D$D7wD$DF`F ;D$D}9|D$tt$$aD$t|$t<$]$_D$@t$@D$tD$0~ $^D$0el$DD$8eD$8)ȉt$(D$0L$4D$LD$Ht$0D$L4$D$`D$LD$p<$D$DXD$D$L$`ƉD$D$H$a4$D$HV^9~[D$4L$(9s/e8w,L$Lt$HD$8L$ t$D$$ZcQ$T$`뼋|$@D$t$]$SZu5D$pzD$t$YD$e$B]$ZNjL$pL$$ $ZŋD$D$]l$$dV$TD$,pF%? F|$pKl$DD$tl$$CZD$ $`D$e$[Y|$pxPOwD$$t$,_,$D$9_ŋD$DD$D$p)$l$$`_yD$p|$ l$<$^ŋD$$D$D$ $\D$D$,$^,$D$8_$|$^T$tŋt%D$Hl$$^D$D$<$\4Jyԉ,$WȋD$H$MXD$HaD$H$8XT$tD$Ht{D$Dt$tD$4$X|$,$|$T[$^D$$u^NjD$D$[$x^D$$ Y<$D$^$WNBz$Q딋D$t$&W$WD$Hl$QD$?D$$V$tO.$ V$VqD$ D$$Ul$D$,$UD$>|$<$R$U$UUWVSfL?XD$$ T$_O1\$t$ÉT$L$4$T$L$4$^ЅuT$L$4$p뺉T$L$4$ 먃<\$,_|$4t$0l$8L$DQ|$@(L$ tx0>$T$N4$dMtD$D$$D$RK<$H$t$ML$$L$2J$2,$D$K\$,t$0|$4l$8<ËF$Gy^L$<$@Ƌ=<$bKt떍p>$T$MUWVS^,|$@_PΉD$ Sȉ'<$L$nM4$:LtD$D> $@D$WP(OPD$<$ F$?Ƌ@Y<$?L$L$$HDCP|$D$$Glj$`Ft$D$t$I,$D$L뀋D$D$$$?<$3F$NjD$DD$VI|$$KD$$KL$DL$$0HƉl$$K4$+I|$D@9}D$l$$I,[^_]D$4$QI$G0,$D$1KD$D$D$3,$D$K%t$<$BHNjFt$t$D$ F4$D$?D$lF$DD$D<$D$@>ƋY=$T$4KL$$T$ D$(tD$$EÉD$$UWVS[,|$@MD$ ƒ ШD$D D$txU4':$T$~J4$JItD$D$$D$:G4$C$l$IL$$L$Fʼn,$.,$J$s.|$$+I$ID$$ID$ $AG,$D$)ID$ljD$sM$vD<$I$l$BID$$Iʼn|$$0F,$D$ID$D$$)G,[^_]ËF$BD$D<$D$"<Ƌ<$Ftg:$t$ID$D<$D$&<$D$H|$D$|$l$$G$H$H$HƉ$fEʼn4$|H$D$SH$l$H$D$E<\$,LYt$0|$4l$8Jt$DD$t$J$PEt$ŋD$@$JD$NjD$@$Gt$$(|$$GJ9,$D$"G|$D$D$$*:\$,t$0|$4l$8<Ã<\$,Xt$0|$4l$8NjD$XD$D$T$ 7D$D$(D$X؉D$|$,$CŋD$$<$D$Ct$NjD$T4$D$@L$XL$$6D$,$CƉD$D$($C4$D$(?A;D$|D$녋T$ Bu\L$XD$PL$$BA|$X$|$2AD$$CD$D$($8CD$D$,$A<[^_]É$D$5ŋD$$X=l$$Bt$Xt$${?NjD$ $5L$P $D$g5$|$BD$D$($Bl$ D$(E%DD$($w<D$(D$Xl$PD$,$"=lj$;D$4$Q>$9D$ @D$Tt$ <$D$t$ B$U<D$D$$SBD$TUWVSS<[^_]Ë;ED$P.$AD$$$B;t$XǃT$(D$މt$ |$,$$AŋD$$<$D$AL$TNjD$L$$d8,$D$@ƉD$D$($)A4$D$(z>;D$ |D$땋D$X|$PD$<$>l$X$l${>D$$AD$Tu%D$(4$D$x@D$D$,$>D$($I:D$(ɍ[2$T$@\UWVSQ<{CD$,D$P$?DD$XD$XD$D$P$>D$P$=x0$T$@sCD$$D$P$O@D$ $9D$(t$TwC+)9/"u;t$TsCD;t$T~|$XD$߉|${CD$8wCw+9R{C0GF@D$FD$$a1L$$D$D$( $D$>t$(D$$4$D$ D$>;t$TD$(D$$4<;D$| D$It$XD$Pt$$B<|$X$|$-<D$$>;t$T~$l$<$/>D$D$,$<<[^_]ËD$7D;t$T~D$$|$$=D$D$D$#>D<$L$L$H4;t$T~$W>$F>$5>|$t$l$|$$T$ /u7Uڍ uwt$|$l$$=߅x:ʸ )) @G9W.}9|뤾ڸ )) UWVSgNw#D$,l$$r;Ń<[^_]Í?)$T$b;ŋL$$U%)x~D$$|$$;D$$m@t$ ?0 @~+vP@8Ft$ u!@ w|$$A;&$;$;뢍;-$T$n;9?)$2L$S;$:D$$UWVS+L<|$T<$ ;D$$:D$XD$$ |$\=|$PEw)щL$=+9D$Ey"D$0=t$F|$Xm=l$D$ E9 l$L$\DD$D$9=D$ l$\D$(=0D$()<0|$,L$t$P,$<.|$5ƋD$ D$D$$$>9t$$9L$ƋD$$e9t$$Y9T$D$ D$,9s'=?#D$ D$D$($w8D$ e|$XD$P$3D$ƋD$ $q8|$PD$ u D$ <[^_]Ël$$,$5$8t$D$$$58t$PD$4$5T$ ƉD$$8l$PD$ .~D$P,$)D$Q4L$$L$$8D$4$8|$ ƉD$<$=8D$ NL$`l$PL$,$2'$T$k7T$ ,$T$4$D$7l$$l7L$D$ D9~E=L$`+)9D$`D$`uD$`F`F ;D$`};D$`|D$t$ 9p3D$ ,$D$1$D$O2l$$1t$D$ D9~$L7_$;7=$*7v$7RL$$W%)h~D$$l$$Y6D$$o=t$?0=~+vP=:Ft$u!= w|$$5$N6$@6뢍+$T$(69'$2L$ 6$5D$$WVSF$$?F$4ݜ$F$4ك|'ݜ$\$`$$D$`f.$*Y&$$f.t$`z݄$݄$$\$C-ݜ$$^$4$2$ݜ$\&݄$X$$l$02&\$(L$0$D$(^$\$Y$XX$^$L$0[,\$0\$(|$`T$(\f.Z'$f.$1\'X$^$݄$$+\$(L$(7 $+\$($t$(,։l8u [^_ÉT$%D$<$8,݄$X$\$$݄$$+\$(L$(^ 'eZ''f(f.\$T$x@f(X$'f($T$@Y\$0D$p*<'\$(\$0l$pL$(X)d$@Xf(Y^Y,'^L$p\f.f(vf($Z|'YX\$xf.vkZ'Y$j*Z'\$(݄$d$(\$,6*X$$$\$$1\'X$^$Z''\$0Yt$,$v)L$0\$(D$(X݄$$݄$X4'$\$hD$0f/\$(&\$0L$(Z|'\Y$Xf.vOZ'Y$$)Z'\$('|$(,6*X$\fT $T$h1\'^$$$.\$(D$(X$Z'$݄$\\$$݄$$(&T$(D$(UZ'$\fW'$$$\Y&D$?f(ݍD'X\$P-<'\$(T$P݄$L$(݄$$X \$X^T$P't$P\$(|$(Y>_4$'D'\$(!l$( Y$,Y$Z'$N݄$*\$X\$/'<'\$(L$(^&X $$݄$݄$ɉL$T$\$$&Z'$$\Y$Y$\]4$,ݜ$ك|'ݔ$\$`UWVSS?l$0?؉D$P$D$L$D$+D$<$D$4)΋0+9D$4D$47D$4F`F ;D$4};D$4|t$8t$<4$ (D$DD$@$D$T$$1D$ D$D$<$'D$$$9D$Dt$Tt$$<$D$#$l$l$T),$#t$$!&D$8t$$&D$D$$#'t@%? Nwt$D$l$9VL$T$ $D$&Nj$D$D$<$)|$$'t$Dt$$e%D$DD$ l$DD$,$&0D$D|$@D$H0D$H|$\)ȿ,0t$D$XD$\$D$&$+<$Ƌ$D$k"t$$"?ƋD$$$D$%$D$T&D$D$\$$$D$4&t$$&L$XƋ@t$D$ A $D$%D$XF%?- ;D$P|oD$@D$D$\$.$t$D$\9.s/08w,t$\T$XD$Ht$ T$D$$#d$L$)뼋l$XE%?x@uO u|$Xl$DG|$؉D$ E,$D$$D$DD$DL$LD$ $"l[^_]$/*룋Ft$t$DD$ F4$D$$D$D`UD$8$D$C$O$L$f$U$D$%$$|$K$D$8D$T19D$0$<$l$e l$T)$D$,$J $t$"t$t$84$|";|$0ttF%? ʼnn t$D;|$0h|$T$<$D$4#ŋ$D$D$<$;&l$$"$t$Dt$$!0D$D|$@D$H0D$H<$)ȿ,u($D$\D$@D$I#$5%t$(D$XD$\$D$%#<$Ƌ$D$t$$5$$L$XƋ@t$D$ A $D$"D$XF%?- ;D$P|oD$@D$D$\$!t$(D$\9.s/08w,T$\t$XL$HT$ t$D$ $ /d$T$&뼋l$XE%?x@uQ uL$X|$DAL$D$ G<$D$!D$D@%؁? ŋD$Dh$'롋FL$Dt$D$ A $D$|!D$D@%?D$,u l$,nb$&UD$8$D$ O$L$!U$D$ $|$ D$8(D$4u l$4D$8($,&$&8$ &,\$6|$$l$(t(t$ 0D$01w\$t$ |$$l$(,ÍL$0|$$L$t.9} 9|L$4t D$,$$t$t$$t4$H[H_t$ F++t$9wa_0D$uC>F`9F}9|F% Fl$ u $$$($W_[(u+)9wB_8~DD$ xOt$ FZ$Q밋_[<+)9_0.t$$4$HHD$$D$$$t$ F$s$D$jl$ E$j$sE$b'Pp-adic jbessel functionjbesselnot an integer index in jbesselhp-adic jbesselh functionjbesselhzero argument in a k/n bessel functionp-adic kbessel functioncannot give a power series result in k/n bessel functionkbesselbesselkhyperu's third argument must be positiveincgam2incgamcnon-real argument in eint1 %ld nstop = %ld negative or zero constant in veceint1Entering veceint1: erfcinv_szeta_euler, p = %lu/%luBernoulli sumczetasum from 1 to N-1tab[q^-s] from 1 to N-1ytwistpartialzeta (3), j = %ld/%ldtwistpartialzeta (2), j = %ld/%ldtwistpartialzeta (1), j = %ld/%ldgzetazeta of power seriesargument equal to one in zetapolylognegative index in polylogpadic polylogarithmpolylog around a!=0gpolyloggpolylogzargument must belong to upper half-planebad argument for modular functiontrueetaweberq >= 1 in thetak < 0 in thetanullkjbessel around a!=0kbessel around a!=0lim, nn: [%ld, %ld] szetaetanon-positive valuation in etaB ?Ǝ%>@9B.&@?9B.6@&DT! @B ?Ǝ%>@9B.&@ۦx\T??9B.6@&DT! @9B.6@9B.6@8dg?9B.6@e2@Jd?9B.6@p= ף@9B.6@G?9B.6@?8dg?&DT! @(\?9B.?&DT!@-"l?UUUUUU?&DT!?Gz?Q?????>?>?????>@@?=⍀=P(⍀(P⍀P ⍀ P ⍀ P ⍀ P ⍀ Pql ⍀ PXS ⍀ P?: ⍀ P&!k ⍀k P V ⍀V PA ⍀A P, ⍀, P ⍀ P ⍀ P ⍀ Pwr ⍀ P^Y ⍀ PE@ ⍀ P,' ⍀ P ⍀ Po ⍀o PZ ⍀Z PE ⍀E P0 ⍀0 P ⍀ P}x ⍀ Pd_ ⍀ PKF ⍀ P2- ⍀ P ⍀ P ⍀ P ⍀ Ps ⍀s P^ ⍀^ PI ⍀I P~4 ⍀4 Pje ⍀ PQL ⍀ P83 ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pw ⍀w Pb ⍀b PpkM ⍀M PWR8 ⍀8 P>9# ⍀# P%  ⍀ P  ⍀ P ⍀ P ⍀ P ⍀ P ⍀ P ⍀ Pvq{ ⍀{ P]Xf ⍀f PD?Q ⍀Q P+&< ⍀< P ' ⍀' P ⍀ P⍀P⍀P⍀P⍀P|w⍀Pc^⍀PJE⍀P1,j⍀jPU⍀UP@⍀@P+⍀+P⍀P⍀P⍀P}⍀Pid⍀PPK⍀P72⍀P⍀Pn⍀nPY⍀YPD⍀DP/⍀/P⍀P⍀Poj⍀PVQ⍀P=8⍀P$⍀P ⍀P⍀Pr⍀rP]⍀]PH⍀HP3⍀3Pup⍀P\W ⍀ PC>⍀P*%⍀P ⍀P⍀P⍀P⍀Pv⍀vPa⍀aP{vL⍀LPb]7⍀7PID"⍀"P0+ ⍀ P⍀P⍀P⍀P⍀P⍀P⍀P|z⍀zPhce⍀ePOJP⍀PP61;⍀;P&⍀&P⍀P⍀P⍀P⍀P⍀P⍀Pni⍀PUP~⍀~P<7i⍀iP#T⍀TP ?⍀?P*⍀*P⍀P⍀P⍀P⍀Pto⍀P[V⍀PB=⍀P)$⍀P m⍀mPX⍀XP8Qj2Kd},E^w &?Xq 9Rk3Le~-F_x'@Yr!:Sl4Mf.G`y(AZs ";Tm5Ng$Ë$ãiYJB2IIIIqIEI?I9I.IIuIld7IIIIII~xIIIIE 4$mp`m1mmmmz^J:& mmvmi ZI0ubV4(oUM=1 veYA"rfNF6 thOxE2hho^R: ucSC+ttf[C+#h ]  ~i*vh?-w]IC3'rB6'ZJ<t_S>68(h H@X``"X `־mM1 ߽ѽPB(8  sJHX@0(aU9 :2ٹ]WE ճݸ͸ճŸճoճUճCճ/۷ʷyճѶŶճdRF6ߵ׵{^ճH<$Ҵճճճhճ6ճճѳ q`M)kWG;/ޱر 0а~jK7'ʯ{V-9-)----u-k_D2-)  eޭŭxfZD2eڬeɬejea N>6 ѫ~p`TF.o]5 ==ͩ=bTB=9 - ʨƨ |lbVJ:( ڧƧlzlh H4& ֦x¦ pf\TLD8(ͥo_SIA-!ۤѤw@" ѣI~XE9%ӢɢygOC3)I ۡ͡IšII@IRIE 9)͠um]@"  ֟ğpl XH.+ nbOEiliiҝiX@$Мiiq%if\i?7'i iכƛ{kCi$iiƚivG4i.ikikiki8i8i8iܙ8iؙ8iԙ8iЙ8i̙ișięii8iiiii8iinie VE4Ԙ̘UE5%pm]mDm>m)ߖϖtbmmܕĕmmi [/֔ΔXL1% ʓycI;3 ҒWD6(ӑ zj_NF:, Ɛtl^NF6׏ǏycA5َ͎x`XND'zf- یˌ_O2$ ԋċ```z^N`F8 ```ɊW`Q`5ȉ`ĉ```b`~```L`~`̉```t\ F5iʈ@iieTi@- iii^)iنkiW|iFi@8(مɅi}Pi:.DŽ}ii ׃˃im]J,i&ڂłinie UKAmsفāmsyhWFҀ€hW}msraPHms=-ms~~~ms~l~W~>~2~&~~}}ms}ms}}msx}p}mse}U}B}2}}ms }|||||f|msQ|E|,||{{{ms{{{w{d{T{D{{ms{ms {zzzzzjzZz>zms4z$zyyyyywymsxmsxmsxmsxmsx%xmsxxwwwww*wmswmsvmsvvmsvmsvmswvmsvmsumsuuuuuquauFu:u*uuttttmst|tmsltGt;t1tmssssmssssmsusmsis [sAs3s smssrmrmrmrmrmrmrcrRr>rrmqqqmqqmqxqpq^qmQq;q-qqmqqpmpmpmpmpmpmplp[p-p!pppoooomomouoWoIonmnmnn2nmnmmmm mmmmmmmJm k3m k+m k!mm mlll kl kl krlLl k7l/l'll kk~k kmkk kk kk jj(jj}jqj_jSjCj$j jiiiiiifRifLiifiifhfhhh{hahCh-hfgfgfmg>g6g gffffffGff"fff feeeedeeeede{e ededddddd dudDd [>d [3d+d [dc` [ccccccc{c; [lc[cMcbb6 [bbbbybDb.bbba4 [a [a [a [maJa:a&a````e`E`(`__ [_ [`_P_$_ [ _ [_ [^^^^ [^s^`^0^ [] [] []]u]m]G] [\\\ [c\ [\ [[ [t[9[ [ [ ZZZZQZZQZQZQZ^Z>Z0ZZYYYYwY)YQYQXQXXXXXyX XQWQW>1>>1>>>1>u>g>1a>N>@>1:>!>>>====k=Q=-== =<<<1<<0<1<<;;;;1;{;f;L;<;';;;:::1:1::1{:d:S:1#:1:9999999j9A91-9988181{8s8g81Q8>8%81717171`71P7161616161v61V61K612616161514141|41<41313133o3B312121w21q21$221 11111h1d1 >1.1"1 11000 000|0t0R0D0@0 /00//H/"1//...".."{.Y."B.":."%.-"-"-"-----n-^-V-J-<-2- -,,,,,a,1,,"+++v+R+C+3+g"(++@" +***k*J*.**))))))V)@)(((((n(H("3("(" ('"'"'"'~'c'P')'''&&&"&&&v&j&U&%"%%"%%d%"T%"J%"8%" %$$$x"X$p"P$H$<$"&$$##v#_#P#B/"L#B/"H#B/"D#G+"@#G+"<#G+"8#G+"4#G+"0#G+",#G+"(#."$#T#" #1+"#T#"#G+"#T#"#G+" #T#"#T#"#G+""#"""" "n"]"L";"*"""!!!!!!!!o!L!@!/!! %     u %o _ J %D &  %%%u+%%%%%w^%XH6%, %%zn[S%A%;(m%S# %vZ<#%fV%% %%%{f:%4$%rb'%%ch%=5)%`%%%%n%Q%K%/%%%%%7%%%|%f! yWy5y(iSG5y/yy~yu eT6,uuuua*uuu|K;$ y% u  u     m \ N @ %  u u u   s c > &    u u z f < )     uz u@ u u uk ua uO > '   usdu`u\uX uT uP uL uH uD u@ u<u8hu4 u0hu, u(hu$ u huhu uuuq c7  jA    z rH / !  ~ k>-      xhUX X `P QX =1X  H @ p z dB* z z z | x t p l h d ` \ X| T P L H D @ < 2<   > 8f0f* % bb  ^ ^  Z Z  V V  R R  Nx Nx  J_ J_{  v p FFh FFb  ] W B-O B-I  D > >6 >0  + % : :   6 6  2 2  . .  * *  &~ &~  "e "e  | v Ln Lh  c ] 3U 3O  J D < 6  1 + #                k k  | Rt Rn  i c 9[ 9U  P J B <  7 1 ) #           q q  Xz Xt  o i ?a ?[  V P &H &B  = 7 / )  $          w w  ^ ^z  u o Eg Ea  \ V ,N ,H  C = 5 /  * $              }}  ~d~d { uzKmzKg b \v2Tv2N I Cr;r5 0 *n"n  j j  ff  bb  ^^  ZZ  VjVj  {RQsRQm h bN8ZN8T O IJAJ; 6 0F(F"  BB   >>  ::  66  22  .p.p  *Wy*Ws n h&>`&>Z U O"%G"%A < 6 . ( #             vv  ]]y t nDfD` [ U+M+G B <4. ) #          ||  cc z tJlJf a [1S1M H B:4 / )!            ii  zPrPl g a7Y7S N H@: 5 /'!            oo  VxVr m g=_=Y T N~$F~$@ ; 5z -z ' " vv  rr  nn  jj  ff  bubu  ^\~^\x s mZCeZC_ Z TV*LV*F A ;R3R- ( "NN  JJ FF BB >> :{:{ 6b6b~ y s2Ik2Ie ` Z.0R.0L G A*9*3 . (& &  "" D@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  d{TVzXpND?@CesZ`]qLAM\fcJQUWbmg|Fr[_EGIln^aSHBR~kho}tujid{TVzXpND?@CesZ`]qLAM\fcJQUWbmg|Fr[_EGIln^aSHBR~kho}tujiyOxY=tv>wPKFO^hܰo"~̳d@  k jds)Q{ܣd\`fԞP]80g0{1"@QPHG8Mf+l?qX15pH/T 0 q`; 0E8Rdm4\@`[$Ĩ`?e5:@{+E0vx6Yo")RK^o! @W4n .#(&^9+6QQ.d9et|XJAW^j<(/zXo>LOyGf ! e___i686.get_pc_thunk.bx_jbessel_ibessel_jbesselh_kbessel2_kbessel_kbesselnew_nbessel_hbessel1_hbessel2_kbessel0_hyperu_incgam2_incgamc_incgam0_incgam_eint1_veceint1_gerfc_inv_szeta_euler_bernreal_using_zeta_bernfrac_using_zeta_szeta_czeta_twistpartialzeta_gzeta_polylog_dilog_polylogd0_polylogd_polylogdold_polylogp_gpolylog_gpolylogz_polylog0_eta_trueeta_eta0_jell_weberf2_weberf1_weberf_weber0_theta_thetanullk_vecthetanullk___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_bernzone_top_gen_2_pol_1_pol_x_diffptr_DEBUGLEVEL_gdiv_gsub_ghalf_gen_0_DEBUGMEM_gen_1_bot_avma_muluu_powgi_sqri_shifti_gsin_exp_Ir_gerepile_umodiu_cxnorm_ground_dbltor_quadtoc_ggval_gvar_gequal_derivpol_mkpoln_logr_abs_pureimag_mpbern_transc_gcmp1_bernvec_modii_addii_sign_quicktrace_polcoeff_i_lift_normalizepol_i_polcoeff0_FpXQX_mul_FpXQX_red_RgX_to_FqX_gmodulo_polsym_fetch_user_var_gcos_gprec_w_divgsns_divrsns_mulii_divri_msgtimer_gcmpsg_trans_fix_arg_timer2_u_lvalrem_bernfrac_OK_bern_powuu_bernreal_roundr_mulir_mului_uisprime_divisors_rpowuu_floor_maxprime_check_pow_exp_atan_ceil_dabs_dcxlog_dnorm_shallowconcat_gceil_fprintferr_gerepileuptoleaf_mplog_real_i_gerepileall_addsi_sign_mulrr_gneg_i_iscomplex_gsigne_mulcxmI_mulcxI_gcopy_diviiexact_mpeuler_glog_mpfact_mpfactr_mulsr_mpexp_divrs_addrr_sign_gopsg2_addsr_affrr_gaffsg_gcmp_subsr_divrr_divsr_mulss_cmprr_sqrt_gnorm_gexp_sqrtr_imag_i_gshift_affr_fixlg_gmulsg_gsincos_ginv_Pi2n_gexpo_seq_umul_gsqrt_mppi_gpowgs_toser_i_poleval_cleanroots_gerepileupto_gprec_wtrunc_log_gtofp_issmall_gaffect_rtodbl_gabs_gcmp0_gpow_ggamma_precision_gerepilecopy_pari_warn_gdivgs_gmul_gaddsg_gprec_gadd_gneg_gmul2n_gsqr_pari_err_reel4.0_jbesselintern__jbessel_affsr_kbesselintern__kbessel_log2PI_szeta_odd_optim_zeta_n_s_zetap_cxpolylog_inteta_e12 #1/12 1200774146 0 0 100644 147508 ` anal.o $54 __text__TEXTx8__data__DATAH f__bss__DATA40__cstring__TEXT ( __literal4__TEXT`) -__literal8__TEXTp)-__const__DATA)(-__picsymbolstub2__TEXT) 8-.__la_sym_ptr2__DATA2tM6h"]]__nl_symbol_ptr__DATA47__textcoal_nt__TEXT4 l8 @(4H P//:iP%U1WVSD$\$򮋄$эT$T$Xt $$4l$`L$0$$|$0l$,|$(|$$t$ L$$D$LD$H4$t$0iD4хu <_t<-uЉ+$Ov5$D$H…!Шo$t$M1u5$D$H!Ȩ$T$1D$,$l$t$D$@$0D,`$L$`D$@0D$Dǀ cJЀ vu5$D$H!Ȩ'$|$0D$PD$TD$ $D$8D$D$4D$D4$D$/;;D$X1T5€4D4хtD5<_.t<-.t|$89|$<V€<4D4хuF<_t<-D$Pu;t$4rV_- ȍNE;|$<qogn];|$4s t$TW€u24D4ʅ$G<_.<-uD$$.D$T D$P!ȨtRvMD$D8nuDxou>D$D_€- ШtD$D|$DD$P*T$T!Ȩt t$TD$Pv1D$H!Ȩt5$D$H!Ȩ6/$|$..<=<^<|U,0< AJЀ vl$(© D5@хt€;!Шt,to$|$-4$-|$L|$L|$L~$t$H…!ШT$T$C-$D$Ht$$$ €4D5 t-$<-t$$$D$H!Ȩu#$T$,$E룍$$1ļ[^_]D$ $,K$uD5@.$D$@$+Ӎx!D$\D$\ D$\D$@$+L$PtD$LD$L~~t$l$}+D$Pu뽋D$Pt1$D$H!Ȩu4O$T$7+D$L<=nO/$l$H…!Шu#D$@$D$T$*L$t$@$08D$$b*D$$K*YD$@oD$$*D$\u3D5@хt$$Ӌ$ED$@$)뾃 D, Ð 0D$, Ð,\$|$$l$(t$ +0+++0T$0+,t +8t+ǃ,ǃ,+,ǃ ,u7((+++,)\$t$ |$$l$(,É$R(ǃ+뵉$ѐ<\$,[+++fD>]|$$ L$"<$"$"͋(+l$ D$T$$#M$L#ǃ (kL\$81҃|$,l$,|$(l$ |$T$+D$$$3+/-D$T$(.|$ ЅtD$,T$$T$ 3D$,D$(<{<!D$,D$ .t|$D$,&tP|uD3x|t* $/D$I?3ˉ-3x&t% $D$볍P3Љ$t3@~=3L$ d=t8>3z=tD$ 8J3뺀~=V3T$ 3B=t>t؍B3딍j3TJ3t$B3D$$L$~]z>.r34[҉.t$Oft$D$ L$$GUtI1t$t'%w uD$ޅN $nދOyOt$uD$ t$$AG뇀z/t.z3S[.D$,$oB3%[.D$,$A$$$$%?"tFe$`D$"T$4$X|$t$D$ $m$$$$D$ D$D$$b$?"tFe$D$"L$4$|$t$D$ $$G$$$ĬÐ<1\$,t$0|$4l$8|$@ыQʼnT$y )͋+9wZ.uB*}}D$<$D$D$@D$D$8\$,t$0|$4l$8<$$또UWVSg<7E+{-D$Tb _ɉu\7..!tH'uD$4$7 뾋D$u;0t4$d <[^_]Éx=.tӋt$Sl$D$ |$$F%]tQ71ҋFt#%vщ uޅN։$ L$܋FySl$D$ T$$낃^tj^E[.L$ 4$L$6Ƌ;0#;04$|~.4$7[ 7Nj_u|$4$D$V kSl$D$ T$$뽃4$73 S'$D$ O|$D$}UD$7UD$萁<$,$0$4$8€ vD5хx ρwvD5J <.? !:zUU1UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUvAD$\D$<uCD$<$ t+$,$0$4$8<Ë:Ӌ$D$ D$\T$D$= 듍qt$\n+D$\pE )ϋ2+9wS}u:*7|$<|$\D$ D$l$<$D$<$ $ 럃|$\D$<l$<,$~Mn(2}+v n:EG@w$ ҉ŋn82݉w+v n0GFn4$ ҋ$D$ D$\|$D$ ypLL$\D$DA<#<`w vD5u'D$D$ D$\D$4$XT$XL$$$D$DtD$ D$\D$D$DD$빋$D$ D$\l$D$ 뺉D$Dy`tl$D;\$DD$ |$DD$\D$|$JQnn82w+vn0GF@Q$ ׍yQ€u|vD5tE|$\p@ g;$D$D$\D$ |$$D$ 뙉$D$> rQWD$}wGD$@|$H|$D$D$8$22),0?,r>D$H9$D$L$뙋|$D$ |$$5ZL$@4D$T $t$D$@|$D$ |$$]nAu2~+r}F&$_nD$$;Y D$xft Ë@@xftUWVS$PgE,t|,)tn<[<=t :B1t['$t3tt$$E$׉‰$$T$$4$AĬ[^_].t\ƋtOl$D$ T$$$_+t-@z,r11z=jr$$B$t$$s$,€)!Шg=$|t :N1tx'$x$tJ$xtD$$$$x$D$$$|L$$z$,$f $x.t҉it$OD$ t$$@+t-NFDŽ$x1~=n2ƋuOl$D$ |$$Ӄ.u$B$O‰$t08[t8$$t$g‰$ۋ$B$$$%?$$ǍH)$}$t$ T$D$L$D$ i$$$$)lj$w4$uV*7w$G4$$$L$D$B$D5$x[$^뜋$$$p$t'$pDŽ$lDŽ$`pDŽ$X$\DŽ$}'&}(l&$xtv7&$&61 7 $t~~t$$|$4$3Ƅ<%Wu8f%$@D$(t$<$l$|$D$ $ $t$~u$++wvg0GF$$ZӋ$D$ $|D$$xD$$tD$$pD$$lD$ $hD$$dD$$`$$\$D$ $|D$$xD$$tD$$pD$$lD$ $hD$$dD$$`$$\$N$^g$؋>$++wv"g0GF$I$Ћ$D$ $L$D$$p D$4$gD$t$ D$$D$:$ǃ1ǃDŽ$F$.$0},tv61,7,$t~~t$$ |$4$Ƅ< W8u"$ D$,,$t$El$$D$ $0D$S}&tE$@ D$&T$<$l$|$D$ $$`|m$`9[t)@VF$N`$t$@$PFD$4$D$t$ D$$D$:$ǃi1ǃDŽ$$l.$lDŽ$DŽ$l$}=tr.61,7,$t~~t$$|$4$Ƅ<W8u ue$D$=T$,$$l$D$ t$$DŽ$D$4$tD$t$ D$$D$]$ǃ.1ǃ$dE<)<,t]$p I.OI2&.@G.6$p,. $pV.n̋$u}(t!A<,<) Шzi$pItSI&tEGt@$l$pDŽ$$p ,$pu u$DŽ$DŽ`$$p$pV.tƒny$DŽ$DŽ`$$p$$,},trD161,7,$t~~t$$ |$4$Ƅ< W8u uw$ D$,,$t$l$$D$ $,D$$`$_D$4$tD$t$ D$$D$bG$ǃ1ǃDŽ$S$$H},tv[H61,7,$t~~t$$|$4$UƄ<W8u$D$,T$,$$Hl$D$ t$$($$$Dg$@Ƌt$l$D$ L$$Fht\1t#%vщ u+ޅN֋g$@8$D`u$BNjVyl$-D$ l$$Fql$D$ |$$D$4$aD$t$ D$$D$4$"ǃ1ǃDŽ$@$$ },tv61 7 $-t~~t$$|$4$Ƅ<1W8u($D$,T$,$_$ l$D$ t$$m$Z$`&$`tXB1ɉt#%zщ u$߅Nϋ$`$$΋$X$XD$ 4$$XtW$XD$D$ $XD$$D$`$ŵ$`]$L$(둋$j$XY$D$ $|$D$D$4$D$t$ D$$D$$ǃf1ǃKDŽ$$`$g$$8},trH561,7,$t~~t$$ |$4$qƄ< W8u u{$ D$,,$t$:l$$D$ $8D$H$$`:D$4$pD$t$ D$$D$C$Qǃ1ǃDŽ$O$$4},tvu617$\t~~t$$@ |$4$Ƅ<@ W(u8$ D$,,$t$l$$D$ $4D$<Hƃgw$`$=$D$ T$D$-D$4$4D$t$ D$$D$$iǃ1ǃgDŽ$$$`$$$<},tv617$Pt~~t$$ |$4$Ƅ< 1W8u$@D$,T$,$$<l$D$ t$$$$uƉ t1l$$D$EF%?`euċ@${tF $3uD$4$D$t$ D$$D$$Aǃf1ǃKDŽ$$$(},tveR617$?t~~t$$@ |$4$Ƅ<@ W8u$ D$,T$,$q$(l$D$ t$$g0++AVg8$$}"$$$$$@+$ $$$M,€) Ш"$9$))l$gփ )΋$+9gL50$$t$$D$<$4$$U}"$$`|$k$ $$$t$,$D$ |$υ}".z$D$"T$<$8l$|$D$ $M0$<D$4$WD$t$ D$$D$*$oǃ1ǃDŽ$6$$},tvP=61,7,$zt~~t$$@|$4$Ƅ<@Wu$D$,t$<$|$$D$ $D$$p8*g+u+Av{}n$$}tJ$$T$TU,) Ȩu"D$T4$|$D$F}u$$t$d$$tJg+7~+rg8F"`$/D$4$lD$t$ D$$D$D?$迼ǃ 1ǃDŽ$QM$|$$$`$$\$`$p$$p$$t$0$P$$p$T},ts61,7,$*t~~D$0|$t$$Ƅ<3Wu$PD$,,$|$_$T$PD$ t$L$$f$$$D`u$pG$D$ $T$D$뻋T$0D$$D$D$0$D$ D$D$$ǃg1ǃLDŽ$$tDŽ$h$p$tDŽ$h݋$tDŽ$h$pT$$\pD$4$D$t$ D$$D$X$$ǃ%1ǃDŽ$d$ts}(]D$$8$Uƒc"O$$}(Xtv61,7,$t~~t$$|$4$CƄ<oW8u$D$(,$t$l$$D$ $D$U$$G2&;k-.<<<<<<<<<<<<<<<<<<<<<<<<<<<<</258<<<<<<gO҉$8^tjDŽ$$D$$$‰$$O}).DD$)$@L$hg$脹Ƌt$l$D$ T$$>FatU1t#%vщ u$ޅN֋g$$8$΋Nyl$-D$ l$$Fxl$D$ |$$} i$D$ $t$D$M:gO$0퉄$$$g$$$},tvm61,7,$t~~t$$|$4$DƄ< Wu$D$,l$<$ $|$D$ t$$$$E<)<,tvUB617$t~~t$$|$4$:Ƅ<Wu8$D$,,$t$l$$D$ $D$ !ɉ$DŽ$D$4$gD$t$ D$$D$:$ ǃ1ǃ[$wi҉$i$E<).C<,tr#61 7 $t~~t$$@|$4$qƄ<@W8u (uZ$D$,t$<$:|$$D$ $D$H[D$4$tD$t$ D$$D$h$vǃ91ǃDŽ$nD$4$1ǃ$ 1O:)&$$DŽ$|$L$$},ts61 7 $8t~~D$L|$t$$Ƅ<EWu$D$,|$4$ml$t$D$ $$U€coD5%$Pg$Ͽ$8=t2$@h})[$Hgu$軩$u'$$D$<$D$x$EE9D$x|Ƌ$$銯$D$ D$D$lD$ر렉Ug0[0@D$-$ǃ $,$$D$ t$D$Y<$脰<$$D$ l$D$l$/D$ l$$.D$PD$$D$T$PD$T$ D$$蝰r$ǃ?1ǃDŽ$}$u}(t!A<,<) Шpy$$A3;t,r4$~$$DŽ$%ۀ}=D$4$D$t$ D$$D$良$ǃF1ǃ+$E x(xD$$UWV1Sy| D$ |$$D$ 1=w%9D5t*QL$ tEЃă [^_]Ð |D$ؑ ÐUWVS{,T$@T$T$T$$`8{w+0GF@n|$ t,[^_]ÉƋ1D$|$=w]D5tPL$|$<$L$NjT$9t ~1D$$t$D$<$M듉t$艭AOUWVSz<T$,$D$$D$PD$ D$48[w+\0GF@n|$, L$Tt$$l$PL$ D$l$4$9Njt^D$TM)Ƌ[+9L$TwQD$Tuu6L$TD$Tt$<$ D$$t$$~ƒ<[^_]$O$A롉Ƌ1D$L$ =w]D5tP|$ T$(|$$NjT$9t ~1D$($*t$D$<$s듉$诫cUWVSy<T$,$D$$׭D$ D$Z8w+0GF@n|$, t,Wt$$4$T$D$ D$ D$]<[^_]ÉƋ1D$L$ =w]ǭD5tP|$ T$(|$$NjT$9t ~1D$($t$D$<$!듉P$])t$t$ \$|$w1€u8aD4хu_t\$t$|$ÿD$$覩UW1VS=wD$00©uHD4u_u ʃ1ЉD$0݃0N٫>[^_]D$$#SvD$ZD$D$ $][ÐUWVSv,T$l$@t$H$l$ tD$D|$4)t%|$l$$Ǡu<t(vuۋu 1,[^_]É|$,$Vt$ tЉ$.tƒ^Ð|$l$|$0l$(t$t=!4$¦h ƍuQNQNQ=;뤃;JNz/뤐WVSkd<+<- Шt Ad覕dƒ..'!t'u dׁ[^_À~=u^Y^H[.uր[<=tmt:Ft91t|$$D$_g\Z8+t-ud멃~=d빍$dx,d>,tY>]t>ԋD$]<$L$膘t$D$ |$$蛜ddz[tdx]t[d닍Pd~dJTduCD4…u<_u<=~=dND$$蟛d뫐UWVS+i€D5хvρwD5H<.=!:?kKA[^_]ÍQB<#t/<`t|$Ll$<$붉z`t룍z똍qQ€uAD5t 膒d$D$D$肙D$$>붍iN?)tEk$D$)T$,$|$l$D$ $(L$$D$Aʉǀy;D$H8]t)D$H:,t;t9].AT$D$ t$$[-D$P$t$,D$(D$8;l$HD$(ӝD$4L$@D$0|$,|$<|$D?,tl81>${t~~D$4t$|$$XD4P4t$@uD$08k|$ $t~~|$$t$<$ƑKƄ4O0u$`D$,T$<$苍C|$l$D$ $蠑'',) ȨD$T€ !Ш'?)tED$)t$$4$C|$D$ t$$''l [^_]vD$<$D$C|$ D$3$D$豐$,rǃK3H1ǃK-D$\'D$\'?,Ktv81>$t~~|$$`t$<$谏KƄ4`W0u$D$,T$<$uC|$l$D$ $芏''?&tE$ D$&t$,$"C|$l$D$ $7'w'W€1D5هhg'8[a$`J'z,'?,t[?]t>D$]4$T$[C|$D$ t$$p''y[t'x]t.'뉍j'苃Ct$$D$"C$D$'D$D$$襍D$<$D$C|$ D$3$D$蓍$oǃK3@1ǃK%D$\'D$\'?=Ktr$81>$t~~|$$ t$<$葌KƄ4 0u u[$D$=T$<$ZC|$l$D$ $o'D$\'D$<$tD$C|$ D$3$D$g$mǃK831ǃK'?).D$TG€& ШDn.:I.0V.&D$T,.D$TD$\Q'?,Ktr 81 > $t~~|$$ t$<$ɊKƄ4 0u uS$D$,T$<$蒆C|$l$D$ $觊''D$<$tD$C|$ D$3$D$Zo$kǃK@31ǃKD$\l$\V'?,Ktr!81 > $t~~|$$`t$<$_KƄ4`0u uX$D$,T$<$(C|$l$D$ $=''D$<$tD$C|$ D$3$D$j$fjǃK;31ǃKD$\xl$\'?,Ktvl81 > $t~~|$$ t$<$KƄ4  0u$D$,T$<$赃C|$l$D$ $ʇ''€uAD5t uC$D$'D$qD$$-D$<$=D$C|$ D$3$D$$hǃK31ǃKpD$\'D$\'?,Ktv81>$Ct~~|$$ t$<$KƄ4 fu$D$,<$t$C|$l$D$ $''€D5t]~@g.9htC|$$D$蒅C|$D$ L$$i뻋C$D$'D$GD$$`D$<$D$C|$ D$3$D$$lfǃK311ǃKD$\'D$\'?,Ktvr_81 > $t~~|$$t$<$KƄ40u$ D$,T$<$C|$l$D$ $ʃ''?.9?"t.<,<) Ш.'yu'0'D$<$JD$C|$ D$3$D$+$dǃK31ǃK}D$\'%l$\'?,Ktv81 > $Pt~~|$$t$<$*KƄ4\0u$`D$,T$<$}C|$l$D$ $''D$T*tT?.n?"t/,) Ȩ.H'?u3']'뻀?t ?"t0<)t<,tk'?uD$T'' 'D$<$D$C|$ D$3$D$$bǃK3;1ǃK D$\'$l$D$TD$T'$$T$,L$PD$\v'?,KtoA.81 > $t~~D$,t$|$$KƄ4u uoD$PD$,t$${Cl$$D$ D$PD$''D$Tl$TMGL$,D$ $xD$D$,$D$ CD$3D$6G$`ǃK31ǃKD$\VD$XD$TQD$,$D$Cl$ D$3$D$~$`ǃK_3 1ǃK'Ec '|$L?(3X.)Ktv81 > $t~~|$$t$<$}KƄ4Mu|$`D$(<$t$[yC|$$D$ D$LD$l}''W'E2&KpppppppppppppppppppppppppppppUUppppp'?^t(?).rD$)$`L$('*'5'?,Ktvo81 > $t~~|$$t$<${KƄ4u0|$`D$,L$<$cwC|$l$D$ $x{'''<).D<,Ktr!81>$t~~|$$`t$<$zKƄ4`u uXD$,t$$ 4$xvCD$ l$t$$z''"D$<$tD$C|$ D$3$D$;zj$[ǃK;31ǃKD$<$:D$C|$ D$3$D$y $A[ǃK31ǃKmy'?,.Ktn81>$t~~|$$ t$<$xKƄ4 uq0u uD$,$|$.D$<$tщD$C|$ D$3$D$x막$&ZǃKx3*1ǃK$ gxD$\:).$$T$0l$HD$\d?,Ktp7$(1 . $t~~D$0t$l$$wKƄ4uu uhD$HD$,T$$ZsC|$$D$ D$HD$kw''G'?)7l$0D$,$tD$D$0$D$ CD$3D$wR$}XǃK"31ǃKD$\aD$<$D$C|$ D$3$D$v$WǃK3J1ǃK/eedt$ %v'|$D?'<(<==.KhD$@1D$@  $pt~~䍌$D$@t$D$L$< $BuKƄ4ut$`D$(L$4$ qC|$t$D$ $u'''E$8'?) ,)!Ȩ?,?)tBl$`D$)t$,$qpC|$l$D$ $t''y=JGZC$D$ 3T$D$3tD$D'KG81 > $t~~|$$ t$<$~sKƄ4 _0uC$D$3D$ws'ǃK?(ǃK31 > $t~~|$$t$<$rKƄ4X0u$D$(T$<$nC|$l$D$ $r'D$\'})v$`$`t$4D$8?uOD$8D$)T$$nCL$8|$D$ L$$,r''<)<,D$\?,Kts(1 . $t~~D$4t$l$$_qKƄ4`'0u*$ D$,T$,$$mC|$l$D$ $9q'''?:tM?)'x=tǃK=tHG'>G̓''띋D$4D$$&D$D$4$D$ CD$3D$rp$QǃK3s1ǃKXD$\D$\u(t#W,) Ȩ'D$\D$<$D$C|$ D$3$D$o$-QǃKD$<$D$C|$ D$3$D$Yo$PǃK381ǃK=h''?,t+'==t$D$]4$T$5iC|$D$ t$$Jm''y[t 'x]t'뉍B'WVSp:@ow0oD5t @o݀9.tlt2N$T$kWՃtu  ƐUWVS$,D$D$$ SY>tE)€; Шu0,;DYuz;|$t9Y>uuu u,[^_]$V4?D$V$rR;|$}D;|$|Չt$댋YLt$D$ T$$HV]YOUWVS#l$$@ @oXwoXM$Woo  :%$WX$:NjXt$XDt$D$ L$$\UG1$t.% Y$߅N틃WX$;$ ȨoX$?],tLCD$]t$$4$pPX|$D$ t$$ToX$oX?[c$H(El[^_]ÍKl$|$$<$O$te$tG$L|$L$<$D$ OXt$|$D$ $SLD$<$vOɍL$So]XDt$D$ T$$xSG1XEt$D$ T$$LS% $@ @oX},;A%D$HWXD$D7ƋXt$XDl$D$ L$$RFuaD$@t1%vщ #t$@څOT$@T$@WX|$Dt$H8D$@9t$@ ШWoX?,Xtv"81 > $Pt~~|$$t$<$QXƄ4GX0uWQC$`D$,T$<$IMX|$l$D$ $^QoXol$X|$D$ t$$BoXoXz[$$G/}u #X0~MWX(Xu+v WX2EF@~$8BߋWXX|$d}w+vuGFl$dn$A؋X|$$D$AK$l$T$<$y=|$pt_|$ptDD$pL|$L$<$D$ J=Xt$|$D$ $_A=LD$<$<ɍL$2AWXDt$D$ l$$@G}XEt$D$ T$$@ S: CtQt =tZy=t1[>t5>uQ*%7w|####n##############################################QBQzBQBQBQ~BQvBUWVSo ,D$Dl$H?AxL$>D$D@ M5[At$T$D$ $>9}:D$DP @u1D$<T$DJ %9|ƃ,[^_]É$=ʼnЁ%9h댋|$DGt1UtS[At$5D$ t$$=,$;'AŋD$@L$$!=T$*j|$%9u븋Etl[AO5t$D$ T$$d=E1t#%uщ uޅN֋D$$=ދEu}ysUWVSc D$($@D$,)T$0$T$ D$$3?E<)<,L$(},W?tpXE81>$:t~~D$ t$|$$;W?D40 ?8u>2*D$$D$,L$$7O?l$l$$l$D$ $;3?3?83?8:tl$,[^_]Ã3?7ڋD$ D$$bD$D$ $D$ O?D$??D$B;1$ǃW???1ǃW?D$(@D$(u}(t!A<,<) Ш;A3?D$(UWVS+<D$\D$Xl$P}(=tv 81>$8t~~|$$ t$<$9=Ƅ4 <u<;k($D$(L$<$5=|$$D$ D$PD$9<<~)$$`|$`D$8<L$ $^7t~~|$|$ $E6t~~D$8t$|$$7=Ƅ4-<uT$4=$D$=D$7e2xg=xe81>$5t~~|$|$0t$<$ 7=D4` <uL$,}hp=$D$D$TD$7E$l$L%?E<}:}=t7<L$LA<})9uD$\<[^_]Ë<<T$H2<)苳<<D$Dx+)9ljt$@wtL$@<uRT$@*:։l$D$D4$D$5|$D7D$@$3t$LF<D$HE$5$5{<2<=t$T-1D$ t$L$$5cD$0D$$@D$D$0$D$ =D$=D$?5$ǃ==1ǃ=wt$8D$4$D$D$8$D$ =D$=D$4$=ǃ==m1ǃ=RD$$H4$g4<|$|$5D$)NjC5+9L$>1;t$}l$D;t$|싃4D$D$ D$<$D$,;t$})9t%;t$||$@D$GGd,[^_]Ë[5L$@D$ l$$D$1$1B$1UWVSl$3D$TL$PD$T$.+pgD$T$**Z_(HYԃxN*X$*\$8t$L؋3L$8D$H,ыE{3z+4)93(E`9Eu}D9|D$Hu D$D%C t$Dul$D$T$)|$$)$ƋB D$ BD$BD$BD$BD$B D$ BD$B4$D$$l$D$\D$T$2)|$$?)$NjB D$ BD$BD$BD$BD$B D$ BD$B<$D$$|$LD$Xuu= uL$XD$\ $D$($l$M,l$PD$,$J.l[^_]$/$ /$.I$.$O30L($T$.VUWVS$0D$|L$t D$|$K(p D$|$(*Z%HYԃhN*X$'t$p\$L$,щƃщT$x)΋0+t$l9D$x D$lD$xD$x|$l G`G;D$x}t$l;D$x|D$l pv |$lw|$D$|$&L$xL$$&$T$h$$@D$dut$\x@l$\ ,$L$XG&D$\D$T1҉D$`D$d;PD$`00D$`D$hD$hET$P,|$P$ +NjEGEWAL$PA&D$PE}D$TD$dl$T;hjD$T1ɋT$d; D$`l$X00D$`E;l$Xt $0ŋ<|$ n*ƋGFGFt EDGwD$TD$dL$T;s00000 1+0t0L$`8D$`ǃ1ǃ10 10ǃ1S0 1‹0)Ƌ1t 0ǃ1C&0;T$4$*D$LD$T|$dG9D$T}@0 l$`D$`44$ D$Tt$dF9D$T|̋t$\4$Y(|$|D$l<$D$#T$xT$$#$L$H$h$l$D@D$9⍀P% ⍀P ⍀P⍀P⍀P}⍀}Ph⍀hPS⍀SPvq>⍀>P]X)⍀)PD?⍀P+&⍀P ⍀P⍀P⍀P⍀P⍀P⍀P|wl⍀lPc^W⍀WPJEB⍀BP1,-⍀-P⍀P⍀P⍀P⍀P⍀P⍀P}⍀Pid⍀PPKp⍀pP72[⍀[PF⍀FP1⍀1P⍀P⍀P⍀P⍀P⍀Poj⍀PVQ⍀P=8⍀P$t⍀tP _⍀_PJ⍀JP5⍀5P ⍀ P ⍀ P⍀Pup⍀P\W⍀PC>⍀P*%⍀P ⍀Px⍀xPc⍀cPN⍀NP9⍀9P$⍀$P{v⍀Pb]⍀PID⍀P0+⍀P⍀P⍀P⍀P|⍀|Pg⍀gPR⍀RP|=⍀=Phc(⍀(POJ⍀P61⍀P⍀P⍀P⍀P⍀P⍀P⍀Pk⍀kPniV⍀VPUPA⍀AP<7,⍀,P#⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pto⍀P[))))**3*L*e*~******+-+F+_+x++++++,',@,Y,r,,,,,,-!-:-S-l------..4.M.f......././G/`/y//////0(0A0Z0s000000 1"1;1T1m1111112252N2g222$Ë$Ë$Âu4d~ ^4O30 4$~ $4$q 0 )p)h)O|4>p)%4|44>.444|kZJ, |44{S45|4*4"|44)p)}h)oa|4 p)4k40  M) P4    } 4l $f 4[ J = 0 4 $ 4  4  4 4  4 4  4r $l 4a P C 6 4% $ 4  4  4 4  4 4  p ` (   4 $  4 4 4 4u 4m 4g 4a R 4J 4D 4> 44 4* 4 4 4 4 4 4 4  4 e 44F6"$4444}4q4i4c4]N4F4@4:404&4 4444444`44B2|4mAd).40 M)P4q]MASG4|44^`)K3 40 49w )9iH449|4949b50 44444444~qh4^4'4!44444x4k4\4VI@464)4444rC4|4 44444444m4I464044444hG4.4|44444@ T44u4oO*4T4444@ qT4e4O4I&440 4u4h4Y4SF=43444444@ rT4f4S4M-440 j$ (44(4X+4(40 <4qD4ct4UH4G@49x40z,($  |lxt^pl4hPd`\XTBKT7\'844 X40  "a4ar~ al4aVHv(a@4r(a)4a h(a@(a4a`|4aZ4aP*4a|4a 4a4a4a4a4a@ aq4aQ4ad a4a4a4a4an4acK "aE4a7~ a4av(ar(a4ah(ar@(aT@ a94a4ad a4a4ap4a[G}(a=4a2 "a4a~ a4ar(a4awh(agv(a^G@(a8 "a4a ~ a4av(ar(a4arh(aZC@(a%@ a4a4a{d au4a]4aUJ4a-4a4a4a4a@ a4az4ad a4a4a4a4a "a4ah~ ab4aL>v(a6*r(a4ah(a@(a4a4a4ayi4a[4a7 "a4a ~ a4av(ar(a4aqh(aYB@(a$@ a4a4azd at4a\4aTI4a/4a 4a|4av4a_4aQ9 "a34a%~ a4av(ar(a4ah(as\@(a>@ a.4a4ad a4av4anc4a?4a04a*4a @ aT4a4a4aq4a`4a64ad a4a4a4al4a<$ "a4a~ a4av(ar(a4azh(aYB@(a4a 4a4a@ a4a4a,d a4a4a4aalakaEaaaa4a4a]0 N4F@((F"4F4F4Fg4FaB0  (q4^|4?40 444zf'\4QC%4|44X4B24*#44440 '}e'```|xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<8 .80 444yYO4;414%4444444444444440 ~ve/P04'40 T_4_v'_d4_[0 >6*'" |'40 '~'{YI4=,|'4#'~'o4cR|'E4#0 4k'44M'4yC44 '44|0 c4R]N0 D74&& 4440 4&44440 T4 ND4 <04 (4 0 41 4VV4V4V4V4V4V4V4VVV|VxVtVpVgpV[4VR0 5!44&0 4u&u4u{4usf4uU&uO4uB"4u$u4u4u4u4u4u$u4u{f4u^N4u84u24u(4u4u4u 4u4u4u4u4u4u4u4u4u4u4u4u4uX64u+4u |4u4u 4u4u04u4u4uz4uq0 >*%5 4545 554545 45yX45R45H@45:4510  444444444a4H424 444444440 4v4pe4O4D4>&4  @ 444X44,4`4I474&4444444^4Q4B4</444444E484)4# 444444444i4c^4U4O741@ T4444k4b4\@4:"@ 44޿ƿ4@ T44s4mJ<4244444T4۾4ž4s4e4_4UH47@$14#4444н@ 44x4o4iQ4K3@ #T444м4n4c74*4444444}4s4741,4#44@ ׺T4ʺ44i4! 444й4¹4@ T4w4e4_<4444ո4ϸ¸44|4o4`4ZM=4/4 444ݷ·@ T444kF4*4$444ڶ@ ʶT444Z4I4C<4614@ 4*ܵصԵеB̵ȵĵ|xtplhd`\XMX44+4"44@ ҴT4ƴ44b4=4%4444Գ4Ƴ44t4e4_RI4?444޲²4@ T44v4pP+44ѱ%Ʊ4444p4b4A4;64+44 44Ӱ4Ͱ44l4fK@ ;T4/44˯44444p4j]M4?4444ͮ4Į44@ uT4i4S4M*44ݭ4ƭ4444y4SA84'4%44ɬ444y4s_@ HT4<4&4 ث4ǫ4444}4wjZ4L4)44ު4ͪ4Ī44@ uT4i4S4M*44̩44444_Z4Q4K34-@ T444ި44]4P4A4;.4444ɧ4ç@ T44z4tQ,444444{n^4P40444@ ԥT4ȥ44d4S4;4$4444פ444wc4[4P4J?4)444@ ԣ4Σ44v4`4W4Q943@  444Ţ@ T444jE4444444סǡ444|4v^4X=@ 2444Р4ʠ@ T44}4wT/44 ϱϱϱϱϱϱϱܟϱ؟ϱԟϱПϱ̟ϱȟϱğϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ|ϱxtϱpϱlhϱdϱ`\XϱTϱPwLϱHDϱ@ <8ϱ4ϱ0ϱ,ϱ(ϱ$ϱ Qϱϱϱϱ ϱϱϱϱϱϱϱϱϱϱϱϱܞD؞ϱԞϱОϱ̞ϱȞϱĞ&ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ|ϱxϱtϱpϱlϱhϱdϱ`ϱ\ϱXϱTIT֝4ɝ444@ qT4e4O4I&4ߜ4Ĝ440 vV4ՖI4Ֆ:4Ֆ4'4Ֆ4Ֆ՛4Ֆ̛4Ֆƛ4Ֆ@ Ֆ{4Ֆuj4ՖZ4ՖT44Ֆ.@ Ֆ4ՖŚ4Ֆ4ՖrT4Ֆh4Ֆ34Ֆ-%Ֆ4Ֆ4Ֆ4Ֆ4Ֆՙ4Ֆϙ4Ֆ4Ֆz4Ֆt\4ՖV;@ Ֆ04Ֆ*%4Ֆ4Ֆ4Ֆ͘4Ֆ4Ֆ4Ֆ4Ֆ4Ֆp4Ֆc^4ՖJE4Ֆ<Ֆ8Ֆ4Ֆ0Ֆ,Ֆ(Ֆ$Ֆ ՖՖՖՖՖ ՖՖՖՖՖՖՖՖՖՖՖՖܗՖؗՖԗՖЗՖ̗ՖȗՖėՖՖՖՖՖՖՖՖՖՖՖՖՖՖՖՖՖՖ|ՖxՖtՖp ՖlՖhՖdiՖ`Ֆ\YՖX@ՖTYՖJTՖ4Ֆ 4Ֆ4Ֆݖ4Ֆі0 4l4lZ4lT4lFA4l.4l#4l4l4l4lՕ4lϕ@ l4l4l4lkX4l^4lX,4l@3)4l”4l4l4lt4lh0 Y464+44444T|xtplhd`\XTPLHD@<840,($  ܒؒԒВ̒ȒĒ4~0 `4G4943440 4Tӑ4Tʑ4Tđ4T@ Tt4T\4TP0 4яՐ4яs4я[4яP4я2 4я4я4я܏4я֏4я͏0 `%,%[4U4O5 0 ӎ{UC%e 4e~4exa0 S6&$܊ 4܊4܊4܊ތ4܊،Ȍ$܊4܊܊4܊܊܊~4܊g܊\O4܊>$܊84܊-܊"܊܋4܊ϋ4܊Ƌ4܊4܊4܊4܊wX4܊n4܊`4܊T4܊@4܊:܊4܊܊܊ ܊܊e܊8܊܊؊0 qO؉ 4}y0 iW4JF0 34È̈4È0 n4_[0 64+4܇44uP4Q46|4.4440 4!ن†4!o4!Q4!G9!߅|4!˅4!w4!\|4!T4!D&4!0 4؄44w4K40|4(40 1 40 c4Q/C.4Q/!4Q/4Q/ 4Q/4Q/4Q/e4Q/4Q/ 4Q/4Q/ׁ4Q/Ɂ4Q/$Q/4Q/xk4Q/Z$Q/T4Q/I</"4Q/$Q/ 4Q/4Q/߀ǀ4Q/4Q/4Q/4Q/Z44Q/.$Q/ 4Q/4Q/4Q/4Q/4Q/4Q/4Q/4Q/4Q/4Q/4Q/y4Q/l4Q/T4Q/B4Q/<4Q/44Q/.4Q/(4Q/~~4Q/~~4Q/$~}4Q/}\}O}4Q/>}!Q/8}4Q/-}}4Q/|4Q/||4Q/|4Q/||4Q/|o|@ Q/X|T4Q/L|4Q/6|4Q/0||{4Q/{4Q/{4Q/S{4Q/M{;{4Q/5{0{4Q/{4Q/{z4Q/z@$Q/z4Q/z4Q/z4Q/zz4Q/zz@ Q/Iz4Q/Cz4z4Q/$z4Q/z4Q/zy4Q/yy@ Q/yT4Q/y4Q/y4Q/yzyUy4Q/?y2y4Q/!y$Q/y4Q/yxxx4Q/x$Q/x4Q/xx4Q/xx4Q/x4Q/px\x4Q/Kx4Q/>xxw4Q/w$Q/ww4Q/w4Q/w4Q/xw4Q/iw4Q/aw4Q/[w4Q/UwFw4Q/>w4Q/8w4Q/2w4Q/(w4Q/w4Q/v4Q/v4Q/v4Q/v4Q/v4Q/v4Q/viv4Q/cv;v4Q/ugu4Q/1utt4Q/^t4Q/Dt|4Q/'t4Q/s4Q/ss4Q/ss4Q/s#Q/s4Q/s4Q/ss4Q/]s4Q/Ss4Q/Ms9s$s4Q/ s4Q/rr4Q/r4Q/rr4Q/r4Q/r4Q/r#Q/r4Q/rpr4Q/br4Q/\rJr#Q/;r rc#Q/q4Q/qq4Q/q4Q/q|q4Q/vq4Q/[q|4Q/Uq4Q/Mqq|4Q/q4Q/p4Q/p4Q/p4Q/p4Q/p4Q/p4Q/pzpjp4Q/\p4Q/;pp4Q/p4Q/o|4Q/o4Q/ooo|4Q/o4Q/bo4Q/Lo4Q/9o4Q/o4Q/ o4Q/n4Q/nnn4Q/n4Q/nnn4Q/pn4Q/enFnM#Q/@n4Q/8nn #Q/n4Q/n4Q/nm4Q/mm4Q/m4Q/m4Q/m4Q/m4Q/smnm4Q/Jm2m4Q/m4Q/ m4Q/ml4Q/ll@ Q/lT4Q/l4Q/l4Q/lulPl4Q/lQ/k#Q/kk4Q/k4Q/k4Q/kkk4Q/k4Q/ckDk"Q/>k4Q//k4Q/"k4Q/k4Q/ kkj4Q/j4Q/j4Q/j4Q/j4Q/j}j4Q/wj\j@ Q/Fj4Q/0j4Q/*j ji4Q/i4Q/ii4Q/ii4Q/i}ixi4Q/oi4Q/iiJi4Q/Di)i@ Q/iT4Q/ i4Q/h4Q/hhh4Q/h4Q/h4Q/thT4Q/gh[hQ/Lh #Q/Fh4Q/;hh"Q/h4Q/h4Q/g4Q/g4Q/ggg4Q/g4Q/g4Q/g4Q/gdg4Q/^gCg@ Q/7gT4Q/+g4Q/g4Q/gff4Q/f4Q/f4Q/f4Q/f4Q/fuflf4Q/bf4Q/)f4Q/#ff4Q/ f4Q/eee4Q/e4Q/ee4Q/ee@ Q/e4Q/ie4Q/ceCee4Q/d4Q/d4Q/dd4Q/ddT4Q/dQ/d#Q/d4Q/zd[d"Q/Ud4Q/Fd4Q/9d4Q/*d4Q/$ddd4Q/c4Q/cc4Q/c4Q/c4Q/cc}c4Q/oc4Q/Oc4Q/Fc4Q/@c!c4Q/cc@ Q/bT4Q/b4Q/b4Q/bbb4Q/bb4Q/Mb4Q/Gb4b4Q/%b4Q/b4Q/ b4Q/baa4Q/a4Q/aa4Q/aa4Q/a4Q/{a\a4Q/VaBa@ Q/+aT4Q/a4Q/ a4Q/a``4Q/`4Q/``4Q/w`4Q/q`R`4Q/L`1`@ Q/!`T4Q/`4Q/_4Q/___4Q/_4Q/_f_4Q/`_T_Q/L_"Q/F_4Q/;__"Q/_4Q/ _^ "Q/^4Q/^^~ Q/^4Q/^^4Q/J^2^d Q/,^4Q/^4Q/ ^^4Q/]4Q/]@ Q/]Q/]4Q/]]4Q/k]4Q/e]`]Q/Z]"Q/T]kQ/P]kQ/L]kQ/H]kQ/D]kQ/@]kQ/<]DhQ/8]dQ/4]D_Q/0]kQ/,]kQ/(]kQ/$]kQ/ ]kQ/]kQ/]kQ/]kQ/]kQ/ ]kQ/]kQ/]kQ/]kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\kQ/\X]Q/\\Q/\4Q/\4Q/x\4Q/r\S\4Q/M\9\@ Q/"\T4Q/\4Q/\4Q/[[[4Q/[Q/[4Q/U[4Q/2[4Q/[4Q/[4Q/Z4Q/ZZZ4Q/Z4Q/ZP4Q/0Z4Q/Z4Q/ Z4Q/Y4Q/YYY4Q/Y4Q/YY!Q/{Y4Q/YY4Q/LY1Y4Q/(Y4Q/"YX4Q/XX@ Q/XT4Q/X4Q/X4Q/XX^X4Q/GX4Q/WP4Q/W$4Q/WW"Q/sW4Q/fW4Q/WW4Q/QWDW4W4Q/&W4Q/WVV4Q/V|4Q/V4Q/VtV4Q/nV*V4Q/U|4Q/U4Q/U4Q/U4Q/UU4Q/UU@ Q/~UT4Q/rU4Q/\U4Q/VU3UU4Q/T4Q/T4Q/T4Q/T4Q/T4Q/TTT4Q/vT4Q/RT4Q/LT;T#T4Q/TT@ Q/S4Q/SS4Q/SS4Q/vS4Q/gS4Q/SS(S4Q/R4Q/R|4Q/{R4Q/KR4Q/,R|4Q/$R4Q/R4Q/R4Q/R4Q/ RQ4Q/QQ@ Q/QT4Q/Q4Q/Q4Q/QnQIQ4Q/2Q4Q/QP4Q/ Q4Q/P4Q/P4Q/P4Q/PPP4Q/P4Q/PpPCP/P4Q/PP4Q/O4Q/OO4Q/OO@ Q/OT4Q/O4Q/O4Q/O]O8O4Q/!O4Q/N4Q/N4Q/N4Q/N4Q/NNN4Q/|N4Q/[NNN4Q/=N"Q/7N4Q/NN4Q/M4Q/M4Q/MM4Q/MM@ Q/MT4Q/M4Q/zM4Q/tMQM,M4Q/M4Q/L4Q/L4Q/L4Q/L4Q/LLL4Q/L4Q/iL\L4Q/OL4Q/FL4Q/@L!L4Q/LL@ Q/KT4Q/K4Q/K4Q/KKK4Q/mK4Q/9K(4Q/.K4Q/K4Q/K4Q/J4Q/JJJ4Q/J4Q/JJ!Q/~J4Q/`JPJ`"Q/7JIIJI4Q/6I*I4Q/!I4Q/IH4Q/HH@ Q/HT4Q/H4Q/H4Q/HH[H4Q/DH4Q/*H4Q/H4Q/H4Q/G4Q/GGG4Q/G4Q/GG "Q/G4Q/sG_G~ Q/UG4Q/FGG4Q/FFd Q/F4Q/F4Q/FF4Q/oF4Q/fF4Q/`FAF4Q/;F F@ Q/FT4Q/F4Q/E4Q/EEE4Q/E4Q/oE4Q/UE4Q/HE4Q/9E4Q/3E&EE4Q/E4Q/DD4Q/D4Q/DD4Q/DD@ Q/lDT4Q/`D4Q/JD4Q/DD!DC4Q/C4Q/4C4Q/B4Q/JB4Q/4B4Q/'B4Q/B4Q/BBA4Q/A4Q/A4Q/A4Q/AA4Q/AmA@ Q/aAT4Q/UA4Q/?A4Q/9AA@4Q/@4Q/@4Q/@4Q/}@4Q/p@4Q/a@4Q/[@N@>@4Q/0@4Q/@?4Q/??4Q/?4Q/?4Q/?q?4Q/k?P?@ Q/D?4Q/;?4Q/5??4Q/?>@ Q/>T4Q/>4Q/>4Q/>>u>4Q/^>4Q/D>4Q/*>4Q/>4Q/>4Q/>==4Q/=4Q/==!Q/=4Q/=Z=4Q/E=|4Q/+=4Q/.< <4Q/;|4Q/;4Q/;;4Q/;|4Q/;4Q/j;4Q/:4Q/=::4Q/:4Q/:94Q/99@ Q/94Q/9|94Q/p9Q/Z9@9394Q/"9!Q/94Q/8Q/8Q/84Q/884Q/84Q/8a84Q/[8G8@ Q/08T4Q/$84Q/84Q/8774Q/74Q/7WQ/7WQ/7WQ/7WQ/7WQ/7TQ/|7!QQ/x7WQ/t7QQ/p7WQ/l7OQ/h7WQ/d7WQ/`7WQ/\7WQ/X7WQ/T7WQ/P7WQ/L7NQ/H7WQ/D7WQ/@7WQ/<7WQ/87WQ/47WQ/07WQ/,7WQ/(7WQ/$7WQ/ 7WQ/7WQ/7WQ/7WQ/7WQ/ 7MQ/7WQ/7WQ/7\KQ/6WQ/6WQ/67KQ/6WQ/6WQ/63HQ/6xEQ/6WQ/6WQ/6CQ/6WQ/67Q/6WQ/6CQ/6ABQ/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/6@Q/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/6WQ/|6WQ/x6WQ/t6WQ/p6WQ/l6WQ/h6WQ/d6@Q/`6WQ/\6WQ/X6WQ/T6WQ/P6WQ/L6M>Q/D6L6Q/54Q/{5c54Q/]5I5@ Q/25T4Q/&54Q/54Q/ 5444Q/z44Q/;4*444Q/3334Q/334Q/|3G304Q/A3534Q/(34Q/224Q/224Q/2}2!Q/w24Q/f24Q/^2Y24Q/72X4Q/124Q/!24Q/2,4Q/11!Q/14Q/14Q/114Q/111:1x4Q/ 14Q/04Q/004Q/04Q/0X4Q/04Q/0,4Q/d0L0!Q/F04Q/<04Q/40/04Q/"00/x4Q//4Q/d/_/4Q/Y/4Q/M/0 //...|4J#.4J#.4J#..`!J#.4J#u.S.?.`!J#5.4J#-..!J#-4J#-|4J#--4J#-4J#-4J#--4J#s-R->-`!J#4-4J#)-- -,,o,|4J# ,|4J#+4J#+4J#+4J#+4J#++E!J#v+4J#`+O+=+***|4J#*4J#^*4J#B*4J#4*4J#'**|4J#)4J#)4J#))4J#))4J#)4J#)4J#)o)4J#i)N)@ J#?)4J#9)4)4J# )4J#))4J#)(4J#(4J#((4J#((4J#(4J#u(T(4J#=(|4J#5(4J#$(4J#'4J#'4J#'' !J#'4J#'4J#'x'4J#m'Q'4J#D'4J#'4J#'L4J#&& J#&4J#&&4J#&|4J#&4J#&Y&4J#B&|4J#:&4J#&&&4J#&%4J#%%%%|4J#k%4J#e%4J#_%V%4J#K%/% J#)%4J#!%4J#$X4J#$$4J#$$4J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#$)J#|$)J#x$)J#t$)J#p$)J#l$)J#h$)J#d$)J#`$)J#\$)J#X$)J#T$)J#P$)J#L$)J#H$)J#D$)J#@$)J#<$)J#8$)J#4$)J#0$)J#,$)J#($)J#$$)J# $)J#$)J#$)J#$)J#$)J# $)J#$)J#$)J#$)J##)J##)J##/)J##{(J##)J##'J##)J##%J##Q%J##$J###J##4J##4J#v#4J#a#4J#F#0 !#4 #"4 "  "4 ""4 ""  "4 ""P4 "4 w"r"4 d"_"4 D"4"4 &"|4 "!!~  !4 !!!4 j!R!d  L!4 )!!4 !!4 4 4  4 0 z P  |440 4h@ V4@ 0 44{f4`[4G3 )4 44z4aQ( Bx4<4*4$t44p4l44h444\4d44`44o4il4TX4I4A47-4"444X44B444|444eQ G48' 444tc4]X4J943.444Pqqqqqqqqqqqqqqqqqqqqqqqqqqqqq|jxqt}pqlqhqdq`q\qXqTqPqLqHqDq@S<q8q4q0q,(q$q qq)44440 4k4^Q4@:4&44 444444n4`4N4;43444440 }TG4604(4444}4u4m40 40 `4OT4OK0 =b4[+!40 x/44lK<(`" 40 4  {4 qd\H 4$4  4  4  4 4 4 4 y 4 m b 4 \ 4 V 4 J 4 @ 4 : 4 + 4 %  4  4 4 4 4 4 4 4 0   dd n 4d ` 0 O ? `: 6 0 +  d  0 4      4 4 4 4 y 4 s ` g 4 a 4 [ 4 O 4 E 4 ? 4 . 4 $ 4  4 4  4 4 0 4     { 4 i 4 _ 4 Y 4 M 4 G d ; 4 5 4 / 4 # 4  4  4  4 4 4 4 4 4 0 4  4z 4r 4l 4f [ 4U 4O 4C 49 43 4& 4 4 4 4 440 41 41 O:/ @u`QA`  94E5ZJ@w;44c48td;+4Z4 0 h `H @(      h `H @(      h `H @(      h `H @(      h `H @(      h `H @(     ` 42 42/  4x24x2/   4_2 4_2/   4F2 4F2/  4-24-2/  4242/ { u31m31g/ b \31T31N/ I C31;315/ 0 *31"31/  31 31/  3~13~1/  3e13e1/  3L13L1/  331331/  3131/  {31s31m/ h b30Z30T/ O I30A30;/ 6 030(30"/  3030 /  3030/  3k03k0/  3R03R0/  390390/  3 03 0/  30y30s/ n h3/`3/Z/ U O3/G3/A/ < 63/.3/(/ # 3/3//  3/3//  3q/3q//  3X/3X//  3?/3?//  3&/3&//  3 /3 /y/ t n3.f3.`/ [ U}3.M}3.G/ B <y3.4y3../ ) #u3.u3./  q3.q3./  m3w.m3w./  i3^.i3^./  e3E.e3E./  a3,.a3,./  ]3.]3./ z tY3-lY3-f/ a [U3-SU3-M/ H BQ3-:Q3-4/ / )M3-!M3-/  I3-I3-/  E3}-E3}-/  A3d-A3d-/  =3K-=3K-/  932-932-/  53-53-/  z13-r13-l/ g a-3,Y-3,S/ N H)3,@)3,:/ 5 /%3,'%3,!/  !3,!3,/  3,3,/  3j,3j,/  3Q,3Q,/  38,38,/   3, 3,/   3,x 3,r/ m g3+_3+Y/ T N3+F3+@/ ; 52+-2+'/ " 2+2+/  2+2+/  2p+2p+/  2W+2W+/  2>+2>+/  2%+2%+/  2 +~2 +x/ s m2*e2*_/ Z T2*L2*F/ A ;2*32*-/ ( "2*2*/  2*2*/ 2v*2v*/ 2]*2]*/ 2D*2D*/ 2+*2+*/ 2*2*~/ y s2)k2)e/ ` Z2)R2)L/ G A2)92)3/ . (2) 2)/  2)2)/ plhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  vq&%$#p{on)Nw z* xtjH" cFTKI!|rmvq&%$#p{on)Nw z* xtjH" cFTKI!|rm}kuiy~slB 4M 4U 4[ 4j 4| 4       X 8# H/     8 $ 00 @ L |T \  g r 0}  4 ȏ L  | d ̖      , l 4* @3  = + 4( 4O 4\`pL@#&8(/\p@<@N@X  DtDUAP̊D܎pT<4    vlgxe2DEP$ zsV" I5B$]l}\q/Z> aD:$+n) ^it $1>HT^iv-:ER]jtd8 [bik910 3;  vOC_gp_function_name_parse_option_string___i686.get_pc_thunk.bx_get_analyseur___i686.get_pc_thunk.dx_set_analyseur_readseq_void_readseq_nobreak_readexpr_nobreak_readseq_readexpr_gp_read_str_gpreadseq_install_free_ep_args_freeep_push_val_pop_val_pop_val_if_newer_changevalue_changevalue_p_var_make_safe_kill_from_hashlist_kill0_addhelp_type0_readstring_strtoGENstr_do_alias_u_pow10_strtoi_strtor_is_keyword_char_hashvalue_is_entry_is_entry_intern_is_identifier_manage_var_fetch_var_fetch_named_var_fetch_user_var_delete_named_var_delete_var_name_var_gp_member_list_member_a1_member_a2_member_a3_member_a4_member_a6_member_area_member_b2_member_b4_member_b6_member_b8_member_bid_member_bnf_member_c4_member_c6_member_clgp_member_codiff_member_cyc_member_diff_member_disc_member_e_member_eta_member_f_member_fu_member_futu_member_gen_member_group_member_index_member_j_member_mod_member_nf_member_no_member_omega_member_orders_member_p_member_pol_member_r1_member_r2_member_reg_member_roots_member_sign_member_t2_member_tate_member_tu_member_tufu_member_w_member_zk_member_zkst_member_err_loop_break_did_break_return0_next0_break0_allocatemem0_alias0_print_user_fun_print_user_member_print_all_user_fun_print_all_user_member___i686.get_pc_thunk.axdyld_stub_binding_helper_funct_old_hash_foreignAutoload_foreignHandler_precdl_gen_m1_members_hash_pari_compare_long_gdivround_gdivent_gmod_gdiv_gmul_GP_DATA_precreal_whatnow_fun_gen_1_geq_ggt_gge_glt_gne_gle_gsub_gadd_bot_gi_gen_0_DEBUGMEM_varentries_pol_1_pol_x_polvar_functions_tblsz_foreignFuncFree_functions_hash_compatible_gnil_foreignExprSwitch_foreignExprHandler_avma_top__DefaultRuneLocale_pariprintf_brute_pariputc_pariputs_allocatemoremem_strcpy_strncmp_gerepileuptoleaf_affrr_divrr_mulrr_rpowuu_affir_addumului_stackmalloc_ggrando_gcmp1_gclone_refc_gtofp_ceil_gexpo_precision_qsort_newbloc_gp_history_gerepilecoeffs_gprealloc_glength_gneg_mpfact_gtrans_deriv_gpow_strcat_sprintf_cget1_bcopy_GENtostr_gcmp0_gerepileall_gshift_type_name_pop_entree_bloc_gclone_gunclone_pari_warn_pari_strdup_gpmalloc_term_width_free_filtre_gerepileupto_gcopy_gerepilecopy_killbloc_atol_strstr_strncpy___maskrune_strchr_pari_err_analyseur_br_res_mark_check_new_fun_skipping_fun_def_br_status_readseq0_check_proto_seq_expr_translate_facteur_matcell_truc_identifier_get_op_fun_change_compo_num_deriv_expand_string_any_string_check_args_record_fun_skip_arg_block_num_derivU_number_pw10.0_real_read_constante_installep_max_avail.1_nvar.2_entry_skipstring_skipseq_skipexpr_skipfacteur_skiptruc_skipidentifier_skipconstante_fakeEpNEW.3_fakeEpVAR.4_skipentry_read_member_br_count_reel4.5_gshift_l_gshift_r#1/12 1200774147 0 0 100644 110516 ` compat.o X<<__text__TEXT>W__data__DATA@| A__cstring__TEXTG|J__literal8__TEXT:d=__picsymbolstub2__TEXT:El=N__la_sym_ptr2__DATA;4>  __nl_symbol_ptr__DATA <>__textcoal_nt__TEXT<> @`d@ P,D$0D$D$@D$ D$:ÐD$$D$D$D$ $:Ð,\$ t$$|$(;T$>D$0T$$9>*L$t$$|$(Y9\$ ,,ÃD$(D$D$ $_9ÐS8T$$5:[Ã<\$0|$8t$4T$H\|$DE$t$94$9\$(tZE<$t$94$9D$\D$(D$D$TD$D$D$@\$ \$$8\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H|$D$E$t$ 94$9\$(tZ$E<$t$84$8D$\D$(D$D$TD$D$D$@\$ \$$7\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H|$DlD$t$R84$c8\$(tZlD<$t$*84$;8D$\D$(D$D$TD$D$D$@\$ \$$7\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H4|$DC$t$74$7\$(tZC<$t$r74$7D$\D$(D$D$TD$D$D$@\$ \$$Y6\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H||$DB$t$64$6\$(tZB<$t$64$6D$\D$(D$D$TD$D$D$@\$ \$$5\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H|$DDB$t$*64$;6\$(tZDB<$t$64$6D$\D$(D$D$TD$D$D$@\$ \$$4\$0t$4|$8<É<$붉$뉐<\$0|$8t$4T$H |$DtA$t$v54$5\$(tRA<$t$N54$_5D$\D$(D$D$T\$ D$D$@\$$$4\$0t$4|$8<É<$뾉$G2GHH HHHHMHiHHHHHHI I IxI I|IIIIIII;JBJ`JJ!JJKI KKKK LI LnLILLIL%MH@MnMHsMMHMM IM NHN.NH@NiN oNNN oNOoOIOO OPNP VP`PPIPQI@QQIQ@R I`RRRR-SK@SS ISSITFTK`TTKTU U UUHUUcV@VVcV W@XcDV`XnYcwYYHZcV`ZZc$V[[clV[p\H\]I ]^I@^^I^`a'```)a U@aa Iaa Ia&bH@bbIb1cI@ccccccd]dcd3eI@eeIe fI ff Iff If gK ggIg"hK@hhIh7iI`ijI@jjIjjcjkkIkk Il%lH@lvl IllIl"m I@mm ImCn I`nn InWoH[onoHoo oNop p pDp I`ppIpq U qq IqqHrHrc`rr Irr IsAs I`ss It_tHettIttStuuIu*vI@vv Ivv IwTw I`ww>wwsx>xxgyIyz "z@zz K{{K{n|>y||6}>E}`})~ I@~~I~  jHHH EH`ր IH 8I@ ONI`HI e Il8I`I II "z "z!L ̈hKK VP` IljS ˉ!T (@S ˉV  rW y6:@~ IȌH)H@̍ I{h IGh I`FH`HIH lHƑI  Β \ IDh I` IҔIQI`Е Ib I[h IyICI`̙ Iؚ Iݚ _ VP  RҜԜHMI`H@ I IHHH rH I IH H#I@IKIH`HK>H`HGK`K K3R@H R uIH)R@IH  VP@rP ï Iȯ I, I@m II&hI@|IܱI5R@ I& I@lHyHHɶHoHcJI`c Zc ac @c I U I tϼII IPI`I /9@I IoII5I`'I@V I` I U^ I II H;I`Hh"z QI`IR I` I Ig Ih IhIh II II7 p@zU9+ I@ IHGBJ`HfhHHH hH  IL I` Ic I I  Ih I IIh I`H$H@pIzHH2=`H v IHI&1 -@I I# I@ I I+I/KR`!HvII:I@ IIH IKgI II pHHH WIHhHHH @H`I V I[m IHM I` II2 d II  I NI`H Uc\`  IJ I`I I E` IIX_ I) I@ I, I@ IVh I{K IMc`%@nc RK@K I H VP`I VP I YIIl0 q% K S` @HD]H5 I@{ I IEL` UILI` I I$ I@} IIo IHB I`II U I` II  oN< I`  I  I x I r I / @  HI~IIhII "z aH I9H` I U Pc` I5I`I >H`I(K@}K I f k I IjI I6H:KHPm U oN]V I  I3H@ I I@ I I@ Ia  I  % !}! I!! I! " I ""H"#I #f# hU###$$ $$R$$$%I%04 q`%% S%& @&& &&' S@'' '( I (m(I()H )4)H@)`)i))) )))* p@*|*H**I*+BJ +U+h`+,h ,,H,.- I4-H- IN-i- I-- I-'.hH@.. I/[/R ///0 I 00 I00 I021 I@1y1 I11I1C2 `22 23i)@3}3H33H33Q 4r4I44H5#5I@55H56I67I7v8I8a9 I9OO(a^b)=o(a^b)=p-adic or power series zero with precision given by babsGpabs(x)=absolute value (or modulus) of xacosacos(x)=inverse cosine of xacoshacosh(x)=inverse hyperbolic cosine of xaddellGGGaddell(e,z1,z2)=sum of the points z1 and z2 on elliptic curve eaddprimesGaddprimes(x)=add primes in the vector x (with at most 20 components) to the prime tableadjadj(x)=adjoint matrix of xagmGGpagm(x,y)=arithmetic-geometric mean of x and yakellGGakell(e,n)=computes the n-th Fourier coefficient of the L-function of the elliptic curve ealgdepGLpalgdep(x,n)=algebraic relations up to degree n of xalgdep2GLLpalgdep2(x,n,dec)=algebraic relations up to degree n of x where dec is as in lindep2algtobasisalgtobasis(nf,x)=transforms the algebraic number x into a column vector on the integral basis nf[7]anellGLanell(e,n)=computes the first n Fourier coefficients of the L-function of the elliptic curve e (n<32768)apellapell(e,p)=computes a_p for the elliptic curve e using Shanks-Mestre's methodapell2apell2(e,p)=computes a_p for the elliptic curve e using Jacobi symbolsapprpadicapprpadic(x,a)=p-adic roots of the polynomial x congruent to a mod pargarg(x)=argument of x,such that -pi0 in the wide sense. See manual for the other parameters (which can be omitted)bytesizebytesize(x)=number of bytes occupied by the complete tree of the object xceilceil(x)=ceiling of x=smallest integer>=xcenterliftcenterlift(x)=centered lift of x. Same as lift except for integermodscfcf(x)=continued fraction expansion of x (x rational,real or rational function)cf2cf2(b,x)=continued fraction expansion of x (x rational,real or rational function), where b is the vector of numerators of the continued fractionchangevarchangevar(x,y)=change variables of x according to the vector ycharGnchar(x,y)=det(y*I-x)=characteristic polynomial of the matrix x using the comatrixchar1char1(x,y)=det(y*I-x)=characteristic polynomial of the matrix x using Lagrange interpolationchar2char2(x,y)=characteristic polynomial of the matrix x expressed with variable y, using the Hessenberg form. Can be much faster or much slower than char, depending on the base ringchellchell(x,y)=change data on elliptic curve according to y=[u,r,s,t]chinesechinese(x,y)=x,y being integers modulo mx and my,finds z such that z is congruent to x mod mx and y mod mychptellchptell(x,y)=change data on point or vector of points x on an elliptic curve according to y=[u,r,s,t]classnoclassno(x)=class number of discriminant xclassno2classno2(x)=class number of discriminant xcoeffcoeff(x,s)=coefficient of degree s of x, or the s-th component for vectors or matrices (for which it is simpler to use x[])compimagcompimag(x,y)=Gaussian composition of the binary quadratic forms x and y of negative discriminantcompocompo(x,s)=the s'th component of the internal representation of x. For vectors or matrices, it is simpler to use x[]compositumcompositum(pol1,pol2)=vector of all possible compositums of the number fields defined by the polynomials pol1 and pol2compositum2compositum2(pol1,pol2)=vector of all possible compositums of the number fields defined by the polynomials pol1 and pol2, with roots of pol1 and pol2 expressed on the compositum polynomialscomprealrawcomprealraw(x,y)=Gaussian composition without reduction of the binary quadratic forms x and y of positive discriminantconcatconcat(x,y)=concatenation of x and yconductorGDGDGD1,G,conductor(bnr,subgroup)=conductor of the subfield of the ray class field bnr given by buchrayinit, defined by the HNF matrix subgroupconductorofcharconductorofchar(bnr,chi)=conductor of the character chi on the ray class group bnrconjconj(x)=the algebraic conjugate of xconjvecconjvec(x)=conjugate vector of the algebraic number xcontentcontent(x)=gcd of all the components of x, when this makes senseconvolconvol(x,y)=convolution (or Hadamard product) of two power seriescorecore(n)=unique (positive of negative) squarefree integer d dividing n such that n/d is a squarecore2core2(n)=(long)gen_2-component row vector [d,f], where d is the unique squarefree integer dividing n such that n/d=f^2 is a squarecoredisccoredisc(n)=discriminant of the quadratic field Q(sqrt(n))coredisc2coredisc2(n)=(long)gen_2-component row vector [d,f], where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f may be a half integercoscos(x)=cosine of xcoshcosh(x)=hyperbolic cosine of xcvtoicvtoi(x)=truncation of x, without taking into account loss of integer part precisioncycloLDncyclo(n)=n-th cyclotomic polynomialdecodefactordecodefactor(fa)=given a factorisation fa, gives the factored object backdecodemoduledecodemodule(nf,fa)=given a coded module fa as in discrayabslist, gives the true moduledegreedegree(x)=degree of the polynomial or rational function x. -1 if equal 0, 0 if non-zero scalardenomdenom(x)=denominator of x (or lowest common denominator in case of an array)deplindeplin(x)=finds a linear dependence between the columns of the matrix xderivderiv(x,y)=derivative of x with respect to the main variable of ydetdet(x)=determinant of the matrix xdet2det2(x)=determinant of the matrix x (better for integer entries)detintdetint(x)=some multiple of the determinant of the lattice generated by the columns of x (0 if not of maximal rank). Useful with hermitemoddiagonaldiagonal(x)=creates the diagonal matrix whose diagonal entries are the entries of the vector xdilogdilog(x)=dilogarithm of xdirdivdirdiv(x,y)=division of the Dirichlet series x by the Dir. series ydireulerV=GGIDGdireuler(p=a,b,expr)=Dirichlet Euler product of expression expr from p=a to p=b, limited to b terms. Expr should be a polynomial or rational function in p and X, and X is understood to mean p^(-s)dirmuldirmul(x,y)=multiplication of the Dirichlet series x by the Dir. series ydirzetakdirzetak(nf,b)=Dirichlet series of the Dedekind zeta function of the number field nf up to the bound b-1discdisc(x)=discriminant of the polynomial xdiscfdiscf(x)=discriminant of the number field defined by the polynomial x using round 4discf2discf2(x)=discriminant of the number field defined by the polynomial x using round 2discrayabsGD0,G,D0,G,D0,L,discrayabs(bnr,subgroup)=absolute [N,R1,discf] of the subfield of the ray class field bnr given by buchrayinit, defined by the HNF matrix subgroupdiscrayabscondGD0,G,D0,G,D2,L,discrayabscond(bnr,subgroup)=absolute [N,R1,discf] of the subfield of the ray class field bnr given by buchrayinit, defined by the HNF matrix subgroup. Result is zero if fmodule is not the conductordiscrayabslistdiscrayabslist(bnf,listes)=if listes is a 2-component vector as output by ideallistunit or similar, gives list of corresponding discrayabsconddiscrayabslistarchGGLdiscrayabslistarch(bnf,arch,bound)=gives list of discrayabscond of all modules up to norm bound with archimedean places arch, in a longvector formatdiscrayabslistarchalldiscrayabslistarchall(bnf,bound)=gives list of discrayabscond of all modules up to norm bound with all possible archimedean places arch in reverse lexicographic order, in a longvector formatdiscrayabslistlongdiscrayabslistlong(bnf,bound)=gives list of discrayabscond of all modules up to norm bound without archimedean places, in a longvector formatdiscrayrelGD0,G,D0,G,D1,L,discrayrel(bnr,subgroup)=relative [N,R1,rnfdiscf] of the subfield of the ray class field bnr given by buchrayinit, defined by the HNF matrix subgroupdiscrayrelcondGD0,G,D0,G,D3,L,discrayrelcond(bnr,subgroup)=relative [N,R1,rnfdiscf] of the subfield of the ray class field bnr given by buchrayinit, defined by the HNF matrix subgroup. Result is zero if module is not the conductordivisorsdivisors(x)=gives a vector formed by the divisors of x in increasing orderdivresdivres(x,y)=euclidean division of x by y giving as a 2-dimensional column vector the quotient and the remainderdivsumGVIdivsum(n,X,expr)=sum of expression expr, X running over the divisors of neigeneigen(x)=eigenvectors of the matrix x given as columns of a matrixeint1eint1(x)=exponential integral E1(x)erfcerfc(x)=complementary error functionetaeta(x)=eta function without the q^(1/24)eulerpeuler=euler()=euler's constant with current precisionevaleval(x)=evaluation of x, replacing variables by their valueexpexp(x)=exponential of xextractextract(x,y)=extraction of the components of the vector x according to the vector or mask y, from left to right (1, 2, 4, 8, ...for the first, second, third, fourth,...component)factfact(x)=factorial of x (x C-integer), the result being given as a real numberfactcantorfactcantor(x,p)=factorization mod p of the polynomial x using Cantor-Zassenhausfactfqfactfq(x,p,a)=factorization of the polynomial x in the finite field F_p[X]/a(X)F_p[X]factmodfactmod(x,p)=factorization mod p of the polynomial x using Berlekampfactorfactor(x)=factorization of xfactoredbasisGGffactoredbasis(x,p)=integral basis of the maximal order defined by the polynomial x, where p is the matrix of the factorization of the discriminant of xfactoreddiscffactoreddiscf(x,p)=discriminant of the maximal order defined by the polynomial x, where p is the matrix of the factorization of the discriminant of xfactoredpolredfactoredpolred(x,p)=reduction of the polynomial x, where p is the matrix of the factorization of the discriminant of x (gives minimal polynomials only)factoredpolred2factoredpolred2(x,p)=reduction of the polynomial x, where p is the matrix of the factorization of the discriminant of x (gives elements and minimal polynomials)factornffactornf(x,t)=factorization of the polynomial x over the number field defined by the polynomial tfactorpadicfactorpadic(x,p,r)=p-adic factorization of the polynomial x to precision r, using the round 4 algorithmfactorpadic2factorpadic2(x,p,r)=p-adic factorization of the polynomial x to precision r, using Buchmann-LenstrafactpolGLLfactpol(x,l,hint)=factorization over Z of the polynomial x up to degree l (complete if l=0) using Hensel lift, knowing that the degree of each factor is a multiple of hintfactpol2factpol2(x,l)=factorization over Z of the polynomial x up to degree l (complete if l=0) using root findingfibofibo(x)=fibonacci number of index x (x C-integer)floorfloor(x)=floor of x=largest integer<=xforvV=GGIfor(X=a,b,seq)=the sequence is evaluated, X going from a up to bfordivvGVIfordiv(n,X,seq)=the sequence is evaluated, X running over the divisors of nforprimeforprime(X=a,b,seq)=the sequence is evaluated, X running over the primes between a and bforstepvV=GGGIforstep(X=a,b,s,seq)=the sequence is evaluated, X going from a to b in steps of sforvecvV=GID0,L,forvec(x=v,seq)=v being a vector of two-component vectors of length n, the sequence is evaluated with x[i] going from v[i][1] to v[i][2] for i=n,..,1fpnGLDnfpn(p,n)=monic irreducible polynomial of degree n over F_p[x]fracfrac(x)=fractional part of x=x-floor(x)galoisgalois(x)=Galois group of the polynomial x (see manual for group coding)galoisapplygaloisapply(nf,aut,x)=Apply the Galois automorphism sigma (polynomial or polymod) to the object x (element or ideal) in the number field nfgaloisconjgaloisconj(nf)=list of conjugates of a root of the polynomial x=nf[1] in the same number field, using p-adics, LLL on integral basis (not always complete)galoisconj1galoisconj1(nf)=list of conjugates of a root of the polynomial x=nf[1] in the same number field nf, using complex numbers, LLL on integral basis (not always complete)galoisconjforcegaloisconjforce(nf)=list of conjugates of a root of the polynomial x=nf[1] in the Galois number field nf, using p-adics, LLL on integral basis. Guaranteed to be complete if the field is Galois, otherwise there is an infinite loopgamhgamh(x)=gamma of x+1/2 (x integer)gammagamma(x)=gamma function at xgaussgauss(a,b)=gaussian solution of ax=b (a matrix,b vector)gaussmodulogaussmodulo(M,D,Y)=(long)gen_1 solution of system of congruences MX=Y mod Dgaussmodulo2gaussmodulo2(M,D,Y)=all solutions of system of congruences MX=Y mod Dgcdgcd(x,y)=greatest common divisor of x and ygetheapgetheap()=2-component vector giving the current number of objects in the heap and the space they occupygetrandlgetrand()=current value of random number seedgetstackgetstack()=current value of stack pointer avmagettimegettime()=time (in milliseconds) since last call to gettimeglobalredglobalred(e)=e being an elliptic curve, returns [N,[u,r,s,t],c], where N is the conductor of e, [u,r,s,t] leads to the standard model for e, and c is the product of the local Tamagawa numbers c_pgotos*goto(n)=THIS FUNCTION HAS BEEN SUPPRESSEDhclassnohclassno(x)=Hurwitz-Kronecker class number of x>0hellhell(e,x)=canonical height of point x on elliptic curve E defined by the vector e computed using theta-functionshell2hell2(e,x)=canonical height of point x on elliptic curve E defined by the vector e computed using Tate's methodhermitehermite(x)=(upper triangular) Hermite normal form of x, basis for the lattice formed by the columns of x, using a naive algorithmhermite2hermite2(x)=2-component vector [H,U] such that H is an (upper triangular) Hermite normal form of x, basis for the lattice formed by the columns of x, and U is a unimodular matrix such that xU=H, using Batut's algorithmhermitehavashermitehavas(x)=3-component vector [H,U,P] such that H is an (upper triangular) Hermite normal form of x with extra zero columns, U is a unimodular matrix and P is a permutation of the rows such that P applied to xU gives H, using Havas's algorithmhermitemodhermitemod(x,d)=(upper triangular) Hermite normal form of x, basis for the lattice formed by the columns of x, where d is the non-zero determinant of this latticehermitemodidhermitemodid(x,d)=(upper triangular) Hermite normal form of x concatenated with d times the identity matrixhermitepermhermiteperm(x)=3-component vector [H,U,P] such that H is an (upper triangular) Hermite normal form of x with extra zero columns, U is a unimodular matrix and P is a permutation of the rows such that P applied to xU gives H, using Batut's algorithmhesshess(x)=Hessenberg form of xhilblGGGhilb(x,y,p)=Hilbert symbol at p of x,y (integers or fractions)hilberthilbert(n)=Hilbert matrix of order n (n C-integer)hilbplGGhilbp(x,y)=Hilbert symbol of x,y (where x or y is integermod or p-adic)hvectorhvector(n,X,expr)=row vector with n components of expression expr, the variable X ranging from 1 to nhyperuhyperu(a,b,x)=U-confluent hypergeometric functionii=i()=square root of -1idealaddidealadd(nf,x,y)=sum of two ideals x and y in the number field defined by nfidealaddmultoneidealaddone(nf,x,y)=when the sum of two ideals x and y in the number field K defined by nf is equal to Z_K, gives a two-component vector [a,b] such that a is in x, b is in y and a+b=1idealaddoneidealaddmultone(nf,list)=when the sum of the ideals in the number field K defined by nf and given in the vector list is equal to Z_K, gives a vector of elements of the corresponding ideals who sum to 1idealappridealappr(nf,x)=x being a fractional ideal, gives an element b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0 for all other pidealapprfactidealapprfact(nf,x)=x being a prime ideal factorization with possibly zero or negative exponents, gives an element b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0 for all other pidealchineseidealchinese(nf,x,y)=x being a prime ideal factorization and y a vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0 for all other pidealcoprimeidealcoprime(nf,x,y)=gives an element b in nf such that b.x is an integral ideal coprime to the integral ideal yidealdividealdiv(nf,x,y)=quotient x/y of two ideals x and y in HNF in the number field nfidealdivexactidealdivexact(nf,x,y)=quotient x/y of two ideals x and y in HNF in the number field nf when the quotient is known to be an integral idealidealfactoridealfactor(nf,x)=factorization of the ideal x given in HNF into prime ideals in the number field nfidealhermiteidealhermite(nf,x)=hermite normal form of the ideal x in the number field nf, whatever form x may haveidealhermite2idealhermite2(nf,a,b)=hermite normal form of the ideal aZ_K+bZ_K in the number field K defined by nf, where a and b are elementsidealintersectidealintersect(nf,x,y)=intersection of two ideals x and y in HNF in the number field defined by nfidealinvidealinv(nf,x)=inverse of the ideal x in the number field nf not using the differentidealinv2idealinv2(nf,x)=inverse of the ideal x in the number field nf using the differentideallistideallist(nf,bound)=vector of vectors of all ideals of norm<=bound in nfideallistarchideallistarch(nf,list,arch)=vector of vectors of all zidealstarinits of all modules in list with archimedean arch added, without generatorsideallistarchgenideallistarchgen(nf,list,arch)=vector of vectors of all zidealstarinits of all modules in list with archimedean arch added, with generatorsideallistunitideallistunit(bnf,bound)=2-component vector [L,U] where L is as ideallistzstar, and U is a vector of vector of zinternallogs of the units, without generatorsideallistunitarchideallistunitarch(bnf,lists,arch)=adds the archimedean arch to the lists output by ideallistunitideallistunitarchgenideallistunitarchgen(bnf,lists,arch)=adds the archimedean arch to the lists output by ideallistunitgenideallistunitgenideallistunitgen(bnf,bound)=2-component vector [L,U] where L is as ideallistzstar, and U is a vector of vector of zinternallogs of the units, with generatorsideallistzstarideallistzstar(nf,bound)=vector of vectors of all zidealstarinits of all ideals of norm<=bound, without generatorsideallistzstargenideallistzstargen(nf,bound)=vector of vectors of all zidealstarinits of all ideals of norm<=bound, with generatorsideallllredideallllred(nf,x,vdir)=LLL reduction of the ideal x in the number field nf along direction vdir, in HNFidealmulidealmul(nf,x,y)=product of the two ideals x and y in the number field nfidealmulredidealmulred(nf,x,y)=reduced product of the two ideals x and y in the number field nfidealnormidealnorm(nf,x)=norm of the ideal x in the number field nfidealpowidealpow(nf,x,n)=n-th power of the ideal x in HNF in the number field nfidealpowredidealpowred(nf,x,n)=reduced n-th power of the ideal x in HNF in the number field nfidealtwoeltidealtwoelt(nf,x)=(long)gen_2-element representation of an ideal x in the number field nfidealtwoelt2idealtwoelt2(nf,x,a)=(long)gen_2-element representation of an ideal x in the number field nf, with the first element equal to aidealvalidealval(nf,x,p)=valuation at p given in primedec format of the ideal x in the number field nfidmatidmat(n)=identity matrix of order n (n C-integer)ifif(a,seq1,seq2)=if a is nonzero, seq1 is evaluated, otherwise seq2imagimag(x)=imaginary part of ximageimage(x)=basis of the image of the matrix ximage2image2(x)=basis of the image of the matrix ximagecomplimagecompl(x)=vector of column indices not corresponding to the indices given by the function imageincgamincgam(s,x)=incomplete gamma functionincgam1incgam1(s,x)=incomplete gamma function (for debugging only)incgam2incgam2(s,x)=incomplete gamma function (for debugging only)incgam3incgam3(s,x)=complementary incomplete gamma functionincgam4incgam4(s,x,y)=incomplete gamma function where y=gamma(s) is precomputedindexrankindexrank(x)=gives two extraction vectors (rows and columns) for the matrix x such that the exracted matrix is square of maximal rankindsortindsort(x)=indirect sorting of the vector xinitalginitalg(x)=x being a nonconstant irreducible polynomial, gives the vector: [x,[r1,r2],discf,index,[M,MC,T2,T,different] (see manual),r1+r2 first roots, integral basis, matrix of power basis in terms of integral basis, multiplication table of basis]initalgredinitalgred(x)=x being a nonconstant irreducible polynomial, finds (using polred) a simpler polynomial pol defining the same number field, and gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see manual), r1+r2 first roots, integral basis, matrix of power basis in terms of integral basis, multiplication table of basis]initalgred2initalgred2(P)=P being a nonconstant irreducible polynomial, gives a two-element vector [nf,mod(a,pol)], where nf is as output by initalgred and mod(a,pol) is a polymod equal to mod(x,P) and pol=nf[1]initellinitell(x)=x being the vector [a1,a2,a3,a4,a6], gives the vector: [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j,[e1,e2,e3],w1,w2,eta1,eta2,q,area]initzetainitzeta(x)=compute number field information necessary to use zetak, where x is an irreducible polynomialinteginteg(x,y)=formal integration of x with respect to the main variable of yintersectintersect(x,y)=intersection of the vector spaces whose bases are the columns of x and yintgenV=GGID1,L,pintgen(X=a,b,s)=general numerical integration of s from a to b with respect to X, to be used after removing singularitiesintinfV=GGID2,L,pintinf(X=a,b,s)=numerical integration of s from a to b with respect to X, where a or b can be plus or minus infinity (1.0e4000), but of same signintnumV=GGID0,L,pintnum(X=a,b,s)=numerical integration of s from a to b with respect to XintopenV=GGID3,L,pintopen(X=a,b,s)=numerical integration of s from a to b with respect to X, where s has only limits at a or binverseimageinverseimage(x,y)=an element of the inverse image of the vector y by the matrix x if one exists, the empty vector otherwiseisdiagonalisdiagonal(x)=true(1) if x is a diagonal matrix, false(0) otherwiseisfundisfund(x)=true(1) if x is a fundamental discriminant (including 1), false(0) if notisidealisideal(nf,x)=true(1) if x is an ideal in the number field nf, false(0) if notisinclisincl(x,y)=tests whether the number field defined by the polynomial x is isomorphic to a subfield of the one defined by y; 0 if not, otherwise all the isomorphismsisinclfastisinclfast(nf1,nf2)=tests whether the number nf1 is isomorphic to a subfield of nf2 or not. If it gives a non-zero result, this proves that this is the case. However if it gives zero, nf1 may still be isomorphic to a subfield of nf2 so you have to use the much slower isincl to be sureisirreducibleisirreducible(x)=true(1) if x is an irreducible non-constant polynomial, false(0) if x is reducible or constantisisomisisom(x,y)=tests whether the number field defined by the polynomial x is isomorphic to the one defined by y; 0 if not, otherwise all the isomorphismsisisomfastisisomfast(nf1,nf2)=tests whether the number fields nf1 and nf2 are isomorphic or not. If it gives a non-zero result, this proves that they are isomorphic. However if it gives zero, nf1 and nf2 may still be isomorphic so you have to use the much slower isisom to be sureisoncurveiGGisoncurve(e,x)=true(1) if x is on elliptic curve e, false(0) if notisprimeGD0,L,isprime(x)=true(1) if x is a strong pseudoprime for 10 random bases, false(0) if notisprincipalisprincipal(bnf,x)=bnf being output by buchinit, gives the vector of exponents on the class group generators of x. In particular x is principal if and only if the result is the zero vectorisprincipalforceisprincipalforce(bnf,x)=same as isprincipal, except that the precision is doubled until the result is obtainedisprincipalgenisprincipalgen(bnf,x)=bnf being output by buchinit, gives [v,alpha,bitaccuracy], where v is the vector of exponents on the class group generators and alpha is the generator of the resulting principal ideal. In particular x is principal if and only if v is the zero vectorisprincipalgenforceisprincipalgenforce(bnf,x)=same as isprincipalgen, except that the precision is doubled until the result is obtainedisprincipalrayisprincipalray(bnf,x)=bnf being output by buchrayinit, gives the vector of exponents on the ray class group generators of x. In particular x is principal if and only if the result is the zero vectorisprincipalraygenisprincipalraygen(bnf,x)=bnf being output by buchrayinit, gives [v,alpha,bitaccuracy], where v is the vector of exponents on the class group generators and alpha is the generator of the resulting principal ideal. In particular x is principal if and only if v is the zero vectorispspispsp(x)=true(1) if x is a strong pseudoprime, false(0) if notisqrtisqrt(x)=integer square root of x (x integer)issetisset(x)=true(1) if x is a set (row vector with strictly increasing entries), false(0) if notissqfreeissqfree(x)=true(1) if x is squarefree, false(0) if notissquareissquare(x)=true(1) if x is a square, false(0) if notisunitisunit(bnf,x)=bnf being output by buchinit, gives the vector of exponents of x on the fundamental units and the roots of unity if x is a unit, the empty vector otherwisejacobijacobi(x)=eigenvalues and orthogonal matrix of eigenvectors of the real symmetric matrix xjbesselhjbesselh(n,x)=J-bessel function of index n+1/2 and argument x, where n is a non-negative integerjelljell(x)=elliptic j invariant of xkaramulkaramul(x,y,k)=THIS FUNCTION HAS BEEN SUPPRESSEDkbesselkbessel(nu,x)=K-bessel function of index nu and argument x (x positive real of type real, nu of any scalar type)kbessel2kbessel2(nu,x)=K-bessel function of index nu and argument x (x positive real of type real, nu of any scalar type)kerker(x)=basis of the kernel of the matrix xkerikeri(x)=basis of the kernel of the matrix x with integer entrieskerintkerint(x)=LLL-reduced Z-basis of the kernel of the matrix x with integral entries using a modified LLLkerint1kerint1(x)=LLL-reduced Z-basis of the kernel of the matrix x with rational entries using matrixqz3 and the HNFkerint2kerint2(x)=LLL-reduced Z-basis of the kernel of the matrix x with integral entries using a modified LLLkrokro(x,y)=kronecker symbol (x/y)labellabel(n)=THIS FUNCTION HAS BEEN SUPPRESSEDlambdaklambdak(nfz,s)=Dedekind lambda function of the number field nfz at s, where nfz is the vector computed by initzeta (NOT by initalg)laplacelaplace(x)=replaces the power series sum of a_n*x^n/n! by sum of a_n*x^nlcmlcm(x,y)=least common multiple of x and y=x*y/gcd(x,y)legendrelegendre(n)=legendre polynomial of degree n (n C-integer)lengthlength(x)=number of non code words in xlexlex(x,y)=compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if x=n) matrix x into an integral matrix with gcd of maximal determinants equal to 1 if p is equal to 0, not divisible by p otherwisematrixqz2matrixqz2(x)=finds a basis of the intersection with Z^n of the lattice spanned by the columns of xmatrixqz3matrixqz3(x)=finds a basis of the intersection with Z^n of the Q-vector space spanned by the columns of xmatsizematsize(x)=number of rows and columns of the vector/matrix x as a 2-vectormaxmax(x,y)=maximum of x and yminmin(x,y)=minimum of x and yminidealminideal(nf,ix,vdir)=minimum of the ideal ix in the direction vdir in the number field nfminimminim(x,bound,maxnum)=number of vectors of square norm <= bound, maximum norm and list of vectors for the integral and definite quadratic form x; minimal non-zero vectors if bound=0minim2minim2(x,bound)=looks for vectors of square norm <= bound, return the first one and its normmodmod(x,y)=creates the integer x modulo y on the PARI stackmodpmodp(x,y)=creates the integer x modulo y as a permanent object (on the heap)modreversemodreverse(x)=reverse polymod of the polymod x, if it existsmodulargcdmodulargcd(x,y)=gcd of the polynomials x and y using the modular methodmumu(x)=Moebius function of xnewtonpolynewtonpoly(x,p)=Newton polygon of polynomial x with respect to the prime pnextprimenextprime(x)=smallest prime number>=xnfdetintnfdetint(nf,x)=multiple of the ideal determinant of the pseudo generating set xnfdivnfdiv(nf,a,b)=element a/b in nfnfdiveucnfdiveuc(nf,a,b)=gives algebraic integer q such that a-bq is smallnfdivresnfdivres(nf,a,b)=gives [q,r] such that r=a-bq is smallnfhermitenfhermite(nf,x)=if x=[A,I], gives a pseudo-basis of the module sum A_jI_jnfhermitemodnfhermitemod(nf,x,detx)=if x=[A,I], and detx is a multiple of the ideal determinant of x, gives a pseudo-basis of the module sum A_jI_jnfmodnfmod(nf,a,b)=gives r such that r=a-bq is small with q algebraic integernfmulnfmul(nf,a,b)=element a.b in nfnfpownfpow(nf,a,k)=element a^k in nfnfreducenfreduce(nf,a,id)=gives r such that a-r is the ideal id and r is smallnfsmithnfsmith(nf,x)=if x=[A,I,J], outputs [c_1,...c_n] Smith normal form of xnfvalnfval(nf,a,pr)=valuation of element a at the prime prnormnorm(x)=norm of xnorml2norml2(x)=square of the L2-norm of the vector xnucompnucomp(x,y,l)=composite of primitive positive definite quadratic forms x and y using nucomp and nudupl, where l=[|D/4|^(1/4)] is precomputednumdivnumdiv(x)=number of divisors of xnumernumer(x)=numerator of xnupownupow(x,n)=n-th power of primitive positive definite quadratic form x using nucomp and nuduploo(a^b)=O(a^b)=p-adic or power series zero with precision given by bomegaomega(x)=number of unrepeated prime divisors of xordellordell(e,x)=y-coordinates corresponding to x-ordinate x on elliptic curve eorderorder(x)=order of the integermod x in (Z/nZ)*orderellorderell(e,p)=order of the point p on the elliptic curve e over Q, 0 if non-torsionordredordred(x)=reduction of the polynomial x, staying in the same orderpadicprecpadicprec(x,p)=absolute p-adic precision of object xpascalLDGpascal(n)=pascal triangle of order n (n C-integer)perfperf(a)=rank of matrix of xx~ for x minimal vectors of a gram matrix apermutationLGpermutation(n,k)=permutation number k (mod n!) of n letters (n C-integer)permutation2numpermutation2num(vect)=ordinal (between 1 and n!) of permutation vectpfpf(x,p)=returns the prime form whose first coefficient is p, of discriminant xphiphi(x)=Euler's totient function of xpipi=pi()=the constant pi, with current precisionpnqnpnqn(x)=[p_n,p_{n-1};q_n,q_{n-1}] corresponding to the continued fraction xpointellpointell(e,z)=coordinates of point on the curve e corresponding to the complex number zpolintGGGD&polint(xa,ya,x)=polynomial interpolation at x according to data vectors xa, yapolredpolred(x)=reduction of the polynomial x (gives minimal polynomials only)polred2polred2(x)=reduction of the polynomial x (gives elements and minimal polynomials)polredabspolredabs(x)=a smallest generating polynomial of the number field for the T2 norm on the roots, with smallest index for the minimal T2 normpolredabs2polredabs2(x)=gives [pol,a] where pol is as in polredabs, and alpha is the element whose characteristic polynomial is polpolredabsallpolredabsall(x)=complete list of the smallest generating polynomials of the number field for the T2 norm on the rootspolredabsfastpolredabsfast(x)=a smallest generating polynomial of the number field for the T2 norm on the rootspolredabsnoredpolredabsnored(x)=a smallest generating polynomial of the number field for the T2 norm on the roots without initial polredpolsympolsym(x,n)=vector of symmetric powers of the roots of x up to npolvarpolvar(x)=main variable of object x. Gives p for p-adic x, error for scalarspolypoly(x,v)=convert x (usually a vector or a power series) into a polynomial with variable v, starting with the leading coefficientpolylogLGppolylog(m,x)=m-th polylogarithm of xpolylogdpolylogd(m,x)=D_m~-modified m-th polylog of xpolylogdoldpolylogdold(m,x)=D_m-modified m-th polylog of xpolylogppolylogp(m,x)=P_m-modified m-th polylog of xpolyrevpolyrev(x,v)=convert x (usually a vector or a power series) into a polynomial with variable v, starting with the constant termpolzagLLpolzag(n,m)=Zagier's polynomials of index n,mpowellpowell(e,x,n)=n times the point x on elliptic curve e (n in Z)powrealrawpowrealraw(x,n)=n-th power without reduction of the binary quadratic form x of positive discriminantprecprec(x,n)=change the precision of x to be n (n C-integer)precisionprecision(x)=real precision of object xprimeprime(n)=returns the n-th prime (n C-integer)primedecprimedec(nf,p)=prime ideal decomposition of the prime number p in the number field nf as a vector of 5 component vectors [p,a,e,f,b] representing the prime ideals pZ_K+a.Z_K, e,f as usual, a as vector of components on the integral basis, b Lenstra's constantprimesprimes(n)=returns the vector of the first n primes (n C-integer)primrootprimroot(n)=returns a primitive root of n when it existsprincipalidealprincipalideal(nf,x)=returns the principal ideal generated by the algebraic number x in the number field nfprincipalideleprincipalidele(nf,x)=returns the principal idele generated by the algebraic number x in the number field nfprodGV=GGIprod(x,X=a,b,expr)=x times the product (X runs from a to b) of expressionprodeulerV=GGIpprodeuler(X=a,b,expr)=Euler product (X runs over the primes between a and b) of real or complex expressionprodinfV=GID0,L,pprodinf(X=a,expr)=infinite product (X goes from a to infinity) of real or complex expressionprodinf1V=GID1,L,pprodinf1(X=a,expr)=infinite product (X goes from a to infinity) of real or complex 1+expressionpsipsi(x)=psi-function at xqfiqfi(a,b,c)=binary quadratic form a*x^2+b*x*y+c*y^2 with b^2-4*a*c<0qfrGGGGqfr(a,b,c,d)=binary quadratic form a*x^2+b*x*y+c*y^2 with b^2-4*a*c>0 and distance dquaddiscquaddisc(x)=discriminant of the quadratic field Q(sqrt(x))quadgenquadgen(x)=standard generator of quadratic order of discriminant xquadpolyquadpoly(x)=quadratic polynomial corresponding to the discriminant xrandomDGrandom()=random integer between 0 and 2^31-1rankrank(x)=rank of the matrix xrayclassnorayclassno(bnf,x)=ray class number of the module x for the big number field bnf. Faster than buchray if only the ray class number is wantedrayclassnolistrayclassnolist(bnf,liste)=if listes is as output by idealisunit or similar, gives list of corresponding ray class numbersrealreal(x)=real part of xreciprecip(x)=reciprocal polynomial of xredimagredimag(x)=reduction of the binary quadratic form x with D<0redrealredreal(x)=reduction of the binary quadratic form x with D>0redrealnodredrealnod(x,sq)=reduction of the binary quadratic form x with D>0 without distance function where sq=[sqrt D]reduceddiscreduceddisc(f)=vector of elementary divisors of Z[a]/f'(a)Z[a], where a is a root of the polynomial fregularegula(x)=regulator of the real quadratic field of discriminant xreorderreorder(x)=reorder the variables for output according to the vector xresultantresultant(x,y)=resultant of the polynomials x and y with exact entriesresultant2resultant2(x,y)=resultant of the polynomials x and yreversereverse(x)=reversion of the power series xrhorealrhoreal(x)=single reduction step of the binary quadratic form x of positive discriminantrhorealnodrhorealnod(x,sq)=single reduction step of the binary quadratic form x with D>0 without distance function where sq=[sqrt D]rndtoirndtoi(x)=take the nearest integer to all the coefficients of x, without taking into account loss of integer part precisionrnfbasisrnfbasis(bnf,order)=given an order as output by rnfpseudobasis or rnfsteinitz, gives either a basis of the order if it is free, or an n+1-element generating setrnfdiscfrnfdiscf(nf,pol)=given a pol with coefficients in nf, gives a 2-component vector [D,d], where D is the relative ideal discriminant, and d is the relative discriminant in nf^*/nf*^2rnfequationrnfequation(nf,pol)=given a pol with coefficients in nf, gives the absolute equation of the number field defined by polrnfequation2rnfequation2(nf,pol)=given a pol with coefficients in nf, gives [apol,th], where apol is the absolute equation of the number field defined by pol and th expresses the root of nf[1] in terms of the root of apolrnfhermitebasisrnfhermitebasis(bnf,order)=given an order as output by rnfpseudobasis, gives either a true HNF basis of the order if it exists, zero otherwisernfisfreernfisfree(bnf,order)=given an order as output by rnfpseudobasis or rnfsteinitz, outputs true (1) or false (0) according to whether the order is free or notrnflllgramrnflllgram(nf,pol,order)=given a pol with coefficients in nf and an order as output by rnfpseudobasis or similar, gives [[neworder],U], where neworder is a reduced order and U is the unimodular transformation matrixrnfpolredrnfpolred(nf,pol)=given a pol with coefficients in nf, finds a list of polynomials defining some subfields, hopefully simplerrnfpseudobasisrnfpseudobasis(nf,pol)=given a pol with coefficients in nf, gives a 4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal order in HNF on the power basis, D is the relative ideal discriminant, and d is the relative discriminant in nf^*/nf*^2rnfsteinitzrnfsteinitz(nf,order)=given an order as output by rnfpseudobasis, gives [A,I,..] where (A,I) is a pseudo basis where all the ideals except perhaps the last are trivialrootmodrootmod(x,p)=roots mod p of the polynomial xrootmod2rootmod2(x,p)=roots mod p of the polynomial x, when p is smallrootpadicrootpadic(x,p,r)=p-adic roots of the polynomial x to precision rrootsroots(x)=roots of the polynomial x using Schonhage's method modified by Gourdonrootsof1rootsof1(nf)=number of roots of unity and primitive root of unity in the number field nfrootsoldrootsold(x)=roots of the polynomial x using a modified Newton's methodroundround(x)=take the nearest integer to all the coefficients of xrounderrorrounderror(x)=maximum error found in rounding xseriesseries(x,v)=convert x (usually a vector) into a power series with variable v, starting with the constant coefficientsetset(x)=convert x into a set, i.e. a row vector with strictly increasing coefficientssetintersectsetintersect(x,y)=intersection of the sets x and ysetminussetminus(x,y)=set of elements of x not belonging to ysetrandlLsetrand(n)=reset the seed of the random number generator to nsetsearchlGGD0,L,setsearch(x,y)=looks if y belongs to the set x. Returns 0 if it is not, otherwise returns the index j such that y==x[j]setunionsetunion(x,y)=union of the sets x and yshiftshift(x,n)=shift x left n bits if n>=0, right -n bits if n<0shiftmulshiftmul(x,n)=multiply x by 2^n (n>=0 or n<0)sigmasigma(x)=sum of the divisors of xsigmaksigmak(k,x)=sum of the k-th powers of the divisors of x (k C-integer)signiGsign(x)=sign of x, of type integer, real or fractionsignatsignat(x)=signature of the symmetric matrix xsignunitsignunit(bnf)=matrix of signs of the real embeddings of the system of fundamental units found by buchinitsimplefactmodsimplefactmod(x,p)=same as factmod except that only the degrees of the irreducible factors are givensimplifysimplify(x)=simplify the object x as much as possiblesinsin(x)=sine of xsinhsinh(x)=hyperbolic sine of xsizesize(x)=maximum number of decimal digits minus one of (the coefficients of) xsmallbasissmallbasis(x)=integral basis of the field Q[a], where a is a root of the polynomial x where one assumes that no square of a prime>primelimit divides the discriminant of xsmallbuchinitsmallbuchinit(pol)=small buchinit, which can be converted to a big one using makebigbnfsmalldiscfsmalldiscf(x)=discriminant of the number field defined by the polynomial x where one assumes that no square of a prime>primelimit divides the discriminant of xsmallfactsmallfact(x)=partial factorization of the integer x (using only the stored primes)smallinitellsmallinitell(x)=x being the vector [a1,a2,a3,a4,a6], gives the vector: [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j]smallpolredsmallpolred(x)=partial reduction of the polynomial x (gives minimal polynomials only)smallpolred2smallpolred2(x)=partial reduction of the polynomial x (gives elements and minimal polynomials)smithsmith(x)=Smith normal form (i.e. elementary divisors) of the matrix x, expressed as a vectorsmith2smith2(x)=gives a three element vector [u,v,d] where u and v are square unimodular matrices such that d=u*x*v=diagonal(smith(x))smithcleansmithclean(z)=if z=[u,v,d] as output by smith2, removes from u,v,d the rows and columns corresponding to entries equal to 1 in dsmithpolsmithpol(x)=Smith normal form (i.e. elementary divisors) of the matrix x with polynomial coefficients, expressed as a vectorsolvesolve(X=a,b,expr)=real root of expression expr (X between a and b), where expr(a)*expr(b)<=0sortsort(x)=sort in ascending order of the vector xsqrsqr(x)=square of x. NOT identical to x*xsqredsqred(x)=square reduction of the (symmetric) matrix x ( returns a square matrix whose i-th diagonal term is the coefficient of the i-th square in which the coefficient of the i-th variable is 1)sqrtsqrt(x)=square root of xsrgcdsrgcd(x,y)=polynomial gcd of x and y using the subresultant algorithmsturmsturm(x)=number of real roots of the polynomial xsturmpartsturmpart(x,a,b)=number of real roots of the polynomial x in the interval (a,b]subcycloLLDnsubcyclo(p,d)=finds an equation for the d-th degree subfield of Q(zeta_p), where p must be a prime powersubellsubell(e,z1,z2)=difference of the points z1 and z2 on elliptic curve esubstGnGsubst(x,y,z)=in expression x, replace the variable y by the expression zsumsum(x,X=a,b,expr)=x plus the sum (X goes from a to b) of expression exprsumaltsumalt(X=a,expr)=Villegas-Zagier's acceleration of alternating series expr, X starting at asumalt2sumalt2(X=a,expr)=Cohen-Villegas-Zagier's acceleration of alternating series expr, X starting at asuminfV=GIpsuminf(X=a,expr)=infinite sum (X goes from a to infinity) of real or complex expression exprsumpossumpos(X=a,expr)=sum of positive series expr, the formal variable X starting at asumpos2sumpos2(X=a,expr)=sum of positive series expr, the formal variable X starting at a, using Zagier's polynomialssupplementsupplement(x)=supplement the columns of the matrix x to an invertible matrixsylvestermatrixsylvestermatrix(x,y)=forms the sylvester matrix associated to the two polynomials x and y. Warning: the polynomial coefficients are in columns, not in rowstantan(x)=tangent of xtanhtanh(x)=hyperbolic tangent of xtaniyamaGPtaniyama(e)=modular parametrization of elliptic curve etaylorGnPtaylor(x,y)=taylor expansion of x with respect to the main variable of ytchebitchebi(n)=Tchebitcheff polynomial of degree n (n C-integer)teichteich(x)=teichmuller character of p-adic number xthetatheta(q,z)=Jacobi sine theta-functionthetanullkthetanullk(q,k)=k'th derivative at z=0 of theta(q,z)threetotwothreetotwo(nf,a,b,c)=returns a 3-component vector [d,e,U] such that U is a unimodular 3x3 matrix with algebraic integer coefficients such that [a,b,c]*U=[0,d,e]threetotwo2threetotwo2(nf,a,b,c)=returns a 3-component vector [d,e,U] such that U is a unimodular 3x3 matrix with algebraic integer coefficients such that [a,b,c]*U=[0,d,e]torselltorsell(e)=torsion subgroup of elliptic curve e: order, structure, generatorstracetrace(x)=trace of xtranstrans(x)=x~=transpose of xtrunctrunc(x)=truncation of x;when x is a power series,take away the O(X^)tschirnhaustschirnhaus(x)=random Tschirnhausen transformation of the polynomial xtwototwotwototwo(nf,a,b)=returns a 3-component vector [d,e,U] such that U is a unimodular 2x2 matrix with algebraic integer coefficients such that [a,b]*U=[d,e] and d,e are hopefully smallerunitunit(x)=fundamental unit of the quadratic field of discriminant x where x must be positiveuntiluntil(a,seq)=evaluate the expression sequence seq until a is nonzerovaluationvaluation(x,p)=valuation of x with respect to pvecvec(x)=transforms the object x into a vector. Used mainly if x is a polynomial or a power seriesvecindexsortvecindexsort(x): indirect sorting of the vector xveclexsortveclexsort(x): sort the elements of the vector x in ascending lexicographic ordervecmaxvecmax(x)=maximum of the elements of the vector/matrix xvecminvecmin(x)=minimum of the elements of the vector/matrix xvecsortvecsort(x,k)=sorts the vector of vector (or matrix) x according to the value of its k-th componentvectorvector(n,X,expr)=row vector with n components of expression expr (X ranges from 1 to n)vvectorvvector(n,X,expr)=column vector with n components of expression expr (X ranges from 1 to n)weipellweipell(e)=formal expansion in x=z of Weierstrass P functionwfweberf(x)=Weber's f function of x (j=(f^24-16)^3/f^24)wf2weberf2(x)=Weber's f2 function of x (j=(f2^24+16)^3/f2^24)whilewhile(a,seq)=while a is nonzero evaluate the expression sequence seq. Otherwise 0zellzell(e,z)=In the complex case, lattice point corresponding to the point z on the elliptic curve ezetazeta(s)=Riemann zeta function at szetakzetak(nfz,s)=Dedekind zeta function of the number field nfz at s, where nfz is the vector computed by initzeta (NOT by initalg)zideallogzideallog(nf,x,bid)=if bid is a big ideal as given by zidealstarinit or zidealstarinitgen , gives the vector of exponents on the generators bid[2][3] (even if these generators have not been computed)zidealstarzidealstar(nf,I)=3-component vector v, giving the structure of (Z_K/I)^*. v[1] is the order (i.e. phi(I)), v[2] is a vector of cyclic components, and v[3] is a vector giving the corresponding generatorszidealstarinitzidealstarinit(nf,I)=6-component vector [I,v,fa,f2,U,V] where v is as in zidealstar without the generators, fa is the prime ideal factorisation of I and f2, U and V are technical but essential to work in (Z_K/I)^*zidealstarinitgenzidealstarinitgen(nf,I)=6-component vector [I,v,fa,f2,U,V] where v is as in zidealstar fa is the prime ideal factorisation of I and f2, U and V are technical but essential to work in (Z_K/I)^*znstarznstar(n)=3-component vector v, giving the structure of (Z/nZ)^*. v[1] is the order (i.e. phi(n)), v[2] is a vector of cyclic components, and v[3] is a vector giving the corresponding generatorsthis function has been suppressedyPD?k@⍀@PWR+⍀+P>9⍀P% ⍀P ⍀P⍀P⍀P⍀P⍀P⍀Pvqn⍀nP]XY⍀YPD?D⍀DP+::::;;3;L;e;~;;;;$Ë$h@8,GG xG<d\PG<8 GG LGG d\PG<4(G G\|pG\X $GG s`:nj _<:$ < _+@@@ @@@@ @t@p@h@ `@T@P@H@ @@4@0@(@ @@@@ @??? ???? ?????? ?t?p?h? `?T?P?H? @?4?0?(? ???? ?>>> >>>> >>>> >>>>4 >t>p>h> `>T>P>H> @>4>0>(> >>>=== ======== ==== =t=p=h= `=T=P=H= @=4=0=(= =====<<<<<<< <<<< <<<< <t<p<h< `<T<P<H< @<4<0<(<q <<<< <;;; ;;;; ;;;; ;;;; ;t;p;h; `;T;P;H; @;4;0;(; ;;;; ;::::::: :::: :::: :t:p:h: `:T:P:H:@:4:0:(: :::: :999 9999 9999 9999 9t9p9h9 `9T9P9H9 @94909(9 9999 9888 8888 8888 8888 8t8p8h8 `8T8P8H8@84808(8 8888 8777 7777 7777 7777 7t7p7h7 `7T7P7H7 @74707(7 77777666 6666 6666 6666 6t6p6h6 `6T6P6H6 @64606(6 6666 6555 5555 55555555 5t5p5h5 `5T5P5H5 @54505(5 5555 5444 4444 4444 4444 4t4p4h4 `4T4P4H4 @44404(4 4444 4333 3333 3333 3333 3t3p3h3 `3T3P3H3 @34303(3 3333 3222 22222222 2222 2t2p2h2 `2T2P2H2 @24202(2 2222 2111t 1111 1111, 1111+ 1t1p1h1 `1T1P1H1 @14101(1 1111 1000 0000 0000 0000 0t0p0h0 `0T0P0H0 @04000(0 00000/// //// //// //// /t/p/h/ `/T/P/H/ @/4/0/(/ //// /... .... .... .... .t.p.h.} `.T.P.H.| @.4.0.(.{ .... .--- ---- ----z ----w -t-p-h-`-T-P-H-y @-4-0-(-x ----w -,,,v ,,,,u ,,,,s ,,,,q ,t,p,h,o `,T,P,H,S @,4,0,(,n ,,,, ,+++m ++++b ++++l ++++G +t+p+h+j `+T+P+H+h @+4+0+(+g ++++f +***e **** ******c *t*p*h*a `*T*P*H*` @*4*0*(*_ **** *))) ))))m ))))^ ))))l )t)p)h)k `)T)P)H)j @)4)0)()] ))))Z )(((Y ((((X ((((W ((((i (t(p(h(V `(T(P(H(U @(4(0(((T (((( ('''P ''''~ '''' '''' 't'p'h'O `'T'P'H'N @'4'0'('M '''' '&&& &&&&L &&&&K &&&&J &t&p&h&I `&T&P&H&H @&4&0&(&D &&&&C &%%% %%%%* %%%%%%%% %t%p%h% `%T%P%H%o @%4%0%(% %%%% %$$$$$$$B $$$$A $$$$@ $t$p$h$? `$T$P$H$> @$4$0$($= $$$$< $###; ########: ####9 #t#p#h#`#T#P#H#8 @#4#0#(#7 ####6 #"""5 """"4 """"3 """" "t"p"h"2 `"T"P"H" @"4"0"("1 """" "!!!!!!! !!!!!!!!0 !t!p!h!/ `!T!P!H!. @!4!0!(!- !!!!, !   +        *    ) t p h ( ` T P H ' @ 4 0 (       & tph% `TPH$ @40(# " !  d \ tph\ `TPH @40([ [      tph `TPH @40(      tph `TPH @40(      tph`TPH @40(     F tph  `TPH @40(         tph `TPH @40(      tph `TPH @40(      tph `TPH @40(      tph `TPH @40(   E   tph `TPH @40(     tph `TPH@40(n      tph `TPH @40(    tph `TPH @40(      tph `TPH @40( } ~ r tph{ `TPHz @40(y x v u | t tphR `TPHs @40(  Q r  h tphg `TPHf @40( e    /    /    c    b t p h b ` T P H a @ 4 0 ( /    /    `    _    d    ^ t p h ] ` T P H \ @ 4 0 ( [    Z    Y    X    W    V t p h U ` T P H T @ 4 0 ( S    R    Q    w    P    t p h ` T P H @ 4 0 ( O    N    M    L    J    I t p h H ` T P H @ 4 0 ( .    - G F E D tphC `TPHB @40( A @ p ? K tph; `TPH9 @40(: >   <  tph `TPH8 @40(7 6 5 4 tph`TPH3 @40( 2 = 0 tph `TPH @40(( ) '    tph& `TPH% @40($ # " !   tph `TPH @40(  i    tph `TPH @40(      tph `TPH @40( A ;<;3<;- ( "<;<;  ;;;;  ;v;;v;  ;];;];  ;D;;D;  ;+;;+;  ;;;;~ y s;:k;:e ` Z;:R;:L G A;:9;:3 . (;: ;:  ;:;: 0,($  1pk1pk D$lLh(h046G<<"*5:?FNWcjqq   cqz6&QYcoxA$.5AN[ %-7>FQYkrc7 x    kd C 2;CQ`p(/i%2",A  FOXb@ %v?b  y    Z T     c      ~  P [s#:GrOz   ,w~yFU-;ISbo} $/9e} %3O* 2 : D J S ] b h p               & . = G   o          S  " - D N X c Xrq     -  |    y z' 8 N Y _ i  q y            ( / C 9 H X h t `      4   (;DYcmzr% 3=FQ{Y4@NU`j8zk4<DM`hW+q_oldfonctions_gabs_gacos_gach_addell_addprimes_adj_agm_akell_algdep_algdep2_algtobasis_anell_apell_apell2_padicappr_garg_gasin_gash_assmat_gatan_gath_base_base2_basistoalg_bernreal_bernvec_bestappr_vecbezout_vecbezoutres_gbigomega_bilhell_binomial_binaire_gbittest_gboundcf_boundfact_certifybuchall_buchfu_buchimag_buchnarrow_buchray_buchrayinit_buchrayinitgen_buchreal_taille2_gceil_centerlift_gcf_gcf2_changevar_caradj0_caract_carhess_coordch_chinese_pointch_classno_classno2_truecoeff_compimag_compo_compositum_compositum2_comprealraw_concat_bnrconductor_bnrconductorofchar_gconj_conjvec_content_convol_core_core2_coredisc_coredisc2_gcos_gch_gcvtoi_cyclo_factorback_decodemodule_degree_denom_deplin_deriv_det_det2_detint_diagonal_dilog_dirdiv_direuler0_dirmul_dirzetak_discsr_discf_discf2_bnrdisc0_discrayabslist_discrayabslistarch_discrayabslistlong_divisors_gdiventres_divsum_eigen_eint1_gerfc_eta_mpeuler_geval_gexp_extract_mpfactr_factcantor_factorff_factmod_factor_factoredbase_factoreddiscf_factoredpolred_factoredpolred2_polfnf_factorpadic4_factorpadic2_fibo_gfloor_forpari_fordiv_forprime_forstep_forvec_ffinit_gfrac_galois_galoisapply_galoisconj_ggamd_ggamma_gauss_gaussmodulo_gaussmodulo2_ggcd_getheap_getrand_getstack_gettime_ellglobalred_hclassno_ghell_ghell2_hnf_hnfall_hnfmod_hnfmodid_hnfperm_hess_hil_mathilbert_vecteur_hyperu_geni_idealadd_idealaddmultoone_idealaddtoone_idealappr_idealapprfact_idealchinese_idealcoprime_idealdiv_idealdivexact_idealfactor_idealhermite_idealhnf0_idealintersect_idealinv_ideallist_ideallistarch_ideallistunit_ideallistunitgen_ideallistzstar_ideallistzstargen_ideallllred_idealmul_idealmulred_idealnorm_idealpow_idealpowred_ideal_two_elt_ideal_two_elt2_idealval_matid_gimag_image_image2_imagecompl_incgam_incgam2_incgamc_incgam0_indexrank_indexsort_initalg_initalgred_initalgred2_initell_initzeta_integ_intersect_intnumromb0_inverseimage_isdiagonal_gisfundamental_isideal_nfisincl_gisirreducible_nfisisom_oncurve_gisprime_isprincipal_isprincipalforce_isprincipalgen_isprincipalgenforce_isprincipalray_isprincipalraygen_gispsp_racine_setisset_gissquarefree_gissquare_isunit_jacobi_jbesselh_jell_kbessel_kbessel2_ker_keri_kerint_kerint1_gkronecker_glambdak_laplace_glcm_legendre_glength_lexcmp_lexsort_lift_lindep_lindep2_lll_lllgen_lllgram_lllgramgen_lllgramint_lllgramkerim_lllgramkerimgen_lllint_lllintpartial_lllkerim_lllkerimgen_glog_glngamma_elllocalred_bnfmake_gtomat_matextract_mathell_matrice_matrixqz_matrixqz2_matrixqz3_matsize_gmax_gmin_minideal_minim_minim2_gmodulo_polymodrecip_modulargcd_gmu_newtonpoly_nextprime_nfdetint_element_div_nfdiveuc_nfdivrem_nfhermite_nfhermitemod_nfmod_element_mul_element_pow_element_reduce_nfsmith_element_val_gnorm_gnorml2_nucomp_numbdiv_numer_nupow_gomega_ordell_order_orderell_ordred_padicprec_matqpascal_perf_numtoperm_permtonum_primeform_phi_mppi_pnqn_pointell_polint_polred_polred2_polredabs_polredabs2_polredabsall_polsym_gpolvar_gtopoly_gpolylog_polylogd_polylogdold_polylogp_gtopolyrev_polzag_powell_powrealraw_gprec_ggprecision_prime_primedec_primes_gener_principalideal_principalidele_prodeuler0_prodinf0_gpsi_qfi_qfr_quaddisc_quadgen_quadpoly_genrand_rank_bnrclassno_bnrclassnolist_greal_polrecip_redimag_redreal_redrealnod_reduceddiscsmith_regula_reorder_resultant2_recip_rhoreal_rhorealnod_grndtoi_rnfbasis_rnfdiscf_rnfequation_rnfequation2_rnfhnfbasis_rnfisfree_rnflllgram_rnfpolred_rnfpseudobasis_rnfsteinitz_rootmod_rootmod2_rootpadic_roots_rootsof1_rootsold_ground_gtoser_gtoset_setintersect_setminus_setrand_setsearch_setunion_gshift_gmul2n_sumdiv_gsigne_signat_signunits_simplefactmod_simplify_gsin_gsh_sizedigit_smallbase_smalldiscf_smallfact_smallinitell_smallpolred_smallpolred2_smith_smith2_smithclean_gsmith_zbrent0_sort_gsqr_sqred_gsqrt_srgcd_sturmpart_subcyclo_subell_gsubst_sumalt0_suminf0_sumpos0_suppl_sylvestermatrix_gtan_gth_elltaniyama_tayl_tchebi_teich_theta_thetanullk_torsell_gtrace_gtrans_gtrunc_tschirnhaus_fundunit_ggval_gtovec_vecmax_vecmin_vecsort_vvecteur_weipell_weberf_weberf2_zell_gzeta_gzetak_zideallog_zidealstar_zidealstarinit_zidealstarinitgen_znstar___i686.get_pc_thunk.bx___i686.get_pc_thunk.axdyld_stub_binding_helper_avma_smallbuchinit_buchall_factpol_subresall_elllseries_gsumdivk_somme_produit_gaffect_rtodbl_pari_err_buchgen_buchgenforcefu_buchgenfu_buchinit_buchinitforcefu_buchinitfu__factpol_suppressed_lseriesell0_prod0_subres0_rounderror_sigmak0_smallbuchinit_c_sturm0_sum0_reel4.0 #1/20 1200774148 0 0 100644 33140 ` default.oH HddE __text__TEXTq6dH__bss__DATAE__data__DATA6L9piA__cstring__TEXT7D;__literal8__TEXT@C__const__DATA@$Dxk__picsymbolstub2__TEXT@(Dk__la_sym_ptr2__DATAaDGr%%__nl_symbol_ptr__DATAD`\HJ__textcoal_nt__TEXTXE H @HuT{ P/C>sbUWVS,rET$փ|$@T$"tL"8t(;r6uߍ7D$$L$C뿋D$,[^_]Ã;uDžtFu ;t$r~\.t뢐,\$|$$P|$0l$(t$ <$<1<-tiЁw DD5uD$4\$t$ |$$l$(,É $0x ؅DӍY7|$ |$T$$CՃ느\$t$t$ |$4$8-t|$ \$t$|$=06t$ t$T$$BȐ PC@X@ ÐS6D$C*ȋY>JX,щACL$[Ð\\$Lt$P|$Tl$X,l$VA|$,.C|$81уO $@6NjD$8D$ D$ D$T$<$?D$`D$ D$|$$?S\\$LL$844t$PT$<|$Tl$XD$8L$4D$0@T$`D$,:|$dt||$dt@\$Lt$P|$Tl$X\Ë.tK@8@w+9L$dw@0GF@n$?Ջ@둋|$`?t D$,9.ul$4tAT$4u,ЃD$ D$D$0D$4$r>7L$4΋t$0D$t$4҉$= Ȩu.|$01уO $>>4NjD$0D$D$ D$T$<$=D$`D$ D$|$$>딐<\$,|$4t$0l$8|$@7>ҋhXt>V5U=w>D5.|$DtI|$Dt>\$,t$0|$4l$8<ËED$ ED$U3T$,$=$@)=(3NjED$ED$ Mt$<$L$<<$z<<-t0ЁZ>D5I<$b<E9E-<$F<E=.D5.ݍ23|$ |$L$$}<UWVS'$8[w=@\F[=$D$$1|$$эi,1L͋t$$9u1D$$$-L͍1t$$9u1T$$$- L͍1t$$9u1D$$$-L͍2t$$9u'2L$$$t$$D$4$w:D$,$NjW=$$+l$,l$,~މ<$:$$ Ȩl$@D$@D$,l$(D$,W=41t:T$04$T$9D$0D$ D$4D$X2D$,$6:1|$,эl E,E D$,|$,h$t)D$(c2D$,$9o=[^_]ËD$($\9D$4D$u2iD$0y2,$D$D$8t$D$ D$4D$9Fl\$\Xt$`|$dl$h:/E/T$w+9L$tw":0GF@nc$u8Ћ:|$p?tD$,9E.,D$$tIT$$2u3T$$|$$D$ ED$D$(D$.$7EL$$ċEl$(D$l$.Љ$D$ u D$ E|$(1уO $7X.NjD$(D$D$ D$T$<$O7D$pD$ D$|$$e7돐<\$,|$4t$0l$8|$@?L8Ex\xmEL$@\D$DL$ ‰D$<$,.T$t$E&‹D$9tt EH\Ћ\$,t$0|$4l$8<ËE`\ލ<.$l5N5{L8pL\$.Ջ/덋l$P}t|$$D$(98.lt$( $$D$D$,D$-G$=D$ u D$ E`|$,1уO $-#NjD$,D$D$ D$L$<$W-D$PD$ D$|$$m-돐UWVSl%g.T$\@LD$X@L$TT$PD$\D$H$8$$_.D$LD$XT$\h9H<L$DD$w+9$w [.0GF@n$+ҋS.$}t0T$P;D$H.eD$s"D$TD$ $+F|$Pى$:= Ȩu l$\|$T1уO $*|$T"D$D$ |$T$$*$D$ D$t$$*돐L\$<\l$Ht$@|$Dx+E'D$,"T$$D$(T$P:|$T;|$T+(D$,x+1Ȩt-D$,D|$Tp+$G(p+tx+9D$,tt\$w+9L$Tw"+0GF@n$0(Ћ+D$P8tD$,9E.|$$tIT$$u3T$$t$$D$ ED$D$(D$$'tEL$$ċEl$(D$l$Љ$D$ u D$ E|$(1уO $O'\NjD$(D$D$ D$T$<$ 'L$PL$ L$|$$ '돐\\$Ll$Xt$P|$T( #@X@L$8L$w+v3#0GF@n‰Ћ\$Lt$P|$Tl$X\$!뿋#ЋD$4D$(tR##>w+9L$dw$#0GF@|$(~$y!΋#D$`8t0L$4;D$0.D$D$8D$$ t$4ى$#=D$,=' Ȩu L$,L$!D$<\$Lt$P|$Tl$X\Ët$4.tP!8!w+9L$dw"!2GF@n]$Ћ|!}t1l$4E;D$0.%D$D$8D$4$|$4ى,$.=D$,u D$,D$<|$81уO $@NjD$8D$D$ D$T$<$l$ l$|$$뒃,\$ \t$$|$(T$@\D$4T$ D$D$0T$t$$ ‹D$9t tH\Ћ\$ t$$|$(,Ë`\搐,\$ t$$|$(,T$@\ D$4T$ 5D$D$0T$t$$, ‹D$9t tH\ Ћ\$ t$$|$(,Ë`\搐,\$ \t$$|$(T$@\D$4T$ D$D$0T$t$$ ‹D$9t tH\Ћ\$ t$$|$(,Ë`\搐L\$t u\$,t$0|$4l$8<É$WT$$tD$$w봋$D$D$D$OАSwT$D$ D$$D$D$ $g [ÐSQT$D$ D$$D$D$ $/ [ÐS+T$D$ D$$D$D$ ${[Ð,\$|$$t$ l$(|$0@?t!u~\x}Fdui<$ FdPdDу|$4t7|$4t\$t$ |$$l$(,ÍT$4$Љ$pΉ$u늍|$ $T$T$uW,\$t$ l$(|$$t$0d>l$4t`ua4$7`Dуt5t\$t$ |$$l$(,ÉT$U$Љ$Ή$M땃,\$|$$l$(t$ l$0(}|$4pTuHt7t \$t$ |$$l$(,ËD$$v΋$ʋ$,$t4$땃L\$<(?<>);;D1<=<(>4)5><>d!?+E>#L?+?-?(.>l)8;@0; <9dP>%Y>&=,e>&Ggget_sep: argument too long (< %ld chars)integer too largearguments must be positive integerstex2mail -TeX -noindent -ragged -by_par realprecision = %ld significant digits (%ld digits displayed)realprecisiondefault: incorrect value for %s [%lu-%lu]significant termsseriesprecision %s = %lu %s %s = %lu format = %c%ld.%ld %c%ld.%lddefault: inexistent formatnodarkbg1, 5, 3, 7, 6, 2, 3lightbg1, 6, 3, 4, 5, 2, 3boldfg[1,,1], [5,,1], [3,,1], [7,,1], [6,,1], , [2,,1][%ld,,%ld] colors = "%s" %ld[%ld,%ld,%ld](use old functions, ignore case)(no backward compatibility)(warn when using obsolete functions)(use old functions, don't ignore case)compatibleuser functions re-initializedsecure[secure mode]: Do you want to modify the 'secure' flag? (^C if not) debug(bits 0x2/0x4 control matched-insert/arg-complete)readline01debugfilesdebugmemecholineshistsize(off)(on)(on with colors)(TeX output)logPARIbreak\hskip 0pt plus \hsize\relax\discretionary{}{}{}}\ifx\%s\undefined \def\%s{%s}\fi PARIpromptSTART\vskip\medskipamount\bgroup\bfPARIpromptEND\egroup\bgroup\ttPARIinputEND\egroupPARIout\vskip\smallskipamount$\displaystyle{\tt\%#1} = #2$\ifx\%s\undefined \def\%s#1#2{%s}\fi [logfile was "%s"] alogfile(bits 0x2/0x4 control output of \left/\PARIbreak)TeXstyle(prettymatrix)(raw)(prettyprint)(external prettyprint)outputparisizeprimelimitsimplifystrictmatchtimer %s = "%s" factor_add_primesnew_galois_formatpsfilenone help = "%s" help[secure mode]: can't modify '%s' default (to %s) datadir = "%s" path = "%s" yes prettyprinter = "%s" broken prettyprinter: '%s'prettyprinter prompt%s = "%s" _contcomment> colorsdatadirformatpathpromptprompt_contunknown default: %sGPHELP/usr/local/bin/gphelpI was expecting an integer here %s = 1 (on) %s = 0 (off) default: incorrect value for %s [0:off / 1:on]expected character: ']'qy O?qy O?yPD#@;<<<$<=7⍀P#⍀P n⍀nPY⍀YPؾӾD⍀DP鿾躾/⍀/P馾衾⍀P鍾舾⍀Pto⍀P[V⍀PB=⍀P)$⍀P ⍀P⍀P޽ٽr⍀rPŽ]⍀]P鬽觽H⍀HP铽莽3⍀3Pzu⍀Pa\ ⍀ PHC⍀P/*⍀P⍀P⍀P߼⍀P˼Ƽ⍀P鲼譼v⍀vP陼蔼a⍀aP逼{L⍀LPgb7⍀7PNI"⍀"P50 ⍀ P⍀P⍀P⍀Pѻ̻⍀P鸻賻⍀P韻@@AA5ANAgAAAAAAAB/BHBaBzBBBBBBC)CBC[CtCCCCCC D#D+t-L?+i-Y-1?+>-)---9+-,?+,9+,HE+,,[,G,6+:,?+,9++PE++ +++++w+?(+Y+HE(+:+PE(+$+ + ++*>**HE**>**D***D** q*h*>)S*>)H*>*4*(*>) *HE))>))PE)))PE)) )})Er)w)>r)n) a)E)E:)?)>:)6) )) )E))y>)( ((((=H(((EH(|(`(EH(N(=H(D( 2(&((((''''''i'k>4'I'HE4'0' &&e>&&PE&& d&I&Y>$&.&PE$& & %%P>%%PE%% %z%T%9#N%%%$\9#$##PE## ##i#Z#9p!!# #"\9p!"p!!@Ep!~!Ep!l! [!(NPE(H>(B>(< >(6=($ 98\98g_L981\9< E< E< 0;  PE    9 b X \9 2 * L9 P_q @_ Rn `  ?can't deflateunexpected characterunknown function or error in formal parametersvariable name expectedobsolete functionerror opening invalid flagWarning:Warning: increasing precWarning: failed toaccuracy problemsbug insorry,sorry, not yet available on this systemcollecting garbage inprecision too lowincorrect typeinconsistent dataimpossible assignment I-->Simpossible assignment I-->Ithe PARI stack overflows !length (lg) overflowexponent (expo) overflowvaluation (valp) overflowoverflow in R->dbl conversionnon invertible matrix in gaussnot a square matrixunknown identifier valence, please reportnot an integer argument in an arithmetic functionnot enough precomputed primesnot enough precomputed primes, need primelimit ~ impossible inverse modulo: constant polynomialnot a polynomialreducible polynomialzero polynomialtoo many iterations for desired precision in integration routinenot a definite matrix in lllgrambad argument for an elliptic curve related functionimpossibleforbiddendivision by zerotrying to overwrite a universal objectnot enough memoryinfinite precisionnegative exponentnon quadratic residue in gsqrtwhat's going on ?|xtplhd`\XTPLHD@<840,($  _errmessage#1/12 1200774153 0 0 100644 147300 ` es.o $T77 __text__TEXT:__data__DATA"__cstring__TEXTC (#__bss__DATA78__literal8__TEXT,(p0__literal4__TEXT,0__common__DATAL7__picsymbolstub2__TEXT-M0__la_sym_ptr2__DATAM5T8|!UU__nl_symbol_ptr__DATA6dL:__textcoal_nt__TEXT7 : @0' 3 P11za$$VS6@\t[^Íy$464$4‰1 t u$ 4붐LD$PT$D$D$D$TD$$D$D$ D$(D$,$LÐ D$L$H @ @@ ÐV$P3@$3^ÐVt$ t$J34$B3^ÐVt$ D$$FD$$3^Ãl\$`t$d|$ht$kljD$4$5D$pT$@D$T5D$HD$@T$D$D4$2u"50<$E\$`t$d|$hlË$>2ؐUWVS|$<$24$1t#<$D$1D$1D$|[^_]T$ Nj4T$T$PD$T$D$u|$$B5D$Pt$dD$TD$D$XD$D$$1t8t$h1D$렉<$E]UWVS&4D$,D$(Nj40 4VT$ +EL$ 4F"L$$L$`t$0L$|$4$c$D$h4$D$t4D$`D$dD$D$0tf8t;l$(~*4u5d$(D$$L$($L$/D$$$V0L$$kD$(D$$/볋4uRD$$0u0 l$$u<$|$,D$$<$D$;/Č[^_]$0U&T$4$?/$0\$|$x|$ t$<$p/d2$G/t'<$D$/.\$t$|$Ë$ېUWV D$<@ D$D$0t$)ȉD$D$T$B+l$v[D$t$L$80Al$D$4$t1119Ar |0 tD$륋|$0 ^_]1u$D$D$ht$D$L$0+l$wUWV |$0T$l$4G |$ l$D$D$T$$UtqG GG7D$G<$Eu:Gt'G|$ l$D$D$D$$Uu ^_]É4$.뼉<$,1S00JXr0°n0D$r0t 0[ÐS1<L$ $P00[Ã1T$ \$|$1р| $0F0P\$|$Ð / Ð D$/ ÐS/P[ÐS/P[ÐU1WVSZLt$`D$э$-D$t<%u,$,l$ƋD$dD$ D$4$D$)+9| 4$o<,D5D$^/hXED$ ED$$ED$(E D$,ED$0ED$0l$ D$4?tuG $AW$r*l$$M*l$u $4$+D$$+L[^_]Í|-.~Zt%%02A0ldAD$T$$D$ T$$IÐ,\$|$$t$ l$(x-|-8/tD$0-$f)$V/\$t$ |$$l$(,Ð D$L$QQ Ð<\$4t$8,T$@tB\$4t$8<Á,4T$ 4$T$qD$$D$$uTD$(F(D$(D$D$(D$D$$D$D$ D$ C4-D$4$=(X\븋D$$D$D$D$ D$ SƒRx_4-D$T$4$'몐S,@\t P[ÍK$'1҅t $u'ƒS+@\t [Í $T'1҅t $-'ƒσ pD$l++ Ð\$Ht$+1T+D$,ǃ++D$(++D$$D$D$ $'+\$t$ÐUWVS<$T$PD$,tE$T1t‰σu1$TуL$,)l$,D$,1D$([D$$$0D$$Tt$T$"D$0$1҈$0L$0L$t €  Ш €  Шt   Ȩu|$(D$$9D$(D$D$ $E E$Xh$0L$D$t‰σu|$1эy+|$M$XE|$(D$$9D$(|$<$$X$XD$)t΃@u1$X1эq+t$ D$(;D$$$$X,$Pt$X| t $ tD$(1$|;|$(|21$^9| <[^_]Ã$-9|$ ;|$(|$ $Tt$T$D$,D$(($X1$XxE[t mu)|$$ *$ $Tt$T$|$,|$( ;l$v)Eut;l$vEt< <  Ȩu;l$U€u)*D4хE.ED$$E$< <  Ȩx뗋l$D$ l$$!l$[t mu)D$+|$$ $Tt$T$|$,|$(0[Bt mu)(1l$l$ t$|$։4$a#t$ljD$,$ t$|$l$Ð|$|$$t$W$"#|$ƉD$D$ $ 7|$t$ÐL\$<t$@d%|$Dl$Ht$Ph%D$+Njt|8 T$ D$Th%d%D$D$$D$(D$ 4$T$Xd%@<$D$h%d%D$ \$덓G$XD$DD$D$Ht$LD$F$D$Dt$4~$ 덃N|$L|$<G.Q9׉T$@.)D$DD$,UD$(;l$<}pD$,D$4L$(L$0D$Dt$4~$ ^D$0l$|$$D$DD$D$Ht$LD$$;l$<|;|$@x;|$<.wD$DeD$4D$Dt$4~$ <$J|$D$,$D$Ht$DL$Lt$D$$0;|$<|;|$<.D$DuD$4D$Dt$4~$ =<$|$D$,$D$Dt$LD$D$HD$$;|$<|rL$L,$D$M;|$<|yD$L@D$.{1kF뢋t$F$)L$NjA$D$@F$ݠF$ʠF$躠F ہz^$萠.=1F뜁j.*D$4 +cF.F$џ.F$轟ɋF$谟.F ݁z~$艟.Y1뀋F먐>>E>>>>EF.Bl$|$F$m.F$YŋF$L.F ݁j~$%.1yF1G$ŋG$G$ҚG$迚G$诚G ہr$腚.1G뜍$UWVS$)t$T4$&$tދ$wD$ $K$1ɣj<$HteOT$$ͣx>D$H$$t$.$$ kL$T $<$jD$H봋|$<$q릃}w ;sF…t G$oz1뀋F$BytF$3yϋF$&ytыF T$@~L$@$x.tl$@|$@1냋F륋w  #  [ y F…!GF$_xF$LxЋF$?xF ށT$<~T$<$x.l$<|$<1yF뚋G1L$D.UD$D4 ?!"w!""""!"!!!"""F. l$D|$DF$9w.F$%wŋF$w.F ݁T$8~L$8$v.l$8|$8z1jF떋G$wƋG$wXG$vF$vG$svG ۋ%xe$Hv.D1eG뛋G@^"$ pL$T $萟$$T$w4$象cL$Py/'xC$t'D$T$3$$$D$$1$-Ϟ믋D$Px #d$#d$d$h$d$ $d$($$<$d$d$h$G…tt$PF$u 1G$ttG$tŋG$tt΋G r~$t.t1녋G뱋D$Px  $M%$M%M%Q%M%$M% %$!%M%M%Q%G(|$PGG$s G$s̋G$sG ށr~$s.1넋G멋|$PGT$LD$LL$P4 %{&%{&{&&{&&{&3&&&L&{&{&&F….^l$L|$Lxt$PFF$r..F$r뺋F$r. F ݁z~$~r.{1kF뢋T$PB$ist$PNjF$Xsv?l$TT$4$T$t$T$H$$D$F$<$b$$T$E$${ $$D$G$<$$$T$E$m<$$$D$A $Ht M<$贚$l$$F$$[]DŽ$$%9$}^$$$D$$$с9$|#$9$|$]4$$ʋ$%$ 蛙DŽ$$E%9$.X\t$$$[]$D$$$$D$$$Y$$%9$|$'$)A%D$,$ 軘$FDŽ$D$,D9$T$0.`\xMt$$|$ L$$[R9}5|$$$$D$$T$09|H9|ϋ|$$<$9D$ 9$|$t$,9$|$ ڗ$ ̗몍_$,$D$4$轗$89}VoL$(T$4$D$D$($輙9}$@ tD$4$V9|$, $$@ $-$$D$D$4$g$$Tr $蹖$hDŽ$9$}Gu$$$D$$9$|$9$|<$AڋH{$u5$FHp~$ ڕ$0D$$$ϨŹ1򮋄$ыp)Ή~$ {,$薕{$(F$$$x퉴$$TU 081p11!110100011!1E…t/$0覔$$$$ËU /00000-0.0g/000Ut@,U^<UQU%Y**(++q,,,$$,$t$D$o$uk<$膓$D$D$E$4$`$D$D$E$$4]E$脻y$-uE}ȉL$XD$Tm<$蠞t$TD$(9t$XT$\T$D$,$|$D$L$\QʼntWD$Xt"`0 $D$m$qD$X`1$+%D$XT$T9T$XpU,$0D$($$|$Xt|$X w3|$X\|$$H$)ȑD$($lt$Xt$ˍ$őD$X\t$(4$譑|$X.D|$X wD$XD$\$̓"D$XD$y랃эcD҉D$D$\aEȋlt$L$P  LIIIPIIIIPF…mU 3Ut,$诸$@t$,$,$D$t$$EtA$|@]t$ڏD$P$ 虏鍃뽍ɳ|$$,$|$D$뚃}/…%1Ƀ$t$-땋}  XGtE$of`1YG$ Y  7     >UtG1҉$ #$@t%eiN<$!l$P,$,$mtjieNʉ $$D$D$,$U|@]t,$蹊L$P $t$ u捻ѳ<$葊$@tQ$v$D$t$,$$@t$@f덃ɳ뭍Գ$}} x . . . 2 . .  . . 2 Gt E$a1|G$_tG$_̋G$_t΋G r~$_.t1댋G뱋}  X          G…)EG$_G$^ЋG$^G ށr~$^.1눋G멋E1L$D.dD$D| h 2 2292 2 229G.Jl$D|$D{G$].!G$]G$].G ݁r~$].1uG륋E$^NjE$^E$]]#E$J] E$:]E ہrD$].1E뛋F$\F$\F$\F ہzr$\.Q1BF뜋$D$D$E$mI$߅$D$|$E$AT$`D$C$T$}?$WD$PE%D$XD$Xt  D  Ftl$X댋D$XDD$@  xxxxtx^xGxxL$@Qt D$@$۬$@$T$D$@D$T$$$G$t$Xt`|@]G $D$X|$P<$փ|$Xt!|$X D$XD$\$l$X|$X.T$XLL$L$\΋ ye0eelee 1eelAD$\D$D$ wclL$Qt1҉$ c$@eiNΉ $]D$XtUD$P$I|$Xt|$X w+|$X|$\$ml$X|$Xx>D$XD$$1ȁ͋L$ $FeiN<$Ł$D$D$T$$&D$Xu|@]tS4$~D$XrD$P$f|$X.5|$X w D$XD$L$XL$1$ 뭍ѳ $$@tU$$D$D$T$$c$Gt$Ȁ덃ɳ멍Գ$襀"yD$p ,YuhF…t|$G$Wx1qF$dVtF$UVŋF$HVt΋F z~$&V.t1녋F뱋D$p  6VInF(t$FF$U F$tŰF$gUF ށz~$AU.1넋F멋t$1ҋF y~zD$4  Kl_F.|$GF$rT.bF$^T‹F$QT.AF ݁T$8~L$8$"T.l$8|$8w1gF떋T$B$ UL$NjA$TA$S=F$S%A$SF ۋ%x$yS.1A뛋A@t$Xt$$1|$ }|{ɳ2$$D$@L$t$$Qy…1Ƀ$uED$XmD$P$'||$X.m|$X w |$X|$KT$XT$)$-{뭋D$@x UUUYUU -UUYG…tt$@F$R 1G$QtG$QŋG$Qt΋G r~$Q.t1녋G뱋D$@x  >>>B>>>>BG(|$@GG$P G$P̋G$PG ށr~$P.1넋G멋|$@GT$<D$GCF$ FF$EF$EF ۋ%xu$E.dT1HF뛋F@B2L$XL$$1ny$ n(ɳ$$D$4|$T$$2yH…>1Ƀ$uG$A뺋G$A.G ݁r~$A.{1kG1T$4B$BL$4NjA$Bf<$j$D$t$E$[ $j$D$T$h $jUD$X9T$XT$T};r$D$|$XD$D$9t$X|D$XT$T9T$X|ȍ $&j؍$*jE%D$X9D$XD$T}@$L$XD$D$D$g4$iD$X|$T9|$X|$}<$i}~؋Eܭ0D$XD9t$XT$$t$T.}Gt$ D$9}:T$T$$D$L$XD$D$T$$;t$|'9|΋D$ $iD$XD$T9D$X|-$&hˍ4$hED$XD$T9D$X.vp$D$|$XL$D$!9t$X|D$XD$T9D$X|6$&OhލE54$chE%D$X9D$XD$T.pL$XD<$D$oj9t$X|D$XT$T9T$X|$&gރ}…1Ƀ$u $1$-gu -}.-}.}..}.%.}.A.4.U.}.}..F…tE$>M1FF$=tF$=ɋF$|=t΋F z~$Z=.t1뉋F뱋u  .^/.^/^/b/^/.^// /2/^/^/b/F,EF$<F$<ЋF$<F ށz~$}<.1눋F멋ET$L.fD$Lt /v0/v0v0}0v00v010$0J0v0v0}0F…."l$L|$LF$;.F$;ŋF$;.F ݁z~$e;.1yF1E$P<NjE$C<E$;E$:E$:E ہrD$:.h1]E뛐\$D]t$|$,t$$8D$D$ $΍Fw.L`t$$؟,8\$t$|$D$t$$萚҉t$$D$t$$뮋HpXh~D$$ 멋FE~$ D$T$x$跇uFD$K~뫋$TFD$E~;it;mF mF i,\$|$$l$(V|$0l$4t$ l$<$ tLu(|$4$D$\$t$ |$$l$(,Í}l$|$$$(}|$$T$蘋또,\$|$$PV|$0t$ l$(D$l$4D$ <$Htz4$l$tLu(|$4$D$\$t$ |$$l$(,Íp|l$|$ $i||$$T$݊똍||$$T$g\$t$xUt$ 4$ׅu,u \$t$Í{t$$ |t$$ T$覅ăt$t$ \$ UtF u2Fu \$t$Í{$ L$\FՍ{$ T$=F WVSTԋt}{Fu-FD$ F|$$ D$4$%v uͅԋt:4$ ԋt Fuv u󋓨1[^_ËUWVS T,D$@%7t$7t^z|$F~ $Uu}F$uOEu*4$D$8u (,[^_]ËFyD$F$D$븋FD$ zD$$ 轃뒋F$ D$D$D$蠃c$_`FD$z뭋$艃?FD$D$";;T$.zT$F~ $&ulF$u>Eu4$ӆD$8uZFyD$F $D$ɋFD$ zD$$ 蟂룋F$ D$D$D$肂t$AqFD$z뭋$kPFD$D$뎐,D$4\$ QD$xvD$|$(|$0t$$<$DʉL$πƋD$uKt+D$|$4$D$>‰Ћ\$ t$$|$(,Íx|$$L$X빉4$a1҅.tËD$D$뙐D$ $4Ѐ/!Ш$\\t€/!Шt\uJ@T@D$0 v+vT$|$1|$ι $L$ƋD$D$ 4$D$D$D$̀D$D$4$~tYD$4$DctG4$.u3D$D$(nD$@1v$D$L$迂,[^_]1у $:7vʼnT$t$$.|$|$,${}tD$,$blj,$蒁W|$ vl$<$D}t/D$D$$kbtl$,$QR/1|$у $荁7vNjD$L$D$<$}l$<$|tD$<$aƉ<$놋t$Gv$T$艁$|$|$ \$(Lt$Ms<$T$C|t$szuT4$|s<$L$|t0\$t$|$É|$s$|$ڀ̍s|$$T$辀됋(X9t$|(X뎐<\$,l$8LKl$Dt$0|$4l$$zD$@$yT$0ljl$ t$D$D$$zu<$T\$,t$0|$4l$8<ËGL$l$ D$D$D$ $PzGL$l$ D$D$D$ $!zt>l$ ot$D$,$z9gs$t$uLs$T$Z몍s$T$Bds$T$'UWVSI,l$DD$H$D$7y1T$D$HΉD$ D$D$$t$3yD$Ht$D$D$ ,$y9FD$@l$$w0NjD$Ht$D$ D$D$,$xu<$},[^_]ËGL$D$D$D$HD$D$ $xGT$D$D$D$HD$D$ $UxtBD$Hot$D$ D$,$2x9gq$t$}Lq$L$}릍q$l$r}\q$T$W}q$L$<}q$T$!}`\\$Ll$XGl$`t$P|$T,$|1t2o$l$|D$d8\$Lt$P|$Tl$X\ÍT$0l$ D$D$$u t$0D$D$L$,l$ D$D$ $Vu@t$,u=~oƋD$D$$D$$tt$$t/  ${T$(D$0l$ D$D$$tL$D$(AL$$l$ D$D$ $tt\L$D$$AA l$ ͉t$D$,$nt9rD$$Eto$t$2{׍o$T${댍o$T${Bo$t$zo$T$zb4$[zl$ D$t$D$$s9r D$D$!o$t$|zۍo$L$dzwT$@@$5[^Í1ct$$T9렐VSI9D$ $ƋMpx\x;4$4$mD$$D$$a@$[^Íbt$$8묐,t$ t$4\$8l$(|$$l$0E9we1ҍFME<… Шu E)9&D$<`b$D$ D$8T$D$m\$t$ |$$l$(,ËD$<$duD$$d‹D$$zd)D$D$@$zd>\EE>1щ $EdEJ\$`/t$_(#D$$--뙐UWVS&,]l$HD$@4D$DTD$T$61у9€]D5tD$D$ɋD$>сw ]D5u_t D$D,[^_]1_D$ tсw]D5tD$|$|$;D$t|$_D$;D$gt|${UD$;D$ t|$[>_D$9l$|$D$OW;D$t|$]D$;D$^t|$,T$D$;D$t|$[9l$Ol$D$>tOD$;D$w .L$D$=R$T$Y1ӍUD$;D$wftl$E]ED$;D$w"tt$}D$=R$|$(Y1̍=R$t$YU낍=R$T$XT$=R$L$X1=R$T$XW>D$=R$T$XU=R$L$kX1=R$T$NX1;>_tD$$Wc=R$|$X.gR$T$W\$|$t$"|$   XwG1‰Ћ\$t$|$ËG1$huًG$UEG1$$$,$t$D$I$*Y$$v$(9$D$|$,$I$)뫃}w…m1Ƀ$t$-끋}  4PCdG…tE$`1YG$tG$ɋG$t΋G r~$.t1뉋G뱋}  mmmqm m)AmmqG,EG$G$ЋG$G ށr~$.1눋G멋E$.c$t 1REkF….$$rF$.F$뻋F$.F ݁z~$.w|1lF1E$NjE$~$D$$D$$$FU uz Kz z z z .  F z z E…nM w^{     Ut'1҅t@$o tҍAAN4$<L-+ $#,$Cts$~ tOAANʉ $z$D$,$D$D$*'$,$|6+<$봋$G tFA$$($D$D$,$6D$){$+뺃}} #  [ Gt E$1|G$tG$̋G$t΋G r~$].t1댋G뱋}    ; Y y l G…)EG$G$ЋG$G ށr~$}.1눋G멋E1L$|.dt$||   K w G.jl$||$|{G$.AG$G$. G ݁r~$].1uG륋E$ONjE$BE$CE$+E$ E ہrwD$.U1E뛋F$6F$F$sF ہz$I.1F뜋S|HH8G4$$D$l$$G$?$P tDA$^$D$$D$G$?$)8$,뼋$pS?S$ D$x$i$4  S=aQzF…t늋$<   Wt<$7<$<$D$$D$=R.$T$$$֋  _FFFMFFFFMB…i$D$$D$$ w`( (((((((D$$Ptv1҅t~$y tZҍAAN4$jt,D$x$ZAl$$$1ʍ| +<$멋D$$$g:t|$w tXAANʉ $$D$D$D$$$< $*}L$x $>t?+4$]뫋$P tJA4$k$(3$D$$D$|$$;$)r$+붋L$$y|wD$$p <XKlF…tt$$F$w1pF$tF$ŋF$t΋F z~$.t1녋F뱋D$$p  }}}}}9,Q}}F(t$$FF$ F$̋F$F ށz~$.1넋F멋|$$1ҋGL$d.\D$dL$$4 ;\OuF….l$d|$d{F$.F$F$.F ݁z~$.1uF륋L$$A$t$$NjF$vSB$EF$2B$"F ۋ%x$.t1XB뛋B@U$* D$x$? $( $D$t$<$U7$) H…1Ƀ$u y$- w '_FtG$O1HF$tF$ɋF$xt΋F T$p~L$p$N.tl$p|$p1zF뢋w  OmF…GF$F$ЋF$F ށT$l~L$l$a.l$l|$l1yF뚋GT$t.WD$t4 3kF….^l$t|$tF$.9F$uŋF$h.F ݁T$h~L$h$9.l$h|$hz1jF1G$ƋG$F$.F$F$.F ځz$.1F뛍A?|$xAT$4$L$4t$x$$$pS?S D$`ȉ%;$|()։$$< 9 &&&&&#&$&%&&&Wt_<$+0$<$D$$D$1;$B$T$$$֋ kR"R"R"Y"R"!R""!"R"R"Y"B…i$D$$D$$ w`444!444 44!D$$Ptv1҅t~$y tZҍAAN4$^t,D$`$NAl$ ${$1ʍ| +<$멋D$$$[.t|$w tXAANʉ $$D$D$D$$$/ $*q|$`<$>t?+4$Q뫋$@ tJA$_$('$D$$D$t$$/$)r$+붋L$$y|wD$$p HdWxF…tt$$F$w1pF$tF$ŋF$t΋F z~$.t1녋F뱋D$$p    % E 8 ] F(t$$FF$ F$̋F$F ށz~$.1넋F멋|$$1ҋGL$L.\D$LL$$4  !!!!!!G!!h![!!!!!F….l$L|$L{F$.F$F$.F ݁z~$.1uF륋L$$A${t$$NjF$jSB$9F$&B$F ۋ%x$.t1XB뛋B@U$@ t]A$/A4$!t,D$`$l$A,$>$1$+$*D$`$l$(t$D$t$<$*$)M…1Ƀ$u y$-GD$X #$#$$$$$$<$+$X$$$$t$XFtG$7D1=L$XA$tL$XA$t$XF$t‹L$XA ځr~L$X$.tz1ot$XF뛋G D$T $%$%%%%%%=%,%]%%%%t$TF…GL$TA$L$TA$ȋt$TF$L$TA ցr~L$T$.1qt$TF떋GAT$\.KD$\4 %&&&&&&G&&h&[&&&&&F….l$\|$\F$.F$ŋF$.pF ݁T$P~L$P$.Al$P|$Pz1jF1G$iƋG$\fA?l$`0AT$<$t$(|$`$p$E$$$$$D$L$F$&td$/ $G$#+t2$D$$D$E$G&$($)$(Q3>T$,$S8>HHD4$z$D$D$$F$%$H A$5$D$$t$A$[%$h A$$D$$D$E $%$x t0A $$D$$l$FD$,M$,?v$,. H$$[$9Չ$}Zz|$(A$D$$D$$5$;l$(}$@ t5<$;$|$]$~o$,iʼnׁ$FŁ$G<DK<$t$8$[;$$wAt$T$D$(9}^L$L$ D$D$4$D$$D$$T$8;t$ }$@ tfL$4 $9|;l$(|%;$|$]K$p$;2$@ t$ $, 똋SHH}Gȉ $$D$$D$G@$T$8oSHl$H8Gʉ $H.H4$$W9Չ$}ZJAL$($D$$D$$!;l$(}$@ t4$6;$|A$,ۋ$$ A$$>9.}AAl$0L$<$= t)W$p l$|$$RD$ D$ $?t^1щσu|$ <$ $ |$l$$‹L$$D$L$$|$,뷋D$ ;$ l$D$ xyd$(D$(D$D$$'D$O $|$l$$r‹L$D$$D$$|$,L\$D$0$"$.4$ l[^_]ލ  $~$0t$0뼋D$0|$0np@$$.{t$0N<$$B uul$<$d$ 6='2=҃#=w=@B҃ =ɚ; =҃ D$01D$P lj1 9v+̉D$*D$9ƍF0ֈwڃ $V9L$L D$T9D$L l$L98)͉l$\)ʍ4)T$D)l$PuXL$Dyd=ɚ;9!Ш.=ɚ;9!Шu )$l$DƋD$D1ҋ(9X.L$Dɚ;9!Ш.6=ɚ;9!Шu+L$L $61҉D$D0͉91L$D='=Ƀ=w=@BɃs=ɚ; c=Ƀ T$KD$@Q$ ؉T$D$$D$,$M+)9wV}$%~$D담$FxG%? @G$Z*Y\,l$@8lD8$8x    $hqdDL=(---- (type RETURN to continue) ----gp_readvec_stream: reaching %ld entries gp_readvec_stream: found %ld entries %c[%ld;%ld;%ldm%c[%ld;%ldm%c[0mCOLUMNSLINESout of range in integer -> character conversion (%ld)stndrdtht_INTt_REALt_INTMODt_FRACt_COMPLEXt_PADICt_QUADt_POLMODt_POLt_SERt_RFRACunknown type %ldt_QFRt_QFIt_VECt_COLt_MATt_LISTt_STRt_VECSMALL[&=%08lx] ,CLONE%s(lg=%ld%s):%08lx int = pol = mod = real = imag = p : p^l : I : coef of degree %ld = num = den = mat(%ld,%ld) = %ld%s column = %ld%s component = (lgeflist=%ld):(%c,varn=%ld,prec=%ld,valp=%ld):(%c,varn=%ld):(precp=%ld,valp=%ld):(%c,expo=%ld):(%c,lgefint=%ld):chars:gen_0 NULL %s : hash = %3ld, valence = %3ld, menu = %2ld, code = %s NULL next = %s %3ld:%3ld *** hashcode = %lu invalid range in print_functions_hashno such function Top : %lx Bottom : %lx Current stack : %lx Used : %ld long words (%ld K) Available : %ld long words (%ld K) Occupation of the PARI stack : %6.2f percent %ld objects on heap occupy %ld long words %ld variable names used out of %d ] ] [;] mod /+ O( 1)^%ldwI + - ##<%d> / , } [] Vecsmall([%ld])List() \frac{}{}^{%ld}\cdot () \*\right) \left( +\PARIbreak \pmatrix{ \cr} \cr \pmatrix{ \cr I/O: new pariFILE %s (code %d) I/O: closing file %s (code %d) deletecloseclose pipeI/O: opening file %s (mode %s) could not open requested file %stempfile %s already existsI/O: removed file %s I/O: can't remove file %srun-away comment. Closing itrun-away string. Closing itI/O: leaked file descriptor (%d): %sr[pipe:] '%s' failed.:~:~/gp%s/%sinput%s.gpYou never gave me anything to read!aoutput%s is a GP binary file. Please use writebinwrite failedunknown code in readobjsetting %s read failedmalformed binary file (no name) -%s not written for a %ld bit architectureunexpected endianness in %s%s written by an incompatible version of GPbinary output%s is not a GP binary file%ld unnamed objects read. Returning then in a vector[secure mode]: about to write to '%s'. OK ? (^C if not) I can't remember before the big bangI can't see into the future%s is set (%s), but is not a directory%s is set (%s), but is not writeableGPTMPDIR.%ld.%ld/%.8s%scouldn't find a suitable name for a tempfile (%s)TMPDIR/tmp/var/tmp.couldn't find a suitable name for a tempdir (%s)unexpected closing braceembedded braces (in parser)[+++]0.E%ld0.TeX variable name too longthis object uses debugging variablesmod(Mod(qfr(qfi(Qfb(mat(Mat(matrix(0,%ld)matrix(0,%ld,j,k,0)[;]List([ I/O: checking output pipe... %s%sunknown user can't expand ~undefined environment variable: %s.Z.gz/usr/local/bin/gzip -dc%s %sskipping directory %sE%ld,b'@yPD?qy O?yPD?,b'@BH⍀HP3⍀3P⍀P ⍀ P⍀P~⍀Pje⍀PQL⍀P83⍀P⍀Pv⍀vPa⍀aPL⍀LP7⍀7P"⍀"P ⍀ Ppk⍀PWR⍀P>9⍀P% ⍀P ⍀P⍀Pz⍀zPe⍀ePP⍀PP;⍀;Pvq&⍀&P]X⍀PD?⍀P+&⍀P ⍀P⍀P⍀P⍀P~⍀~Pi⍀iP|wT⍀TPc^?⍀?PJE*⍀*P1,⍀P⍀P⍀P⍀P⍀P⍀P⍀P}⍀Pidm⍀mPPKX⍀XP72C⍀CP.⍀.P⍀P⍀P⍀P⍀P⍀P⍀Poj⍀PVQ⍀P=8q⍀qP$\⍀\P G⍀GP2⍀2P⍀P⍀P⍀P⍀Pup⍀P\W⍀PC>⍀P*%⍀P u⍀uP`⍀`PK⍀KP6⍀6P!⍀!P ⍀ P{v⍀Pb]⍀PID⍀P0+⍀P⍀P⍀Py⍀yPd⍀dP -&-?-X-q------. .9.R.k......//3/L/e/~//////0-0F0_0x0000001'1@1Y1r1111112!2:2S2l2222223343M3f33333334.4G4`4y4444445(5A5$Ë$Ë$,I,I/6I'6I ]6qe,IQ=1 S+I6Ii6I6Ih,IN6I> ,Iw,IE< 7,6wjZ6TH2,,,&,,4747,7< L<(& %`,%l\DL!< =,/,*,L@2<  ,xU/*++6< x`B%)%) %)%)i%)K>+)3+)+)+)6)+)+)6)mH %)  t) p)O .    %)  +) y k = 5 %)   %)   %) j _ +)W +)B 6)4 ( \!)       i B 2 $) $)     w D  )@  )<  )8  )4  )0  ),  )( p )$  )  )  )  ) H )  )  )q`I))) )U)f))>))))))))p_L1) )))T)e))A))))))))k_D*$)$)$)a6&w@)<)8)4)0),)()$p) ))))D) ) )uhU()$) ))a)n)) N))))),)))xa@)<)8)4)0),)()$q) ))))D) ) )}$)gG3 $)$)$){$)u$)<)8])4])0),])()$]) )]))])]) @)]))){){)G))/){) ){)){){)){))? ) ) )) )) )) ) ) ) )) ))I6)36) $)$)mXK8)1)1)))|)x1)t)p1)l8)h1)d1)`)\1)Q\)t )p)l)h)d)`)\)X)T)P )L)H)Dx)@)7@)))|)x)t)p)l)h)d)`)\)X)T)P)HP),U*k4)0),)()$x) ))d))) ))8)))i\I)))z) U)b))B))))) ))){lU4)0),)()$t) ))e))) ))8)))yq$)[;'$)$)$)zo$)i$)0),Q)(Q)$) Q))Q))Q) )Q)Q)4)Q))v)o)o);))#)o))o)v)o)o))o)})3 D)=)=))=)!)=)2)=)D)=)=))=))x)t)p)l)hz)d)`)\f)X)T)P)L)H|)D):D)6)6)~%)jE7+)1+)+6)^N;&p )l)h)d)`)\)X)T)P)L )H)D)@t)<)1<)`)\)X)T)P)L)H)D)@)<)8)4)0d),)!,))|)x)t)p)l)h)d)`)\)X)T)P)L)CL)$)j_$)W$)?$) $)))))) ))-))))))))p)l)h)do)`G)\W)X)T4)P)L)H)D)@t)<)1<)ua$) )))n){) )Z)))))()))YL9) ))j)E)R))2))))))))sdM0),)()$) l)y))])) )))4)))n_S1)) )))))))))))))$)))))))))$))|)x)t)kt)$)$)$)th`$)QE=$)!$)m,6)$6)))<)U ) ) )= )= )& )[ )& ) )|)x))t)p*)l)h& )d[ )`))\)X)T& )KT)%< gW%RN< C3%.*< \uXuTuPuLuHuDu@u<u8u4u0u,`u(u(uzLuHuDu@u<u8u4u0su,u(u$u uPuuudu`u\uXuTuPuLuHuDu@u<u8u4hu0u&0uuuuuuuu uuuuuuuuq< AadZdZd%dddZddZdadZdZddZd{d`< F6++V+V+V+V+|lV+_OV+=-V+"V+V+V+66s66< 66,t^SS+@,4,L+,< (76(76b(76\:(762< H7H7H7H7< q(7iX(7(7 < H7H7H7< D<706D70,< <7F+6687@787<7r87hB6<087"6@787D7<7< 878766~ZC8758766< 87K87K6K6K6Kt6Kn87K`87KG< >+6%6< 66< 6x~6xt< fS6>MC6>:< 06 6< 66< 9 66*+wg+6< **p`*NF*6"*\y*w*r`, n*e*< ***zr*bN*(`y*w*xD(!n* e*< @*d*dp`< K.)@)@<< $`)7< `)/znZRB7/:+< `)7< `)DtlT7DL@< + xsgE+7< (iI; )i6i6i6irR6i36i+6i6i6is6iiY(iF"(i`(in6ie< T@((ֿ'˿']M-@(6վ;'y(jJ6('`(ܽ%'< s_(6ܼ 6ܼؼ< @(DX@< /'('('(Ի'(ɻS-6(̺'('(qdT ((I9'(.'('('(ӹmG3' '(6(gW'(8$< ''ٷɷ'''{'mJжl6< '޵'ֵƵ''~Oش̴< 7س7سz6سr^'سVF'س*6س'س %'سԳ< 47`'yg[EP'?%'ֲ̲P'q]J':, D'%'7?+47< װTH;'= ϯïsCخĮ''Xd$X^%'XT< ."& ѭ&­%sO6I&607007*&ì&%~6x7fSD 6&,7,7< ϫ6Xɫ7X,7X,7Xg'X],7XT< C3&$&< ڪƪ&|&6< o[a&S?@&7' & 6ԩ< @&|l &R86,< ,7ç07çݨ07çը,7çͨ&ç&çt&çiY&çJ7%ç(6ç< ,7,7%n6^07U077< ܦL7֦ƦL7L7P7< L7\sL7\hL7\bP7\X< @L7:.L7(L7"P7< L7ܥL7ܥL7ܥP7ܥإ< ȥåpk_K'פO ǣ|7t^P*6$dVV @Ң6Ƣ6< ]M:%lqhqdq`ҡq\qXqTqPqLqHqDq@q<pq8q/8qϠ`q\qXqTqPqLqHqDq@q<q8q4q0dq,q$,qПß q|qxqtݟqpqlɟqhqdq`q\ qXqTqPqLqALq%%qyh%qiCh%qӝy%q^tqEdq.&~%qڜy%qh%qs%q~=5h%q-%q &%qӛ›cVBqqquqOq\qq;qqqܚqؚqԚqКqŚКq_9,zqvqvqJqܙ%qؙ2qԙvqЙq̙vqșzqęvqvqqvqqzXK<%qqqeqDqQqq5qqqܘqؘqԘqИqǘИqw2 Q%qH%qӗ2%qbR?*Ėl qhqdq`֖q\qXqTqPqLqH qDq@q<pq8q08qǕTqPޕqLޕqHqDq@q<ޕq8zq4ޕq0q,ޕq(ޕq$Xq ޕq qlqhqdq`͔q\qXqTqPqLqHqDq@q<pq8q-8q\%qQ%qH%q֓ΓB%q?%qyY%qq8 E%q 7qْΒ$qȒ$q2%qt2%q^V$q:&$q$q$qϑ$q$qXqTyqPyqLqHyqDq@yq<q8yq4q0yq,yq(\q$yq$qqqܐqؐsqԐKqА[q̐qȐ8qĐqqqqqqqbZ$q:"E%q7qB%qۏ?%qlqhqdq`q\qXqTqPqLqHqDq@q<pq8q08q؎6q\L8#ڍTqPqLqHōqDq@q<q8q4q0q,q(q$Xq q q|i<ʌq8ƌq4ƌq0q,uq(q$ƌq bqƌqʌqƌqƌq @qƌqqʋuTqP݋qL݋qHqDq@q<݋q8q4݋q0q,݋q(݋q$Xq ݋q qxQQ%qFH%q;*2%qӉp_*ڈOqHqHq qqqHqӈqHqOq|HqxHqtqpHqgpq ؇Ň&q"q"qqчqއq"q|qx"qt&qp"ql"qhqd"q\dq&ц=q9q9qqqq9qq9q=q9q9qq|9qs|q?7\%q/Q%q'H%qB%qڅ?%qDžY%q~f^E%qP7q>$q$q2%q$q|$qv$qU(Tq$Iq Iq+qIqBqIq YqIqTqIqIq,qIqqqqqqqqq~qqqqqqqwq6.$qE%q܂7q΂ƂB%q?%qi@q<q8q4όq0q,q(q$q qqqqDq q qȁqāqqnqEqUqq1qqqqq́qqqW:6q#$q}j=|o[$q qqqhquq qTqqq~q~q~(q~q~~q~]~P~=~~~q~~q ~~q~n~q~I~q~V~q}~q}6~q}~q}~q}~q}~q}~q}~q}}q}}t}e}Q}4}}q0}}q,}}q(}}q$}m}q }z}q}}q}^}q}}q}}q }}q}}q}8}q}}q|}q||\%q|Q%q|H%q||B%q|n|f|?%qS|K|Y%qC|+|#|E%q|7q|{{$q{$q{{{$q{$q{l{qh{{qd{{q`{~q\{{qX{}qT{{qP{|qL{{qH{qD{{q@{{q<{p{q8{{q.{8{q{^q{WqzWqz#qzqz qzWqzqzWqz^qzWqzWqz{qzWqzzqzztzCzzzyyazqyZzqyZzqy.zqyzqyzqyZzqyyqyZzqyazqyZzqyZzqyyqyZzqyyq+yyxxxFyqxByqxByqxyqxxqxxqxByqxxqxByqxFyqxByqxByqxxqxByqxxqNx,xxxwwexqwaxqwaxqw9xqwxqw%xqwaxqw xqwaxqwexqwaxqwaxqwwqwaxqwwqRw/wQ%q'wH%qw wwE%qv7qvvB%qvvv?%qvtvmzqpvfzqlvfzqhvKyqdvfzq`vjxq\vfzqXvwqTvfzqPvmzqLvfzqHvfzqDvxvq@vfzq6v@vqv؀qvрqvрququvququрqucquрqu؀quрquрqu vquрquuqu$qu$qsu2%q`uXu$q7uuu9%q u2%qtttt$qttt$qt}t6qstktYt6q*tsssss0%qss|s^sVs-%qPs&%q:sswqsoqsqs$q sqs3qs sqs sqrrqrqrrqrqr,qr݀qruqrsqruqrrqrCsqr݀qr sqr sqrrqrrqrqr qr qrq|r qxrqtr qpr+qlr qhrqdr q`r q\rrqXr qMrXrqrqqqqqqqnqqFqqVqqqq3qqqqqqqqqqqqqqqqqq"qq< Tq6mDNq=q qpp6mDpp#%mDvpRp%mD+p#p%mDpooooo%mDopoKo%mDEo%mD'oo %mDoo\!mDn$mDnnnfnCn$mD+nlmD nhmDmmm%mDmm[mKm$mDmlll%mD[lMl0l#l%mDlkkkkk%mDkkzkkk$mDDk8k$mDk$mDkjjjjjHjjmDDjjmD@jjmDBBBzBeBXB'BBAAAEB>A>B>A>B>AB>AA>AA>A>B>AA>A>B>AEB>A>B>A>B>|AA>xA>B>nAxA>A@@@@*A>@&A>@&A>@@>@@>@@>@&A>@@>@&A>|@*A>x@&A>t@&A>p@@>l@&A>d@l@>2@@@???I@>?E@>?E@>?@>??>? @>?E@>??>?E@>?I@>?E@>?E@>??>?E@>??>f?1?>QB>>JB>>JB>>/A>>JB>>N@>>JB>>l?>>JB>>QB>>JB>>JB>>>>>JB>>>>>h>B>d>B>`>B>\>B>X>B>T>B>P>B>L>sB>H>B>D>B>@>B><>B>8>l>>4>B>+>4>>=< ==={=L==5H==5D==5@==5<==58==54==50=t=5,==5(==5$==5 ==5=P=5==5==5<<<o<P<?<<;;;;/<5;(<5;(<5|;;5x;;5t;;5p;(<5l;;5h;(<5d;/<5`;(<5\;(<5X;;5T;(<5J;T;5::::p::5l::5h::5d::5`::5\::5X::5T::5P::5L::5H::5D::5@:t:5<::54:<:5999999:59:59:5|995x995t995p9:5l995h9:5d9:5`9:5\9:5X995T9:5J9T9584<58958958;58958:5895809589584<5895895885895885T8<5P8<5L8<5H8<5D8{<5@8<5<8<588h<548<508<5,8<5(8<5$8X85 8<58 8577775707570757757!757 757075765707577757075|7075x765t7075l7t75(777666775607560756656!756 756075665|6075x6775t6075p6075l665h6075^6h65@6)95<69586<546750695,6V75(6<75$6D65 6956)956655< 555x5D55Q/@55Q/<55Q/855Q/455Q/055Q/,55Q/(5q5Q/$55Q/ 55Q/55Q/55Q/5H5Q/55Q/55Q/444|4D444Q/44Q/ 44Q/44Q/44Q/44Q/34Q/3u4Q/34Q/34Q/34Q/34Q/34Q/34Q/33Q/v3L3<3)3322223Q/23Q/23Q/22Q/|22Q/x22Q/t23Q/p22Q/l23Q/h23Q/d23Q/`23Q/\22Q/X23Q/P2X2Q/23Q/ 23Q/23Q/2]3Q/253Q/1E3Q/13Q/1"3Q/13Q/13Q/13Q/13Q/12Q/13Q/11Q/x1N1>1+1100001Q/01Q/01Q/00Q/00Q/00Q/01Q/|00Q/x01Q/t01Q/p01Q/l01Q/h00Q/d01Q/\0d0Q/ 01Q/01Q/01Q/0_1Q/071Q/ 0G1Q/01Q/0$1Q/01Q//1Q//1Q//1Q//$0Q//1Q///Q//0Q//g5Q//4Q//3Q//g5Q//1Q//1Q///Q//g5Q//0Q//g5Q///Q///Q/|/g5Q/s/|/Q/M/< =/////.$-.6-..`$-c.^.N. $-H.-.#-..-#--6--,--6--6--`#--< o-Z-J-F#=(B-3-'-"=(--"=(-,"=(,"=(,,,7<8= L77< L77< P7jjL7jj6j6ju6jo7jf< \R 6< oaU J366s|i6M(6666< ~|t6nI6;*!6< 6`|`6`{m\< I&_917+# 7< lhd`XTPHD@840($ I  C695;6955; 0  *6 5"6 5;   65 65;   6464;   6464;   6464;   6464;   6464;   {}6q4s}6q4m; h  by6X4Zy6X4T; O  Iu6?4Au6?4;; 6  0q6&4(q6&4";   m6 4m6 4 ;   i63i63;   e63e63;   a63a63;   ]63]63;   Y63Y63;   U6w3yU6w3s; n  hQ6^3`Q6^3Z; U  OM6E3GM6E3A; <  6I6,3.I6,3(; #  E63E63;   A62A62;   =62=62;   962962;   562562;   162162;   -6}2-6}2y; t  n)6d2f)6d2`; [  U%6K2M%6K2G; B  <!6224!622.; )  #6262;   6262;   6161;   6161;    61 61;    61 61;   6161; z  t6j1l6j1f; a  [5Q1S5Q1M; H  B581:5814; /  )51!51;   5151;   5050;   5050;   5050;   5050;   5050;   z5p0r5p0l; g  a5W0Y5W0S; N  H5>0@5>0:; 5  /5%0'5%0!;   5 05 0;   5/5/;   5/5/;   5/5/;   5/5/;   5/5/;   5v/x5v/r; m  g5]/_5]/Y; T  N5D/F5D/@; ;  55+/-5+/'; "  5/5/;   5.5.;   5.5.;   5.5.;   5.5.;   5.5.;   5|.~5|.x; s  m5c.e5c._; Z  T5J.L5J.F; A  ;}51.3}51.-; (  "y5.y5.;   u5-u5-;  q5-q5-;  m5-m5-;  i5-i5-;  e5-e5-;  a5-a5-~; y  s]5i-k]5i-e; `  ZY5P-RY5P-L; G  AU57-9U57-3; .  (Q5- Q5-;   M5-M5-; PLHD@<840,($  |xtplhd`\XTPLHD@<840,($  *ALS B RN_*ALS B RN_^ g s  8 l   7 7 D  87  $ @7 <7 D7 (7( 5 xB P ] j H7r <{ d H/ P 5 l   p  ,7 07  47  # t0 ,@ 8M LV @` (h Ln  $QG<ohi$,|t 7  7 7!УP= F [ԯLaT|-M̼%hU0Sx{(E,qaTx4 -d +C:5,|#Xj|@tХbxZTJR0^<P7,L7 h@41H!D.ixH`h0 PT4( `Q5XdDijtL  @  :hqH(]+=|3(b7 , s0n A)o0KM : gvDYlC  (yM B88vT T }Qc^ _hit_return___i686.get_pc_thunk.bx_filtre_init_filtre_new_buffer_delete_buffer_fix_buffer_gp_read_stream_gp_read_file_gp_readvec_stream_gp_readvec_file_file_input_input_loop_defaultOut_defaultErr_initout_pariOut_pariErr_pariputc_pariputs_pari_last_was_newline___i686.get_pc_thunk.dx_pari_set_last_newline_pariflush_flusherr_vpariputs_pariprintf_term_color_decode_color_term_get_color_term_width_term_height_pariOut80_init80col_pariOut_lim_lines_lim_lines_output_print_prefixed_text_pariOut2Str_pariErr2Str_pari_strdup_pari_strndup_GENtostr0_GENtostr_GENtoTeXstr_pGENtostr_Str0_Str_Strtex_Strexpand_GENtoGENstr_GENtocanonicalstr_Strchr_itostr_eng_ord_type_name_voir_print_functions_hash_etatpile_bruti_matbruti_sori_texi_gen_output_brute_bruteall_matbrute_sor_texe_outbrute_outsor_outtex_output_outmat_outbeaut_outerr_outbeauterr_bruterr_fprintferr_newfile_pari_fclose_pari_fopen_pari_safefopen_pari_unlink_check_filtre_popinfile_killallfiles_try_pipe_os_close_os_signal_os_read_os_open_os_getenv_pari_is_dir_expand_tilde_delete_dirs_pari_default_path_gp_expand_path_switchin_switchout_writeGEN_writenamedGEN_readobj_file_is_binary_writebin_readbin_print0_print_printp_printtex_print1_printp1_error0_gpwritebin_write0_writetex_write1_gp_history_set_hist_entry_env_ok_pari_unique_filename_pari_unique_dir___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGFILES_polvar_ordvar_top_varentries_functions_tblsz_functions_hash_lontyp_gen_0_gp_colors_disable_color_logstyle_logfile_errfile_pari_outfile_DEBUGLEVEL_bot_avma_infile_gnil_fgets_compatible__DefaultRuneLocale___sF_GP_DATA_fputs_putc_mkdir_getuid_getpid_access_gclone_gunclone_shallowconcat_ungetc_changevalue_fetch_named_var_bin_copy_fread_copy_bin_canon_strcat_getpwnam_strncpy_getpwuid_geteuid_read_sigaction_close_popen_fputc_fflush_fwrite_err_catch_err_leave_setjmp_fdopen_open_fopen_pclose_unlink_pari_warn_fclose_changevar_gneg_addii_sign_gsigne_dvmdii_manage_var_getheap_is_entry_intern_u_pow10_gcvtoi_divrr_mulrr_rpowuu_gerepileuptoint_diviu_rem_strtoGENstr_bcopy_strcpy_atoi_getenv_sprintf_atol_vsnprintf_gerepilecopy_vec_lengthen_readseq_gprealloc_free_is_keyword_char___tolower___maskrune_gpmalloc_fgetc_pari_err_filtre0_normalOutC_normalOutS_normalOutF_normalErrC_normalErrS_normalErrF_last_was_newline_s.0_putc80_puts80_col_index_putc_lim_lines_puts_lim_lines_max_width_lin_index_max_lin_ErrStr_outstr_putc_outstr_puts_outstr_flush_errstr_putc_errstr_puts_OutStr_ordsuff_voir2_isfactor_isnull_isdenom_isone_bruti_intern_wr_real_quote_string_get_texvar_last_tmp_file_last_file_ok_pipe_last_filename__expand_tilde__expand_env_accept_file_BINARY_VERSION_is_magic_ok_reel4.1_wr_float_prints_sors_pari_file_exists_pari_dir_exists #1/12 1200774155 0 0 100644 178044 ` init.o $ __text__TEXTC4t__data__DATACAG$$__literal4__TEXT ,__bss__DATAH__cstring__TEXTǃ~$Fǃr$Wu u$ǃb[É$-Vt$ VNB9tD$$F^Í NL$$NАWVt$ |$$t8FNGO$1;N};N|^_É<$AVt$ FF$^ÐD$ $ÐVt$ $ t$t$$t$$t$$ t$$ ^Ð t Ð ` ÐUWVSK,L$FT$D$<$T$9D$D$P9T$}]t$t$t$l$4t7l$D$,$TN N4F uԋD$PD$9T$|1;,[^_]ÐUWVS,D$H$D$HǃCD$HD$@t$@ǃsǃo)ƉG4$oFoǃwskD$D${=8\$p$^$L$:$(11"ʋ?΍Iv$"$1~$1~$n1~t2l$,$D$N N4F uҋt2l$,$D$N N4F uҍ+7<$}t$<$:,$,$|$ +}Gt4|$<$D$0NLNtF uЋ}ǃ$Gu_1ҋG4~덻ǃD$$\<$ǃO1ǃ,[^_]Í$ l$뉍$T$1Ct/t$|$$ 4$mo.$0Ë~$$.8$$D$$D$D$D$ $uÐUWVSl$0u1otp$Xustp$:u~$ $$|#$h#$Z$L'$>$0 $o$w$s$$$$$$$$~uat6OGLuCoT,$"E$VGP@uGdu[^_]É$5$+݉$!볉$땉$!u$$Ð<\$,t$0(wt$|$4t$$l$8D$D$BD$|$ VL$T$+9|D$F"|$GD$u%t$FD$\$,t$0|$4l$8<ËD$~Fw+vGF@D$F$Ӌl$ݍw+vGFn$م~Iu+9wEF@~$fԉݍw+9wGFn$$s,\$t$ @|$$l$(l$0|$4t4$|$Ջvu\$t$ |$$l$(,ÐL\$D$Jl $D$<$3L$PL$D $D$t|Wt"T$HB2D$D$Dt$$iFD$D$DL$$K~F <$D$%uFD$HD$D$D$뎋|$D1D$D_lэT|$D$$.~t$D|$|$4$_|$Pgll$t$<$|$$$ J\$`t$$t$$ gD$D$$$ D$ t$$\$t$Ð$$$$$g$$!Ȩ$4D$D苃t; t$otOt<"t<4$‹8$$$$ĜÀ~"uϋ  T$ l$xD$D$D$$t\D$||$<$ D$|tD$$D$|dD$T$$D$|D$xt$ t$$D$$$D$||$"gu V$)gu .5$0g u $$9gu $Agu $Hg u $Qgu $Xgu o$8_]g$T$!DUWVS,D$@D$сtoց+ )9w;l$@E%9}l$@D9|ȃ,[^_]$l뷋D$@p+,)9w $$㋃;뚋ׁ+ )9w`T$@%EtB|$tt$@FE9|5L$@$D9|݋z$뒐<\$,t$0l$8D$@|$4Dl$D$D$сt{,ց+0 )9wG,l$@E%9}l$@D9|ȋ\$,t$0|$4l$8<$뫋D$@p,+0,)9w, $p㋃뎋, +0)9wd,uE 7|$tt$@FG9|5L$@$9|$$뎐<\$,t$0|$4l$8l$@EƋ|+L$ )9wv|E%|$ tI|$t't Du\$,t$0|$4l$8<ÃtD$\uϋEGE$AG$yUWVS,T$@|$tNNjL$D)4))T$@%9E)}L$@D9|,[^_]ËrD$D)эV~l$@D1D$D뵉NjT$D*4)*t$@%ED$D(tJ|$tL$@AE9^D$DL$@D$$D9|7~뱐UWVS,D$@kD$1tKtP׋L$D)4))T$@%9E)}L$@D9|,[^_]ËD$DD$@p)эV~l$@D1΋D$D믉׋T$D*4)*t$@%ED$D(tJ|$tL$@AE9XD$DL$@D$$D9|1~뱐UWVS/,D$@D$1tItNՋL$D94)9T$@%99}L$@9|,[^_]ËD$@t$Dh>)ׁ>T$@B9GT$@.}L$@L$@9|똉ՋT$D:4):t$@%D$D8tI|$tL$@AG9DD$DL$@D$$9|n벐,\$|$$D$0t$ l$(e빐,\$|$$|$0t$ l$(;r5;s-Դ,ttf́49|\$t$ |$$l$(,Ë<$D$ t 9|ˍQ|$ t$T$$ 1뮋o띐UWVSC $ŰT$(D$$T$$ʰD$ $OMD$$Ű>\$t$|$Ð\$Pt$|$L> $ET$$D$ T$$JLD$$Ly>\$t$|$Ð $ ÐST$$[SD$ wyR]u} [ÍD$$W㍃捃&ލY֍hΐU1WV;l$$}AD$ 1t$Brgr hv#jt$ku܃;l$$|^_]ÅtWB؋D$ 쐐VS蕿$L6He@pBPAѵյ@@p(ѵյB@A@P@ѵAյA͵@(͵H4F͵Fٵݵ@4ѵٵHյٵpݵ ݵHѵݵH[^ÐVt$$D$ $F^Ð,\$|$$D$0t$ l$((E`EE=L`Q   t  r \H`i\e)@,, A0?DT?55new bloc, size %6lu (no %ld): %08lx mallocing NULL object in newblockilling bloc (no %ld): %08lx popping %s (bloc no %ld) mallocing NULL objectpari.pspari.logGP_DATA_DIR/usr/local/share/parixResetting all trapsCannot initialize kernelnot enough memory, new stack %lu *** Error in the PARI system. End of program. changevarvariable out of range in reorderduplicate indeterminates in reorderreorderleaving recover() entering recover(), loc = %ld *** %s: no such error number: %ldcan't trap memory errors *** %s: %s. %s: %s in %s; new prec = %ld *** %suse pari_warn for warnings current stack size: %lu (%.3f Mbytes) [hint] you can increase GP stack with allocatemem() %s, please report %s is not yet implemented.%lu.additionmultiplicationgcd,-->assignment %s %s %s %s.division in %s. ### user error: %s fileuncaught error: %ld For full compatibility with GP 1.39.15, type "default(compatible,3)", or set "compatible = 3" in your GPRC fileerrpiletypeergdiverinvmoderaccurerarchersigintertalkeruserthis trap keywordsignificant pointers lost in gerepile! (please report)bad component %ld in object %Zlbot>ltop in gerepiledoubling stack size; new stack = %lu (%.3f Mbytes)bot=0x%lx top=0x%lx 0x%p: 0x%lx %lu Time : %ld ColDGCol({x=[]}): transforms the object x into a column vector. Empty vector if x is omittedEulerpEuler=Euler(): Euler's constant with current precisionII=I(): square root of -1ListList({x=[]}): transforms the vector or list x into a list. Empty list if x is omittedMatMat({x=[]}): transforms any GEN x into a matrix. Empty matrix if x is omittedModGGD0,L,Mod(x,y): creates 'x modulo y'.OO(a^b): p-adic or power series zero with precision given by bPiPi=Pi(): the constant pi, with current precisionPolGDnPol(x,{v=x}): convert x (usually a vector or a power series) into a polynomial with variable v, starting with the leading coefficientPolrevPolrev(x,{v=x}): convert x (usually a vector or a power series) into a polynomial with variable v, starting with the constant termQfbGGGDGpQfb(a,b,c,{D=0.}): binary quadratic form a*x^2+b*x*y+c*y^2. D is optional (0.0 by default) and initializes Shanks's distance if b^2-4*a*c>0SerSer(x,{v=x}): convert x (usually a vector) into a power series with variable v, starting with the constant coefficientSetSet({x=[]}): convert x into a set, i.e. a row vector with strictly increasing coefficients. Empty set if x is omittedStrs*Str({str}*): concatenates its (string) argument into a single stringStrchrGStrchr(x): converts x to a string, translating each integer into a characterStrexpandStrexpand({str}*): concatenates its (string) argument into a single string, performing tilde expansionStrtexStrtex({str}*): translates its (string) arguments to TeX format and returns the resulting stringVecVec({x=[]}): transforms the object x into a vector. Empty vector if x is omittedVecsmallVecsmall({x=[]}): transforms the object x into a VECSMALL. Empty vector if x is omittedabsGpabs(x): absolute value (or modulus) of xacosacos(x): inverse cosine of xacoshacosh(x): inverse hyperbolic cosine of xaddhelpvSsaddhelp(symbol,"message"): add/change help message for a symboladdprimesaddprimes({x=[]}): add primes in the vector x to the prime table to be used in trial division. x may also be a single integer. Composite "primes" are allowed, and in that case you may later get a message "impossible inverse", which will give you some factors. List the current extra primes if x is omitted. If some primes are added which intersect non trivially the existing table entries, suitable updating is doneagmGGpagm(x,y): arithmetic-geometric mean of x and yalgdepGLD0,L,palgdep(x,n,{flag=0}): algebraic relations up to degree n of x, using lindep([1,x,...,x^(n-1)], flag).aliasvrralias("new","old"): new is now an alias for oldallocatememvD0,L,allocatemem({s=0}): allocates a new stack of s bytes. doubles the stack if s is omittedargarg(x): argument of x,such that -pi0. The answer is guaranteed (i.e x norm iff b=1) under GRH, if S contains all primes less than 12.log(disc(Bnf))^2, where Bnf is the Galois closure of bnfbnfisprincipalGGD1,L,bnfisprincipal(bnf,x,{flag=1}): bnf being output by bnfinit (with flag<=2), gives [v,alpha], where v is the vector of exponents on the class group generators and alpha is the generator of the resulting principal ideal. In particular x is principal if and only if v is the zero vector. flag is optional, whose meaning is: 0: output only v; 1: default; 2: output only v, precision being doubled until the result is obtained; 3: as 2 but output generatorsbnfissunitGGGbnfissunit(bnf,sfu,x): bnf being output by bnfinit (with flag<=2), sfu by bnfsunit, gives the column vector of exponents of x on the fundamental S-units and the roots of unity if x is a unit, the empty vector otherwisebnfisunitbnfisunit(bnf,x): bnf being output by bnfinit (with flag<=2), gives the column vector of exponents of x on the fundamental units and the roots of unity if x is a unit, the empty vector otherwisebnfmakebnfmake(sbnf): transforms small sbnf as output by bnfinit with flag=3 into a true big bnfbnfnarrowbnfnarrow(bnf): given a big number field as output by bnfinit, gives as a 3-component vector the structure of the narrow class groupbnfregbnfreg(P,{tech=[]}): compute the regulator of the number field defined by the polynomial P. If P is a non-zero integer, it is interpreted as a quadratic discriminant. See manual for details about techbnfsignunitbnfsignunit(bnf): matrix of signs of the real embeddings of the system of fundamental units found by bnfinitbnfsunitbnfsunit(bnf,S): compute the fundamental S-units of the number field bnf output by bnfinit, S being a list of prime ideals. res[1] contains the S-units, res[5] the S-classgroup. See manual for detailsbnfunitbnfunit(bnf): compute the fundamental units of the number field bnf output by bnfinit when they have not yet been computed (i.e. with flag=2)bnrL1GDGD0,L,pbnrL1(bnr, {subgroup}, {flag=0}): bnr being output by bnrinit(,,1) and subgroup being a square matrix defining a congruence subgroup of bnr (the trivial subgroup if omitted), for each character of bnr trivial on this subgroup, compute L(1, chi) (or equivalently the first non-zero term c(chi) of the expansion at s = 0). The binary digits of flag mean 1: if 0 then compute the term c(chi) and return [r(chi), c(chi)] where r(chi) is the order of L(s, chi) at s = 0, or if 1 then compute the value at s = 1 (and in this case, only for non-trivial characters), 2: if 0 then compute the value of the primitive L-function associated to chi, if 1 then compute the value of the L-function L_S(s, chi) where S is the set of places dividing the modulus of bnr (and the infinite places), 3: return also the charactersbnrclassbnrclass(bnf,ideal,{flag=0}): given a big number field as output by bnfinit (only) and an ideal or a 2-component row vector formed by an ideal and a list of R1 zeros or ones representing a module, finds the ray class group structure corresponding to this module. flag is optional, and can be 0: default, 1: compute data necessary for working in the ray class group, for example with functions such as bnrisprincipal or bnrdisc, without computing the generators of the ray class group, or 2: with the generators. When flag=1 or 2, the fifth component is the ray class group structure obtained when flag=0bnrclassnobnrclassno(bnf,x): ray class number of the module x for the big number field bnf. Faster than bnrclass if only the ray class number is wantedbnrclassnolistbnrclassnolist(bnf,list): if list is as output by ideallist or similar, gives list of corresponding ray class numbersbnrconductorGDGDGDGbnrconductor(a1,{a2},{a3},{flag=0}): conductor f of the subfield of the ray class field given by a1,a2,a3 (see bnrdisc). flag is optional and can be 0: default, 1: returns [f, Cl_f, H], H subgroup of the ray class group modulo f defining the extension, 2: returns [f, bnr(f), H]bnrconductorofcharbnrconductorofchar(bnr,chi): conductor of the character chi on the ray class group bnrbnrdiscGDGDGD0,L,bnrdisc(a1,{a2},{a3},{flag=0}): absolute or relative [N,R1,discf] of the field defined by a1,a2,a3. [a1,{a2},{a3}] is of type [bnr], [bnr,subgroup], [bnf, module] or [bnf,module,subgroup], where bnf is as output by bnfclassunit (with flag<=2), bnr by bnrclass (with flag>0), and subgroup is the HNF matrix of a subgroup of the corresponding ray class group (if omitted, the trivial subgroup). flag is optional whose binary digits mean 1: give relative data; 2: return 0 if module is not the conductorbnrdisclistbnrdisclist(bnf,bound,{arch}): gives list of discriminants of ray class fields of all conductors up to norm bound, in a long vector The ramified Archimedean places are given by arch; all possible values are taken if arch is omitted. Supports the alternative syntax bnrdisclist(bnf,list), where list is as output by ideallist or ideallistarch (with units)bnrinitbnrinit(bnf,ideal,{flag=0}): given a big number field as output by bnfinit (only) and an ideal or a 2-component row vector formed by an ideal and a list of R1 zeros or ones representing a module, initializes data linked to the ray class group structure corresponding to this module. flag is optional, and can be 0: default (same as bnrclass with flag = 1), 1: compute also the generators (same as bnrclass with flag = 2). The fifth component is the ray class group structurebnrisconductorlGDGDGbnrisconductor(a1,{a2},{a3}): returns 1 if the modulus is the conductor of the subfield of the ray class field given by a1,a2,a3 (see bnrdisc), and 0 otherwise. Slightly faster than bnrconductor if this is the only desired resultbnrisprincipalbnrisprincipal(bnr,x,{flag=1}): bnr being output by bnrinit, gives [v,alpha], where v is the vector of exponents on the class group generators and alpha is the generator of the resulting principal ideal. In particular x is principal if and only if v is the zero vector. If (optional) flag is set to 0, output only vbnrrootnumberbnrrootnumber(bnr,chi,{flag=0}); returns the so-called Artin Root Number, i.e. the constant W appearing in the functional equation of the Hecke L-function associated to chi. Set flag = 1 if the character is known to be primitivebnrstarkbnrstark(bnr,{subgroup}): bnr being as output by bnrinit(,,1), finds a relative equation for the class field corresponding to the module in bnr and the given congruence subgroup (the trivial subgroup if omitted) using Stark's units. The ground field and the class field must be totally real.breakD1,L,break({n=1}): interrupt execution of current instruction sequence, and exit from the n innermost enclosing loopsceilceil(x): ceiling of x=smallest integer>=xcenterliftcenterlift(x,{v}): centered lift of x. Same as lift except for integermodschangevar(x,y): change variables of x according to the vector ycharpolyGDnD0,L,charpoly(A,{v=x},{flag=0}): det(v*Id-A)=characteristic polynomial of the matrix or polmod A. flag is optional and may be set to 1 (use Lagrange interpolation) or 2 (use Hessenberg form), 0 being the defaultchineseGDGchinese(x,{y}): x,y being both intmods (or polmods) computes z in the same residue classes as x and ycomponentcomponent(x,s): the s'th component of the internal representation of x. For vectors or matrices, it is simpler to use x[]. For list objects such as nf, bnf, bnr or ell, it is much easier to use member functions starting with "."concatconcat(x,{y}): concatenation of x and y, which can be scalars, vectors or matrices, or lists (in this last case, both x and y have to be lists). If y is omitted, x has to be a list or row vector and its elements are concatenatedconjconj(x): the algebraic conjugate of xconjvecconjvec(x): conjugate vector of the algebraic number xcontentcontent(x): gcd of all the components of x, when this makes sensecontfracGDGD0,L,contfrac(x,{b},{lmax}): continued fraction expansion of x (x rational,real or rational function). b and lmax are both optional, where b is the vector of numerators of the continued fraction, and lmax is a bound for the number of terms in the continued fraction expansioncontfracpnqncontfracpnqn(x): [p_n,p_{n-1}; q_n,q_{n-1}] corresponding to the continued fraction xcoreGD0,L,core(n,{flag=0}): unique (positive of negative) squarefree integer d dividing n such that n/d is a square. If (optional) flag is non-null, output the two-component row vector [d,f], where d is the unique squarefree integer dividing n such that n/d=f^2 is a squarecoredisccoredisc(n,{flag=0}): discriminant of the quadratic field Q(sqrt(n)). If (optional) flag is non-null, output a two-component row vector [d,f], where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f may be a half integercoscos(x): cosine of xcoshcosh(x): hyperbolic cosine of xcotancotan(x): cotangent of xdefaultD"",r,D"",s,D0,L,default({opt},{v}): returns the current value of the current default opt. If v is present, set opt to v first. If no argument is given, print a list of all defaults as well as their values.denominatordenominator(x): denominator of x (or lowest common denominator in case of an array)derivderiv(x,{y}): derivative of x with respect to the main variable of y, or to the main variable of x if y is omitteddilogdilog(x): dilogarithm of xdirdivdirdiv(x,y): division of the Dirichlet series x by the Dirichlet series ydireulerV=GGEDGdireuler(p=a,b,expr,{c}): Dirichlet Euler product of expression expr from p=a to p=b, limited to b terms. Expr should be a polynomial or rational function in p and X, and X is understood to mean p^(-s). If c is present, output only the first c termsdirmuldirmul(x,y): multiplication of the Dirichlet series x by the Dirichlet series ydirzetakdirzetak(nf,b): Dirichlet series of the Dedekind zeta function of the number field nf up to the bound b-1divisorsdivisors(x): gives a vector formed by the divisors of x in increasing orderdivremGGDndivrem(x,y,{v}): euclidean division of x by y giving as a 2-dimensional column vector the quotient and the remainder, with respect to v (to main variable if v is omitted)eint1eint1(x,{n}): exponential integral E1(x). If n is present, computes the vector of the first n values of the exponential integral E1(n.x) (x > 0)elladdelladd(e,z1,z2): sum of the points z1 and z2 on elliptic curve eellakellak(e,n): computes the n-th Fourier coefficient of the L-function of the elliptic curve eellanellan(e,n): computes the first n Fourier coefficients of the L-function of the elliptic curve e (n<2^24 on a 32-bit machine)ellapellap(e,p,{flag=0}): computes a_p for the elliptic curve e using Shanks-Mestre's method. flag is optional and can be set to 0 (default) or 1 (use Jacobi symbols)ellbilGGGpellbil(e,z1,z2): canonical bilinear form for the points z1,z2 on the elliptic curve e. Either z1 or z2 can also be a vector/matrix of pointsellchangecurveellchangecurve(x,y): change data on elliptic curve according to y=[u,r,s,t]ellchangepointellchangepoint(x,y): change data on point or vector of points x on an elliptic curve according to y=[u,r,s,t]ellconvertnameellconvertname(name): convert an elliptic curve name (as found in the elldata database) from a string to a triplet [conductor, isogeny class, index]. It will also convert a triplet back to a curve name.elleisnumelleisnum(om,k,{flag=0}): om=[om1,om2] being a 2-component vector giving a basis of a lattice L and k an even positive integer, computes the numerical value of the Eisenstein series of weight k. When flag is non-zero and k=4 or 6, this gives g2 or g3 with the correct normalizationelletaelleta(om): om=[om1,om2], returns the two-component row vector [eta1,eta2] of quasi-periods associated to [om1,om2]ellgeneratorsellgenerators(E): if E is an elliptic curve as output by ellinit(), return the generators of the Mordell-Weil group associated to the curve. This function depends on the curve being referenced in the elldata database.ellglobalredellglobalred(e): e being an elliptic curve, returns [N,[u,r,s,t],c], where N is the conductor of e, [u,r,s,t] leads to the standard model for e, and c is the product of the local Tamagawa numbers c_pellheightGGD2,L,pellheight(e,x,{flag=2}): canonical height of point x on elliptic curve E defined by the vector e. flag is optional and selects the algorithm used to compute the archimedean local height. Its meaning is 0: use theta-functions, 1: use Tate's method, 2: use Mestre's AGMellheightmatrixellheightmatrix(e,x): gives the height matrix for vector of points x on elliptic curve e using theta functionsellidentifyellidentify(E): look up the elliptic curve E in the elldata database and return [[N, M, ...], C] where N is the name of the curve in J. E. Cremona database, M the minimal model and C the coordinates change (see ellchangecurve).ellinitGD0,L,pellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6] defining the curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X + a6, gives the vector: [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,disc,j,[e1,e2,e3],w1,w2,eta1,eta2,area]. If the curve is defined over a p-adic field, the last six components are replaced by root,u^2,u,q,w,0. If optional flag is 1, omit them altogether. x can also be a string, in this case the coefficients of the curve with matching name are looked in the elldata database if available.ellisoncurveellisoncurve(e,x): true(1) if x is on elliptic curve e, false(0) if notelljellj(x): elliptic j invariant of xelllocalredelllocalred(e,p): e being an elliptic curve, returns [f,kod,[u,r,s,t],c], where f is the conductor's exponent, kod is the Kodaira type for e at p, [u,r,s,t] is the change of variable needed to make e minimal at p, and c is the local Tamagawa number c_pelllseriesGGDGpelllseries(e,s,{A=1}): L-series at s of the elliptic curve e, where A a cut-off point close to 1ellminimalmodelGD&ellminimalmodel(e,{&v}): return the standard minimal integral model of the rational elliptic curve e. Sets v to the corresponding change of variablesellorderellorder(e,p): order of the point p on the elliptic curve e over Q, 0 if non-torsionellordinateellordinate(e,x): y-coordinates corresponding to x-ordinate x on elliptic curve eellpointtozellpointtoz(e,P): lattice point z corresponding to the point P on the elliptic curve eellpowellpow(e,x,n): n times the point x on elliptic curve e (n in Z)ellrootnolGDGellrootno(e,{p=1}): root number for the L-function of the elliptic curve e. p can be 1 (default), global root number, or a prime p (including 0) for the local root number at pellsearchellsearch(N): if N is an integer, it is taken as a conductor else if N is a string, it can be a curve name ("11a1"), a isogeny class ("11a") or a conductor ("11"). Return all curves in the elldata database that match the property.ellsigmaellsigma(om,z,{flag=0}): om=[om1,om2], value of the Weierstrass sigma function of the lattice generated by om at z if flag = 0 (default). If flag = 1, arbitrary determination of the logarithm of sigma. If flag = 2 or 3, same but using the product expansion instead of theta seriesellsubellsub(e,z1,z2): difference of the points z1 and z2 on elliptic curve eelltaniyamaGPelltaniyama(e): modular parametrization of elliptic curve eelltorselltors(e,{flag=0}): torsion subgroup of elliptic curve e: order, structure, generators. If flag = 0, use Doud's algorithm; if flag = 1, use Lutz-NagellellwpGDGD0,L,pPellwp(e,{z=x},{flag=0}): Complex value of Weierstrass P function at z on the lattice generated over Z by e=[om1,om2] (e as given by ellinit is also accepted). Optional flag means 0 (default), compute only P(z), 1 compute [P(z),P'(z)], 2 consider om as an elliptic curve and compute P(z) for that curve (identical to ellztopoint in that case). If z is omitted or is a simple variable, return formal expansion in zellzetaellzeta(om,z): om=[om1,om2], value of the Weierstrass zeta function of the lattice generated by om at zellztopointellztopoint(e,z): coordinates of point P on the curve e corresponding to the complex number zerfcerfc(x): complementary error functionerrorvs*error("msg"): abort script with error message msgetaeta(x,{flag=0}): if flag=0, eta function without the q^(1/24), otherwise eta of the complex number x in the upper half plane intelligently computed using SL(2,Z) transformationseulerphieulerphi(x): Euler's totient function of xevaleval(x): evaluation of x, replacing variables by their valueexpexp(x): exponential of xfactorfactor(x,{lim}): factorization of x. lim is optional and can be set whenever x is of (possibly recursive) rational type. If lim is set return partial factorization, using primes up to lim (up to primelimit if lim=0)factorbackGDGDGfactorback(f,{e},{nf}): given a factorisation f, gives the factored object back. If this is a prime ideal factorisation you must supply the corresponding number field as last argument. If e is present, f has to be a vector of the same length, and we return the product of the f[i]^e[i]factorcantorfactorcantor(x,p): factorization mod p of the polynomial x using Cantor-Zassenhausfactorfffactorff(x,p,a): factorization of the polynomial x in the finite field F_p[X]/a(X)F_p[X]factorialfactorial(x): factorial of x (x C-integer), the result being given as a real numberfactorintfactorint(x,{flag=0}): factor the integer x. flag is optional, whose binary digits mean 1: avoid MPQS, 2: avoid first-stage ECM (may fall back on it later), 4: avoid Pollard-Brent Rho and Shanks SQUFOF, 8: skip final ECM (huge composites will be declared prime)factormodfactormod(x,p,{flag=0}): factorization mod p of the polynomial x using Berlekamp. flag is optional, and can be 0: default or 1: simple factormod, same except that only the degrees of the irreducible factors are givenfactornffactornf(x,t): factorization of the polynomial x over the number field defined by the polynomial tfactorpadicGGLD0,L,factorpadic(x,p,r,{flag=0}): p-adic factorization of the polynomial x to precision r. flag is optional and may be set to 0 (use round 4) or 1 (use Buchmann-Lenstra)ffinitGLDnffinit(p,n,{v=x}): monic irreducible polynomial of degree n over F_p[v]fibonaccifibonacci(x): fibonacci number of index x (x C-integer)floorfloor(x): floor of x = largest integer<=xforvV=GGIfor(X=a,b,seq): the sequence is evaluated, X going from a up to bfordivvGVIfordiv(n,X,seq): the sequence is evaluated, X running over the divisors of nforellvVLLIforell(E,a,b,seq): execute seq for each elliptic curves E of conductor between a and b in the elldata database.forprimeforprime(X=a,b,seq): the sequence is evaluated, X running over the primes between a and bforstepvV=GGGIforstep(X=a,b,s,seq): the sequence is evaluated, X going from a to b in steps of s (can be a vector of steps)forsubgroupvV=GDGIforsubgroup(H=G,{bound},seq): execute seq for each subgroup H of the abelian group G (in SNF form), whose index is bounded by bound. H is given as a left divisor of G in HNF formforvecvV=GID0,L,forvec(x=v,seq,{flag=0}): v being a vector of two-component vectors of length n, the sequence is evaluated with x[i] going from v[i][1] to v[i][2] for i=n,..,1 if flag is zero or omitted. If flag = 1 (resp. flag = 2), restrict to increasing (resp. strictly increasing) sequencesfracfrac(x): fractional part of x = x-floor(x)galoisexportgaloisexport(gal,{flag}): gal being a galois field as output by galoisinit, output a string representing the underlying permutation group in GAP notation (default) or Magma notation (flag = 1)galoisfixedfieldGGD0,L,Dngaloisfixedfield(gal,perm,{flag},{v=y}): gal being a galois field as output by galoisinit and perm an element of gal.group or a vector of such elements, return [P,x] such that P is a polynomial defining the fixed field of gal[1] by the subgroup generated by perm, and x is a root of P in gal expressed as a polmod in gal.pol. If flag is 1 return only P. If flag is 2 return [P,x,F] where F is the factorization of gal.pol over the field defined by P, where the variable v stands for a root of Pgaloisidentifygaloisidentify(gal): gal being a galois field as output by galoisinit, output the isomorphism class of the underlying abstract group as a two-components vector [o,i], where o is the group order, and i is the group index in the GAP4 small group librarygaloisinitgaloisinit(pol,{den}): pol being a polynomial or a number field as output by nfinit defining a Galois extension of Q, compute the Galois group and all neccessary informations for computing fixed fields. den is optional and has the same meaning as in nfgaloisconj(,4)(see manual)galoisisabeliangaloisisabelian(gal,{flag=0}): gal being as output by galoisinit, return 0 if gal is not abelian, the HNF matrix of gal over gal.gen if flag=0, 1 if flag is 1, and the SNF of gal is flag=2galoispermtopolgaloispermtopol(gal,perm): gal being a galois field as output by galoisinit and perm a element of gal.group, return the polynomial defining the corresponding Galois automorphismgaloissubcycloGDGD0,L,Dngaloissubcyclo(N,H,{fl=0},{v}):Compute a polynomial (in variable v) defining the subfield of Q(zeta_n) fixed by the subgroup H of (Z/nZ)*. N can be an integer n, znstar(n) or bnrinit(bnfinit(y),[n,[1]],1). H can be given by a generator, a set of generator given by a vector or a HNF matrix (see manual). If flag is 1, output only the conductor of the abelian extension. If flag is 2 output [pol,f] where pol is the polynomial and f the conductor.galoissubfieldsGD0,L,Dngaloissubfields(G,{flags=0},{v}):Output all the subfields of G. flags have the same meaning as for galoisfixedfieldgaloissubgroupsgaloissubgroups(G):Output all the subgroups of Ggammagamma(x): gamma function at xgammahgammah(x): gamma of x+1/2 (x integer)gcd(x,{y}): greatest common divisor of x and y.getheapgetheap(): 2-component vector giving the current number of objects in the heap and the space they occupygetrandlgetrand(): current value of random number seedgetstackgetstack(): current value of stack pointer avmagettimegettime(): time (in milliseconds) since last call to gettimeglobalglobal(x): declare x to be a global variablehilbertlGGDGhilbert(x,y,{p}): Hilbert symbol at p of x,y. If x,y are integermods or p-adic, p can be omittedhyperuhyperu(a,b,x): U-confluent hypergeometric functionidealaddidealadd(nf,x,y): sum of two ideals x and y in the number field defined by nfidealaddtooneidealaddtoone(nf,x,{y}): if y is omitted, when the sum of the ideals in the number field K defined by nf and given in the vector x is equal to Z_K, gives a vector of elements of the corresponding ideals who sum to 1. Otherwise, x and y are ideals, and if they sum up to 1, find one element in each of them such that the sum is 1idealappridealappr(nf,x,{flag=0}): x being a fractional ideal, gives an element b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0 for all other p. If (optional) flag is non-null x must be a prime ideal factorization with possibly zero exponentsidealchineseidealchinese(nf,x,y): x being a prime ideal factorization and y a vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0 for all other pidealcoprimeidealcoprime(nf,x,y): gives an element b in nf such that b. x is an integral ideal coprime to the integral ideal yidealdivGGGD0,L,idealdiv(nf,x,y,{flag=0}): quotient x/y of two ideals x and y in HNF in the number field nf. If (optional) flag is non-null, the quotient is supposed to be an integral ideal (slightly faster)idealfactoridealfactor(nf,x): factorization of the ideal x given in HNF into prime ideals in the number field nfidealhnfidealhnf(nf,a,{b}): hermite normal form of the ideal a in the number field nf, whatever form a may have. If called as idealhnf(nf,a,b), the ideal is given as aZ_K+bZ_K in the number field K defined by nfidealintersectidealintersect(nf,x,y): intersection of two ideals x and y in the number field defined by nfidealinvidealinv(nf,x,{flag=0}): inverse of the ideal x in the number field nf. If flag is omitted or set to 0, use the different. If flag is 1 do not use itideallistGLD4,L,ideallist(nf,bound,{flag=4}): vector of vectors L of all idealstar of all ideals of norm<=bound. If (optional) flag is present, its binary digits are toggles meaning 1: give generators; 2: add units; 4: give only the ideals and not the bid.ideallistarchideallistarch(nf,list,arch): list is a vector of vectors of of bid's as output by ideallist. Return a vector of vectors with the same number of components as the original list. The leaves give information about moduli whose finite part is as in original list, in the same order, and archimedean part is now arch. The information contained is of the same kind as was present in the input.ideallogideallog(nf,x,bid): if bid is a big ideal, as given by idealstar(nf,I,1) or idealstar(nf,I,2), gives the vector of exponents on the generators bid[2][3] (even if these generators have not been computed)idealminidealmin(nf,ix,{vdir}): minimum of the ideal ix in the direction vdir in the number field nfidealmulGGGD0,L,pidealmul(nf,x,y,{flag=0}): product of the two ideals x and y in the number field nf. If (optional) flag is non-nul, reduce the resultidealnormidealnorm(nf,x): norm of the ideal x in the number field nfidealpowidealpow(nf,x,n,{flag=0}): n-th power of the ideal x in HNF in the number field nf If (optional) flag is non-null, reduce the resultidealprimedecidealprimedec(nf,p): prime ideal decomposition of the prime number p in the number field nf as a vector of 5 component vectors [p,a,e,f,b] representing the prime ideals pZ_K+a. Z_K, e,f as usual, a as vector of components on the integral basis, b Lenstra's constantidealprincipalidealprincipal(nf,x): returns the principal ideal generated by the algebraic number x in the number field nfidealredidealred(nf,x,{vdir=0}): LLL reduction of the ideal x in the number field nf along direction vdir, in HNFidealstaridealstar(nf,I,{flag=1}): gives the structure of (Z_K/I)^*. flag is optional, and can be 0: simply gives the structure as a 3-component vector v such that v[1] is the order (i.e. eulerphi(I)), v[2] is a vector of cyclic components, and v[3] is a vector giving the corresponding generators. If flag=1 (default), gives idealstarinit, i.e. a 6-component vector [I,v,fa,f2,U,V] where v is as above without the generators, fa is the prime ideal factorisation of I and f2, U and V are technical but essential to work in (Z_K/I)^*. Finally if flag=2, same as with flag=1 except that the generators are also givenidealtwoeltidealtwoelt(nf,x,{a}): two-element representation of an ideal x in the number field nf. If (optional) a is non-zero, first element will be equal to aidealvallGGGidealval(nf,x,p): valuation at p given in idealprimedec format of the ideal x in the number field nfideleprincipalideleprincipal(nf,x): returns the principal idele generated by the algebraic number x in the number field nfifif(a,seq1,seq2): if a is nonzero, seq1 is evaluated, otherwise seq2. seq1 and seq2 are optional, and if seq2 is omitted, the preceding comma can be omitted alsoimagimag(x): imaginary part of xincgamincgam(s,x,{y}): incomplete gamma function. y is optional and is the precomputed value of gamma(s)incgamcincgamc(s,x): complementary incomplete gamma functionintcircV=GGEDGpintcirc(X=a,R,s,{tab}): numerical integration of s on the circle |z-a|=R, divided by 2*I*Pi. tab is as in intnum.intformalintformal(x,{y}): formal integration of x with respect to the main variable of y, or to the main variable of x if y is omittedintfouriercosV=GGGEDGpintfouriercos(X=a,b,x,s,{tab}): numerical integration from a to b of cos(2*Pi*x*X)*s(X) from a to b, where a, b, and tab are as in intnum. This is the cosine-Fourier transform if a=-infty and b=+infty.intfourierexpintfourierexp(X=a,b,x,s,{tab}): numerical integration from a to b of exp(-2*I*Pi*x*X)*s(X) from a to b, where a, b, and tab are as in intnum. This is the ordinary Fourier transform if a=-infty and b=+infty. Note the minus sign.intfouriersinintfouriersin(X=a,b,x,s,{tab}): numerical integration from a to b of sin(2*Pi*x*X)*s(X) from a to b, where a, b, and tab are as in intnum. This is the sine-Fourier transform if a=-infty and b=+infty.intfuncinitV=GGED0,L,D0,L,pintfuncinit(X=a,b,s,{flag=0},{m=0}): initialize tables for integrations from a to b using a weight s(X). Essential for integral transforms such as intmellininv, intlaplaceinv and intfourier, since it avoids recomputing all the time the same quantities. Must then be used with intmellininvshort (for intmellininv) and directly with intnum and not with the corresponding integral transforms for the others. See help for intnum for coding of a and b, and m is as in intnuminit. If flag is nonzero, assumes that s(-X)=conj(s(X)), which is twice faster.intlaplaceinvintlaplaceinv(X=sig,x,s,{tab}): numerical integration on the line real(z) = sig of s(z)exp(xz)dz/(2*I*Pi), i.e. inverse Laplace transform of s at x. tab is as in intnum.intmellininvintmellininv(X=sig,x,s,{tab}): numerical integration on the line real(z) = sig (or sig[1]) of s(z)x^(-z)dz/(2*I*Pi), i.e. inverse Mellin transform of s at x. sig is coded as follows: either it is real, and then by default assume s(z) decreases like exp(-z). Or sig = [sigR, al], sigR is the abcissa of integration, and al = 0 for slowly decreasing functions, or al > 0 if s(z) decreases like exp(-al*z). tab is as in intnum. Use intmellininvshort if several values must be computed.intmellininvshortintmellininvshort(sig,x,tab): numerical integration on the line real(z) = sig (or sig[1]) of s(z)x^(-z)dz/(2*I*Pi), i.e. inverse Mellin transform of s at x. sig is coded as follows: either it is real, and then by default assume s(z) decreases like exp(-z). Or sig = [sigR, al], sigR is the abcissa of integration, and al = 0 for slowly decreasing functions, or al > 0 if s(z) decreases like exp(-al*z). Compulsory table tab has been precomputed using the command intfuncinit(t=[[-1],sig[2]],[[1],sig[2]],s) (with possibly its two optional additional parameters), where sig[2] = 1 if not given. Orders of magnitude faster than intmellininv.intnumintnum(X=a,b,s,{tab}): numerical integration of s from a to b with respect to X. a (and similarly b) is coded as follows. It can be a scalar: f is assumed to be C^infty at a. It can be a two component vector [a[1],a[2]], where a[1] is the scalar, and a[2] is the singularity exponent (in ]-1,0]), logs being neglected. It can be a one component vector [1] or [-1] meaning +infty or -infty, slowly decreasing functions. It can be a two component vector [[1], z] or [[-1], z], where [1] or [-1] indicates +infty or -infty and z is coded as follows. If z is zero, slowly decreasing. If z is real positive, exponentially decreasing, of the type exp(-zX). If z<-1, very slowly decreasing like X^(-z). If z is complex nonreal, real part is ignored and if z = r+I*s then if s>0, cosine oscillation exactly cos(sX), while if s<0, sine oscillation exactly sin(sX). If f is exponentially decreasing times oscillating function, you have a choice, but it is in general better to choose the oscillating part. Finally tab is either 0 (let the program choose the integration step), a positive integer m (choose integration step 1/2^m), or a table tab precomputed with intnuminit (depending on the type of interval: compact, semi-compact or R, very slow, slow, exponential, or cosine or sine-oscillating decrease).intnuminitintnuminit(a,b,{m=0}): initialize tables for integrations from a to b. See help for intnum for coding of a and b. Possible types: compact interval, semi-compact (one extremity at + or - infinity) or R, and very slowly, slowly or exponentially decreasing, or sine or cosine oscillating at infinities,intnuminitgenVGGED0,L,D0,L,pintnuminitgen(t,a,b,ph,{m=0},{flag=0}): initialize tables for integrations from a to b using abcissas ph(t) and weights ph'(t). Note that there is no equal sign after the variable name t since t always goes from -infty to +infty, but it is ph(t) which goes from a to b, and this is not checked. If flag = 1 or 2, multiply the reserved table length by 4^flag, to avoid corresponding error.intnumrombV=GGED0,L,pintnumromb(X=a,b,s,{flag=0}): numerical integration of s (smooth in ]a,b[) from a to b with respect to X. flag is optional and mean 0: default. s can be evaluated exactly on [a,b]; 1: general function; 2: a or b can be plus or minus infinity (chosen suitably), but of same sign; 3: s has only limits at a or bintnumsteplpintnumstep(): gives the default value of m used by all intnum and sumnum routines, such that the integration step is 1/2^m.isfundamentalisfundamental(x): true(1) if x is a fundamental discriminant (including 1), false(0) if notispowerlGDGD&ispower(x,{k},{&n}): true (1) if x is a k-th power, false (0) if not. If n is given and a k-th root was computed in the process, put that in n. If k is omitted, return the maximal k >= 2 such that x = n^k is a perfect power, or 0 if no such k exist.isprimeisprime(x,{flag=0}): true(1) if x is a (proven) prime number, false(0) if not. If flag is 0 or omitted, use a combination of algorithms. If flag is 1, the primality is certified by the Pocklington-Lehmer Test. If flag is 2, the primality is certified using the APRCL test.ispseudoprimeispseudoprime(x,{n}): true(1) if x is a strong pseudoprime, false(0) if not. If n is 0 or omitted, use BPSW test, otherwise use strong Rabin-Miller test for n randomly chosen basesissquareissquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is given puts the exact square root there if it was computedissquarefreeissquarefree(x): true(1) if x is squarefree, false(0) if notkillvSkill(x): kills the present value of the variable or function x. Returns new value or 0kroneckerkronecker(x,y): kronecker symbol (x/y)lcmlcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y)lengthlength(x): number of non code words in x, number of characters for a stringlexiGGlex(x,y): compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if x=0, transforms the rational or integral mxn (m>=n) matrix x into an integral matrix with gcd of maximal determinants equal to 1 if p is equal to 0, not divisible by p otherwise. If p=-1, finds a basis of the intersection with Z^n of the lattice spanned by the columns of x. If p=-2, finds a basis of the intersection with Z^n of the Q-vector space spanned by the columns of xmatsizematsize(x): number of rows and columns of the vector/matrix x as a 2-vectormatsnfmatsnf(x,{flag=0}): Smith normal form (i.e. elementary divisors) of the matrix x, expressed as a vector d. Binary digits of flag mean 1: returns [u,v,d] where d=u*x*v, otherwise only the diagonal d is returned, 2: allow polynomial entries, otherwise assume x is integral, 4: removes all information corresponding to entries equal to 1 in dmatsolvematsolve(M,B): gaussian solution of MX=B (M matrix, B column vector)matsolvemodmatsolvemod(M,D,B,{flag=0}): one solution of system of congruences MX=B mod D (M matrix, B and D column vectors). If (optional) flag is non-null return all solutionsmatsupplementmatsupplement(x): supplement the columns of the matrix x to an invertible matrixmattransposemattranspose(x): x~=transpose of xmaxmax(x,y): maximum of x and yminmin(x,y): minimum of x and yminpolyminpoly(A,{v=x}): minimal polynomial of the matrix or polmod A.modreversemodreverse(x): reverse polymod of the polymod x, if it existsmoebiusmoebius(x): Moebius function of xnewtonpolynewtonpoly(x,p): Newton polygon of polynomial x with respect to the prime pnextnext({n=1}): interrupt execution of current instruction sequence, and start another iteration from the n-th innermost enclosing loopsnextprimenextprime(x): smallest pseudoprime >= xnfalgtobasisnfalgtobasis(nf,x): transforms the algebraic number x into a column vector on the integral basis nf.zknfbasisGD0,L,DGnfbasis(x,{flag=0},{p}): integral basis of the field Q[a], where a is a root of the polynomial x, using the round 4 algorithm. Second and third args are optional. Binary digits of flag mean 1: assume that no square of a prime>primelimit divides the discriminant of x, 2: use round 2 algorithm instead. If present, p provides the matrix of a partial factorization of the discriminant of x, useful if one wants only an order maximal at certain primes onlynfbasistoalgnfbasistoalg(nf,x): transforms the column vector x on the integral basis into an algebraic numbernfdetintnfdetint(nf,x): multiple of the ideal determinant of the pseudo generating set xnfdiscnfdisc(x,{flag=0},{p}): discriminant of the number field defined by the polynomial x using round 4. Optional args flag and p are as in nfbasisnfeltdivnfeltdiv(nf,a,b): element a/b in nfnfeltdiveucnfeltdiveuc(nf,a,b): gives algebraic integer q such that a-bq is smallnfeltdivmodprGGGGnfeltdivmodpr(nf,a,b,pr): element a/b modulo pr in nf, where pr is in modpr format (see nfmodprinit)nfeltdivremnfeltdivrem(nf,a,b): gives [q,r] such that r=a-bq is smallnfeltmodnfeltmod(nf,a,b): gives r such that r=a-bq is small with q algebraic integernfeltmulnfeltmul(nf,a,b): element a. b in nfnfeltmulmodprnfeltmulmodpr(nf,a,b,pr): element a. b modulo pr in nf, where pr is in modpr format (see nfmodprinit)nfeltpownfeltpow(nf,a,k): element a^k in nfnfeltpowmodprnfeltpowmodpr(nf,a,k,pr): element a^k modulo pr in nf, where pr is in modpr format (see nfmodprinit)nfeltreducenfeltreduce(nf,a,id): gives r such that a-r is in the ideal id and r is smallnfeltreducemodprnfeltreducemodpr(nf,a,pr): element a modulo pr in nf, where pr is in modpr format (see nfmodprinit)nfeltvalnfeltval(nf,a,pr): valuation of element a at the prime pr as output by idealprimedecnffactornffactor(nf,x): factor polynomial x in number field nfnffactormodnffactormod(nf,pol,pr): factorize polynomial pol modulo prime ideal pr in number field nfnfgaloisapplynfgaloisapply(nf,aut,x): Apply the Galois automorphism sigma (polynomial or polymod) to the object x (element or ideal) in the number field nfnfgaloisconjnfgaloisconj(nf,{flag=0},{den}): list of conjugates of a root of the polynomial x=nf.pol in the same number field. flag is optional (set to 0 by default), meaning 0: use combination of flag 4 and 1, always complete; 1: use nfroots; 2 : use complex numbers, LLL on integral basis (not always complete); 4: use Allombert's algorithm, complete if the field is Galois of degree <= 35 (see manual for detail). nf can be simply a polynomial with flag 0,2 and 4, meaning: 0: use combination of flag 4 and 2, not always complete (but a warning is issued when the list is not proven complete); 2 & 4: same meaning and restrictions. Note that only flag 4 can be applied to fields of large degrees (approx. >= 20)nfhilbertlGGGDGnfhilbert(nf,a,b,{p}): if p is omitted, global Hilbert symbol (a,b) in nf, that is 1 if X^2-aY^2-bZ^2 has a non-trivial solution (X,Y,Z) in nf, -1 otherwise. Otherwise compute the local symbol modulo the prime ideal pnfhnfnfhnf(nf,x): if x=[A,I], gives a pseudo-basis of the module sum A_jI_jnfhnfmodnfhnfmod(nf,x,detx): if x=[A,I], and detx is a multiple of the ideal determinant of x, gives a pseudo-basis of the module sum A_jI_jnfinitnfinit(pol,{flag=0}): pol being a nonconstant irreducible polynomial, gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see manual),r1+r2 first roots, integral basis, matrix of power basis in terms of integral basis, multiplication table of basis]. flag is optional and can be set to 0: default; 1: do not compute different; 2: first use polred to find a simpler polynomial; 3: outputs a two-element vector [nf,Mod(a,P)], where nf is as in 2 and Mod(a,P) is a polymod equal to Mod(x,pol) and P=nf.pol; 4: as 2 but use a partial polred; 5: is to 3 what 4 is to 2nfisideallGGnfisideal(nf,x): true(1) if x is an ideal in the number field nf, false(0) if notnfisinclnfisincl(x,y): tests whether the number field x is isomorphic to a subfield of y (where x and y are either polynomials or number fields as output by nfinit). Return 0 if not, and otherwise all the isomorphisms. If y is a number field, a faster algorithm is usednfisisomnfisisom(x,y): as nfisincl but tests whether x is isomorphic to ynfkermodprnfkermodpr(nf,x,pr): kernel of the matrix x in Z_K/pr, where pr is in modpr format (see nfmodprinit)nfmodprinitnfmodprinit(nf,pr): transform the 5 element row vector pr representing a prime ideal into modpr format necessary for all operations mod pr in the number field nf (see manual for details about the format)nfnewprecnfnewprec(nf): transform the number field data nf into new data using the current (usually larger) precisionnfrootsDGGnfroots({nf},pol): roots of polynomial pol belonging to nf (Q if omitted) without multiplicitynfrootsof1nfrootsof1(nf): number of roots of unity and primitive root of unity in the number field nfnfsnfnfsnf(nf,x): if x=[A,I,J], outputs [c_1,...c_n] Smith normal form of xnfsolvemodprnfsolvemodpr(nf,a,b,pr): solution of a*x=b in Z_K/pr, where a is a matrix and b a column vector, and where pr is in modpr format (see nfmodprinit)nfsubfieldsnfsubfields(nf,{d=0}): find all subfields of degree d of number field nf (all subfields if d is null or omitted). Result is a vector of subfields, each being given by [g,h], where g is an absolute equation and h expresses one of the roots of g in terms of the root x of the polynomial defining nfnormnorm(x): norm of xnorml2norml2(x): square of the L2-norm of the vector xnumbpartnumbpart(x): number of partitions of xnumdivnumdiv(x): number of divisors of xnumeratornumerator(x): numerator of xnumtopermLGnumtoperm(n,k): permutation number k (mod n!) of n letters (n C-integer)omegaomega(x): number of distinct prime divisors of xpadicapprpadicappr(x,a): p-adic roots of the polynomial x congruent to a mod ppadicprecpadicprec(x,p): absolute p-adic precision of object xpermtonumpermtonum(vect): ordinal (between 1 and n!) of permutation vectpolcoeffpolcoeff(x,s,{v}): coefficient of degree s of x, or the s-th component for vectors or matrices (for which it is simpler to use x[]). With respect to the main variable if v is omitted, with respect to the variable v otherwisepolcompositumpolcompositum(pol1,pol2,{flag=0}): vector of all possible compositums of the number fields defined by the polynomials pol1 and pol2. If (optional) flag is set (i.e non-null), output for each compositum, not only the compositum polynomial pol, but a vector [pol,al1,al2,k] where al1 (resp. al2) is a root of pol1 (resp. pol2) expressed as a polynomial modulo pol, and a small integer k such that al2+k*al1 is the chosen root of polpolcycloLDnpolcyclo(n,{v=x}): n-th cyclotomic polynomial (in variable v)poldegreelGDnpoldegree(x,{v}): degree of the polynomial or rational function x with respect to main variable if v is omitted, with respect to v otherwise. For scalar x, return 0 is x is non-zero and a negative number otherwisepoldiscpoldisc(x,{v}): discriminant of the polynomial x, with respect to main variable if v is omitted, with respect to v otherwisepoldiscreducedpoldiscreduced(f): vector of elementary divisors of Z[a]/f'(a)Z[a], where a is a root of the polynomial fpolgaloispolgalois(x): Galois group of the polynomial x (see manual for group coding). Return [n, s, k, name] where n is the order, s the signature, k the index and name is the GAP4 name of the transitive group.polhenselliftGGGLpolhensellift(x, y, p, e): lift the factorization y of x modulo p to a factorization modulo p^e using Hensel lift. The factors in y must be pairwise relatively prime modulo ppolinterpolateGDGDGD&polinterpolate(xa,{ya},{x},{&e}): polynomial interpolation at x according to data vectors xa, ya (ie return P such that P(xa[i]) = ya[i] for all i). If ya is omitter, return P such that P(i) = xa[i]. If present, e will contain an error estimate on the returned valuepolisirreduciblepolisirreducible(x): true(1) if x is an irreducible non-constant polynomial, false(0) if x is reducible or constantpolleadpollead(x,{v}): leading coefficient of polynomial or series x, or x itself if x is a scalar. Error otherwise. With respect to the main variable of x if v is omitted, with respect to the variable v otherwisepollegendrepollegendre(n,{v=x}): legendre polynomial of degree n (n C-integer), in variable vpolrecippolrecip(x): reciprocal polynomial of xpolredpolred(x,{flag=0},{p}): reduction of the polynomial x (gives minimal polynomials only). Second and third args are optional. The following binary digits of flag are significant 1: partial reduction, 2: gives also elements. p, if present, contains the complete factorization matrix of the discriminantpolredabspolredabs(x,{flag=0}): a smallest generating polynomial of the number field for the T2 norm on the roots, with smallest index for the minimal T2 norm. flag is optional, whose binary digit mean 1: give the element whose characteristic polynomial is the given polynomial. 4: give all polynomials of minimal T2 norm (give only one of P(x) and P(-x)). 16: partial reductionpolredordpolredord(x): reduction of the polynomial x, staying in the same orderpolresultantGGDnD0,L,polresultant(x,y,{v},{flag=0}): resultant of the polynomials x and y, with respect to the main variables of x and y if v is omitted, with respect to the variable v otherwise. flag is optional, and can be 0: default, assumes that the polynomials have exact entries (uses the subresultant algorithm), 1 for arbitrary polynomials, using Sylvester's matrix, or 2: using a Ducos's modified subresultant algorithmpolrootspolroots(x,{flag=0}): complex roots of the polynomial x. flag is optional, and can be 0: default, uses Schonhage's method modified by Gourdon, or 1: uses a modified Newton methodpolrootsmodpolrootsmod(x,p,{flag=0}): roots mod p of the polynomial x. flag is optional, and can be 0: default, or 1: use a naive search, useful for small ppolrootspadicpolrootspadic(x,p,r): p-adic roots of the polynomial x to precision rpolsturmpolsturm(x,{a},{b}): number of real roots of the polynomial x in the interval]a,b] (which are respectively taken to be -oo or +oo when omitted)polsubcycloLLDnpolsubcyclo(n,d,{v=x}): finds an equation (in variable v) for the d-th degree subfields of Q(zeta_n). Output is a polynomial or a vector of polynomials is there are several such fields, or none.polsylvestermatrixpolsylvestermatrix(x,y): forms the sylvester matrix associated to the two polynomials x and y. Warning: the polynomial coefficients are in columns, not in rowspolsympolsym(x,n): vector of symmetric powers of the roots of x up to npoltchebipoltchebi(n,{v=x}): Tchebitcheff polynomial of degree n (n C-integer), in variable vpoltschirnhauspoltschirnhaus(x): random Tschirnhausen transformation of the polynomial xpolylogLGD0,L,ppolylog(m,x,{flag=0}): m-th polylogarithm of x. flag is optional, and can be 0: default, 1: D_m~-modified m-th polylog of x, 2: D_m-modified m-th polylog of x, 3: P_m-modified m-th polylog of xpolzagierLLpolzagier(n,m): Zagier's polynomials of index n,mprecisionprecision(x,{n}): change the precision of x to be n (n C-integer). If n is omitted, output real precision of object xprecprimeprecprime(x): largest pseudoprime <= x, 0 if x<=1primeprime(n): returns the n-th prime (n C-integer)primepiprimepi(x): the prime counting function pi(x) = #{p <= x, p prime}.primesprimes(n): returns the vector of the first n primes (n C-integer)printprint(a): outputs a (in raw format) ending with newlineprint1print1(a): outputs a (in raw format) without ending with newlineprintpprintp(a): outputs a (in beautified format) ending with newlineprintp1printp1(a): outputs a (in beautified format) without ending with newlineprinttexprinttex(a): outputs a in TeX formatprodprod(X=a,b,expr,{x=1}): x times the product (X runs from a to b) of expressionprodeulerV=GGEpprodeuler(X=a,b,expr): Euler product (X runs over the primes between a and b) of real or complex expressionprodinfV=GED0,L,pprodinf(X=a,expr,{flag=0}): infinite product (X goes from a to infinity) of real or complex expression. flag can be 0 (default) or 1, in which case compute the product of the 1+expr insteadpsipsi(x): psi-function at xqfbclassnoqfbclassno(x,{flag=0}): class number of discriminant x using Shanks's method by default. If (optional) flag is set to 1, use Euler productsqfbcomprawqfbcompraw(x,y): Gaussian composition without reduction of the binary quadratic forms x and yqfbhclassnoqfbhclassno(x): Hurwitz-Kronecker class number of x>0qfbnucompqfbnucomp(x,y,l): composite of primitive positive definite quadratic forms x and y using nucomp and nudupl, where l=[|D/4|^(1/4)] is precomputedqfbnupowqfbnupow(x,n): n-th power of primitive positive definite quadratic form x using nucomp and nuduplqfbpowrawqfbpowraw(x,n): n-th power without reduction of the binary quadratic form xqfbprimeformqfbprimeform(x,p): returns the prime form of discriminant x, whose first coefficient is pqfbredGD0,L,DGDGDGqfbred(x,{flag=0},{D},{isqrtD},{sqrtD}): reduction of the binary quadratic form x. All other args. are optional. D, isqrtD and sqrtD, if present, supply the values of the discriminant, floor(sqrt(D)) and sqrt(D) respectively. If D<0, its value is not used and all references to Shanks's distance hereafter are meaningless. flag can be any of 0: default, uses Shanks's distance function d; 1: use d, do a single reduction step; 2: do not use d; 3: do not use d, single reduction step.qfbsolveqfbsolve(Q,p): Return [x,y] so that Q(x,y)=p where Q is a binary quadratic form and p a prime number, or 0 if there is no solution.qfgaussredqfgaussred(x): square reduction of the (symmetric) matrix x (returns a square matrix whose i-th diagonal term is the coefficient of the i-th square in which the coefficient of the i-th variable is 1)qfjacobiqfjacobi(x): eigenvalues and orthogonal matrix of eigenvectors of the real symmetric matrix xqflllqflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x (gives the unimodular transformation matrix). The columns of x must be linearly independent, unless specified otherwise below. flag is optional, and can be 0: default, 1: assumes x is integral, columns may be dependent, 2: assumes x is integral, returns a partially reduced basis, 4: assumes x is integral, returns [K,I] where K is the integer kernel of x and I the LLL reduced image, 5: same as 4 but x may have polynomial coefficients, 8: same as 0 but x may have polynomial coefficientsqflllgramqflllgram(x,{flag=0}): LLL reduction of the lattice whose gram matrix is x (gives the unimodular transformation matrix). flag is optional and can be 0: default,1: lllgramint algorithm for integer matrices, 4: lllgramkerim giving the kernel and the LLL reduced image, 5: lllgramkerimgen same when the matrix has polynomial coefficients, 8: lllgramgen, same as qflllgram when the coefficients are polynomialsqfminimGDGDGD0,L,pqfminim(x,{bound},{maxnum},{flag=0}): number of vectors of square norm <= bound, maximum norm and list of vectors for the integral and definite quadratic form x; minimal non-zero vectors if bound=0. flag is optional, and can be 0: default; 1: returns the first minimal vector found (ignore maxnum); 2: as 0 but uses a more robust, slower implementation, valid for non integral quadratic formsqfperfectionqfperfection(a): rank of matrix of xx~ for x minimal vectors of a gram matrix aqfrepqfrep(x,B,{flag=0}): vector of (half) the number of vectors of norms from 1 to B for the integral and definite quadratic form x. Binary digits of flag mean 1: count vectors of even norm from 1 to 2B, 2: return a t_VECSMALL instead of a t_VECqfsignqfsign(x): signature of the symmetric matrix xquadclassunitquadclassunit(D,{flag=0},{tech=[]}): compute the structure of the class group and the regulator of the quadratic field of discriminant D. If flag is non-null (and D>0), compute the narrow class group. See manual for the optional technical parametersquaddiscquaddisc(x): discriminant of the quadratic field Q(sqrt(x))quadgenquadgen(x): standard generator of quadratic order of discriminant xquadhilbertquadhilbert(D,{pq}): relative equation for the Hilbert class field of the quadratic field of discriminant D (which can also be a bnf). If D<0, pq (if supplied) is a 2-component vector [p,q], where p,q are the prime numbers needed for Schertz's method. In that case, return 0 if [p,q] not suitable.quadpolyquadpoly(D,{v=x}): quadratic polynomial corresponding to the discriminant D, in variable vquadrayquadray(D,f,{lambda}): relative equation for the ray class field of conductor f for the quadratic field of discriminant D (which can also be a bnf). For D < 0, lambda (if supplied) is the technical element of bnf necessary for Schertz's method. In that case, return 0 if lambda is not suitable.quadregulatorquadregulator(x): regulator of the real quadratic field of discriminant xquadunitquadunit(x): fundamental unit of the quadratic field of discriminant x where x must be positiverandomrandom({N=2^31}): random integer between 0 and N-1readvecD"",s,readvec({filename}): create a vector whose components are the evaluation of all the expressions found in the input file filenamerealreal(x): real part of xremoveprimesremoveprimes({x=[]}): remove primes in the vector x (with at most 100 components) from the prime table. x can also be a single integer. List the current extra primes if x is omittedreorder({x=[]}): reorder the variables for output according to the vector x. If x is void or omitted, print the current list of variablesreturnreturn({x=0}): return from current subroutine with result xrnfalgtobasisrnfalgtobasis(rnf,x): relative version of nfalgtobasis, where rnf is a relative numberfieldrnfbasisrnfbasis(bnf,order): given an order as output by rnfpseudobasis or rnfsteinitz, gives either a basis of the order if it is free, or an n+1-element generating setrnfbasistoalgrnfbasistoalg(rnf,x): relative version of nfbasistoalg, where rnf is a relative numberfieldrnfcharpolyGGGDnrnfcharpoly(nf,T,alpha,{var=x}): characteristic polynomial of alpha over nf, where alpha belongs to the algebra defined by T over nf. Returns a polynomial in variable var (x by default)rnfconductorrnfconductor(bnf,polrel,{flag=0}): conductor of the Abelian extension of bnf defined by polrel. The result is [conductor,rayclassgroup,subgroup], where conductor is the conductor itself, rayclassgroup the structure of the corresponding full ray class group, and subgroup the HNF defining the norm group (Artin or Takagi group) on the given generators rayclassgroup[3]. If flag is non-zero, check that polrel indeed defines an Abelian extensionrnfdedekindrnfdedekind(nf,T,pr): relative Dedekind criterion over nf, applied to the order defined by a root of irreducible polynomial T, modulo the prime ideal pr. Returns [flag,basis,val], where basis is a pseudo-basis of the enlarged order, flag is 1 iff this order is pr-maximal, and val is the valuation in pr of the order discriminantrnfdetrnfdet(nf,order): given a pseudomatrix, compute its pseudodeterminantrnfdiscrnfdisc(nf,pol): given a pol with coefficients in nf, gives a 2-component vector [D,d], where D is the relative ideal discriminant, and d is the relative discriminant in nf^*/nf*^2rnfeltabstorelrnfeltabstorel(rnf,x): transforms the element x from absolute to relative representationrnfeltdownrnfeltdown(rnf,x): expresses x on the base field if possible; returns an error otherwisernfeltreltoabsrnfeltreltoabs(rnf,x): transforms the element x from relative to absolute representationrnfeltuprnfeltup(rnf,x): expresses x (belonging to the base field) on the relative fieldrnfequationrnfequation(nf,pol,{flag=0}): given a pol with coefficients in nf, gives the absolute equation apol of the number field defined by pol. flag is optional, and can be 0: default, or non-zero, gives [apol,th], where th expresses the root of nf.pol in terms of the root of apolrnfhnfbasisrnfhnfbasis(bnf,order): given an order as output by rnfpseudobasis, gives either a true HNF basis of the order if it exists, zero otherwisernfidealabstorelrnfidealabstorel(rnf,x): transforms the ideal x from absolute to relative representationrnfidealdownrnfidealdown(rnf,x): finds the intersection of the ideal x with the base fieldrnfidealhnfrnfidealhnf(rnf,x): relative version of idealhnf, where rnf is a relative numberfieldrnfidealmulrnfidealmul(rnf,x,y): relative version of idealmul, where rnf is a relative numberfieldrnfidealnormabsrnfidealnormabs(rnf,x): absolute norm of the ideal xrnfidealnormrelrnfidealnormrel(rnf,x): relative norm of the ideal xrnfidealreltoabsrnfidealreltoabs(rnf,x): transforms the ideal x from relative to absolute representationrnfidealtwoeltrnfidealtwoelt(rnf,x): relative version of idealtwoelt, where rnf is a relative numberfieldrnfidealuprnfidealup(rnf,x): lifts the ideal x (of the base field) to the relative fieldrnfinitrnfinit(nf,pol): pol being a non constant irreducible polynomial defined over the number field nf, initializes a vector of data necessary for working in relative number fields (rnf functions). See manual for technical detailsrnfisfreernfisfree(bnf,order): given an order as output by rnfpseudobasis or rnfsteinitz, outputs true (1) or false (0) according to whether the order is free or notrnfisnormrnfisnorm(T,x,{flag=0}): T is as output by rnfisnorminit applied to L/K. Tries to tell whether x is a norm from L/K. Returns a vector [a,b] where x=Norm(a)*b. Looks for a solution which is a S-integer, with S a list of places in K containing the ramified primes, generators of the class group of ext, as well as those primes dividing x. If L/K is Galois, omit flag, otherwise it is used to add more places to S: all the places above the primes p <= flag (resp. p | flag) if flag > 0 (resp. flag < 0). The answer is guaranteed (i.e x norm iff b=1) if L/K is Galois or, under GRH, if S contains all primes less than 12.log(disc(M))^2, where M is the normal closure of L/KrnfisnorminitGGD2,L,rnfisnorminit(pol,polrel,{flag=2}): let K be defined by a root of pol, L/K the extension defined by polrel. Compute technical data needed by rnfisnorm to solve norm equations Nx = a, for x in L, and a in K. If flag=0, do not care whether L/K is Galois or not; if flag = 1, assume L/K is Galois; if flag = 2, determine whether L/K is Galoisrnfkummerrnfkummer(bnr,{subgroup},{deg=0}): bnr being as output by bnrinit, finds a relative equation for the class field corresponding to the module in bnr and the given congruence subgroup (the ray class field if subgroup is omitted). deg can be zero (default), or positive, and in this case the output is the list of all relative equations of degree deg for the given bnrrnflllgramrnflllgram(nf,pol,order): given a pol with coefficients in nf and an order as output by rnfpseudobasis or similar, gives [[neworder],U], where neworder is a reduced order and U is the unimodular transformation matrixrnfnormgrouprnfnormgroup(bnr,polrel): norm group (or Artin or Takagi group) corresponding to the Abelian extension of bnr.bnf defined by polrel, where the module corresponding to bnr is assumed to be a multiple of the conductor. The result is the HNF defining the norm group on the given generators in bnr[5][3]rnfpolredrnfpolred(nf,pol): given a pol with coefficients in nf, finds a list of relative polynomials defining some subfields, hopefully simplerrnfpolredabsrnfpolredabs(nf,pol,{flag=0}): given a pol with coefficients in nf, finds a relative simpler polynomial defining the same field. Binary digits of flag mean: 1: return also the element whose characteristic polynomial is the given polynomial, 2: return an absolute polynomial, 16: partial reductionrnfpseudobasisrnfpseudobasis(nf,pol): given a pol with coefficients in nf, gives a 4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal order in HNF on the power basis, D is the relative ideal discriminant, and d is the relative discriminant in nf^*/nf*^2rnfsteinitzrnfsteinitz(nf,order): given an order as output by rnfpseudobasis, gives [A,I,D,d] where (A,I) is a pseudo basis where all the ideals except perhaps the last are trivialroundround(x,{&e}): take the nearest integer to all the coefficients of x. If e is present, do not take into account loss of integer part precision, and set e = error estimate in bitsserconvolserconvol(x,y): convolution (or Hadamard product) of two power seriesserlaplaceserlaplace(x): replaces the power series sum of a_n*x^n/n! by sum of a_n*x^n. For the reverse operation, use serconvol(x,exp(X))serreverseserreverse(x): reversion of the power series xsetintersectsetintersect(x,y): intersection of the sets x and ysetissetsetisset(x): true(1) if x is a set (row vector with strictly increasing entries), false(0) if notsetminussetminus(x,y): set of elements of x not belonging to ysetrandlLsetrand(n): reset the seed of the random number generator to nsetsearchlGGD0,L,setsearch(x,y,{flag=0}): looks if y belongs to the set x. If flag is 0 or omitted, returns 0 if it is not, otherwise returns the index j such that y==x[j]. If flag is non-zero, return 0 if y belongs to x, otherwise the index j where it should be insertedsetunionsetunion(x,y): union of the sets x and yshiftshift(x,n): shift x left n bits if n>=0, right -n bits if n<0.shiftmulshiftmul(x,n): multiply x by 2^n (n>=0 or n<0)sigmaGD1,L,sigma(x,{k=1}): sum of the k-th powers of the divisors of x. k is optional and if omitted is assumed to be equal to 1signiGsign(x): sign of x, of type integer, real or fractionsimplifysimplify(x): simplify the object x as much as possiblesinsin(x): sine of xsinhsinh(x): hyperbolic sine of xsizebytesizebyte(x): number of bytes occupied by the complete tree of the object xsizedigitsizedigit(x): maximum number of decimal digits minus one of (the coefficients of) xsolvesolve(X=a,b,expr): real root of expression expr (X between a and b), where expr(a)*expr(b)<=0sqrsqr(x): square of x. NOT identical to x*xsqrtsqrt(x): square root of xsqrtintsqrtint(x): integer square root of x (x integer)sqrtnGGD&psqrtn(x,n,{&z}): nth-root of x, n must be integer. If present, z is set to a suitable root of unity to recover all solutions. If it was not possible, z is set to zerosubgrouplistsubgrouplist(bnr,{bound},{flag=0}): bnr being as output by bnrinit or a list of cyclic components of a finite Abelian group G, outputs the list of subgroups of G (of index bounded by bound, if not omitted), given as HNF left divisors of the SNF matrix corresponding to G. If flag=0 (default) and bnr is as output by bnrinit, gives only the subgroups for which the modulus is the conductorsubstGnGsubst(x,y,z): in expression x, replace the variable y by the expression zsubstpolsubstpol(x,y,z): in expression x, replace the polynomial y by the expression z, using remainder decomposition of x.substvecsubstvec(x,v,w): in expression x, make a best effort to replace the variables v1,...,vn by the expression w1,...,wnsumsum(X=a,b,expr,{x=0}): x plus the sum (X goes from a to b) of expression exprsumaltsumalt(X=a,expr,{flag=0}): Cohen-Villegas-Zagier's acceleration of alternating series expr, X starting at a. flag is optional, and can be 0: default, or 1: uses a slightly different method using Zagier's polynomialssumdivGVEsumdiv(n,X,expr): sum of expression expr, X running over the divisors of nsuminfV=GEpsuminf(X=a,expr): infinite sum (X goes from a to infinity) of real or complex expression exprsumnumV=GGEDGD0,L,psumnum(X=a,sig,expr,{tab},{flag=0}): numerical summation of expr from X = ceiling(a) to +infinity. sig is either a scalar or a two-component vector coding the function's decrease rate at infinity. It is assumed that the scalar part of sig is to the right of all poles of expr. If present, tab must be initialized by sumnuminit. If flag is nonzero, assumes that conj(expr(z)) = expr(conj(z)).sumnumaltsumnumalt(X=a,sig,s,{tab},{flag=0}): numerical summation of (-1)^X s from X = ceiling(a) to +infinity. Note that the (-1)^X must not be included. sig is either a scalar or a two-component vector coded as in intnum, and the scalar part is larger than all the real parts of the poles of s. Uses intnum, hence tab is as in intnum. If flag is nonzero, assumes that the function to be summed satisfies conj(f(z))=f(conj(z)), and then up to twice faster.sumnuminitGD0,L,D1,L,psumnuminit(sig, {m=0}, {sgn=1}): initialize tables for numerical summation. sgn is 1 (in fact >= 0), the default, for sumnum (ordinary sums) or -1 (in fact < 0) for sumnumalt (alternating sums). sig is as in sumnum and m is as in intnuminit.sumpossumpos(X=a,expr,{flag=0}): sum of positive series expr, the formal variable X starting at a. flag is optional, and can be 0: default, or 1: uses a slightly different method using Zagier's polynomialstantan(x): tangent of xtanhtanh(x): hyperbolic tangent of xtaylorGnPtaylor(x,y): taylor expansion of x with respect to the main variable of yteichmullerteichmuller(x): teichmuller character of p-adic number xthetatheta(q,z): Jacobi sine theta-functionthetanullkGLpthetanullk(q,k): k'th derivative at z=0 of theta(q,z)thuethue(tnf,a,{sol}): solve the equation P(x,y)=a, where tnf was created with thueinit(P), and sol, if present, contains the solutions of Norm(x)=a modulo units in the number field defined by P. If tnf was computed without assuming GRH (flag 1 in thueinit), the result is unconditionalthueinitthueinit(P,{flag=0}): initialize the tnf corresponding to P, that will be used to solve Thue equations P(x,y) = some-integer. If flag is non-zero, certify the result unconditionnaly. Otherwise, assume GRH (much faster of course)tracetrace(x): trace of xtrapD"",r,DIDItrap({err}, {rec}, {seq}): try to execute seq, trapping error err (all of them if err ommitted); sequence rec is executed if the error occurs and is the result of the command. When seq is omitted, define rec as a default handler for error err (a break loop will be started if rec omitted). If rec is the empty string "" pop out the last default handlertruncatetruncate(x,{&e}): truncation of x; when x is a power series,take away the O(X^). If e is present, do not take into account loss of integer part precision, and set e = error estimate in bitstypetype(x): return the type of the GEN x.untiluntil(a,seq): evaluate the expression sequence seq until a is nonzerovaluationvaluation(x,p): valuation of x with respect to pvariablevariable(x): main variable of object x. Gives p for p-adic x, error for scalarsvecextractvecextract(x,y,{z}): extraction of the components of the matrix or vector x according to y and z. If z is omitted, y designs columns, otherwise y corresponds to rows and z to columns. y and z can be vectors (of indices), strings (indicating ranges as in "1..10") or masks (integers whose binary representation indicates the indices to extract, from left to right 1, 2, 4, 8, etc.)vecmaxvecmax(x): maximum of the elements of the vector/matrix xvecminvecmin(x): minimum of the elements of the vector/matrix xvecsortvecsort(x,{k},{flag=0}): sorts the vector of vectors (or matrix) x in ascending order, according to the value of its k-th component if k is not omitted. Binary digits of flag (if present) mean: 1: indirect sorting, return the permutation instead of the permuted vector, 2: sort using lexicographic order, 4: use descending instead of ascending ordervectorGDVDIvector(n,{X},{expr=0}): row vector with n components of expression expr (X ranges from 1 to n). By default, fill with 0svectorsmallvectorsmall(n,{X},{expr=0}): VECSMALL with n components of expression expr (X ranges from 1 to n) which must be small integers. By default, fill with 0svectorvvectorv(n,{X},{expr=0}): column vector with n components of expression expr (X ranges from 1 to n). By default, fill with 0sweberweber(x,{flag=0}): One of Weber's f function of x. flag is optional, and can be 0: default, function f(x)=exp(-i*Pi/24)*eta((x+1)/2)/eta(x) such that (j=(f^24-16)^3/f^24), 1: function f1(x)=eta(x/2)/eta(x) such that (j=(f1^24+16)^3/f2^24), 2: function f2(x)=sqrt(2)*eta(2*x)/eta(x) such that (j=(f2^24+16)^3/f2^24)whilewhile(a,seq): while a is nonzero evaluate the expression sequence seq. Otherwise 0writevss*write(filename,a): write the string expression a (same output as print) to filenamewrite1write1(filename,a): write the string expression a (same output as print1) to filenamewritebinvsDGwritebin(filename,{x}): write x as a binary object to file filename. If x is omitted, write all session variableswritetexwritetex(filename,a): write the string expression a (same format as print) to filename, in TeX formatzetazeta(s): Riemann zeta function at s with s a complex or a p-adic numberzetakzetak(nfz,s,{flag=0}): Dedekind zeta function of the number field nfz at s, where nfz is the vector computed by zetakinit (NOT by nfinit) flag is optional, and can be 0: default, compute zetak, or non-zero: compute the lambdak function, i.e. with the gamma factorszetakinitzetakinit(x): compute number field information necessary to use zetak, where x is an irreducible polynomialzncoppersmithGGGDGzncoppersmith(P, N, X, {B=N}): finds all integers x0 with |x0| <= X such that gcd(N, P(x0)) > B. X should be smaller than exp((log B)^2 / (deg(P) log N)).znlogznlog(x,g): g as output by znprimroot (modulo a prime). Return smallest non-negative n such that g^n = xznorderznorder(x,{o}): order of the integermod x in (Z/nZ)*. Optional o is assumed to be a multiple of the order.znprimrootznprimroot(n): returns a primitive root of n when it existsznstarznstar(n): 3-component vector v, giving the structure of (Z/nZ)^*. v[1] is the order (i.e. eulerphi(n)), v[2] is a vector of cyclic components, and v[3] is a vector giving the corresponding generatorsuser interruptfloating point exception: bug in PARI or calling programbus error: bug in PARI or calling programsegmentation fault: bug in PARI or calling programunknown signalbroken pipebad object %Z"⍀"P ⍀ P⍀Pyt⍀P`[⍀PGB⍀P.)⍀P⍀Pz⍀zPe⍀ePP⍀PP;⍀;P&⍀&Pz⍀Pfa⍀PMH⍀P4/⍀P⍀P⍀P⍀P~⍀~Pi⍀iPT⍀TP?⍀?Plg*⍀*PSN⍀P:5⍀P!⍀P⍀P⍀P⍀P⍀P⍀Pm⍀mPrmX⍀XPYTC⍀CP@;.⍀.P'"⍀P ⍀P ⍀P ⍀P ⍀P ⍀P ⍀Px s ⍀P_ Z q⍀qPF A \⍀\P- ( G⍀GP  2⍀2P ⍀P ⍀P ⍀P ⍀P ⍀P~ y ⍀Pe ` ⍀PL G ⍀P3 . u⍀uP  `⍀`P K⍀KP 6⍀6P !⍀!P ⍀ P Ib{*C\u $=Vo7Pi1Jc|+D]v %>W$Ë$Ë $Ë$C CCC CC6C C"C CC CC! BBLBBBB! SBAAA! AAHk@A<k@AHk@yALk@mAHk@dADk@^A@k@UADk@OA<k@BAHk@>>>>>>d>>y>>h>>! >>z>0>t>h>T>F>d0>@>y0>:>h0>,>! >>> >! ====! ==V==P=5=h=-=='==!=== ===S=<! <<<<<<<" <<,<<,<<,<<,<}<,<w<,<m<,<e<,<\<,<S<,<J<,<><,<(<! <;;; ;;;;;;;;;;;;;o;;^;;X;;L;;F;;>;;6;;;:! ::9:B:9<:94:9999! 99 9y9,9 9"9 99 99! 888888888! ^88688"8888 8! 77777777! 7f7'7Z707'7#7! 7666666! 6>65.6655! 5555p5K5G5! 055544! 44444O4g4]4K4! 14433333! 33333! 3Li23x3j3S3/33Li22i222i22i22i2e2! I211111! U110000! j030L000/! //.//.! ..T.P.L.! .,,,! ,+u+q+! P+B*1*-*! * *))l))l)u)l)h)! H):)")('('('(L'(('('w('h(('(''''''! 'z'2'&'& '&'L&&&&&&&&&s&&]&&M&&"&& &! %%u#%p#%i#%`#b%Y#A%Q# %H#$A#$:#$$$$l#$#m$Y$A$-$#$$# $C##P########C###6#2##! "`"""""""! "q"a"Q"-0""-!!!!!h!`-]!M!E!w-8!S-+!`- !o-!f-! X-   M- I- G- C- 4-k +-Z &-H -; 3 -"  -----T--l-x-xd-maU<!-8!-4e-0!-,e-(` -$` - e-e-e-!-!- !-!-@-R -e-e-e-!-e-e-e-e-e-e-e-e-e-!-!-@-!-e-e-D -+ -!-e-e-e-!-@--yq"-^`-Nl--!d-h- T---T--w^-<d-)!  S`;2/rkdaB:"'`lhd! \{oTi ZhNlD>2* ! qq qqqvqm! bRJ6! ߇4tfV&4hT߇40! C C C " ~vkWJ|! {udS: (0pV=%@}w_Q(! 3}mV?3yYI!3v^p(! RLH! 6( LLLLLLtLfLULM(LLLLLLLLLLzRtLH! 7"         \    | t  n f  ` X  R J  D <  6 .  (       |      4  ,  0  0  (   | t  ] K  ? - | !  !    }  \}   \}  }{ d }\ T < }/  }  } }  }  x} } } } }  d}| `}v x}N 3 |}- |}& }  t}   |}  } }  } t}| d }^ x}X |}> 2 }  }4}}}(},}0}rm(}`[}NI}<(#} }}}}}}}}y! d|*|! # # xhXH8~>f8'f!f flffff`ffWffff fff~fqXfkOfb! 4|! |! SI09! ggc! DCCCuC?! kkkkkkkkkksg! CAAAAATAPAHA @A4A0A(AY AAAA A@@@ @@@@ @@@@ @@@@ @t@p@h@ `@T@P@H@ @@4@0@(@{ @@@@ @??? ?????? ???? ?t?p?h? `?T?P?H? @?4?0?(? ???? ?>>> >>>> >>>>w >>>>[ >t>`>T>P>H> @>4>0>(> >>>>>=== ==== ==== ==== =t=p=h= `=T=P=H= @=4=0=(= ==== =<<< <<<< <<<< <<<< <t<p<h< `<T<P<H< @<4<0<(< <<<< <;;; ;;;; ;;;; ;;;; ;t;p;h; `;T;P;H; @;4;0;(;h ;;;; ;::: :::: :::: :::::t:p:h:~ `:T:P:H: @:4:0:(: :::: :999 9999m 9999 9999 9t9p9h9 `9T9P9H9 @94909(9 9999 9888 8888l 8888 8888 8t8p8h8 `8T8P8H8 @84808(8 8888 8777 7777 7777 7777 7t7p7h7 `7T7P7H7 @74707(7 7777 7666 6666 6666 6666 6t6p6h6 `6T6P6H6 @64606(6 6666 6555 5555~ 5555} 5555| 5t5p5h5{ `5T5P5H5z @54505(5y 5555x 5444w 4444v 4444u 4444t 4t4p4h4s `4T4P4H4r @44404(4q 4444p 43333333o 3333| 3333u 3t3p3h3L `3T3P3H3V @34303(3} 3333g 3222f 2222e 2222d 2222c 2t2p2h2b `2T2P2H2 @24202(2` 2222. 2111_ 1111^ 1111] 1111 1t1p1h1 `1T1P1H1\ @14101(1[ 1111K 1000G 0000 0000 0000 0t0p0h0 `0T0P0H0Z @04000(0z 0000X 0///W ////Y ////V ////U /t/p/h/T `/T/P/H/R @/4/0/(/P ////M /...L ....I ....y ....H .t.p.h.D `.T.P.H.B @.4.0.(. .... .---A ---- ----@ ---- -t-p-h- `-T-P-H- @-4-0-(- ----? -,,, ,,,,> ,,,,= ,,,,< ,t,p,h, `,T,P,H,; @,4,0,(,^ ,,,,: ,+++9 ++++8 ++++m ++++6 +t+p+h+5 `+T+P+H+ @+4+0+(+4 ++++3 +***/ ****" ****! ****r *t*p*h* `*T*P*H* @*4*0*(*q **** *)))p ))))o )))) )))) )t)p)h) `)T)P)H) @)4)0)() )))) )((( (((( ((((  ((((  (t(p(h( `(T(P(H(  @(4(0(((  (((( ('''  ''''. ''''- '''' 't'p'h' `'T'P'H' @'4'0'(' '''' '&&& &&&& &&&& &&&& &t&p&h& `&T&P&H& @&4&0&(& &&&& &%%% %%%% %%%% %%%% %t%p%h% `%T%P%H% @%4%0%(%n %%%% %$$$ $$$$k $$$$C $$$$ $t$p$h$i `$T$P$H$h @$4$0$($ $$$$ $### ####= #### #### #t#p#h# `#T#P#H# @#4#0#(#i #### #""" """" """" """" "t"p"h" `"T"P"H" @"4"0"(" """" "!!! !!!! !!!! !!!! !t!p!h! `!T!P!H! @!4!0!(! !!!! !             t p h ` T P H @ 4 0 (       g f  tph `TPH @40(     e tphd `TPHc @40( a b ` _  tph] `TPH @40(      tph `TPH @40(      tph `TPH\ @4 O     tphN `TPHJ @40(      tph `TPH @40(      tph `TPH @40(   Q P tphO `TPH@40(E W X 7 6 5 tph4 `TPH3 @40(2 1 0 / U $ tph# `TPH" @40(!     T  tph `TPH @40(7      tph `TPH @40(S R v   M tph2 `TPH  @40(         tph `TPHF @40(      tph `TPH @40(      tph `TPH @40( 1     tph `TPH @40(              t p h ` T P H @ 4 0 (          J    G    I t p h ` T P H @ 4 0 ( 0             H    t p h ` T P H @ 4 0 (           F       t p h ` T P H @ 4 0 (                t p h ` T P H @ 4 0 (       n tph `TPH @40(      tph `TPH @40(  D C B A tph@ `TPH? @40(  >    tph `TPH @40(      tph `TPH @40(< ; 9 : 8  tph `TPH @40(   * + ) tph `TPH @40(      tph `TPH @40(     tph`TPH @40( # [O[O  W6W6  SS  OO  KK  GG  CCy t n?f?` [ U;M;G B <7n47n. ) #3U3U  /</<  +#+#  ' '   ##     z tlf a [SM H Bt:t4 / ) [! [  BB  ))          zrl g aYS N Hz@z: 5 /a'a!  HH  //          xr m g_Y T NF@ ; 5g-g' " NN  55          ~x s me_ Z TLF A ;m3m- ( "TT  ;;  ""        {{  ww~ y sskse ` ZoRoL G Aks9ks3 . (gZ gZ  cAcA |xtplhd`\XTPLHD@<840,($  (NjNQ-+*,(SEaxZ,lKWjF&' g)'k%&c{(NjNQ-+*,(SEaxZ,lKWjF&' g)'k%&c{ $#s%t$4=I?Yjd@CCl+,/AhBB16;`D0?UT?fA+ ]\Ad=H=# |E H   ::8`2,\x0(l1`P4<x@7;lwh`(<plCthD|.g&(*' L<@8w?9^D45k4{@57B3P367t88@$D}HTP D t,~qF}1c$>m><P8U , z$ `t$l,e0](P1( Xs4%2)P)d<4. .T=[>'#@I`" 3<G LOU] e #x)0;GWey!h #  # , ' = D yb *l s z       $     - ; P ] g {          T& . ] G P i |   6S  _         -&@M  ' 7 C T e u  kxq~-6?MU_ U  O Z     : A     o)5<+C5r4   _e 4;,         # 0 ; K U a       9 EF&P-:GTbr[iru "/EMT]iuVGG  '.u~{ s 0<[q{)3fqZ 6#*>   =Hi`^p?*5S7   ^i Jh E M  Xaz8'5>MWfs!2?Pas*4"?MWaju kizq? ,5>JVWjppw~x * p P_fw;_functions_tblsz_foreignExprSwitch_push_stack_pop_stack_newbloc___i686.get_pc_thunk.bx_DEBUGMEM_gclone_refc_gunclone_killbloc_pop_entree_bloc_gpmalloc_gprealloc_cgetalloc_pari_add_function_functions_hash_pari_add_module_pari_init_defaults_precreal_precdl_compatible_DEBUGLEVEL_DEBUGFILES_disable_color_logstyle_current_psfile_current_logfile_logfile_pari_datadir_grow_append_grow_copy_grow_init_grow_kill_pari_sig_init_pari_get_modules___i686.get_pc_thunk.dx_pari_get_oldmodules_gp_init_functions_pari_init_opts_top_bot_memused_avma_diffptr_varentries_ordvar_polvar_pol_x_pol_1_primetab_members_hash_funct_old_hash_whatnow_fun_sigint_fun_default_exception_handler_GP_DATA_pari_init_pari_close_opts_pari_close_getheap_gen_0_traverseheap_changevar_reorder_recover_disable_dbg___i686.get_pc_thunk.cx_errcontext_err_catch_err_leave_err_recover_global_err_data_pari_warn_pari_err_whatnow_new_syntax_trap0_gnil_lontyp_gcopy_gcopy_i_shallowcopy_gcopy_av_taille_taille2_gclone_copy_bin_copy_bin_canon_bin_copy_gerepilecopy_gerepilemany_gerepileall_gerepilecoeffs_gerepilecoeffs2_gerepileallsp_gerepilemanysp_gerepilecoeffssp_gerepileupto_gerepileuptoleaf_gerepileuptoint_ok_gerepileupto_gerepile_allocatemoremem_switch_stack_fill_stack_debug_stack_TIMER_TIMERstart_timer_timer2_msgTIMER_msgtimer_geni_gi_functions_basic_gtocol_mpeuler_gtolist_gtomat_Mod0_mppi_gtopoly_gtopolyrev_Qfb0_gtoser_gtoset_Str_Strchr_Strexpand_Strtex_gtovec_gtovecsmall_gabs_gacos_gach_addhelp_addprimes_agm_algdep0_alias0_allocatemem0_garg_gasin_gash_gatan_gath_bernfrac_bernreal_bernvec_hbessel1_hbessel2_ibessel_jbessel_jbesselh_kbessel0_nbessel_bestappr0_vecbezout_vecbezoutres_gbigomega_binaire_binomial_gbitand_gbitneg_gbitnegimply_gbitor_gbittest_gbitxor_certifybuchall_bnfclassunit0_classgrouponly_decodemodule_bnfinit0_bnfisintnorm_bnfisnorm_isprincipalall_bnfissunit_isunit_bnfmake_buchnarrow_regulator_signunits_bnfsunit_buchfu_bnrL1_bnrclass0_bnrclassno_bnrclassnolist_bnrconductor_bnrconductorofchar_bnrdisc0_bnrdisclist0_bnrinit0_bnrisconductor_bnrisprincipal_bnrrootnumber_bnrstark_break0_gceil_centerlift0_charpoly0_chinese_compo_concat_gconj_conjvec_content_contfrac0_pnqn_core0_coredisc0_gcos_gch_gcotan_default0_denom_deriv_dilog_dirdiv_direuler0_dirmul_dirzetak_divisors_divrem_veceint1_addell_akell_anell_ellap0_bilhell_coordch_pointch_ellconvertname_elleisnum_elleta_ellgenerators_ellglobalred_ellheight0_mathell_ellidentify_ellinit0_ellisoncurve_jell_elllocalred_elllseries_ellminimalmodel_orderell_ordell_zell_powell_ellrootno_ellsearch_ellsigma_subell_elltaniyama_elltors0_ellwp0_ellzeta_pointell_gerfc_error0_eta0_gphi_geval_gexp_factor0_factorback0_factcantor_factorff_mpfactr_factorint_factormod0_polfnf_factorpadic0_ffinit_fibo_gfloor_forpari_fordiv_forell_forprime_forstep_forsubgroup_forvec_gfrac_galoisexport_galoisfixedfield_galoisidentify_galoisinit_galoisisabelian_galoispermtopol_galoissubcyclo_galoissubfields_galoissubgroups_ggamma_ggamd_gcd0_getrand_getstack_gettime_hil0_hyperu_idealadd_idealaddtoone0_idealappr0_idealchinese_idealcoprime_idealdiv0_idealfactor_idealhnf0_idealintersect_idealinv_ideallist0_ideallistarch_zideallog_minideal_idealmul0_idealnorm_idealpow0_primedec_principalideal_ideallllred_idealstar0_ideal_two_elt0_idealval_principalidele_gimag_incgam0_incgamc_intcirc0_integ_intfourcos0_intfourexp0_intfoursin0_intfuncinit0_intlaplaceinv0_intmellininv0_intmellininvshort_intnum0_intnuminit_intnuminitgen0_intnumromb0_intnumstep_gisfundamental_ispower_gisprime_gispseudoprime_gissquarerem_gissquarefree_kill0_gkronecker_glcm0_glength_lexcmp_lift0_lindep0_listcreate_listinsert_listkill_listput_listsort_glngamma_glog_adj_matalgtobasis_matbasistoalg_assmat_det0_detint_diagonal_eigen_matfrobenius_hess_mathilbert_mathnf0_hnfmod_hnfmodid_matid_matimage0_imagecompl_indexrank_intersect_inverseimage_isdiagonal_matker0_matkerint0_matmuldiagonal_matmultodiagonal_matqpascal_rank_matrice_matrixqz0_matsize_matsnf0_gauss_matsolvemod0_suppl_gtrans_gmax_gmin_minpoly_polymodrecip_gmu_newtonpoly_next0_gnextprime_algtobasis_nfbasis0_basistoalg_nfdetint_nfdiscf0_element_div_nfdiveuc_element_divmodpr_nfdivrem_nfmod_element_mul_element_mulmodpr_element_pow_element_powmodpr_element_reduce_nfreducemodpr_element_val_nffactor_nffactormod_galoisapply_galoisconj0_nfhilbert0_nfhermite_nfhermitemod_nfinit0_isideal_nfisincl_nfisisom_nfkermodpr_nfmodprinit_nfnewprec_nfroots_rootsof1_nfsmith_nfsolvemodpr_subfields0_gnorm_gnorml2_numbpart_gnumbdiv_numer_numtoperm_gomega_padicappr_padicprec_permtonum_polcoeff0_polcompositum0_cyclo_poldegree_poldisc0_reduceddiscsmith_polgalois_polhensellift_polint_gisirreducible_pollead_legendre_polrecip_polred0_polredabs0_ordred_polresultant0_roots0_rootmod0_rootpadic_sturmpart_polsubcyclo_sylvestermatrix_polsym_tchebi_tschirnhaus_polylog0_polzag_precision0_gprecprime_prime_primepi_primes_print_print1_printp_printp1_printtex_produit_prodeuler0_prodinf0_gpsi_qfbclassno0_compraw_hclassno_nucomp_nupow_powraw_primeform_qfbred0_qfbsolve_sqred_jacobi_qflll0_qflllgram0_qfminim0_perf_qfrep0_signat_quadclassunit0_quaddisc_quadgen_quadhilbert_quadpoly0_quadray_gregula_gfundunit_genrand_gp_readvec_file_greal_removeprimes_return0_rnfalgtobasis_rnfbasis_rnfbasistoalg_rnfcharpoly_rnfconductor_rnfdedekind_rnfdet_rnfdiscf_rnfelementabstorel_rnfelementdown_rnfelementreltoabs_rnfelementup_rnfequation0_rnfhnfbasis_rnfidealabstorel_rnfidealdown_rnfidealhermite_rnfidealmul_rnfidealnormabs_rnfidealnormrel_rnfidealreltoabs_rnfidealtwoelement_rnfidealup_rnfinitalg_rnfisfree_rnfisnorm_rnfisnorminit_rnfkummer_rnflllgram_rnfnormgroup_rnfpolred_rnfpolredabs_rnfpseudobasis_rnfsteinitz_round0_convol_laplace_recip_setintersect_setisset_setminus_setrand_setsearch_setunion_gshift_gmul2n_gsumdivk_gsigne_simplify_gsin_gsh_sizedigit_zbrent0_gsqr_gsqrt_racine_gsqrtn_subgrouplist0_gsubst_gsubstpol_gsubstvec_somme_sumalt0_divsum_suminf0_sumnum0_sumnumalt0_sumnuminit_sumpos0_gtan_gth_tayl_teich_theta_thetanullk_thue_thueinit_gtrace_trunc0_type0_ggval_gpolvar_extract0_vecmax_vecmin_vecsort0_vecteur_vecteursmall_vvecteur_weber0_write0_write1_gpwritebin_writetex_gzeta_gzetakall_initzeta_zncoppersmith_znlog_znorder_ggener_znstar_pari_outfile_infile_errfile_bernzone_gpi_geuler_gen_m1_gen_1_gen_2_ghalf_foreignHandler_foreignExprHandler_foreignAutoload_foreignFuncFree_gp_colors___i686.get_pc_thunk.axdyld_stub_binding_helper_errmessage_pariOut_pariErr_gp_function_name_pari_compare_long_oldfonctions_gp_member_list_ftime_bcopy_set_analyseur_readseq_get_analyseur_type_name_print0_pariputs_vpariputs_pariprintf_term_color_pariflush_pariputc_pari_last_was_newline_longjmp_flusherr_strcat_strncpy_strcpy_term_get_color_sprintf_print_prefixed_text_kill_from_hashlist_pop_val_if_newer_qsort_gpowgs_ggrando_gadd_gmul_gvar_gdiv_gmodulo_delete_dirs_killallfiles_delete_var_fetch_named_var_manage_var_fetch_var_pari_init_floats_pari_kernel_init_initprimes_exit_setjmp_default_gp_data_os_signal_initout_os_getenv_pari_strdup_hashvalue_freeep_realloc_malloc_fprintferr_free_cur_bloc_next_bloc_try_to_recover_MODULES_OLDMODULES_init_hashtable_err_catch_stack_init_universal_constants_dft_handler_var_not_changed_universal_constants_listloc.0_oldval.1_BREAK_LOOP_gcopy_av0_gcopy_av0_canon_shiftaddress_canon_taille0_shiftaddress__ok_gerepileupto_T.2_T.3_reel4.4_dflt_sigint_fun_pari_sighandler_f_getheap#1/12 1200774159 0 0 100644 106300 ` intnum.o X X __text__TEXTy x_ __data__DATA|Hp__literal8__TEXTX__cstring__TEXT  @__literal4__TEXT, L__picsymbolstub2__TEXT8X__la_sym_ptr2__DATA.FF__nl_symbol_ptr__DATA((H__textcoal_nt__TEXTPp @` P## CO0L$$D$ BA$ÐSD$*ȸY,9} ҃9|[UWVS\t$pD$LD$|$D$42D$ J Ȩtl$ u~ Ȩu$T$D$ $~D$ $D$ >0n+9{(F"}0~+=:F"oD$ G$ D$$>un+9(F"}7D$~+9Y:F"D$Gl$<$t$|D$tt$ D$|$4D$HD$|t$HD$(F<$D$L$xl$|$l$t$HD$F $|$HG D$Ht$H|$H@D$D(D$Hl$0VT$@@D$}@$$x$$Ĝ[^_]$|2*$|Ņ~GĜ[^_]Ë$%tG$V)7$$%tB$(7$$|1$|1)$|)Ճ$|!Ȩ($|!Ȩ%C?7V$x+%$xF"$|$|9 $x$D$ $蚫$x$tG4#3!$$x $D$T$t$r$t$I $t؅+t$D$$P $n C1$?V+8$$CF"$t@$p?+)9C8~$싄$x$$$tT$D$G$ $F$tQ qC9T$$ $L$$ $t$ D$<$4 $CG $tA$8ƍ)։$ ?+9$ C"193$ $B$t$tO$~$C7$$)‹?+0$9$$$$ "DŽ$|$8$9$$$ $4$ ?$L$7 $L$$$ $t$* D$<$ $$$$|$89tC$$P$t@$0?$7+0)9$$l$$$ ";$$$F$t$tO$r$C8щ$)?+$9{$$ "DŽ$$9$$$$$$4$9$D$i $L$$V $t$\D$<$ $$$$9q$$W$$xV $$x $D$U$$tt$|4$ $t$xAC$$x $D$u$D$hl$d,$]tD$h$xE$x[7$4$D$uNj$$hFC?7n+C(F"t$hNljL$`q?+)9C8~L$`}|$dt$h|$F$BED$dD$F $,E D$dD$F$ET$dT$F$Et$d|$ht$G$Et$L$hA$E$7/$&$$D$d$$x $D$蒷$$tt$\4$wE$t$xF$|!Ȩ`$$T$,$>C0?N+8L$PD$PCF"$x$|$,$(t$PF$D$L$t$tl$PE$xhI7D$$$@uċ$4$RC0?n+8 C)F"$t?V+T$Hr)9C8~L$H}|$L$t|$F$ED$LD$F ${E D$LD$F$eET$LT$F$OEt$L$tt$A$2Et$$tG$E$&$o$ $AD$L$F$,$t $to7,$D$wu܉,$cC?7F+ D$D-L$DCF"$t~|$@wǁ )ϋ?+9C8~L$@D$Dxl$$tF$|$DGl$F $T$DB l$F$t$DFl$$tA$~Fl$$tG$eFl$$tF$Ll$DED$D$$,$u7$$D$$$O{C?0V+9T$XET$XCF"$t@D$Tp?+)9C8~L$TD$Xxt$\$tt$G$T$XBt$$tF $L$XA D$\D$F$t$XFD$\$tD$G$FT$\$tT$F$L$XA|$\|$F$t$XFD$X/$$$$D$\m$l$p,$Jr7$4$D$O$$gCC?un+C(F"$tNljL$lq?+)9C8~L$l}|$p$t|$F$:ED$pD$F $$E D$pD$F$ET$pT$F$Et$p$tt$G$Et$$t$96$($<$D$p7$$D$Y$${C?0V+9T$xET$xCF"$t@D$tp?+)9C8~L$tD$xxt$|$tt$G$T$xBt$$tF $}L$xA D$|D$F$ct$xFD$|$tD$G$BFT$|$tT$F$%L$xA|$||$F$ t$xFD$xg$l$[$$-D$|m$p$t$$t؅e+t$D$$$Cu$?N+8$$UF"$t@$pEǍ )ϋ?+9}/~$싄$x$$$tt$D$E$3$GM uC}L$$y$T$$f$t$lD$<$$F $t@$0EǍ )ω$?+9$"9U +$$u$t$t@$y$C7%$‹?+0)9$$$$$ "|$<;$}w$$?$4$D$$L$$$t$D$<$$;$|$<|C$$h$tnыu)?+$9$"$9G$$r$t$t@$E$?C.+($)9ꉌ$$$$ ";$}{$$$$$49$D$$L$$r$t$xD$<$$;$|$$G$xU$&$D$$D$D$$9|$JI$9F$$D$$D$$$$D9|$d$^$e$$x $D$B$$$,$$t $7$4$D$uՋ$$=WC?7n+%C(F"$Nlj$q?+)9C8~$}$$|$F$E$D$F $E $D$F$E$T$F$E$$t$G$Et$$$$$$$$$x$T$$˚$$$ $5t $7$<$D$uՋ$<$NWC0?n+%C)F"$?V+$r)9C8~$}$$|$F$E$D$F $E $D$F$E$T$F$E$$t$G$Et$$$ $$<$$$t$$$|$D$$$;$|$$qD$$D$$D$$\$ 9|$"X$B$$u$t$$t؅.!+t$D$$$Cu$p?V+8$l$l}F"$tF$hpEǍ )ϋ?+9}/~$h싄$lx$$p$tt$D$E$$lGM uC}L$$5$pT$$"$t$(D$<$$lF $t@$d0EǍ )ϋ?+$`9|$`"9U $`$lu$t$t@$\y$XC7%$T‹?+0)9$T$P$P$P$T "|$4;$T}w$`$X?$\4$D$$pL$$$t$D$<$B$P;$T|$4|C$P$lh$tnыu)?+$L9$L"$L98$L$lr$t$t@$HE$D?C.+($@)9ꉌ$<$<$<$@ ";$@}{$8$L$H$D$849$D$A$pL$$.$t$4D$<$$<;$@|$<$l$^5$D$$pD$D$O$L9|$X$U$$dD$$pD$$$`D9|$s$m$$$x $D$ $$($$,$t $(7$4$D$uՋ$$WC?7n+%C(F"$(Nlj$ q?+)9C8~$ }$$$(|$F$E$$D$F $E $$D$F$E$$T$F$E$$$(t$G$hEt$$(z$$$$$$$$x$T$$薐$$4$0,$t $47$<$D$uՋ$<$WC0?n+%C)F"$4?V+$,r)9C8~$,}$0$4|$F$E$0D$F $E $0D$F$E$0T$F$E$0$4t$G$yEt$$4$$$<$$0$P$$D$<$$x$T$$}$$$$t $7$,$D$uՋ$4$gC0?n+85C)F"$?V+$|r)9C8~$|}$$|$F$E$D$F $E $D$F$E$T$F$~E$$t$A$^Et$$G$EEv$$$ $m$~$x$$$Ĝ[^_]q$G$$$F$Ɖ$xNt>4$.Ɖ$;$x| $$x4$D$Y݋$$빉4$릋$A$2$$F$KƉ$xNt>4$Ɖ$;$x| $S$x4$D$݋$$빉4$릋$%tG$w 7$C7F$?+- $F"$$x$L$f$1F)wN{,,,,,d2^4^4$x$D$,$$E$$x$t$$Ɓ$$p$t$$؅f+t$D$$$Cu?$V+9$$CF"$h?u+)9C8~D$x$$$T$D$E$$FCU u/T$$H$$L$5t$$;,$D$$G C$iƋ})։$?+9$C"193$$n$$@$y$CE/%$‹?+()9$$$$$ "E|$0;$}w$$?$4$D$$L$$$t$D$<$O$;$|$0|C$$p$7E$(?+0 )9$$"$9A$$B$$y$u$C.?+($)9ꉼ$$$ ".E;$}{$$$$4$9$D$N$L$$;$t$AD$<$$;$|$$Eꋼ$W3$\,$$$T$D$$G$9|$ I$?$$T$D$D$$9|$^$[$$x$T$$荄$ʼn$4$t7D$$$uڋ$<$sC?0N+:$:$C?F"E$p+ )9C8~$싄$x$t$E$$At$E $$B t$E$$F$D$E$F$D$E$sF$|$E$ZF$$$<$$y$x$D$<$$$,$t $7,$D$u܉,$+C?7V+$H$CF"$@$p?+)9C8~$싄$xl$$F$$Gl$F $$B l$F$$Fl$$A$Fl$$G$}Fl$$E$d$F$$$,$p$$A$$$F$Ɖ$MxNt>4$gƉ$;$x| $2$x4$D$݋$$빉4$릋$$x4$D$w$X$p$t$$X؅e+t$D$$$C2?$Tn+9$P$PCF"$Xh?u+)9C8~D$Px$$T$XT$D$E$$PFCU u/T$$$T$L$t$$,$D$$PG C$XiƋ})։$L?+9$LC"19+$L$Pn$X$X@$Hy$DCE/%$@‹?+()9$@$<$<$<$@ "E|$,;$@}w$L$D?$H4$D$$TL$$$t$D$<$$<;$@|$,|C$<$Pp$X7E$8(?+0 )9$4$4"$499$4$PB$X$Xy$0u$,C.?+($()9ꉼ$$$($$ ".E;$(}{$ $4$,$04$ 9$D$$TL$$$t$ D$<$$$;$(|$P$$E$04$T$$8T$D$$$49|$Q$G$T$T$D$D$$L9|$f$vc$e $$x$t$azʼn$<$n7<$D$R<$sC?0V+9$:$CF"E$p?+)9C8~$싄$x$t$E$$At$E $$B t$E$$F$D$E$tF$D$E$[F$|$E$BF$n$$<$l$y$t$$x$l$$ʼn$<$g7<$D${K<$sC?0~+$ :$ CF"}$wǁ )ϋ?+9C8~$싄$ x$t$E$$ At$E $$ B t$E$$ F$D$E$mF$D$E$TF$|$E$;F$ g$$<$e$yC?0N+*$>$CF"$xD$$$R$E$x$t$$蘁$<$t$$E$7<$D$uˉ<$C?1~+$H$CF"$~$wǁ )ϋ?+9C8~$싄$xl$$F$[$Gl$F $B$B l$F$)$Fl$$A$ Fl$$G$Fl$$F$$E$c$2$!<$p$$F$s$\F$Ɖ$xIt94$Ɖ$M;$x|ڽ$x4$|$⋄$\$뾉4$]뫋$x$$$Ĝ[^_]COց Ȩ$hpEtriƒ Ѓt.M Ȩu(? $T$4$Jt$$a؅DŽ$hEJ Ȩt/E(U ȨD$h$h$h?%? $L$E$4$$`t4$$t=,$mt1҅ƒ$`T[ $ l$Lω,$0tƉl$$@؅.~,$]l$$؅x? $t$/ht!Qƒ ЃDŽ$dFJ Ȩt/FJ ȨD$d$d$d듋$F$1҅ ? $T$_0ց Ȩr$xptriƒ Ѓt>O Ȩu(? $T$4$=t$$t؅DŽ$pGJ Ȩt*G8W ȨD$p$p$pD%? $T$G$ 4$4$$t8<$t1҅ƒV[ $ |$nԉ<$Rtˉ|$$b؅.~<$|$$:؅x? $t$Qmt!iƒ ЃDŽ$lFJ Ȩt*FJ ȨD$l$l$l똋$F$$$t$H$l$$MG|$p$ Ȩ B$B?$$.$)‹;+(T$h9$D$h$$t$h F`F;$}l$hD;$|D$h p  D$hp?.$$)‹;+(T$d9$D$d$$L$d A`A;$}t$d;$|D$d p l$duDŽ$$9$:$T$$D$h<$D$ܼ$t$d$t$$込ŋ?;0~+9w ?8F"$$L$$$G,$T$tT$藺$t$$$,$ƋD$tD$½$L$$$t$$OT$T$$_$$l$dG|$p$ ȉ q$$4q$4$$$$1)BBǃxHD$Xw>33R $9l$X$I $?0M;+)9 }$E%~$심$wE?% ƉwD$dD$$؉$|;D$D?0n+9a?(F"<$$L$$ET$DD$t$D$V$$t$$ƋD$tD$D$D$}$L$$$t$$ t$t$$$$T$E|$p$ ȉq$$4$q4D$Xt{$$$$1)BBŋhH1w9  mm00 $蹹9u$$9$$|$p$!Ȩ#M$L$g$;Fʼn$?0N+:L$ |$ ?8F"$7C|$ G$EGE G EG}l$7 t$7$L$ BAz7 t$7$l$ FE$nuT$u_ u$T$ FBnD$uu' uD$ D$$$舶[^_]$$$G$ ~K?;*}+v ?8EG@w$蕸ҋ?;:݉w+v ?0GFnA$Fҍ׼$l$.$$U7T$$ux t$7$D$$$]$$D$$7u, t$7$$t$$$$脷$vw$D$$$ڶ$$$T$$蹶$$$7%D$(u~ $7$$t$$n$$D$(7u/ $7$$|$$-$ $蒶$脶q $K,$A)9 $,Z#*YϻX,˅ɉL$8uE؅@?0;~+v5?8F|$L$8 $$?2l$<$$辵뽉,$舴D$4$,l$0u;CB%tj))HD$4|D$0~N?(;u+v!?2EF@D$0F$ ыl$0?;݉l$,.u+v?0EFD$,$躴֋ED$D$'$蚰$踲;D$@?0FD$<+9wsD$O Ȩu2;$T$44$%$$t$$է؅DŽ$GJ Ȩt*G8W ȨD$$$:%;$T$~G$l4$4$$Pt=<$t1҅ƒꉬ$W$ |$ʦω<$让tƉ|$$辦؅.~<$ۧ|$$薦؅x;$t$譪ht!iƒ ЃDŽ$FJ Ȩt*FJ ȨD$$$똋$ G$,;$T$5ց Ȩ[owEt|yƒ Ѓt.M Ȩu2;$T$Q4$B$$t$$؅붋E1J Ȩt(E(U ȨD$J%;$L$諨E$虥4$4$G$}t=<$t1҅ƒꉬ$W$ T$ω<$ۦtƉ|$$؅.~<$|$$ã؅x;$t$ڧht!yƒ ЃF1J Ȩt(F8W ȨD$먋G$H4$;$T$[<\$,|$4l$8t$0`ED$D$XD$ D$PD$D$LD$D$H$דǁtFD$T|$D$ D$DD$D$@$cƉt$t$4$\$,t$0|$4l$8<Ëu\NL$+9waD$EF"ƋD$Tl$@D$ G,$D$D$DD$.cFD$TT$DD$ GT$D$D$@$cF^$두L\$$$$D$ l$ht$lD$L$|$D$h$T$,$謗98,$֙ʼn<$̙$$T$`$l$t$`L$d$|$D$ l$D$(90D$0$D$؅xF$l$0t$ D$$l$D$$$Ll$(l$$蝚"9;0tt$$诖؅$t$ 5D$$<$D$$D$Nj$輘ƋD$0$讘$L$X$T$XL$\$D$ L$t$l$$|$$.4$\NjD$0$N$$L$P$t$Tt$PL$D$ |$l$4$D$0$D$評؅x.D$0$l$ D$$|$D$$9;(tl$$[؅$5l$ L$D$$D$$$ŋ$hNjD$0$Z$t$H$$D$ T$HL$Lt$|$D$$1,$ŋD$0$$$$D$ L$@|$DD$t$l$D$@t$01|T$<$AƉ$NjD$T$)9|$L ~9|D$,'EA4$ȉ$觉u%|$Dt$<$Y4$e׍T$L$4$ȉ$D$D$\$$D$D$X$0D$Xt6EL$\l$D$ A $D$;t$HD$\~T$\L$XD$T$ L$<$j먍ȇ$T$x$ 2$ȇ$l$݉$̉:$軉$'0UՍ)ŋ#+9w<'$(%E~$D$<$.z$U$ #$#%?L$P @A$UWVSol$$$ $D$f$$4$D$L$NjFt$؉D$ G<$D$D$P@L$Dul[^_]Ël$D uVT$@)9D$@t$<ƉE)ָ9L$<$ΉM)Ɖ)9$`$u;$F`F ;$};$|D$<0G|$$D$ G<$D$ŋ@%?D$8u)Nj +9d8E%~DD$8G% D$8G<$$D$$t$PD$4$L$@D$HD$L$D$ T$(L$Ll$|T$<$耂Ɖ$]NjD$T$O)9|$L ~9|D$$94$$u|$Dt$<$虁4$襁׋D$LǀT$D$ $$D$D$\$$D$D$X$lL$0D$XT$\AL$D$ B$D$Y$L$D$\$$D$D$X$L$\D$XEl$D$ A $D$D$\t;t$HAL$\T$XD$L$ T$<$M̍$T$$$ہ$t$B$证$螁$l$胁$r$aK$P$?$. M$ %?L$P @A$L$ t$|$ɉl$t t1t$|$l$Á1uAuԋAuŋA0uA(uAD$ u9u9!ШgD$ %9!ШDUWVSgO$D$DɉD$XD$`D$<$P|$<T$8WxO4Kt$4++t$49O0l$0ZOK".D$xp$-x$x$ x$wj$w$w{$wV$w$w$w$wB$rw$aw$Pw$?w]$.w8$w$ w$v$vj*ʸYu,9.9|UWVS]w$D$DɉD$XD$`D$<$P|$<T$8Wxw4wt$4++t$49w0l$0uww".D$f'l$Hl$Dnn0~+9w^D$8,$D$[ʼn$D\Ƌ@t$D$ E,$D$]NjFt$؉D$ E,$D$]$\L$4ƋD$P4|$4$`[T$TL$44$[t$4L$X|$D$X$/[L$\D$XxD$D?؁ 9|D$,9Ɖt$4D$4D$0$,]d$]@$ ]$\$\c$\$\$\)$\$\$\$q\D$`\$O\$>\$-\|$\Q*ʸYKZ,9.9|UWVSB/]$$D$XD$x$UD$P |$PWx/]+]4t$L++t$L9 /]0%D$H /]+] "D$DD$Pp++t$L9L /]0D$H' L$D/]+]D$Pp++t$L9 /]2D$H D$D+]D$Pp/]++t$L9 /]2|$H_ D$D+]<D$Pp$/]%D$T+)9 /]2F9F}9|4$!XD$$$6Y/]$$)щL$@+]+9HD$@%t$@9F`F}t$@9|D$@ p D$@/]p0)Nj+]+9v/]L$@8%~T$@T$@OB?% O<$VD$tD$lD$\D$T9D$\l$ |$t$$/]+]D$L$\D$<4/]$L$4++t$89D$ (/]0>+]D$4L$\4/]$D$0++t$89D$ /]0>/]+]D$\|$04$+E+t$89D$ Q/]uL$+D$/]D$\4L$t}|$| $/UD$pD$@D$D$\$TT$tŋBT$؉D$ E,$D$V$Ut$pD$hFt$D$ E,$D$OV/]0ŋ+]+)9T/]:E%~DEw%? Ɖw<$aT|$t$|$TD$D$h$SL$pL$D$d$S,$D$S$D$`΋E%?- 9}QT$dZUB%?*YQX,҅҉T$,L$hA؅|$\$D$D$h$R$L$dD$ $R$,$D$R$t$`D$4$RD$lD$D$t$R|$|D$<$RRD$\l$TD$t9l$\`/]+]0F+UD$(|$(/]8F"D$X$3]|$(Gl$PEGE G EG}l$X7T$$ 7L$Pt$(AFyD$$7 7T$P|$(BGzD$$7uV 7t$PT$(FB~D$$7u# 7D$(D$D$x$PĬ[^_]$S$xS$jSf$YS,~K/]+]*u+v /]0EF@~$Sҋ/]+]:݉w+v/]0GFn$R׍R$t$R $RT$\T$X/]0+]~+vQ$-Q$Q$ Q$Pk$P,$P$P$P$P]$P3*ʸYQ,9.9|UWVS_7Q$$$[M$D$`$ɉD$P$D$XP |$PWxQQ4t$L++t$L9~ Q0l$HS QQ".D$Pp++t$L9 Q2D$H .QD$PpQ++t$L9 Q0D$H .QQD$Pp++t$L9P Q7D$H+ .D$Pp$t$`%4$D$T$D$Nl$`$$,$D$MQ$QƋ$+$)9$ Q$0\ $F`F ;$};$|~  ~4$LD$\L$T$9L$\$$D$ D$$%|$$D$ |$D$$$Qt$DQD$@E++t$@9D$$J Q0l$ % |$Q>L$\D$D4Q$D$<++t$@9D$$Q0>QD$QQD$\|$84$+E+t$@9D$$QuL$ D$QD$\42$$<$DJŋ@l$D$ G<$D$KD$4@%?xW D$4pE$l$؉D$ A $D$]KƋ@%?h ~4$I$D$$$I$$yI$D$|$fI$$D$H$$@ID$xl$`D$\l$$Iŋt$\D$44$D$HD$t$GƉǁ?$ $x$AƉǁ?$$ z,$|$x|$H<$D$pmGD$D$`$G$NjD$tt$$G$HD$ىL$ F4$D$I|$$GQD$hQu+)9Q8E%~DEw%? Ɖw<$L$|L$#G|$|<$D$l}FT$`D$$GNj$D$D$t$F$hD$l$ F4$D$H|$$F$D$d@%?- 9}d$hD$?$JQB%tJ))H)9t$\$L$p $D$El$\$T$h$D$E|$\$D$D$l$E$D$D$d$E$$ $t$ED$$$`ED$\l$TD$ $9l$\LQQuV+8T$,D$,QF"D$X$ Q|$,Gl$PEGE G EG}l$X7T$( 7L$Pt$,AFyD$(7 7T$P|$,BGzD$(7uY 7t$PT$,FB~D$(7u& 7D$,D$$$C[^_]$F${F$mFc$\F)~KQQ*u+v Q0EF@~$ FҋQQ:݉w+vQ0GFn$E׍?G$L$E$Et$\t$X|$~\QQ>w+9w+Q0GF@D$F$h$ ENj|$QQߺ|$0>w+9wQ0GFD$0$D$D$D"$D$D$wD$fD$UD$DD$3D$"D;$D$D$C$C$C$Ci$C$C$Cd$xC?$gC$VC$EC$4Cq*ʸYwF,9. 9|UWV0D$HL$H@D$,AiD$(AD$$D$,89~D$JAtt$ D$,|$HD$@D$L$G$T$DL$HD$A $A|$HG D$(8K9~|$$$@tD$9D$ |$ D$,0T$ L$,1uD$us uD$(Ձ~4֋D$u= D$(0D$$0D$u |$$7D$H0^_]$jA$\A$NA|$=ARD$@L$(D$$T$DL$$D$$@L$$9|D$,$<L$LɉD$(t#,$;D$$|$(D$Hxt$$p,$;|$(D$$%9ljD$|.~L$$$&?t9N|$ |$ 뗋D$@L$(D$$T$DL$$D$$?L$$;|$|뗋D$@L$,D$$T$DD$D$?D9|@U1WVS&$$$D$|$T$tD$p$$L$lD$ht$xD$PD$t l$LD$p1 uL$tuT$p `1)љ1)9~|$pD$tt$L|$tD$pD$P3D$L…ʍl uy1)titTD$tT$lL$hD$|$xD$|T$l$ L$|$$(l$P‰l$Px Č[^_]É$h:D$t$=uD$h$D$9t$hD$dt$$9|$LD$\L$p%tA$<9At$dD$4$}=D$D$`$P=|$LD$XD$t$T<Ɖ1)уlT$`4$T$<:2$j8pD$$t$78D$D$`$<1)׃|$L|$hL$lT$t|$At$ T$D$D$xD$D$|$NjD$hL$lD$At$t$xD$D$|l$ t$$&x D$<$v<T$P9$?$8֋|$hL$lT$t|$At$ T$D$D$xD$D$|$!i|$X$|$8$7HD$$L$D$X4$D$;}@YL$pA$:T$pD$8B$:Ɖ$8D$O Ȩu(A6$T$54$2_t$$1؅D$HGJ Ȩt1G8D$HW ȨED$HD$HD$HC%A6$L$85G$&24$D$@34$3$2t1҅ƒt$@<$3t|$$0؅.~<$1|$$w0؅xA6$t$4놋t!Qƒ Ѓ)D$DFJ Ȩt1FD$DJ ȨED$DD$DD$D뗋t$pF$04iA6$T$3mց Ȩ@D$txptriƒ Ѓt>O Ȩu(A6$T$434$%0t$$.؅G1J Ȩt G8W ȨEl$P\%A6$T$2G$/4$14$<1$r/t1҅ƒ<$0t|$$ .؅.~<$*/|$$-؅xA6$t$1늋t!iƒ Ѓ/F1J Ȩt FJ ȨEl$P밋l$tE$q.э,A6$|$N1<\$,t$0|$4l$8l$D8Et$D$D$@$.L$t$L$$w*D$D$D$D$20|2~+vh28F D$GD$G|$E$*0D$E$40ML$$U <$D$0\$,t$0|$4l$8<$_0UWVS_|$$tWP1(11>w+10G"$nN$W($t$/$p4$,A$ED$P$D$`$D$\$D$dE$ .$$t$T4$D$)$)17D$H1(񋃣1+~M18F"o01n+9 1(F"}t$Hu<$*D$D1E7D$@񋃣1+~918F"t$Dwt$PD$@G<$l$$D$ $D$d$$D$&L$|$t$<4$l$ D$D$LE$)EE$)1D$87E~D$41+918F"D$8GD$4Gl$ |$$$l$$e+($T$J+$E8W ȨL$p>O ȨD$*~K11>w+v 10GF@nw$*ҋ11݋>w+v10GF$M*ڐVD$ t$$D$$)NL$$]$^ÐL\$<|$Dl$Ht$@l$PU11)ʃy4  PP D$T$*(D$,$&P+L+un+P+(F"D+P+7D$L+~+vTP+8F"t$w}T$Xt%D$,$J#E\$O Ȩu(L $T$'4$$t$$w#؅D$(GJ Ȩt)G8W ȨDD$(D$(D$(K%L $L$''G$$4$D$ %4$%$#t:<$%t1҅ƒ|$ h $ |$t"҉<$X%tɉ|$$h"؅.~<$#|$$@"؅xL $t$W&kt!Qƒ ЃD$$FJ Ȩt)FJ ȨDD$$D$$D$$럋E$"D$8D$D$$$D$8!$\FKF8F%F8F(9%9!Ш9!ШUWVSL_t$pD$ D$k;$T$VBD$t1%jщ l$څOT$T$F~n D$L8F L$OD$@GE<$D$U \$,t$0|$4l$8<$ 봐D$$D$D$D$ $ÐD$$D$D$D$ $MÐD$$D$D$D$ $ÐD$$D$D$D$ $Ð<\$,|$4l$8t$0l$DED$, 0( ~+vX, 8F t$wD$@GE<$D$U L$H~$4 \$,t$0|$4l$8<É$ $O 뚃<\$,|$4l$8t$0l$D⍀>P)⍀)P⍀P⍀P⍀P⍀P~⍀Pje⍀PQL⍀P83⍀Pl⍀lPW⍀WPB⍀BP-⍀-P⍀P⍀P⍀Ppk⍀PWR⍀P>9⍀P% ⍀P ⍀Pp⍀pP[⍀[PF⍀FP1⍀1P⍀Pvq⍀P]X⍀PD?⍀P+&⍀P ⍀P⍀P⍀Pt⍀tP_⍀_PJ⍀JP|w5⍀5Pc^ ⍀ PJE ⍀ P1,⍀P⍀P⍀P⍀P⍀P⍀Px⍀xP}c⍀cPidN⍀NPPK9⍀9P72$⍀$P⍀P⍀P⍀P⍀P⍀P⍀P⍀Poj|⍀|PVQg⍀gP=8R⍀RP$=⍀=P (⍀(PE^w &?Xq 9Rk3Le~-F_x'@Yr!:Sl$Ë$pbB H  D  H  $  x D H - D % H  $    h $ H  D  H  $     R 9 + !         z i T D 6 .   JHHhDHDH*$H$ vaQ<|lH&$H$ |fZ9%0a}m]HavjTF4a-%$amHa]$ }\J* u_HWG/$;+$ H$ =-{-g--[-U2-)- --7L-1(-ZH-?D-7H- (-]BH-D- H-D-H-<- -dL-2H-)$ XHD.D~eV;1!`DG-%DyiZI880"HDH<HzDtH\PD@<8H4H0,",$ HmDgH_9H"DH {m\OHDHHDHDw<XHR>- |l1HDHmHRDAH7HDHD<HH6&kHDHL$ rYJ$H DH$ DyDxpf\QADD*DcSDG.D. Dfc#qgUK8$j(VQL<L<<pLjZ E0 }h3tZJ& <}oM$ m8IyhWF5$ziXG6(HDHHD}HZI91HDHHDHvhQLVH2D,H+Lv-HDHwIHHhDbHPH(HDHHDHDH!HxDkHeDHDHHHDH[DUH;HD HH$ x]L;*o^M<+ HHDxH]L<4HDHHDHykTL\H8D2H_D4 HgD]HW/'HHD|HjHBH1DHHDHDHOHDӿHRD+H%ɾHHDmHRHCD+H DHHDHHuDoH!H$ ռļo^M<+ ֻŻjL9 ҺȺdHIDCH;HDHعʹڸLHDH DH_D2HǶDHWH HDH׵DѵHHHD}HSDMH3H DHH$ q`O>- سdzraP?1 HHԲDβHdHIDCH;HDH۱ıLHŰDHi$0ׯHHkDWH2H DH0DHDHZHFDHHDܬHƬHHDH^DXH>HDHH$ MveTC2!ݪ̪wfUD3"ߩϩMǩHMDMHMxRHM=DM5HM&MLM&HMDMHMЧ<,ܦO/HMHMDM̥HMHMDMHM>DMHM,DMHMHMڣDMHMHMvDMpHMZHM?HM2DMHMDMHMҢHMDMHMUHMI$ "ԡán]L;*ՠĠp`X2HDH H̟DƟHޞLHDHp`L5؝ȝzjbR͜HHDHlHFD@HH^DXH1HϚDHHDZHDH"DHHHޙDșHDH~H]DPHH$ D9ܗɗD9×n^9SB1!99ܖvM!9ՕȕH9vh^1L9H9Ŕ@9qUL9MH9?ؓH9œD9H9GH9,D9H9ԒH9ÒxH9D9H9đؐD9ҐH9L9sY5$ D!D!ԏÏsH!dD!HH!6%!׎ǎ!]/!ԍH!sL!_H! @!ڌL!H!%H!D!H!ԋH!jH!WD!;H!ъD!H!L![A$ ߈d$ h^U $ B8,؅ԅ$ HdD$  8xFH84$  ̃$ zq <$ $ lbY, $ ځс$ \RI$ Ԁʀxt$ 5{{z8{cO<{~~~~h~Z~N~*~8{~}<{}}}}<{}m}{J}@}6}<{+}}|{||||{|L{k|V||{{{{{{a{!{H{z$ zyzztzhzDzzy$ yyyyydyXy4y(yy$ xxxv}xlx[xGx;x/xxxwwvwHvwDvwHvuwZwHv=wDv)wHvwDvw<vvHvvvvvvivDvXvHvRv<v8v0vv$ vuuukuZuIu8u$uuutstHstDswtHs%tDssHsss$ ssswsesPs"sHss$ srrrDqbrPr!rqHqq$ qqD SqqqD Spppppp` S{pmpep[pQpFp6pD SooooD SooD SnDn4nD S(nnnmmm` Smmmm~msmcmD SllllD Sl SkkkkkkkkZkJk` Skk  Sjjjjjzj[jHj.jjj0 Sii, SiD SiH SiiL SriaiPi?i.iiihhhhhH ShH ShD Syhqhih0 SOh>h-hh hgggggggwgWgH S4gH S*gD S$ggg0 SffH SfD SfH SffH SlfD SdfH S!fL SfeeeH SeeH SeD SeH Sue Sge, S_eJe@e(eeeddddddH SndH SddD S^dVdNd0 S7ddH ScD ScH SccH ScD ScH S[cL S=c3c%ccH ScbH SbD SbH Sb Sb, Sbbzbmb_bGbbaa{amaUaa``` S``H Sj`D Sd`H S\`6`H S`D S`H S `____^L S^H S^H S^D S ^^9c S^9c S]b S]vb S]vb S]^ S]^ S]] ST]A]1]]\\H S\H S\D S\[D S[H S[[e S[e S[[e S[H>D>H>>s>`>L>H<>=H=D=Hy=Dq=Hk=c=O=08==<<<<<<z<c<P<C<2<<;;;;;J;H!;D:H:D:H:::<:y:S:F:5:::9999T9H9D 9H8D8H888<88`8O8>887777Q7E797&76D6H6D5H55555D5H4H4Dg4HW4K4?4,44H43H3Ds3HE3D<3H63.3303222c:2c:2i822222222u22Y22D2H1<1111}1k1a1H1211000000j0V0E0/00////i/H3/D/H/D.H...<..o.P.8.+..-----N-H-D-H,D,H,,,<,v,P,<,+, ,++++_+H8+D+H*D*H***<**_*N*=**))))^)R)F)3)(H(D%(D'H'''')'D'H&Dj&^&R&?&0&H&%DZ%DJ%HD%<%(%0%$$$$$o$H$$$#####t#[##H"D"H"D"H""t"<^"A"""!!!!!l!*!H!D H D H   <o R *   ^]HUDDH~r_DHdD&HoDDH0iO2HqDOH,D&H<|fP:HDHDHlW<I-z]HDHDHo<bUD(qHYD&HDH<q[B%HtD\HCD;H-<HDxHjt^H2HDHDHoZ<66*  D` H D Hh \ P =  D H; H D H     H 2 H D H D H   0u T  > DH< <L`F\{DXBT=PdLH@H'<$ =eLe{jR?- DeHe|dG9DeHeqN|`7 HeHe8eDeHeDeHe<emHeTDe@HeDeHe<e  eLejHea$ B&"$ D@<840,($  ""#  #  #  ys# n h`Z# U O}G}A# < 6 d. d(# # KK#  22#  #  #  #  #  y# t nf`# [ UMG# B <j4j.# ) #QQ#  88#  #  #  #  #  # z tlf# a [SM# H Bp:p4# / )W!W#  >>#  %%#    #  #  #  #  zrl# g aYS# N Hv@v:# 5 /]']!#  DD#  ++#  #  ~~#  zz#  vv#  rxrr# m gn_nY# T Nj|Fj|@# ; 5fc-fc'# " bJbJ#  ^1^1#  ZZ#  VV#  RR#  NN#  J~Jx# s mFeF_# Z TBLBF# A ;>i3>i-# ( ":P:P#  6767# 22# ..# **# &&# ""~# y ske# ` ZRL# G Ao9o3# . (V V#  ==#  |xtplhd`\XTPLHD@<840,($  y\KnV[mhQvjFTZXDcuwYrstS{M|]U6xzLegHOGl^qW~iPfdNpoRE}y\KnV[mhQvjFTZXDcuwYrstS{M|]U6xzLegHOGl^qW~iPfdNpoRE}k{ab`CJI_ELYerD 0$|Ĉ X.7DdP\x g rh } p       P Tst& @,yy3oq]ąutuv|s:FO`SM4zd  kX~s.\SHQe"> zcBHESUwO) i* 2"8[!l;/8)s_gp_eval_intnumstep___i686.get_pc_thunk.bx_sumnuminit_intnuminit_intnuminit0_sumnuminit0_intnuminitgen_intfuncinit_intnum_intcirc_intmellininv_intlaplaceinv_intmellininvshort_intfouriersin_intfouriercos_intnumromb_intnumromb0_intnum0_intcirc0_intmellininv0_intlaplaceinv0_intfourcos0_intfoursin0_intfourexp0_intnuminitgen0_intfuncinit0_sumnum_sumnumalt_sumnum0_sumnumalt0___i686.get_pc_thunk.axdyld_stub_binding_helper_ghalf_pol_x_gsub_gen_2_gen_m1_gen_1_DEBUGLEVEL_bot_avma_gen_0_gsin_gcos_mpsincos_cmpii_gmax_pop_val_push_val_gcmp_gcopy_glog_gexp_mulcxI_gabs_gprec_wtrunc_gfloor_addsi_sign_gceil_shallowcopy_gconj_polcoeff0_gcmp1_Pi2n_gequal_gprec_w_gprecision_pari_warn_gcmpsg_gneg_gopsg2_gpow_gaddsg_divrr_gth_gdiv_gch_mulcxmI_gsigne_gsqr_mppi_cmprr_gerepilecopy_gerepileuptoleaf_affrr_mulrr_subsr_divsr_addsr_mulsr_ginv_mpexp_gdivgs_gmulsg_real_i_gcmp0_imag_i_gexpo_polint_i_fprintferr_gerepileupto_gerepileall_divrs_gmul2n_gmul_gadd_addrr_sign_gtofp_readexpr_nobreak_pari_err_affsr_initexpsinh_initexpexp_initnumsine_inittanhsinh_initsinh_initsinhsinh_checktabsimp_intfuncinitintern_intnum_i_intinvintern_mytra_qrom2_qrom3_sumnumall_reel4.0__invf_intninfpm_intn_intnsing_intninfinfintern_auxcirc_auxmelshort_auxfoursin_auxfourcos_auxinvcos_auxinvsin_auxinvexp_auxsum_auxsum0_auxsumintern_auxsum1_auxsumintern1_auxsumalt0_auxsumalt1 #1/20 1200774160 0 0 100644 12980 ` members.o| __text__TEXTeTC__data__DATAh__cstring__TEXT(__picsymbolstub2__TEXT@l'f__la_sym_ptr2__DATAQD*__nl_symbol_ptr__DATA0"__textcoal_nt__TEXTL @+KL/T P12$+)\$D$ t$$tF \$t$Íp$ᐐ\$D$ t$$tF\$t$Í.$ᐐ,\$$t$(ht$0T$T$4$A|$ t-4$dtF\$$t$(,Í$(F@܃,T$\$$t$(t$0T$4$T$t% u \$$t$(,Í$1Fݐ,\$$T$0L$t$($L$pt\$$t$(,Í:$,\$$T$0hL$t$($L$At\$$t$(,Í$8<\$,|$4 |$@T$t$0l$8T$<$tF\$,t$0|$4l$8<ËD$tt$ˋG@ƋD$Gx?4}t$w+vuG"D$FD$F]$Ӑ,\$ t$$8t$0T$|$(T$4$ tG \$ t$$|$(,ËD$t1"t$ʋF$uދF0붋Fp uǁuF딐,\$ |$(|$0T$t$$T$<$mtF\$ t$$|$(,ËT$tPA.tڋ t(t1$8북 uG,@릋G롃t uG뒋G,\$$t$(t$0T$T$4$D$ tJ >t4t|v$F\$$t$(,Ëv uF@ ,\$ |$(t|$0T$t$$T$<$ItF\$ t$$|$(,Ã|$t$4֋G@уD$ $@ÐD$ $y@Ð,\$$T$D$0t$(T$$tF\$$t$(,Í$ᐐ,\$$T$D$0t$(T$$q1tHt-΅tF$\$$t$(,ÍD$JفuƐ,\$$T$$D$0t$(T$$1tHt%΅tF\$$t$(,Í$uΐV1S$T$D$0T$$tHt9΅t#F$ pN$L$$[^Ís$d́u뺐,\$ |$(<|$0T$t$$T$<$tF\$ t$$|$(,ËT$t t$ϋG ͋uځ~ϋG8뱃<\$,t$0t$@T$|$4l$8T$4$ttO|$tCw t'} $|VЋ\$,t$0|$4l$8<Á̋V؋D$tJ;t.t}$$낁jvދFP돃 uŋV녋FdD$~|$}F wD$`+v&uG"D$Fl$nD$F *$̐<\$,|$4||$@T$t$0l$8T$<$4BtZ|$t;v t,$<F\$,t$0|$4l$8<ÁԍF$T$4뭋D$ttB,$눋G뤋G@뜐<\$,t$0t$@T$|$4l$8T$4$ttQ|$t2<$l$<$D$\$,t$0|$4l$8<Í$t$붋D$t)t$3둋v% ~F$뢋F$Ƌ@x 4$R넋d`u~+r}F"S$ᐐw+vL0GF$C $5 0$$ t$t$ |$4$4$ @<$D$u t$|$Ãt$t$ |$4$4$|$@$9 t$|$SfL$ u%t4td $: 1[ËIu܁~ыAܐ\$D$ t$$$Ɖt $ F\$t$ÁJvӐ\$D$ t$$Ɖt $ F\$t$ÁJvӐ<\$,t$0Lt$@|$4l$84$W tjH L$}@wD$ +v.uG"D$FD$F\$,t$0|$4l$8<$ čT$4$T$ |$ tH4$Ɖt%V ,$ FtF 둋F댁u܋Fw,\$$t$(Pt$0T$T$4$) |$ uF\$$t$(,Í^$ 1,\$$t$(t$0T$T$4$ |$ uF \$$t$(,Í$ 1\$t$t$ t$ F\$t$Á ֐\$t$t$ ft$T F\$t$Á ֐\$t$t$ t;$ F \$t$Á ֐\$t$t$ t$F\$t$Á ֐\$t$t$ t$pF\$t$Á ֐\$t$t$ 6t`$$F\$t$Á ֐\$t$t$ t$F\$t$Á ֐\$t$t$ t$F \$t$Á ֐\$t$t$ Rt$@F$\$t$Á ֐\$t$t$ t<$F(\$t$Á ֐\$t$t$ t$F,\$t$Á ֐\$t$t$ nt$\F4\$t$Á ֐<\$,t$0|$4l$8t$@Z$FL$ujF<D$}F@wD$+v.uG"D$F|$~\$,t$0|$4l$8<$č`$L${]J<\$,t$0|$4l$8t$@8$ FL$ujFDD$}FHwD$+v.uG"D$F|$~\$,t$0|$4l$8<$č|$L${]J\$t$t$ ZtD$HFL$uFL\$t$Í$L$Fف믐<\$,t$0|$4l$8t$@F$FL$_txF<D$~@|$}FDwD$+v5uG"D$Fl$nD$F \$,t$0|$4l$8<$u뽍`$L$]mO<\$t$t$ tD$FL${tFH\$t$Ív$L$فefpbidbnfnfzkdiscpolmodsignindext2diffcodiffrootsclgpregray regulator.furay unitsfuray torsion unitstuzkstnocycgengroupordersa1a2a3a4a6b2b4b6b8c4c6jomegacurve not defined over Retaareatatecurve not defined over a p-adic fieldwS⍀P?:⍀P&!z⍀zP e⍀ePP⍀PP;⍀;P&⍀&P⍀P⍀Pwr⍀P^Y⍀PE@⍀P,'⍀P⍀P~⍀~Pi⍀iPT⍀TP2Kd},E$Ë$RB )   r R E:2f  Da qaDY] }Du/ > < ZR9FB 6 3 vn0b^ *"- * '~z F>$2. !  bZNJ 0(   me QB0 x\dX (      u k H 9 /     \ \ \  \ p \ h \ X \   \ \   \ V F \     \ v \ p X  @  D D     D  D { o D \ @      k-D DD~D\@  AxT= $ hxd OG,  TL  h|d # pYGA1)  zP`L 2*  wT\P ;3  J == J $~$x sJ m e _ ZJ TLF AJ ;3- (J "}} J yy J uu J ququ J m\m\ J iCiC J e*e*~ yJ sakae `J Z]R]L GJ AY9Y3 .J (U U J QQ @<840,($  9IBH6358:DC7?@EAF9IBH6358:DC7?@EAF>=;42G<KhG 8h#L7C@048QLe#D 4  ]i |~OF w-rXt|X0H ,X =Z9 x 4(A__member_e___i686.get_pc_thunk.bx_member_f_member_p_member_bid_member_bnf_member_nf_member_zk_member_disc_member_pol_member_mod_member_sign_member_r1_member_r2_member_index_member_t2_member_diff_member_codiff_member_roots_member_clgp_member_reg_member_fu_member_tu_member_futu_member_tufu_member_zkst_member_no_member_cyc_member_gen_member_group_member_orders_member_a1_member_a2_member_a3_member_a4_member_a6_member_b2_member_b4_member_b6_member_b8_member_c4_member_c6_member_j_member_omega_member_eta_member_area_member_tate_member_w___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_gen_2_gen_0_bot_avma_pol_x_gen_1_gcmp0_shallowconcat_gmul_rootsof1_cmpui_basistoalg_check_units_fundunit_gdiv_hnf_gram_matrix_discsr_get_bnf_get_nf_member_err_get_primeid_pari_err_reel4.0#1/20 1200774161 0 0 100644 43132 ` sumiter.o Xff__text__TEXTZi9__data__DATAZ0]__cstring__TEXT@[>^__literal8__TEXT^ \a__picsymbolstub2__TEXT^|aȋ__la_sym_ptr2__DATAekhGG__nl_symbol_ptr__DATAf0i__textcoal_nt__TEXTfi @} P ",QPUWVS,f|$DD$D$H$5eD$HD$f(D$|$) (D$@L$$dt$L$H<$L$d}D$L$d}kdt$@~tlf<$D$ dNjt$D$90sf8w'D$|$$cNjD$@|$$cd7[$T$cG|$$D$c댋D$@$(cfl$(,[^_]ÐUWVS<el$TD$ D$(D$X$cD$X{eϋL$,D$P)׉$l$ L$$cD$\w%D$\D$ ׋oeD$\GL$\ $WbYMke1D$eD$D$X,$D$T$et$`(4$be(bD$ tL$ %9ǸMD$\D$PHD$\D$ $,bŋt$D$$9sse>w'D$,l$$aŋL$Pl$ $aBY$T$al$P,$dae|$(8<[^_]ÍY$T$Mbt$ D$D$\$aD$\uUWVS\{cT$@|$xT$,D$@D$(D$HD$D@D$$ccD$Hl$w+(^W^0G,T$$D$Xt$$^0D$,F l$,l$ +)9D$,Fl$,^"0.w^++t$ 9D$,^^0.L$$q++t$ 9D$,^2.D$$pl$,9l$(QSD$t$PPpT$hw tsS$L$[DD$(D$(~ |$T|$Tf4$y[ƋD$4$D$5[1҅l$$E4Et$4;|$,I|$,~EQSL$t$$|$TF4|$T44$Zt$$F Ń|$(;|$,}L$$iL ;|$,||$Ttk|$T~H|$Tt&QS$ t$ZD$$<[^_]ËR|$(DRl$\EՋ|$TuR|$(DRۃ|$(RT$\DR럋l$,9l$(al$$E$Wt$$Ft$XT$$r;|$,|t$l$$ED$W$XŋtD$$D$YEl$$D$XŋUfl$4$X]t$T$$BD$QW$WŋtD$$D$6Y룉t$L$$AD$W$WŋtT$$T$XEl$$D$EXŋE.0l$4$X't$l$$ED$V$UWŋtD$$D$zX$lX-$[X$JX$9XBR|$\^^u~+9L$(w}F"Q$WፓS$T$WUWVSK,#YL$T$L$ T$D$D$LD$D$D$<ljD$D$@$JWt2uD$H$WuVuD$|$$T$uЋD$@$'V#Yt$0,[^_]UWVS,Xt$Dl$H|$PD$tM$T$Vt$,$V,$`U4$TXƋD${XD$t$) D$@$L$MVXD$D$L$*T<$D$Ul$lj4$TyT4$TL$ƋD$9ssX8wD$|$$9UNjL$@q뚍M$T$1U͋D$@$Tt$|$4$T,[^_]É<$UoX8UWVS;<Wl$\D$$Wt$$)֋T$$+97zF`9F}9|t$Xt@L$T$UD$X$RWD$X;D$ Wl$(D$ D$,)Љ L$t$XD$P4$D$T$T<$ƉD$SNjD$X$R4$D$X;RttD$,|$,t@L$9MsW8w|$|$ <$~S덍]L$T$}Sԉ|$$?RD$D$$$BS<[^_]É4$Q<$Q+D$(9nD$,m$Su$SV,D$8\$ |$(D|$0t$$D$|$<$D$hSD$Ol$lj4$\PyT4$PL$ƋD$9sS8wD$|$$PNjL$@q뚍TI$T$P͋D$@$\Pt$|$4$~P,[^_]É<$6QS8UWVSFNj>$l$vGO1x=VՁ|$4$E1$l$0$1ɋPt\$HL$`D$h$t$O9D$`D$`|$`CD$hID$h4E)L$$I+9zD$$E%D$ QL$$"T$IED$T)ƋD$T+9 ul$ D$;T$`sI;T$`~{It$DF|$4w;t$ht$\/K?j?L$D$$l$4D$,$$D$@$BD$t%t$<4$>D$D$8D$$D$AŋL$$L$A?t$<4$k>D$<$>>tD$8$>D$8}|$$|$1A$#A$A$A$@u{I(I0I~+vI8F"o$@$@D$hD$`$"s@V1tND$,1ɋWt|OL$hD$,9v1 $>L$,)1t$dD,$h>vF1t'%vщ ޅNT$TD$X Ȩt~K@})ƋG@+9wKK@0u-"9>;@9~<[^_]$=$=맋K@G@u+)9K@8"T$ 7T$T$t$T4$E=9RG@D$D$Xt$($:L$;r +@;r$&=D$D$D$T$+<9~l$T,$<$=a$<t$>/+( )9T$D$,D$0t$ t$t$|$T<$m;;t$~D$T$z:D$<[^_]ËD$Xt$($81ҋHt#x1҃ u/߅N׋D$D$l$TD$,$*:;t$~$;$;5$:D$D$$7J4$t$:$:aD$(D$D$$D$D$ $$ÐUWVS|$D$`D$d@D$hD$PD$T@D$X$1$T$:$9$$!ȨFD$Ht1%vщ xt$HڅOT$HT$HED$Dt1%u $t$D݅Ol$Dl$D|$HD$Dl$HuB;;u~+r}F&|[^_]$8ދ$$ Ȩu$D$D Ȩ:t$H;<);+l$@9D$@;E&D$@0;|$HD$D;h;T$4 D$<$L$8t$0t$L$0;T$D;;T$D~D$@4;|$H~D$@$7$7$7!$7T$`$|$PT$,T$4$-7$|$(|$$7t$H;ō )͉l$$;+E9D$$f&D$$0D$Ll$H9l$Lt$D|$ ;nL$<|$D$LL$ T$D$X++|$9D$ 8$t$$L$L<;t$Dq;D$$t$h$3;;rL$;r$6T$,$T$$5D$($D$$5;t$D~D$LD$H9D$L%$<$4$,$4D$$$5$$5$5$5f2$L$f5"S2$t$K5$:5$)5w2$T$5,EUWVSs2|$,D$ D$|$<$D$.4$D$.ƋD$(D$,D$D$(+D$,$.t$$x.|$$S.T$9T$,t4|$XG|$$D$1T$D$XT$,D$l$ D$,$D$-t$$D$4$A1<[^_]ÍT-$|$2$1E$1$1V$11UWVS;,3L$H|$LD$t)$T$z1Wt$T$;*Y*,,$|$,t$D$ 31D$D$$,D$%p39(~(D$,$D$,D$D$$ 0,[^_]ËD$@D$D$H$T$DL$D$D$.,$D$09.tL$HAL$$D$/9D$H~p$)$)E($t$v)$e)j$T)'$C)k$2)+$!)UWVSLs*L$hD$(t!$T$(l$hEl$$D$*(|$lD$h)o*+L$ 9D$l=D$ D$lD$lL$ l$lU*ʃY3"l$,,+L$0)9l$D$D$8D$09D$8Gt$8|$D$0t$89~D$89D$8D$D$8uL$D$,Hs*c*t$/l$D$$tHD$o*+( 9T$7BF@l$nD$4|$hG|$D$ E,$D$t"T$`T$$T$dt$ t$$<"D$ |$4Pс?4|$ׁ t$ ~t$D$$$ &D$$D$4D$,9D$!Ȩu,$D$"ŃD$46|$$l$|$,$%D$$D$;D$0}t$$L$D$4l$hEl$D$D$8$%L$`L$$T$dt$ $t$D!T$$D$$!D$D$ $:%|$l$D}D$8|$0D$9|$8c*t$<8D$lD$D$0D$D$0$3!t$‹k*$D$!D$8Ƌ%9D$8~(D$<<$D$!L$(D$ $c$L[^_]Ël$8T$D$D$~"D$8u%<$D$_$D$8Nj%9D$8~둉$$$ $$Zo*L$l$+t$݃ 9wD$7@F2$}$$o$B$^$$M$U1WVSɻl$$"+$$D$\L$PL$T|$\$‰D$X ʉD$Ht"l[^_]Ë""D$ D$$D$t$\D$D L$4)ʉT$8"+9D$8%D$0D$8"T$,"++L$49ƉL$(D$(D$0D$(t$,"0D$@T$\t$8" +)9;7.t$D$X$|$\l$@t$|$xD$0T$||$@D$(G|$؉D$ B$D$D$dWdpddddddee8eQejee$Ë$ZZnZPZBZ(Z ZYYY4YY YXXfQXXXnXMX SSRRRRRRqRaRUR?R+RRRQQQQQrQFQ>m>N>=fe<=fe<=fe<=^e<<fe<<<<^e<j<fe<a< Q<@</<< <;;]5;;;f5~;m;\;L;<;;;::::::i:]:I:*:999R9398f58f58f58f57f57f57f57f5o7f5R7f517776^5666f56f5|6f5b6f5G6f506f5*6 65]55f55 55f 555m5c5K5f 5E55 4444w4a4f3M494f3+44^333]33f33 3333n3^3]0P3@33222222u2T2/2f02f01f01f01f0~1^1T1C1^011!110f00f00f000]00f00 d0T0] +I080'00`] + 0/ ] +//////r/[/>/*/f +$/ /f +.f +N.f +4.f +*..-----f +2-f +)-f +,f +,f +,f +{,G,f +A,f +n+^+] + + ****\(**p*b*N**))w)f(m)f(((\(( (((\&(p(](M(3('(f&((f&''f&'f&'f&''g'f&F'f&7'f&!'f&&&\&& l&b&Y&f&4&& %fU%%z%\%$$$$fU$fU$fU$fU$q$`$O$A$$$$$#####|#i# #"""""P""!!!fUq!fUY!!fU  I  \U\UfUnfU,fUfUfU8n[UfU|fU]fUQ 4*!f fyh {cfXH\)f^fRf8n[ffff fi_GfA \!nf!LB8,f!f!`\!Gf!&f! L\AfAndRHfAfA.\AgfAFfA= +f#)\fufoNf@f:0  [f }mM?f.3f.* f i_O?-"\ffrfl]M\ff fYyi\YXCfY/# fYfYfY[Y^fYU >f 8    f  [- V f-N f-D [-9 (        } ] U <        n M $ [- [- [- [- [- [-  ~[-Z . ~[-    [-b ~[-> f- f- f-f-f-f-f-f-kf-ef-) f f [f]P?jf]f]h$f]f]}xQ7f]n[]f]bf]Y A%P[YfYH[YfYQJfYD6fYfY fY [YfYfY|^fYU =f 7) @[ f f kW4f $f  ,($ | f{ef{e | fbefbe | fIefIe | f0ef0e | feyfes n| hfd`fdZ U| OfdGfdA <| 6fd.fd( #| fdfd | fdfd | fdfd | {fhd{fhd | wfOdwfOd | sf6dsf6d | ofdofdy t| nkfdfkfd` [| UgfcMgfcG B| <cfc4cfc. )| #_fc_fc | [fc[fc | WfcWfc | SfncSfnc | OfUcOfUc | Kfe7SD_q6PoA2duErInQV\jU@8bY-0?ikgp;zf[XC/`.J=hxl1T^3y9ZHG:mOWtRFswaBvc>e7SD_q6PoA2duErInaMN{]<EK,L54HTOZX\U`xUnU}UHVWHX`YHf fL&k 5|+T"PK =$+#B+,D|8sSP043Zb 50A\<&(*7(J?(T# U/|Z7.S<w oygD6='>L-aBs_`_forpari___i686.get_pc_thunk.bx_forstep_forprime_fordiv_forvec_start_forvec_somme_suminf_suminf0_divsum_produit_prodinf_prodinf1_prodinf0_prodeuler_prodeuler0_direuler_direuler0_vecteur_vecteursmall_vvecteur_matrice_sumalt_sumalt2_sumalt0_sumpos_sumpos2_sumpos0_polzag_polzagreel_zbrent_zbrent0___i686.get_pc_thunk.axdyld_stub_binding_helper_gsub_gen_2_gen_m1_top_gp_eval_diffptr_gcmp_gen_0_DEBUGMEM_gen_1_bot_avma_gerepileuptoleaf_gmin_gopsg2_mulrr_gmax_gabs_cmprr_gtofp_gmulsg_RgV_to_RgX_addir_sign_divri_mulir_mulsi_mpfact_poleval_derivpol_tchebi_mkpoln_gneg_i_gmul2n_gaffect_addii_sign_gsqrt_RgX_div_by_X_x_gdiv_diviiexact_mulii_shifti_mulss_addrr_sign_ginv_gpowgs_addsr_sqrtr_const_vecsmall_gneg_gcmp_1_gcmp1_denom_numer_gerepilecopy_gmul_readseq_nobreak_gexpo_gcmp0_readexpr_nobreak_setloop_gaddsg_resetloop_incloop_divisors_maxprime_check_cmpii_gfloor_gceil_gsigne_pop_val_changevalue_p_gerepileupto_pari_warn_gadd_addsi_sign_loop_break_readseq_void_push_val_gcopy_pari_err_affsr_reel4.0_negcmp_forvec_dummy_forvec_next_i_forvec_next_forvec_next_le_i_forvec_next_le_forvec_next_lt_i_forvec_next_lt #1/12 1200774163 0 0 100644 48060 ` aprcl.o X||__text__TEXTrV__data__DATAr0u@__cstring__TEXTs u__literal4__TEXT uw__picsymbolstub2__TEXTurw__la_sym_ptr2__DATA{^~BB__nl_symbol_ptr__DATA| h__textcoal_nt__TEXT| @ dз PKUWVS$DŽ$$ D$\u؅B$$D$$"utP||u~+v"}|F"G[^_]$zЋ$$'$x|8#$x$|$$%$$[z$$L$w4#$$xl$$vD$$$v$$$T|$p9$^$$9$} |b|?DŽ$$9$}B$$$d$,$$9$||8F$D$D$$$n;$xŋ|D$h|0D$`4$l$9t$D$$L$[nƉ$p$D$t$$.n@D$`;$xr8|8<$lrAp$$oDŽ$$lՁ9$}9sD$,$$lDuIՃ$9$|э7st$ws $n$T$4${n@$L$D$D$,$_n$DUp$덋D$ht$$l$4$D$sm||/D$d鋃|+}9w|8E"wt$dw$rԋ|s,$m$$$hD$$T$ D$$l|$$.8-x;$N$$$p||}GD$t+95D$t|EG"ދ}t$pw+9uGF|$p~D$tp$u|l$tED$t$~Q||}w+9wuGF@$n$1qӋ|$8|݉w+9w|0GF$p$p$p||8o+9w`||(G"ދ8t$lw+9w"|0GF|$l~$w+U9w'|0GF@$|n$mˋ$||߉|$|8w+M9w |uGFT$|V$m$m+||un+|*F"$|u|Eu$|~S||8w+9w$|0GF@$|V$l΋$|||ߺ|$x8w+9w|0GFT$x$zl$lly81$Jl$|$D$|$D$ D$$ljƁ%xp D$<$k4$D$ok$$L$$l$k$Ft$D$ G<$D$j95Ft$؉D$ G<$D$jl$$j$hnl$>$|$k$NjB3|0|n+|(FE@}苔$U Ƌ$|t$<$e$hD$$PD$ D$l$$MNjA%D:1 Bt%Ҹ1|8v $P@$||u~+9wj}FG@$|w$hED$E<$D$euNjG|$$D$8ft$$c$i눃z'nN<$c%pT|$4$hD$}$|$eML$u$t$h$hGtQ|0|n+9w |(FE@}$hҋ||u~+v}FG$Qhڋ||0|n+9wH|(FG$g$$t$$L$gEGE$g$L$|DŽ$Ӥ$$$L$D$$t$T$ L$$H$$$P$Pu $P$%$|J$?<DŽ$9$$-$D$X$$<$|t$X )͋|+9/D$X "E;$>1D$$$T$$CaD$;$~ĉ,$D$a$$$T$|$`$$D$t$,$`$$$9$$P$L$h$l$ T$<$D$D$$h$$$$O D$$$`$Fx|?4$$(DŽ$9$$N$t$\$$$<ω$ș$$|t$\ )͋|+9/D$\ "E;$>1D$$$T$$2_D$;$~ĉ,$D$^$h$uT$$t$^$ho$D$l$4$~^$$$9$$$l$$b$hD$u$t$0`}|$M$L$rbNj$)1 Bt%Ҹ.1||8v $P@$||u~+9wH}FG@$|w$hED$E<$D$^Nj$h0$b몋BFɉA$L.<$\%pT|$$waD$u$t$^}|$M$L$`$aZ$a;$a'$a$$$$L|$$H$$`$H퉄$D$P$P|~ u$P$%$B%?DŽ$$$9$-$Dl$P$$ ɉ$|t$P )͋|+9/D$P "E;$D>1D$$D$HT$$4[D$;$D~ĉ,$D$Z$$$T$l$Z$$D$t$<$Z$$$9$$$h$L$D$$Pl$ T$|$$ $P$@$DN D$$$Z$G$h|?4$DŽ$%9$$N$D|$T$$$$$D$|t$T )͋|+9/D$T "E;$D>1D$$D$HT$$/YD$;$D~ĉ,$D$X$h$}T$$|$X$hn$D$l$<${X$$$9$$@$L$$\$hD$n$l$-Z~|$$L$k\;$Dŋ$Px~%.i$T,$D$Wu;$D~뺍F$\p$\Q$\I$\*D$D|$Hl$L$0Ɖ$8|$<|/$4t$8+( )9$,$,D$8$, ,$|4$hYƋ$4$($|$$L;$4w3$||ы$$$|)ʃD;$(v͋$,$<E||M$4+)9},7$8>;$4w1$8$<8$| )D;$4vϋ$D$$D$$!X$0$ 9w$D$ D9vD$ $DD$PG$%t$ ,t|$ŋ)$|+9$$$n$$ A@DŽ$$9$}^D$@$$$ $$ |u]$ $$$$9|$$D$D$ $V$H~P|$(u+9w |0EF@~f$Yߋ|$$}w+9wuGF$F$X$X$XV$X$vX$eX$TXtD$<$BS7twt $)S$$ՋD4$D$l$S$$$$|D$$$,S$$|$t$|$Q$ʋ$d $$9$t$[W$JWe||2n+$t$T$W$xtt$,$QO$1ҋAt3%$uщ u\ޅNփ $MM$$M$M$MMM$|$PV떐\$t$|$WD$ >$>\$t$|$ƒUWVS,D$@|$DL$HD$/WT$L8l$PvD$@$t$Fu|t\t/[MsMGD$t$L|$Hl$DD$@,[^_]=tsMDcMO_M뽋gM틳sMWDoMkM뚉l$$ZTŋ%D$wMG;t$}DGD$D$D$TsMD$D$L$ |$$<D;t$|L$l$A$Tol$7$t$SD$$S,[^_]ÐUWVS#HlqE`I`OYS>Z-[Hk  vzIb:"T`$urzP a}& Pp ?.T` r! $+'266C(z]+dAoe mvwу`vjRv],$D$LƽWT8D$,$t$$KWTH8ȋD$WT,[^_]$7NU1WVS$$$$|$|eO/t$xD$t$aO+( )9T$p D$p ,D$p0ŋ$$J$Ƌ$D$dD$lD$hD;|$lw-$|ыD$h$)ʃD;|$lvӋt$pl$|aOueOMt$t+)9},7D$x8;t$tw(D$x8D$|$)D;t$tvDŽ$$D$Ӥ$$$It$d$9w&$1ҋ$$D9vڋ$1ҿD$$D$$D$`E%p9~$)D+D9D~$u鋻eO )͉l$\aO+E9"D$\|$\G@~7l$Tl$L$DD$X]Ol$\Dу$D$\ $F%DeOaO7F+UD$HD$HF ,t$Hv;L$tw,$$4Ft$HD;L$tvԋT$H%p~PL$H+D~D$Hu+E)9ƉL$DD$D|$DG@~1aOl$8D$Hl]OT$DًD$D$F$$L$tF$D$4L$`d$4%pD$49ƉD$~DBt0+l$4 9؉T$D$ A $D$xH;t$n<$l$E$;$w$;$v;L$tw2$$1ҋ$$D;L$tvL$`狌$%p9~$)D+D9D~$u鋻eO )͉l$0aO+E9D$0|$0G@~6l$(l$ $DD$,]O|$0ҋD$0D$D$\$F$D$L$`d$%pD$9ƉD$~@Bt,+l$ 9tO؉T$D$ A $D$F;t$n<$l$C$D$\Ĝ[^_]Ë]OË|$,~QeOL$((}+9w$eO8EG@T$,W$F΋l$,eOL$ ݺl$$(}+9weO8EGT$$$8F$*F6$F]O~YeOaOT$@Љ+ 9w$eO8L$@AG@o $E݋eOL$8l$E<$-Ej$,D$X~QeOL$T/}+9w$eO8EG@T$XW$D΋D$XL$L؉D$PeO(}+9weO8EGT$P$lD$^D$MD$;$w&D$T8D$P)D;$vڋ7E3E$E+)9$$J$$3EE$ "u~+9}F*$xDŽ$$9$$/Et$LD$|$$$4$ $D$$4$X=D$x;L$|wD$xD;L$|v|$|Dl$xD$AD$tE%t l$xtt7ED$p)ω|$h3E+9D$pD$hD$pD$pt$h F@D$lT$p9T$l}FD$L|$`|$XD$dD$l|$xll$dEt$ll$hD|$pt$l9|ʋD$tD$D$D$h$;$$$$9`$$L$$=$$$$9[^_]Å~M7EL$`8w+9w 7E0GF@n $/>݋L$Xl$\7E}w+9wuGFD$\F$=$=M$=($=$=$=$~=$m=$\=$K=$:=UWVSLD$`A%pt$ $'8u D$`D$(P~)T$(ыD$(|$(9|܉|$(ƋD$ht$$0T$(D$`Pŋt$`n L$(l$`ED$d$.9x|$<7t$4P;l$4T$8P }9O;l$4|k>wE)щL$ g>+9D$ E"D$ g>0Ep+ \uFFF$l$ u9D$ 9~;l$4|$g> p+9k>2FFF$D$ 4|$D$$T$0t$ D$D$`T$ D$D$$v$1҅t?D$(t$,|$09t$(i;l$42_>(uD$lL$<T$ L[^_]Í6<$5$p::$_:$N:\$=:8UWVSþ<S;DŽ$DŽ$H$xtb$($,D$$g;T$(D$ 1ҋ$$Xtf$k;g;u~+9}FG@$G$TED$E<$D$4_;8v $ F$Qׁ$T(T$L$$4l$$1t!$T0F%DЉЃt($.$$j$yc1$6$D$D$ D$D$$T$ƉŁpx D$4$C6<$D$6$Til$)$l$46D$1 Bt%Ҹ.1_;8v $ @$k;g;u~+9wm}FG@$G$TD$A<$D$0Ƌ$T(Ft$$D$0l$$.$34녃z#nN<$.%pT|$,$53$TD$~$|$t0NL$.$l$2|$3EtQk;0g;~+9w k;8FG@o$@3ҋk;g;u~+v}FGr$2ڋc;k;g;}o+9wDk;(GF$2$Ty|$9$|$d2EFE$|2DŽ$$$Ӥ$$$$$ L$t$|$ $TD$E$$$$$ H $ L$|@D$x1t$pxO;T$p?,D$t9T$tl$l$D$4g;D$dt$tT$|,l$hk;L$dt$4E<+)9k;(D$4 "E;$;1D$$$T$$+Dt$h;$~D$,$+T$h|$x$T$|$+L$xt$lD$L$4$[+D$lD$tl$p9l$t$$ $TD$lL$ T$,$D$D$i$$$D$`$u $TD$t$\E$+D$XExO;? D$\L$T0D$P9t$Pt$L5$D$ D$@|$8D$Pl$\t$XDD$H$D$Dk;T$@t$8E<+)9k;(D$8 "E;$81L$`D$ $$T$"*Dt$H;$~ʉ,$D$)$Tl$D~l$$|$)$TrD$D$Tt$$w)D$TD$PD$L9D$P$D$TL$$-$TD$u$t$8+}|$M$L$z-Nj$ ux1 tEBG%9B-ɉ($<${(%pT떉|$$4-$TD$j$l$s*$T~|$.$l$,;$-$-$t- $c-$$XT$,$+$D$(|$$$$$k; $/$g;+()9$${$,7$4$)$Ƌ$‰$$T;$w3$|ы$$)ʃD;$v͋$$Ek;g;M$+)9}x,7$8;$w2$$$ )/DD;$v΋$$,$(D$$($$9w$$D9vD$$D$ E$%t$ tk;g;$+)9$$8$$ $$ F@DŽ$$9$}fc;$$$$$l$E$$D$$9|$$D$ $D$&$$ $ n O;$7P$E%$B$%?DŽ$9$$-$|$,$$҉$k;t$, )͋g;+9/D$, "E;$>1D$$$T$$#D$;$~ĉ,$D$s#$$$T$l$<#$$D$|$4$#$$$9$$$T$$XD$$ l$ T$t$$$ $$O D$$$B#$F$hO;?<$DŽ$%9$$N$t$0$$$$$$k;t$0 )͋g;+9/D$0 "E;$>1D$$$T$$!D$;$~ĉ,$D$n!$T$nT$$l$4!$Tw$D$t$,$ $$$9$$$L$$m%$TD$u$t$"}|$M$L$$;$ŋ$ x~%.i$XT,$D$" u;$~뺍F$w%o$f%P$U%H$D%)~Pk;$8w+9w k;0GF@n$$݋$$k;}w+9wuGF$F$$$$$w$$f$w$U$W$D$t$3$N$P1M$ AZUWVS蛨,D$DhD$@$D$Md$%pD$9ƉD$~@Bt,+l$ 9tX؉T$D$ A $D$";t$n<$l$U |$DOL$7$t$b",[^_]Ë;%뺐Vt$$FD$D$ $NL$$L$"^ÐVt$$D$FD$D$ $NL$$L$!^ÐL$$AD$D$D$ $"VD$ t$$$t$$V^Ð$|$\$,D$DD$t$0D$@|$4l$8D$D$<$`HD$L$ E,$D$;|$8rt$8Ft$؉D$ G<$D$T$$D$$L$4D$ G|$D$ A $D$9|$4G|$|$4؉D$ G<$D$rt$$Ht$ D$L$ F4$D$BT$dƋBD$D$D$0$|$dD$0GD$D$D$,$fL$dD$,AD$,$D$Il$dNjED$E4$D$-l$0D$D$,|$ D$l$$L[^_]Ëk k k 8k k dk k k A9|$<Gl$<|$؉D$ E,$D$D$<$+D$0D$8$fD$ƋD$4$9G|$؉D$ B$D$D$<$HD$L$ F4$D${T$$|$$ 1҅|$8+)9D$8L$0D$0D$8%D$,D$8T$0 &+)9D$8e>D$,FD$8 $9D$0x9~|$4t$0~D$H|$D9l$HrD$8D$(++|$(9D$8D$88D$8 $t$HD$0<9~8D$H|$D9l$H~|$0D$pxt$x<$D$ l$pEL$DT$4D$$L$xQT$$T$9~$Y$2$$$M$# $t$xNL$>$|$aD$@$~$m$\$K$:Y$)4$R$pE )ϋ+9w}uf,7D$H;$}D$DtLBT$D$ A $D$ D;|$~ʋD$DD$LAtO1;|$}GH T9tUAL$؉D$ B$D$ D;|$} D$L뿋D$D$D$$ɐUWVS菏,D$@t$LtHT$@Bt=NjB D$D$HD$D$$l$Dl$D$<$ƒ,[^_]ËL$DAL$$D$L$L$t$$4$D$4$D$D$D$7 03 ~+97 8FG@o<$L$DD$L$D$Njt$D$Dt$D$<$Ɖ$tzFt$$D$3t$Dt$$t$1҅.D$@.D$@xL$H $O 1D$D,$D$9x狻7 3 7~+vR7 8FoG@<$D$DD$D$D$l$NjD$Dl$D$<$$XX X,\X\WZXXIndividual Fermat powerings: %-3ld: %3ld Number of Fermat powerings = %lu Maximal number of nondeterministic steps = %lu Step6: testing potential divisors Step5: testing conditions lp %ld Jacobi sums and tables computed Step4: q-values (# = %ld, largest = %ld): aprcl: e(t) too smallChoosing t = %ld aprcl test fails! this is highly improbable Am⍀mP׊ҊX⍀XP龊蹊C⍀CP饊蠊.⍀.P錊臊⍀Psn⍀PZU⍀PA<⍀P(#⍀P ⍀P⍀P݉؉⍀Pĉ迉q⍀qP髉覉\⍀\P钉草G⍀GPyt2⍀2P`[⍀PGB⍀P.)⍀P⍀P⍀Pވ⍀Pʈň⍀P鱈謈⍀P阈蓈u⍀uPz`⍀`PfaK⍀KPMH6⍀6P4/!⍀!P ⍀ P⍀P⍀PЇˇ⍀P鷇貇⍀P鞇虇⍀P酇耇⍀Plgy⍀yPSNd⍀dP:5O⍀OP!:⍀:P%⍀%P⍀Pֆц⍀P齆踆⍀P餆蟆⍀P鋆膆⍀Prm⍀PYT⍀P@;}⍀}P'"h⍀hP S⍀SP>⍀>P܅ׅ)⍀)PÅ辅⍀P骅襅⍀P鑅茅⍀Pxs⍀P_Z⍀PFA⍀P-(⍀P⍀Pl⍀lP݄W⍀WPɄĄB⍀BP鰄諄-⍀-P闄蒄⍀P~u6uOuhuuuuuuuv0vIvbv{vvvvvvw*wCw\wuwwwwww x$x=xVxoxxxxxxyy7yPyiyyyyyyyz1zJzcz|zzzzzz{+{D{]{v{$Ë$ñrrrYr|qp@r|qp:r|qp+rrqqqqq}qRq|qp5q|qp-q|qpq qppppmp Yp+pp|XoooTo 5on|0nn|0nnn|0nn|0nnBn|0n@|=>@:@|=>@|=>@|=>?|=>X?|=>=?|=>>\>9> +>> >========M=|q76==|q7<|q7<n<;|q7;|q78;:|q7:|q7E:|q7?:|q79|q79|q79|q7:98|q7x87|q77|q77|q7m7 \7K7:7)77766|C-6|C-6|6|C-]6|C-86'6665|C-5|C-55|C-n5|C-h5|C-W5|C-L5;5-5 5|C-4|C-44|C-4|C-4|C-a4F433|C-V3|C-<3|C-r2W2111|C-1|C-0|C-0|C->0|C-/|C-/|C-.Y.|C-P.|C---|C-u-|C-?- .--|Q(-|Q(,,,|Q(,(|Q(((((z(r(^( uQ(V(|Q(M( %(''''''U'|&C'&& &&&&j&rm%d&B&rm%*&&rm%&rm% &rm%&rm%%rm%%rm%%rm%%%rm%%rm%%|m%i% @%2%|(%$% %%| $% $V $V $V $% $V $% $V $% $% $V $V $$ t$h$t V$F$t ,$| &$| $ $##h#A#9#t 3#@t (##t ##"""""a"| W"1"| "| !!| | o | | A| | }lIjI"| | %| bD| | | lV?t| n| X| gF| | | qS5| | 0| y[G| 1| )| | | | | | | p]G0S| M| 7| k| P| H| +R| | | i| N| H| -| | | |   | | T | 8 | %  | | |  | | ^ | A | # | | |  t   | f | ` | E | ? | 7 )  | | | | |   h | P | < | 4  | | | n | F | @ |  s | | l| \| V| H. s @s s fXs B| | | e| | | | ma| | | | | | w| Z| +| | l| U| O| A9&| {| ^| X| N- ,($ nc h|n{`|n{Z Uc O|U{G|U{A <c 6~|<{.~|<{( #c z|#{z|#{ c v| {v| { c r|zr|z c n|zn|z c j|zj|z c f|zf|z c b|zb|zy tc n^|tzf^|tz` [c UZ|[zMZ|[zG Bc <V|Bz4V|Bz. )c #R|)zR|)z c N|zN|z c J|yJ|y c F|yF|y c B|yB|y c >|y>|y c :|y:|y zc t6|zyl6|zyf ac [2|ayS2|ayM Hc B.|Hy:.|Hy4 /c )*|/y!*|/y c &|y&|y c "|x"|x c |x|x c |x|x c |x|x c |x|x c z|xr|xl gc a |gxY |gxS Nc H|Nx@|Nx: 5c /|5x'|5x! c {x{x c {x{x c {w{w c {w{w c {w{w c {w{w c {wx{wr mc g{mw_{mwY Tc N{TwF{Tw@ ;c 5{;w-{;w' "c {"w{"w c { w{ w c {v{v c {v{v c {v{v c {v{v c {v~{vx sc m{sve{sv_ Zc T{ZvL{ZvF Ac ;{Av3{Av- (c "{(v{(v c {v{v c {u{u c {u{u c {u{u c {u{u c {u{u~ yc s{yuk{yue `c Z{`uR{`uL Gc A{Gu9{Gu3 .c ({.u {.u c {u{u |xtplhd`\XTPLHD@<840,($  YB4!-E5H@ GU8'a_L/29I;OX"$V7RWF.?,\:P3C0JbQ]%^`+6)NAD#KMZ*[SYB4!-E5H@ GU8'a_L/29I;OX"$V7RWF.?,\:P3C0JbQ]%^`+6)NAD#KMZ*[ST1=><(&H(&4>%h7.4A58-?d%JrSlc_ei\Ww Xw+v0GF$$$L$k_%t$|$FD$$AD$ qI L$t*t t$T$FD$t1%v t$مOL$L$1L$ONȉ̓)uVEz)щL$+9D$Eu~D$*ON8ǃ>L$ȃ)R)ҍAaш>uًL$l$ L$,$|$$|$t$$D$4$$q$Q$)1у $l$ D$ D$D$L$$0 D$T$$t`<$it tD$; $D$T$<$|$<$ \$,t$0|$4l$8<ËD${ $D$ D$@l$D$uUWVS,l$@,$D$Ɖс99t@,$D$( uLD$L$Ɖ+rD$7@",[^_]$ ۋD$%D$$ D$D$$r 봋@,$D$ ؅yс9|0)UWVSL |$`D$0$L$8T$4t$%9|܍$l$ 1D$D$$,[^_]Ë㍋c$L$D$n#$|$7UWVS3,# l$@,$D$11ɉD$PBt'%rщ ޅNΉ $,$D$D$ T$j$l$ŋ%9}$l$@$u.%9|܍$t$1,[^_]Ë# D$D$}@wD$ +9w*uG"l$nD$Ft$|$<$B$`$R\$t$0D$ $tP@J D$ $4$D$\$t$ÐUWVMbSr 8 4  !       ` w X @ &         y g W  ?      S C 8 (   vb m _ Q!  @tfV5P<#,    s 8 -     t ] W K*      h b Z       v d7'  % || % cc % JJ % 11 %  % ~x s% me_ Z% TLF A% ;3- (% " %  % ii % PP % 77 %  % ~ y% ske `% ZRL G% A93 .% (  %  PLHD@<840,($   "!$# "!$# <)6k, ^ CN z L CYqS#+ax9_ellconvertname___i686.get_pc_thunk.bx_ellcondfile_ellcondlist_ellsearch_ellsearchcurve_ellidentify_ellgenerators_forell___i686.get_pc_thunk.axdyld_stub_binding_helper_pari_datadir_gen_0_bot_avma_pop_val_loop_break_readseq_void_push_val_pointchinv_coordch_ellglobalred_gequal_gerepilecopy_vecslice_equalsi_cmpsi_free_fclose_gp_read_stream_fopen_sprintf_gpmalloc_gerepileupto_concat_pari_err_ellparsename_reel4.0#1/20 1200774171 0 0 100644 184220 ` elliptic.oH d __text__TEXTdT__data__DATA(0__cstring__TEXTd__literal8__TEXT04__const__DATAd__literal4__TEXT t__picsymbolstub2__TEXT,__la_sym_ptr2__DATAe__nl_symbol_ptr__DATA0Z__textcoal_nt__TEXTL @h P&&5[fD$ t $+ÐD$ t$+ÁD$ t$+uÁ L$ t$+EÁ~A8u␐,\$0|$$l$(t$ 0l$0~+ vS8F"Et,|$,$w |$4$\$t$ |$$l$(,É,$h$SD$$T$ t,u $B[Í$ T$K1D$($D$$ϐUWVSC,K'D$D$@$Fʼn|$$MljT$$ L$'0T$#~+'8F"D$GD$G4l$@t$E$4$D$L$@D$A$4$D$l$@D$E$L$@D$Aow$dtW|$@G ,$D$D$,$Ot$D$$t$xZU'l$(,[^_]Ë|$@G4$D$AL$@D$A $G$\$t$lT$ 0t(D$$$D$4$D$@\$t$É$EPː<\$,t$0l$8|$4t$Dl$@ы8tX$+,$FD$F D$ FD$F,$D$<$D$\$,t$0|$4l$8<Áu말UWVSLD$`t$dwD$D$`L$ $d$+0|$ ~ nF|$,N$L$(lj$D$8D$<$,$D$4t$`D$0F0VswL$ )͉l$s+E9D$ 5D$ t$ 0D$$T$l$D$D$D$4$ŋD$@@WD$$$D$菳NjD$$,$D$觳|$$7ŋD$PD$$l$$讯$ljt$$߫|$$ŋD$D$D$($Bl$$Oŋӷ8Ϸw+v1ӷ0G"|$n~t$D$$Vl[^_]$<D$$$$Nj$D$,|$$Al$NjD$($蓲|$$nD$JD$0D$D$$$$NjD$@D$ |$$HL$L$$Ա$蒪<$ql$$t$$'2V<$D$t$$XD$D$L$/D$D$H$8D$HD$LD$D$4$D$L$w9~\D$@L$ 9R8w)T$LL$Ht$D$@ޅN~|$,$p `}$T$Y$K$=yl$DED$E D$ ED$E$D$HD$X$$UWVS|$<$D$\!D$H%~G(u+ ]0E" ~D$HT$L}w+uאG"FېFF FT$Lt$hz(j,B0D$ll$<$ $@D$T0D$d9t$dt$`}2t$lt$l$d|$TD$D$l$rD$dD$`9D$d|ҋl$lE%u)Nj+98E%~DMr<$t$T@4$D$OD$TD$Tl$hאD$dl$,9T$dT$`D$XD$Pt$dT$T<$|$(؅D$LD$|$$h Ƌ@D$<$*T$PD$$襆|$XD$PF<$D$莆D$XE$AD$dD$`9D$d^D$LpxD$D$4$ŋFt$D$ E,$D$9,$D$9ljD@T$؉D$ G<$D$‹BT$$D$蹄D$D$$[L$LNjQBT$LB D$D$$%|$l$ D$אD$D$,$7|$Hum|$h|$0}w+v7uG"T$PVD$0FD$XF t$t$\4$ʈ|[^_]$谉뻋D$ht$HhPl$G1t#%wщ u;څN~D$Lt$$IJTx$l$Ƈ$踇뷋G%? @Gy$蕇6}x$u0L$HT$LAD$A D$ AD$A$D$|D$L$/UWVS7LED$8D$`$ot$`%~A}w+ uG"|$` ~T$`$pŋFD$F D$ FD$FD$D$`$D$`D$dutD$d$U|$$uF$$,%D$$$pF%;$$++$9$^$84T$$9t*vс9t Du$8$pF$$(%D$t$$$T$ D$t$,$\$p$$9$7n+$9$F"$$FVGыBt29$t؋$tT$D$ A $D$vi$JT$$t$D$ $l$$m$L$.)‹+($9$$$$"$$/$$9$$ZDŽ$$9$$$$$OP9CBT$؉D$ A $D$6h$$;$$9$v$t$T$$$$$|$;$~$$DŽ$$9$$$$,$$$p%9%t$$Du;$t6$w%9 t$u$$$,OA%DDO$$(A%D$$$9$$$9$$t$$L$ t$$DD$$$; $  $$t$D$$t$ l$$$5 $t$,F%D$ ,$$w[DŽ$$$9$$$$,D$$$$9~DŽ$9$$$$$,$$($$D$$9~DŽ$9$E$$$$($$$D$$9~8 $$ED$$$]DŽ$$9$|$t$$t$D$ $D$D$<$$ $$$D$d]$9Ɖ$~$$E$$`}$$DŽ$DŽ$$$$$($$xG%9ls$,9, H9r;$w$,9,$$9$DŽ$D$\9$$$$,$H$P9[BT$؉D$ A $D$!`$$;$$9$o$tD$$$tDŽ$$$9$$$$:$D$$9~|Z$Yu+)9Z:E%~DEw%? Ɖw$$D$ |$$$l$ |$$B$4L$$CxZD$vZuY|$+)9wIT$:E%~l$ DT$ wB?% Ɖw$F$F$F-Y$4$D$:ZY7~+9Z$8FG@GC$L$ $4t$<$l$8$D$C$7~|Z$Yu+)9Z:E%~DEw%? Ɖw$$D$(|$,$l$(|$$@$4L$$AxZuY|$+)9wIT$:E%~l$(DT$(wB?% Ɖw$D$D$D7Y$zD$4$D$8D$0D$~+9T$$:FG@G+$l$$4t$ <$D$5$D$+$k5~|$Zu׍)NjY+9Z8E%~DEO%? O$$D$0T$4$l$0T$$p>$4$t$?xZuY|$+)9wID$8E%~l$0DT$0wB?% Ɖw$B$B$xB9Y$ZB$IBy$4$D$6D$0D$~+9D$$$8FG@GT$l$ $4<$D$3$D$$:3|$Zu׍)NjY+9+Z8E%~DEw%? Ɖw$$L$8T$<$l$8T$$?<$4$|$q=xZYD$L$ZuY|$L$+)9wLD$8E%~l$8DT$8wB?% Ɖwz$K@$=@$,@YD$8$ @$?Q$4$D$W4D$0D$~+9D$$$8FG@GT$l$ $4<$D$~1$D$$0~|$Zu׍)NjY+9+Z8E%~DEw%? Ɖw$$L$@T$D$l$@T$$9$4$|$!;xZYD$L$ZuY|$L$+)9wLD$8E%~l$@DT$@wB?% Ɖwz$=$=$=YD$@$=q$=)$4$D$2D$0D$~+9D$$$8FG@GT$l$ $4<$D$./$D$$.~|$Zu׍)NjY+9+Z8E%~DEw%? Ɖw$$L$HT$L$l$HT$$7$4$|$8xZYD$L$ZuY|$L$+)9wLD$8E%~l$HDT$HwB?% Ɖwz$;$;$;YD$H$j;I$Y;$4G%DYD$Pl$PT$T$T$$E6$4t$$w7xZYD$L$^ZuY|$L$+)9wLD$8E%~l$PDT$PwB?% Ɖwz$Q:릋D$0D$~+9pD$$$8FG@GT$<$$4l$ D$+$W1tD1u$$W1tD1{W1tDD1$4$|$-x $$Zu׍)NjY+9wKZ8E%~DEO%? O$w$8맋Z7U)ŋY+9wKZ(%E~DGu%? Ɖu$$%8맅x)Љ<$D$2lj$gxT)Љx )Љ$7$7$7e$4$D$+D$0D$~+9D$$$8FG@G T$l$ $4<$D$)$D$ $(~|$Zu׍)NjY+9+Z8E%~DEw%? Ɖw$$L$XT$\$l$XT$$1$4$|$2xZYD$L$ZuY|$L$+)9wLD$8E%~l$XDT$XwB?% Ɖwz$5$5$x5YD$X$V5$E5=$4$D$)|$D$7~+9D$$8FG@G $l$$4t$ <$L$&$D$$6&~|$Zu׍)NjY+9+Z8E%~DEO%? O$$D$`T$d$l$`T$$;/$4$t$m0xZYD$L$ZuY|$L$+)9wLD$8E%~l$`DT$`wB?% Ɖwz$G3$93$(3Y$ 3a$2$4G%D!ȨY(l$hD$l$D$$-$4L$$/xZYl$D$D$hk|$hZ7D$ )ϋYL$+9wIT$L$h:%~DEw%? Ɖw|$hx$1멋D$0D$~+9D$$$8FG@Gl$ T$$4<$D$#$BՉt)%Lttt$1NtD1tˋZu)NjY+9wMZ8E%~DEw%? Ɖw$S$0륅xk)ȉ t !$1NtDut1Zu)NjY+9w1Z8E%.1D$/x놸)ȉ)ȉU$/$/$/$4$D$#uY~+9}FG@G$$$4T$ t$D$<$!$D$$r $YD$p0E+ )9}l$pE%~T$pl$pwE?% Ɖw$$$NjD$t $D$u)$4$T$*xZYD$l$.Z7D$ )͋YL$+9wAD$(%E~DGu%? Ɖu$-$-$n-+Y$P-$?-$4D$<$#uY~+i}FG@G$ $$4L$ t$T$<$$D$$#t}$0A,$D$+$4t$$X Nj$4D$$f&D$$"$4l$D$<$$D$$$D$x0EǍ )ϋY+9wQ}l$xE%~L$xT$xwB?% Ɖw$$+$+$41PtQ$4h$0l$G$$0l$NjB $g$0$l$A$J$4$l$$1҉Ƌ$l$$D$Ɓt$|9s71҉l$ǃ$ƃ$$D$|9r̋l$|)~KZ8Yw+vZ0GF@n$*ԋZY}w+vuGFl$|$)۾9.R$$l$$D$|9rZ$0(D$A$$0$D$G$$0D$NjF $o$0D$ƋB$S$0$D$A$2;$Zω()t~?Yu+9wZ2EF@$n(׋Y+u9wZ0E$4(3$r9EXD9$(\$|$J|$$D$ t$|$$tRG|$$D$!9t2Ft$؉D$ B$D$"\$t$|$Ë*搐\$t$|$tI|$ t$$<$Ie$T$('t$<$ t\$t$|$Ét$$?l؅~t$<$̋V1ɉtN|$ L$$\$t$|$$&ӋFhML$(T$ D$$tD$$ÉD$$UWVScH$DŽ$DŽ$$DŽ$DŽ$D$pD$t@D$x^H$Bvi$T$%$$1$VP,$\$D$QT$D$|$n$$D$n fD$l l$l|$`l$nD$`D$\$@,D$TG0G)D$X)͉l$PC)+E9D$Pl$P"7)uE;$wIT$P;$v;$w$D$,D$Pt l$,;$vD$PĜ[^_]Ët$Xl$4$vD$Tl$$u+;$.w;)|$P;$v|~=o;$._1҉T$Pt;$v;2;$."1҉L$PD$L8G))щL$HC)+9wxD$HG)T$HL$L%~L$LT$HD$HT$LxB%? NjD$Hx|$P;$Fc$"wL$p$l$xL$4$O;l$\D$DQ;$l$@.;)D$89l$@G)L$Pt$DD$<4$D$1҉Ɖ|$P,$D$9Ɖ@T$؉D$ F4$D$lD$D$<$*t$@|$P1ҋ$t$@v2|$@D$@؉D$0L$Pt 1҉u-|$0wߋ|$@$9Ήt$@T$@D$$T$P봋T$8TT$DD$P_D$D|$P1҉$.NjD$,D$4L$Pu|$4wD$DD$$9L$P$ $ $QYD$$L$ G)C)u~+r}F"$f ByB hBWBFWUWVS'BL #t$dD$8D$`$\BtV $T$Fz4$t"L[^_]Ë|$`D$`O,L$,x0tg $T$t|$4$D$$t$$9"D$ D$$$"pt$4@D$<D$0%9D$<'T$$pt$4@D$<D$0%9|$4D$/$$I $$> $$D$" ؅ $$L$$ t$@ $DŽ$,$@ $$=$%~J/+}w+ uG"$ ~$$pŋFD$F D$ FD$F$D$$$Y$MD$dt$L$l$D$D$l$.$$t$D$$ $$Xx|$`@D$hD$\%9D$hT$hD$`L$\4D$ht$X41ɋVtfNɸ$u44$)u|$X4$|$}rD$X$D$B0$B$ D$  Ɖșt҃l$Xډl$$ D$dD$h|$`D$d%9D$h1ɋt$d$$/+ωM$+ރv= $}@uwļ[^_]$$뵋$$L$$ D$p$D$lt$$$$|$cl$$Nj$D$<$$$<$D$ID$|$*ȋ$Y+ $L$P‹$l$,$3 $\$($3 |$(\9|$Hd$O$rl$P\$(D$|t$($Yt$HXl$P\$P\$(ټ$d$($ ^f$XT$PD$P٬$߼$٬$$$O$$$B$D$$$Y$҉$D$tD$x/#+9$$$);$$/L$8D$l$$D$,$։ŋT$$+9wD$$*p$֍$|$}o+9w(w$ڋ0n+9w(~$uߐUWVS$\c|$toD$,D$p$$l$(.)‹_+(T$$9l$(MD$$D$((D$(l$$O E@ESEL$t$p4$D$$$KD$D‹@f1 B $D$HŋD$$D$8l$4Et$8D$F$D$$%T$8BD$0|$ 9|$0|$0L$0t$8|$pD$G$D$ŋw+v 0G"D$ nF$$Q(0~+v8F"o4$0ِUWVS;DŽ$$$0$$0$ $t9@$D$A D$ AD$AD$$0$5$0$0$$#$0E0@%pE<$$)9$N#;$#$t$E$$FD$$0A@$$$ $ $$1DŽ$ D$,$|$(T$$$$ta$$ۋ$D$ D$$$0L$t$$D$$$[^_]Ë$$|$,$$7n+9/F"$$0$L$4$D$YD$$@$sƋD$,$D$4$$ D$<$:E$ VH$D$B$Ƌ$D$4$R$ UD$<$E$ $0l$ $x!8w+90GF@$~t$l$$0$1%U8%d$0T$l$ $q$~ϋ1҉8;$t1u$tU$$T$$l$$sŋ7N+$9$F"l$$0$$|$,W$D$@$l$(Ɖl$$h$D$<$$A$l^$D$F$l$Ɖ$$T<$D$t$G$$D$$0$}w+9uGF@$Vt$$$0D$4$A/%a}$%R$$0T$D$,$"~ȋ1҉8;$$t1.$D$4$:D$$$7ŋN+$9$F"l$$0$$D$T$D$@$l$$Ɖl$$$D$<$}$A$hZ$D$F$=l$Ɖ$$F<$D$$G$$$0T$$}w+9uGF@$Vt$$$0D$4$,%]}$%~K$$0T$D$,$~̋1҉8;$$t13$:4$R<$h 9$$D$}4$<$p 9$$D$$W$g,4$<$hg 9$$D$*o4$l<$p* 9$$D$$I$4$<$p 9$$t$n4$<$p 9$$D$D$3A$DŽ$DŽ$4$DŽ$D$7$+n/F"$$$D$$0L$$iPD$$@$Q$|$Ɖ$$D$<$E$~p$D$G$$ƉT$$4$>D$<$E$$0l$$Z8w+0GF@Ft$l$$04$(%Y$%.$0T$l$$S~ϋ$1҉t1t$DŽ$$7$+n/F"$$$D$$0T$$8ND$$@$ |$||$Ɖ$t$D$<$E$H:$D$G$ƋD$|D$4$ $MD$<$E$$0l$$/8w+0GF@Ft$l$$0<$h&%Q8%c$0T$l$ $/~ϋ1҉8t1t$$$61Ƀ$ $$_$t$$l$D$ $DŽ$|$@$$t*$$ׅu$DŽ$뎋$$<$D$$7n+9/F"$$0$L$4$D$QKD$D$H@$<ƋD$@D$DD$4$$D$<$E$L>|$HD$G$ƋD$DD$4$$$?D$<$E$$0l$$J>w+90GF@$~t$l$$0$|#%Q8%~U$0T$l$ $G~Ӌ1҉8;$t1$$$24$<$p 9$t$j4$<$pj 9$T$.$e$DŽ$|$<$$t:$$ۅtDŽ$\$DŽ$܋$$|$,$ID$$$=$ljt$TuVT$P+9D$PEF"|$$0$ $D$GD$ŋ@$ƋD$|$pD$G$5T$lƉT$$$?D$<$E$$0l$$ >w+90GF@$~t$l$$0$%Q8%~U$0T$l$ $~Ӌ1҉8;$t1$$$ 24$M<$p  9$L$4$<$p 9$t$$e$$DŽ$ D$8t$`l$4$$t$$$$|$$$7n+9b/F"$$0D$$ $D$~AD$D$h@$iƋD$8D$dD$4$$D$<$3E$PBT$hD$B$ƋD$dD$4$Q$D$<$E$$0l$$w 8w+90GF@$~t$l$$04$%U8%*$0T$l$ $p ~ϋ1҉8;$t1.($t $$l$${NjuN+L$\9wD$\EF"|$$0$$t$8?D$ŋ@$%ƋD$4D$XD$4$u$D$<$L$\A$SED$E$ƋD$XD$4$ $4D$<$T$\B$D$\$0D$<$+}w+9uGF@$Vt$D$\$0D$4$]%T}T$\%~ED$\$0T$D$,$' ~ϋ1҉8;$D$\t1$F4$<$h 9t$`$t$`4$<$p` 9 D$`$D$&$x$V4$9<$p 9L$`$L$4$<$p 9"t$`$t$ $r$$l$$$7n+/F"$$D$$0L$$;D$D$x@$$ƉT$tT$$$D$<$yE$A3|$xD$G$CƋD$tD$4$$4D$<$E$$0l$$8w+0GF@Ft$l$$0<$%M8%~Q$0T$l$ $~Ӌ1҉8t1.$$$$94$f<$p$ 9$t$4$*<$p 9$T$$m$} 4$<$p} 9$t$Aw4$<$pA 9$L$$N$$G14$<$p 9$L${4$<$p{ 9$t$?$.W$0$t$$R$0@<$$L$$$$0t$D$ D$D$$_^SD$$T$ t/u T$ [)C$ T$_1[É$$UWVS[$4$@l$4$$ʼn$px ,$ŋ$ $:D$D$D$D$@$,$D$t$@t$$8$D$<$D$$GD$H0C+)9GL$H8%~T$HD$H@L$@ $U|$$T$$T$$t$0GCFLD$H0+)9NGL$H8%~T$HT$HwB?% Ɖw<$D$D$@$T|$E%? @E$$,$D$y$G%? @G+$l$4$ !$w$f_T$PzG%tw))hD$PpF%tN))ЍP9~/G%tO))PF%.tN΋l$PE%.tƃL$Py))몋t$LD$0|$t$$D$(uE@tcE%9LD$Lt6El$LD$,$?L#$L$1UT$L%E-$UWVSLD$h$D$D$(D$`>+8L$$)9rD$$. "ED$d$lj$3D$<<$D$t$<4$D$8T$8D$4$D$D$0D$l$L$`D$A$<$D$ED$lt$`D$F$T$l$D$WNjD$(L$`D$A$W|$$t$l$`D$ NjE$t$dD$ D$F$D$$wL$8s)t$8l$0l$4t$,(W¾D$)t$$دD$G$茵,$D$虵t$ŋD$($yD$G$_<$D$:Nj@ȉ swt$4,$t$$D$D$8$-,$ƋD$4D$8D$,t$4D$l$0,$D$ŋD$,D$0l$,G#<$赲щǁ;L$}wsJ;L$ Gtߤ$T$Ѵl$4$D$L$$pD$t$ A $D$3D$$|$,<$5ƋD$D$4$ Gl$,,$ݨt$$ٯ$諭T$ D$,;2EǍ )ϋ7L$+9}T$ %~L$ T$ wB?% ƉwD$(|$(T$D$ D$0E+ )9wV}l$E%~T$l$wE?% ƉwD$$|$$D$$腯$w|$PT$(WD$$GD$ G D$G$<[^_]$>UWVSBw,t$,L$(D$ t$ L$D$$P7ٗ$T$K뼸|$X+D$T|$$D$$衬D$D$($D$$<[^_]ËF$胬QvIUWVS/$$D$lA<$D$ D$L ƒ Шuƒ  Шti$T$襬$B$GNjD$L$9|$$豫$$A($}$|$D$D$L$īD$L$f$訤$F,D$D$L$薫D$L$VƋD$L$J!L$L1.$$|$ۣ$D$`A$謣D$D$`$:$t$$pT$LD$\$yD$D$`$$l$$=D$D$X$êD$T$D$PD$D$X$XD$H1t$Dun+89(FE@E 0~+98FD$DoG<$t$Ht$:$D$|t$L4$‹$|$a<$r\$T$Y'$$\$L$\L$D$d,ы(D$dT$p)L$xŋ$l$hD$(D$XD$D$x$^D$D$@$-D$<$腩D$8l$XD$xl$$ D$4$aŋD$xD$$$?$ߦD$$,$ŦƋD$8$跦t$$ѨD$D$X$訨|$$胨D$D$x$茨D$D$|$蕨$D$|T$\D$x$D$UD$x$Ťt$(+t$p9l$h9(t$|L$x|$t8$$$w-$$D$dl$$|$T$T$ǟ뻋$E$ͣt$`D$4$(D$T$˧D$PD$|D$D$P$h$ɉD$|uT$lD$$賦Ĝ[^_]Ët$PD$Tt$$*L$t$L$D$D$X$ |$||$0D$tD$$ }D$,w+vuG"D$0Fl$,nR$ӋL$4l$ $荦|$XŋD$x|$$萦l$$ŋD$8D$D$<$UT$@T$Nj$T|$$˥l$$<D$D$x$D$D$t$D$t$D$Pl$TD$,$ޥT$XljT$$ݥ|$$TD$t$T$nD$L$)9D$LUWVS<|$XUwэ)+L$$9D$$ED$$0L$$D$ A@D$XuAD$$<[^_]ú9}l$ D9||$Xt^|$X<|$Xt=|$XtD$TD$$莡L$ AD$PD$$sT$ B|$ Gt$ |$XVL$ T$(A$bD$$D$D$($T$ B D$,l$X9l$,.(t$D$ D$ T$D$|$ t$,(l$(DD$G$蔣|$,~9t$L$ D$$i,$D$v ?;L$,|Ή,$D$tD$,D$,VUUUD$,)‹D$,4R)tf|$,,$|$)ʉT$D$D$($̝T$,l$ DD$XD$D$D$9‰T$,l$$kl$,$l$l$듋T$ |$,$l$$肢-D$X$詢7$蘢UWVS|7V+(T$P T$PsF"BwBB B$$$@($D$L},|$HF0D$DA4$ID$\ $D$D|$$qt$\D$X Ź*+l$\)‰T$lT$l D$lD$$$ D$@${D$<$oL$u~+vu}FG@$d$<W($`|$l$l$ l$$l$$`l$ l$|$4$T$, d$'z$<t$<0$,V+T$8D$8F"l$8E}w+9uGFFD$8pD$<$Y|$8G }w+9w.uGF@Fl$8uD$8L[^_]$$e~K9w+v 0GF@n$谋ҋ݋>w+v0GF$k$]p$<$,D$D0N+L$@y|$@8F"l$@E}w+9uGFFD$@pD$D$菅|$@G }w+9w(uGF@Fl$@uD$@1$L$>k~K>w+v 2GF@n$ҋ݋8w+v2GF$觉$虉v$舉݋l$H}w+vuGFl$H$7؃$dZD$<.<$~$4$<t$`7$,V+T$\D$\F"@l$\E}w+9uGFFD$\pD$`$>t$\F $4u|$\GD$\$4~I}w+9wuGF@$4n$ևӋ$4}غwD$X+9wuGFD$XF$腇$w~K9w+v 0GF@n$%ҋ݋>w+v0GF$$҆6DŽ$4)$4~S(u+v&0EF@~$Qߋ|$d}w+vuGFl$dn$؃у$d$4$VUUUL)1R9+$)$4Mȉ),9$4$<$0$,N+$$8F"U$E}w+9 uGFF$w$$$F $4u$E$h$4~I}w+9wuGF@$4F$=Ӌ$4}غw$+9wuGF$$$ۃ~K:w+v 0GF@nr$艃ҋ݋8w+v2GF$D$6$$4$T{$d$`$$t8($|$l$l$ D$$$$|$$<$l$l$ D$<$x.DŽ$0}+9>EG@$$G$.}+9>EG@$G$<$$$t$|$`$$@ 2l$$w$d|$$w$$$1$`@T$$w$dl$$wŋ$DŽ$݃$d7$VUUU))R9$$d4$$D$ov$$$dl$$Nv$0$$$$$`T$|@*L$$v$d|$$vt$|$$.$`@T$$gv$dL$$v|$|$d/$$VUUU$)$)ʍR9u.$$dD$,$ w$$0{($<$D$vNj0$`|$t$t$ l$$脽|$$$`t$t$ l$<$:c$d$$D$$)4$ut$4$0D$x$<)$,)D$xt$t0$,V+T$p[D$pF"l$pED$xl$pED$t$%yt$pF $4u|$pGD$p$4~M}w+vuGF@$4F$}Ӌ$49݉w+v0GFn$h}׋D$x~M}w+vuGF@D$xF$}Ӌl$x9݉w+v0GFn$|ׅ~K9w+v 0GF@n$v|ҋ݋>w+v0GF$1|$#|DŽ$4T-)$4"$){(0$<$D$6st$ ljD$$`t$l$$t$ t$$$`|$l$4$${$g{n$V{~S(u+v&0EF@~K$z̋8݉w+v2GFn$z׋$$ō0.$u~X$$+ v'$8AG@w1$zˋ$+$߉ʃ v'0$@F~$yˋk01҃$d$`||$@ $o$<;$$$0эNl$+$4$, $F"X$E}w+9uGF@F$p$$s$F $4u$G$J$4~I}w+9wuGF@$4n$xӋ$4}غw$+9wuGF$F$w$w~K>w+v 2GF@no$hwҋ݋8w+v2GF$#w$w$<$0$,V+9$$F"$E}w+9uGF@F$w$$5q$F }w+9w.uGF@F$p$$u$u\~O8w+9w 2GF@n$uҋ8݉w+9w0GF$؉$w+Uv#uGF$F$Bs$4s=~M(}+v 8EwG@e$rҋދ}$w+v uGF$n$rҋ$(~Y)}+v,8EG@$(G$$%rƋ$((߉ꉼ$}+v:EG$$qӅ~`$+ v,($AE@}$$eqߋ$/}+v,:EG$G$Z$qD$$`@$UgD$Nj$`@$9gD$$($`@$g$($($($`h,u+)98E%~DEw1%? Ɖw<$$dTT$Zf$,$4tDŽ$4)$4$<$,u$N+8$ $$EF"}w+9uGF@F$p$ $A$$i$G $4u$E$$4~M}w+vuGF@$4F$nnӋ$4>݉w+v0GFn$n׋$ ~L}w+9w"uGF@$ F$mЋ}$ +$w9wuGF$n$om$am$Pm$?m$<0$n+*F"E:w+90GF@Fu$<$gE >w+9w'0GF@Fu1$Ll$>lg$-lDŽ$$DŽ$ DŽ$DŽ$ DŽ$@$kUWVS@T$؉D$ F4$D$YD$l$;l$,T$,BT$؉D$ E,$D$X<$D$Xpl$ D$t$ E,$D$Xwb0ŋsb+)9fwb8E%~DMG%? ȉG|$$l$D$\,$D$;Zŋt$$D$\4$D$%ZD$$wbD$sb|$u)D$l$);t$wb8~DD$xwbL$$qǁ,)sb+E9w;wb8~l$$Dt$~D$ $[$[H$[kbkb;l$ tmt$ Ft$؉D$ E,$D$Vl$,9l$(t1L$,T$(AL$؉D$ B$D$yVkbkb$[L$ AD$ D$(D$D$$D$$PÃL$ T$$AT$T$D$ $(UWVS| $$b$ S$$$$l$F$Nl$D$TF $Nl$D$PF$Nl$D$LD$P$SNL$TNjD$P1D$Ll$D$1N$$,8;$$s?t$T$$1ƉL$D$LǃD$P$M;$$rȉމt$HT$H~S]]}w+v%uGF@l$Hn [^_]$:Y͋]8]w+v]0GF$Xڋ]똿;$$.5t$T$$T$L$$$$T$PD$$L;$$r](D$F$LD$D$`F$LD$D$\F $LD$NjF$rLD$D$XF$[L;|$`]ω()~B]u+9w]2EF@~P$Wԋ]+u9w]0EF$YWڋD$Xr1D$\9L$\END2]D$dD$D$hF($S$$l$$?K$D$F,$Sl$$K퉄$ *ZQf.  ZIZI$$Y؃$XӉ$$$,DŽ$$$$l$$KD$p؋$|$pD$lD$|D$x$9D$p Ȩ $*$$T$$L$(t$ $$$9$ $$$$;$$;$+$$ Ȩ$E$$$;$$;$+$$ Ȩ$$E׉D$$$JD$pl$pT$l9T$p Ȩ2t$p$$t$l$$$$Չ$$$$щ$$$DŽ$T$DDŽ$$$> T$$$BBt!$$T$D|$l$ T$<$9*|$xt$(^ZQf.ZI|$dY,t$ED$D$$t$xD$@$$$$$$L$@$AA]t!$$D$D|$L$ D$<$8D$tt$9t$t}n$1$$T$d2$D2l$tl2|$$$T$$ D$ D$D$D$7D$9ʼnl$t|BL$|$dD$ D$ L$<$D$t$$$$$$l$<$D$<$@@t!$$|$<$D$ D$DD$6ϋ$$D$t$$$$$1L$9}$$1l$dR9|r9|;L$}4I$|$d9t4D$D$$$D$D$݉w+d$sMxhD$|$$GM$6M]$M<$MD$x1)D$4$Lg$L$D$x$$$>tH$L$L$$H$l$|$oL‹$$l$DD$D$d$$$$$$<$>\$L$b$$L$$|$D$ D$D $D$0ޅ$$)ȉ$HT$$l$ KL$*$$D$$d$(|$  $X=\$D$$$$$ *XUWVSl:D$(M0D$ $FNjD$X؉D$|$4$+IƋD$ <$D$I,$NjD$$D$HT$XT$$9D$4$HD$D$($H4$D$(KE;D$|덋|$TD$G$Hl$PT$TNjEr$JHt$PF |$$HNjD$(D$$H|$$G$Ht$t$$@Hl$TNjE$8:$rH$jH<$D$G$VH$NHL$ L$$GT$Pr0$t$|GŋD$X,$D$8|$X$|$DD$$G$BD$D$,$B<[^_]ËL$PA4$D${Gl$PD$E $GUWVSiLD$`|$dp$t$D9|$A듋t$PD$XL$4$D$OqD$T$`D$PT$$8NjD$`l$TD$D$Pl$$8L$\ $D$n@D$<$0@$D$k@t$,D$4$;D͉+9wD(D$,p$G@ؐUWVSSbLD$lD$ll$dD$47C83Cw+k7C0GnF@t$D$`t$ht$$}D$0D$0l$`D$D$l,$D$oD$8hD$4x<$01,$&1$t$ /i;D$09D$4D$h|$dD$,9|$,D$G$>l$`NjD$,pE$_>L$`A |$$>$)=T$,D$pT$ht,D$p$D$?e|$lD$hD$p<$D$'eD$l7C3C0~+)7C8F"|$<83Cl$dw+9>7C0GF@nl$= %luakellnot an integral model in akelllseriesellcut-off point must be positive in lseriesellpoint not on elliptic curveellheighttwo vector/matrix types in bilhellorderell for nonrational elliptic curvesellinit data not accurate enough. Increase precisiontorsellsingular curve in ellinitinitellincompatible p-adic numbers in initellpowell for nonintegral CM exponentnot a complex multiplication in powellnorm too large in CMCM_ellpowweipellnumlocalred (nu_D - nu_j != 0,6)localred (p | c6)localrednot a rational curve in ellintegralmodelapell (f^(i*s) = 1)%lu is not prime, use ellaktorsell (bug1)torsell (bug3)torsell (bug2)valuation of j must be negative in p-adic ellinitinitell for 2-adic numberszG!"@X[#!"@9B.6@?G?zG!"@@??2⍀P22⍀P22⍀P22⍀P2{2⍀Pg2b2w⍀wPN2I2b⍀bP5202M⍀MP228⍀8P21#⍀#P11⍀P11⍀P11⍀P11⍀P11⍀Pm1h1⍀PT1O1⍀P;161{⍀{P"11f⍀fP 11Q⍀QP00<⍀<P00'⍀'P00⍀P00⍀P00⍀Ps0n0⍀PZ0U0⍀PA0<0⍀P(0#0⍀P0 0⍀P//j⍀jP//U⍀UP//@⍀@P//+⍀+P//⍀Py/t/⍀P`/[/ ⍀ PG/B/ ⍀ P./)/ ⍀ P// ⍀ P.. ⍀ P.. ⍀ P..n ⍀n P..Y ⍀Y P..D ⍀D P.z./ ⍀/ Pf.a. ⍀ PM.H. ⍀ P4./. ⍀ P.. ⍀ P.- ⍀ P-- ⍀ P-- ⍀ P-- ⍀ P--r ⍀r P--] ⍀] Pl-g-H ⍀H PS-N-3 ⍀3 P:-5- ⍀ P!-- ⍀ P-- ⍀ P,, ⍀ P,, ⍀ P,, ⍀ P,, ⍀ P,, ⍀ Pr,m,v ⍀v PY,T,a ⍀a P@,;,L ⍀L P',",7 ⍀7 P, ," ⍀" P++ ⍀ P++ ⍀ P++ ⍀ P++ ⍀ P++ ⍀ Px+s+ ⍀ P_+Z+ ⍀ PF+A+z ⍀z P-+(+e ⍀e P++P ⍀P P**; ⍀; P**& ⍀& P** ⍀ P** ⍀ P** ⍀ P~*y* ⍀ Pe*`* ⍀ PL*G* ⍀ P3*.* ⍀ P**~ ⍀~ P*)i ⍀i P))T ⍀T P))? ⍀? P))* ⍀* P)) ⍀ P)) ⍀ Pk)f)⍀PR)M)⍀P9)4)⍀P ))⍀P))⍀P((⍀P((m⍀mP((X⍀XP((C⍀CP((.⍀.Pq(l(⍀PX(S(⍀P?(:(⍀P&(!(⍀P ((⍀P''⍀P''⍀P''⍀P''q⍀qP''\⍀\Pw'r'G⍀GP^'Y'2⍀2PE'@'⍀P,'''⍀P''⍀P&&⍀P&&⍀P&&⍀P&&⍀P&&⍀P}&x&u⍀uPd&_&`⍀`PK&F&K⍀KP2&-&6⍀6P&&!⍀!P&% ⍀ P%%⍀P%%⍀P%%⍀P%%⍀P%~%⍀Pj%e%⍀PQ%L%y⍀yP8%3%d⍀dP%%O⍀OP%%:⍀:P$$%⍀%P$$⍀P$$⍀P$$⍀P$$⍀Pp$k$⍀PW$R$⍀P>$9$⍀P%$ $}⍀}P $$h⍀hP##S⍀SP##>⍀>P##)⍀)P##⍀P##⍀Pv#q#⍀P]#X#⍀PD#?#⍀P+#&#⍀P# #⍀P""⍀P""l⍀lP""W⍀WP""B⍀BP""-⍀-P|"w"⍀Pc"^"⍀PJ"E"⍀P1","⍀P""⍀P!)B[t #<Un6Oh0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk3Le~-F_x$Ë$×@^Sb+  dunF+ \))\q) ǾobTN= ʽĽxlXF>.ܼ̼m]M91!׻~n^P>, {O1+ع) xh%`LDѸ_5%}!) ||x) hJy9) ѴwXG Գw+!BݱױDZOG4$ʰW^D/nfUEHfJ.ҭlW8 |9WJϫB Ū# ȩnUK< ܨ¨qX9 §) w?ݦצǦN< ӥVP5$ҤȤ¤d^60ݣգ`?3) آ̢¢wiUI; ۡȡrjL ϠjTD) ۟ßydIC9!֞ocYCԝʝ) }bWG7+˜i=) ӛÛiY--њwgWK;/%ϙ{[K;+ۘ˘8-2-)) ܗʗ-~rbPD4( Ȗxk\)) ڕҕ•}umaYQ@0(ӔygU7)Qߓ̓|hVQM) ْŒIi,uaIO? I5ݐ̐IqMIGI=IIII_IAIIIIrIJI@IIIЋA!IINIFIچImIUIM)IIIхwbIIIфIIIeI_I8E) 8҂m~Ȃm~Rm~Em~:)߁m~ʁm~m~m~Km~?m~5΀m~m~m~th0^N8~~m~~m~i~) S~=~~~}}h}|I}Y{||Y{|:}Y{||Y{||Y{||Y{|*}Y{||Y{||Y{||Y{q|9|#|{Y{{Y{U{) @{*{{zzzz{zVz:z#z zvvwtvwtv^wtvvt|vvtxvvtovxvtHvgvtDvLvt@vutt%ttrsrsrsrsss[ssrrrrrcrrXr$rrrrr) rqqqkqYIPqYIGqYIAqqYIpYIpYIpYIpYIpYIpppup)pYIpoYIooYIoYI~oYIvo7oYI1oYIoYInnYIwnYIFnYI(nYImmYIvmYIpmYI:mmlllYIlYIlYIlMlYI/lYI'lYIlkYIkYIkYIkkYItkYInkYI[kkYI kYIkjYIjYIjYIjjyjYIQjYIIjjYIjYIiiiYIi2iYI,iYIiYIhYIhYIhYIhhhYImhYIghYI_h9hYIhYIhYI hggYIgUgYIGgYI8gYI!gYIfYIfYIfffYIfYIfYI|fVfYI?fYI9fYI*ffeYIeeYI[eYI@edYIdYIdYIdYIdYIudYIad3dYI+dcYIcYIccYIcYI4ccYIbYIbYIbbYIbYIbYIbYIb}b]b7bbbYIaYIaaaYI|aYIvaYInaHaYI1aYI+aYIa`YI`YI`YI``YI`YI|`[`YI9`YI3`YI+`_YI_YI_YI__YI{_YId_YI9_YI-_YI^^^w^YIo^Z^YI@^]]]|]<]]\\c\P\[YI[YI[YI[Q[%[YIZYIZZZYImZYIcZYI[Z5ZYIZYIZYI ZYYYIYiYYI=YYI"YXYIXYIXYIXYInXYIhXYIWWYIWYIWWYIgWYIPWYIHWYIWWVYIVYIVYIVVYIVYI|VYImV_V VYIVUYIUYIURUYIDUYI8UYI!UYITYITYITTsTYIiTYI\TKT=TTYI TYITYISSYISYISYISSNSYIASSYIRYIRYIRYIRYIRYIRyR[RYIBRYIFa;4Fa;.FFEa;Ea;EyEiENE*EEEDDGa;DGa;D0Ga;DGa;|D3Ea;xDGa;tDDa;pDDa;lDDa;hDGa;dDDa;\DdDa;ADDa; DCtCa;kCa;>CCCBa;Ba;BBa;Ba;pBOBa;0Ba;*Ba;"BAa;Aa;AAa;Aa;Aa;ACAa;=Aa;Aa;A@a;@a;@a;@a;@a;@s@g@Q@@@a;??Qa;????u??>a;>a;>a;>a;=a;====q=<=<a;<a;<a;<z<n<b<<;;a;;a;l;a;f;a;];) L;;;; ;:::>:#::99y9i9T918;918,91899818S818:818-8) 87777707}7m7]7Q7E7970+77 76660606v6f6V67666555505g50U5075+554444444444v40j4^4F4:4(40"430303303330~3_3<303030202020222202y2i2Y2F262 21111111s1k1_1Q1?1/1:00000) 000.0{0q0.g0L0<0..00.////////A/.-/././......) .m._.u-+Y-+K-C-7-#---,,,,7,+,+++++++++++) +s+Q+D+4+|a&**ga&****}*i*V*C*.*a&*a&*a&*)))))|)i)Y)C)3))))@a&(a&(a&(((l(\(G(a&-(!((('''a&'a&''f'N'.'&&&&&a&f&a&]&) L&@&&%%$%%~%c%?%/%%$$$$$x$d$&$$) ######{#)r#R#8#%##)")")"""""{"a"G"-""!!)!)!)o!)9!&!!        q e L < )   {iY?/tdQA5%p^NB)T)B)<%) x~m\K%|l`G4(vn |]@,v4z`VN>4$ sI0(Y) wfViI91yoaQA5# e) L<u 1!}m]QC7'{]M2$      q ) f V  E 9 )            r c W G ; %          n b M ; /       )  u R o N ) A       ` v i Y `E : -   ``tgTI8(` `sD2o9ra?4'bWJ: yse+ x,$N/'_I2t`bQA`-"`YG}G'0``bUvVDwk\I`zj`VK>.{ZTFv_ woa/x0gLD6vaG{pc>3&}j_N)Lu5x@3~>4,&~M.&xX?% `R<) M~MvMnMcU/MMMMMM}MrTM7"KMM MMzM`I) 9) 5555555p5LD1) r_OC*{jW>*k[/vSC+}L( }) oYa@a8a0aaaaaatdXH*a`aasa]) L;*gD ) ykM,$ lY?(|iQA1~hK;+m]6. }ubVJ1%vJ+t\ ) |mYI9"q_F84) $ gSE2rbG?! l\_J+ vS@oic7h`F2,$dH:RB  lIqZ') ٽٽ.ٽٽٽcٽLٽDٽ5ĿrٽhٽVٽ|p`@ٽ4ٽ*/ٽ޽ٽս) ~MG<$`ػȻdP%x[ǹ޸ʸ ) {D8ȶ) nX0) ~vU?)ٴdN۳ճͳl"Ų[Mp]>'ӰveWޯɯï~bQ@ڭ˭U׬`}b\R?"ڪǪ!zgK:#wl[Mѧȧ*ӦkO>-n_C;֢ۤzcXG9|֠W;*mdOI?,ƞoڝÝܜvcG6wl[MؚϚE2jWL;-%Ηtn`B7&lݕЕƕoSM?Ԕxr\I6 ߓГޒВ ґ4.  \VH5"~p]Jrԍ΍یȌ{F6# r!؊Ŋ҉|q`eƇyf1 ݆) ̆zSG )aȅe)a:)ڄʄ)aa)aD)a>)a҃~k)aI8%)aЂyb)aU)aH)a=,)aҁ)ag[)aL&)a)a)a)a)a)as)aT)a)a)ahB~~~)a~)a9~)a ~)aR})a}|||||)a|)a}|)ar|a|S|{4{)a{)a{)azzzzzUz/z%zzyhyy)ayx)aww)awnwwv)av)auu)atu:u)a%ut)as~s)aXs)aNs)aHs!ssrrrgr]r@r4rSqq)app)ap)aoo;o)a5o)ao]n)a3n)am)aYm)aIl)a8l)a!ll)akkk)akck)a@k)a:k)akkj)aj)ajj[j)jjiiiiPi"ih)ah)ah)ah)ah)ah)ah)aEh1h)a h)ag&g gfffCfe)ae)ae)aee]e)aEe)addqdAdd)ac)acctchcOcI0I,I) IHHHHHPEzHjHPE[H6H"HHHGGGGGGwG[GJG3G$G GPEFPEFPEFFFF}FPEmF=FFFPEEEPEeEPELE) -EEDDD}DiD5D%DADCCCCCCCmCJCBC6CCBABABABBBB}BfBVBGB*BAAAA) AA{5vA?A%AA@@@@@p@h@Y@@@@{5?{5?????y?h?X?H?,??{5 ?>{5>>}>_>D>&>>>=={5={5={5|={5r=f=V=B=/=#==<<<<<<y<{5n<?<{5'<<;;;;;;;;y;?;{5*;{5;{5 ;;:::::::x:n:[:K:1:':{5:{5 ::9{59999999<909 99988888{8_8E828!8{58{57{57777777^7R7B7:7'776666666y6q6e6[6L6<6:{5 655{55{5w5) j5Z5,;535'554,44444v4j4T4@4444333`,33m3X3=3-33 32222,22,2y2a2Q2A252)22,2211,1,11,~1v1j1,T1H1810111,1000000000t0[0:0'00 0///////r/]/,B/,:/,0/$//.......|.l.S.,..-----------p-`-:,/---2,,,,) ,,)s,N,:,.,,,++++++r+f+Z+P+H+8+,++*******q*)Z*)R*)J*>*(***)))))x)h)+)6))) )) ((%((%((|(p(Z(B(6( ( ('''''''{'e'Y'@''&&&&&s&Z&?&/&%%%%) %%u%%%{%o%Y%E%=%-%%%$$$$$$^$H$7$$$$##u##|u##qu###Tu#Ou#Ku#ur#j#X#P#=#5##"u"u"u"""s"X"E"#""!!!!!!r!b!J!(!!!     r ^ R F 0   u{scSC7td.& uuzuq) f=/ 888}hP@38"88888 8h`F84) "kWcN4.& ^J`R=ztY+ g4oV ) YI,$) m\F1 wPACA=1 yjUE9$AAfAVAPA:,$ ph`FA=) .        R  @  ,   )  {  R         y f Z G ; #      ) v h R F 0         l ` J : #  P9#) n]C3 mmzf.mm:m#m|mi) <0 ) ~xt) `R? zTE*  ) f~b) ZI-!) o?$  (  (  (  ( } woi( d ^pVpP( K EW=W7( 2 ,>$>(  % %(    (  (  (  (  }}(  }yuyo( j duv\uvV( Q Kq]Cq]=( 8 2mD*mD$(  i+i+ (  ee(  aa(  ]](  YY(  UU(  Q{Qu( p jM|bM|\( W QIcIIcC( > 8EJ0EJ*( % A1A1(  = = (  9 9 (  5 5 (  1 1 (  - - (  ) ){ ( v  p %h %b ( ]  W !iO !iI ( D  > P6 P0 ( +  % 7 7 (     (    (    (    (    (    ( |  v n h ( c  ] oU oO ( J  D V< V6 ( 1  + =# = (    $ $ (      (    (    (    (    (  | t n ( i  c u[ uU ( P  J \B \< ( 7  1 C) C# (    * * (     (    (    (    (    (  z t ( o  i {a {[ ( V  P bH bB ( =  7 I/ I) ( $   0 0 (     (    (    (    (    (   z ( u  o g a ( \  V }hN }hH ( C  = yO5 yO/ ( *  $ u6 u6 (   q q(  mm(  ii(  ee(  aa(  ]]( { uYmYg( b \UnTUnN( I CQU;QU5( 0 *M<"M<(  I# I#(  E E (  AA(  ==(  99(  55(  {1s1m( h b-tZ-tT( O I)[A)[;( 6 0%B(%B"(  !)!) (  (  (  (  (    (   y s( n hz`zZ( U OaGaA( < 6H.H(( # //(  (  (  (  (  (  y( t nf`( [ UgMgG( B <N4N.( ) #55(  (  (  (  (  (  ( z tlf( a [mSmM( H BT:T4( / );!;(  ""(    (  (  (  (  (  zrl( g asYsS( N HZ@Z:( 5 /A'A!(  }(}((  yy(  uu(  qq(  mm(  ii(  exer( m gay_ayY( T N]`F]`@( ; 5YG-YG'( " U.U.(  QQ(  MM(  II(  EE(  AA(  =~=x( s m9e9_( Z T5fL5fF( A ;1M31M-( ( "-4-4(  ))(  %%(  !!(  (  (  ~( y ske( ` Z lR lL( G A S9 S3( . (: :(  !!( |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  cfm| va} ^zxe`dwjl gr{i_[ k ub~RXphnyqoJcfm| va} ^zxe`dwjl gr{i_[ k ub~RXphnyqoJ]\ts  X&l `.+0(8 X; PI r2 #; P{H tU d~^ @f $r Hx $       \+ |+     P p о rh؆ 8 8н~x` aJ@\XT $m`%)1O,P` $I pJZ?Vp5x L  DE,dlR_ ,vdA,D*|PDDllb`oNMnsyQ`|EE& 2Bx)my6XXRp[xGh4e8IUT,gs_<6L${NT%-Qu]h-D\2##=-<F z?fDX\n>,_checkpt_checksell_checkell_checkbell_smallinitell___i686.get_pc_thunk.bx_ellinit0_ellprint_initell_coordch_pointch_pointchinv_oncurve_ellisoncurve_addell_subell_ordell_powell_zell_elleisnum_elleta_ellzeta_ellsigma_pointell_weipell_weipell0_ellwp0_elllocalred_ellminimalmodel_ellglobalred_ellrootno_apell2_multi_invmod_apell1_CM_ellap_CM_CardEFp_apell_ellap0_anell_akell_elllseries_ellheightoo_ellheight0_ghell2_ghell_mathell_bilhell_elltaniyama_orderell_ratroot_torsell_elltors0___i686.get_pc_thunk.axdyld_stub_binding_helper_diffptr_gsub_ghalf_gen_2_DEBUGMEM_DEBUGLEVEL_gen_m1_gen_1_gen_0_pol_x_bot_avma_grndtoi_RgX_rescale_divisors_ZX_valuation_absi_cmp_derivser_gtoser_divrs_mulsr_gfloor_gerepileuptoleaf_mplog_gabs_gsin_incgam_incgam0_gpow_gopsg2_log_ggamma_isint_gcmpsg_coprime_part_u2toi_krois_denom_numer_centermod_Fp_pow_cornacchia2_free_uisprime_qsort_gpmalloc_sqrt_factoru_Fl_inv_gunclone_diviiround_cmpii_chinese_mulss_vecsmall_indexsort_msgtimer_newbloc_gceil_muluu_sqrtremi_Rg_to_Fp_timer2_Fp_inv_krouu_Rg_to_Fl_cgcd_krosi_Z_lvalrem_powgi_Z_pvalrem_truedvmdis_Z_factor_gcdii_sort_shallowconcat_auxdecomp_cmpui_kross_mului_divis_rem_Z_lval_FpX_nbroots_mkpoln_BSW_psp_diviiexact_diviuexact_umodiu_powiu_Z_pval_ggval_trueeta_gerepilemany_ceil_gaffect_rtodbl_gprecision_mulsi_szeta_gerepileall_pari_warn_powuu_gexp_mulcxI_Pi2n_gconj_gcmp_cxnorm_ground_dbltor_floorr_divri_divir_dvmdii_flusherr_gprec_w_leftright_pow_poleval_deriv_gpowgs_gsubst_monomial_shifti_addsi_sign_quadnorm_gissquarerem_Z_issquarerem_gerepileupto_gerepile_gneg_precision_gcopy_sqri_gerepileuptoint_mulii_addii_sign_vecthetanullk_pureimag_mpexp_imag_i_mulcxmI_glog_mppi_gexpo_real_i_gen_sort_cleanroots_kronecker_gequal_gdivgs_equalui_gcvtop_gcmp1_gneg_i_equalii_gprec_padic_sqrt_modii_ginv_addsr_divrr_mulrr_addrr_sign_gaddsg_gsqrt_gsigne_sqrtr_mulur_delete_var_fprintferr_name_var_fetch_var_gerepilecopy_ellsearchcurve_gdiv_gcmp0_gmulsg_gmul_gadd_gmul2n_gsqr_pari_err_smallinitell0_initell0_coordch4_CM_ellpow_new_coords_do_padic_agm_trueE_set_gamma_reel4.0_weipellnumall__weipell_localred_p_localred_23_ellintegralmodel_cumulev_ellrootno_3_ellrootno_2_addsell_apell0_exphellagm_hell_hells_bilhells_torsbound_tors_nagelllutz_do_agm_padic_initell__sqr__mul_neron_mul_sell_sqr_sell_s_addell_sexact_order_real_1_invcmp_compare_multiples#1/12 1200774176 0 0 100644 83636 ` galois.oH 0d  __text__TEXTmd__data__DATAp$,.__cstring__TEXT__bss__DATA __const__TEXTl__literal8__TEXT__picsymbolstub2__TEXT<.V__la_sym_ptr2__DATA}899__nl_symbol_ptr__DATAdr__textcoal_nt__TEXT| @<rA P..3?:xUWVS,|$@ _|$@ <|$@$D$@D$@ }N$1ҋHt'p1҃ ޅN֋ T$8 t$E+t$)9D$ /Et$@+)9f 8A,7#D$@;t$@8w1D$uL$"D$E,[^_]$ٍT$D$@4$T$D$*;t$.Dt$D$<$;t$~뀋#4t$ D$D$@,$)D$:;t$@~@ 0N+L$9w%|$ 8F,EE|$$$$zB$iL$@~Dw+vuGF@L$@N|$ӋD$@w؉D$+vuGFL$$ۋD$@$D$T$D$?|$@ D$*'D$UWVSs$L$8T$4|$pD$t$<$L$ T$|$$t$oD$8|$D$ D$4D$$$8NjD$8$D$4$D$p$E l$<%D$07V$%9*8 9~<$L$<{8;|$0}X$F 9ʋ43D$<,D@9~9D@9~;|$0|D$<$$Č[^_]Ë$D$D$ $D$,$D$4$l$<} $p9%L$,.D$,T$$K9~卻<$9{u1F$D$ $$D$D$xĉ$"<\$,t$0l$8|$4>D$1у $3ŋD$@D$ T$,$D$T$,$t}$t tUl$$T$[4$,$Ql$DD$D$$R\$,t$0|$4l$8<Á9T$D|띍l$$ t$,$` $KUWVSC$<$$D$dl$`l$D$$4$D$|$}D$$l$c$DŽ$DŽ$ DŽ$DŽ$7DŽ$nDŽ$DŽ$DŽ$0DŽ$a $%D$Ɖ$S{  W  t#>$T$r1[^_]Ë$t$$B0t$`D$ht$lD$h[ō )͉l$\+E9h D$\E "D$\0;z|$XD$0 t$Tt$XL$TT$0+)9T$X2,D$\tFD$0;~L$\$$D$x$D$\$L$$^W,$t$pt$tD$|D$tD$D$x$.$D$D$|$D$pl$|D$Pl$L};D$t|$DD$HD$D9D$H|$P|$,t$HL$L,l$@9HD$,D$4D$@<ցD$P t$P79~D$H|$D9|$H| O OT$|%9D$dD$8D$d+ZD$8D$d@"l$hD$l4|$8G1}w+uGF@Fl$8uD$hu5|$8G l$hl$$t$8FD$8}D$h~J}w+vuGF@D$hF$֋l$h8݉w+v2GFn$O$A}w+vuGF$܅~K)}+v 8EG@w5$҉>݉w+v 0GFn$\$N$fT$|%9|Ht$p D$/D$24$tD$/4$ D$hD$,D$24$LD$+D$24$,t҃%먋u2D$0D$14$1tD$$D$04$0tD$D$$4$҃ D$,D$-D$14$xtD$-4$$$D$'D$14$GD$'Ƀ t t$p4$/_t$pkD$*D$,4$tD$*4$u;D$4 ,;t$4};t$4|L$0<$$띐UWVS($`$)H $@AH։$)%*9$@>$4;jIDŽ$8$49$8|$$8$@DŽ$<9$<$0XD$D$L$<$0<zցU 7$<9$<~$8$49$8`$)$)2$T(DŽ$xDŽ$D9$x$XDŽ$H L$L$$x$)$((q|$T$|$TT$Pp$DŽ$pDŽ$dL$4D$0t$,l$(|$$T$ $p.DŽ$t$T9$tDŽ$P$\DŽ$LT$4L$0|$8T$\L$X$)$t/ꉄ$$+( )9$ } $ W "$ 0|$8|$`$)$dB ; .$$$(2$ <(;~ҋ$) @$ D$B $D$pƋ$);x? . ~? Oʉt)ʉЅ$)P֋8+q$$$)$A %$$ O$AAD$A$$)r ~$|$1$)$} Ł9%$<$$)D$E $DŽ$$ 9$$)$B,u+$)9Ɖ$=$"$1DŽ$;~j$,$/$)D$A $$$ 9$#$0$)$D$;f$$<|$E$};$|($$;$~@D$<$SD$D$-;$|$6$%$=9|T$$M44$MNj(Ft$D$ G<$؉D$Pt%%?D$`($L$L G;$P'<$D$;$P~ً$t$\|$$PDŽH$$\$LD$\$t l$Xt$t$T$\9$t7V;$P HL$P< ;$P~DŽ$p$P$`$L$P9Ɖ$H$D?p$!$D;$L~$dp$d$)B 09$dBh?;$)~B$$9@4$|$4$$fƋ%.~4$4tF$|% Fl$ T$$)DŽ$|G4$D$$$|AO$W $*DŽ$9$$cL$H$$t9ʼn$TD$H$$<ց$ $79~$$9$n$)U r$$p} $/+()9$$"$0;~8$$F$)D$G $D$<$`g$$,l$B$;$|$D;~낉D$,$D$$$;$|$%$x$gaG$$0u) $$0$7$ɋ>z$9|NL$<$_'$T$:/4$m$dot$ $Q$x$X9$x31([^_]Ë$`$)<$(0n,$9:$(( 9~Ȉ랍$H$P$l$T$T$<$;$P0$D$D<$D$_;$P~֍<$C;$P0$D$D<$D$;$P~蔿H;$P7D$ $ T$赾$`9 1TNQt%ށ?}͉~G? Oх$t%)$F$Hʁ? Oɍt$%)‹$9$)ED$ED$$ $Xd4$D$聾;}~$)$ GD$G$D$gT$}$lrDŽ$h$HDŽ$P9$hDŽ$L L$,t$$D$xD$(L$tD$pt$ll$ pl$h|$dD$DL$@t$<7$PDŽ$l$DU$9$l$\$aD$x!$D$D$$L$@L$|$h$l$9,$l$D9$l~ʋ$;$PHL$<<t:;$P~$h$H|$d$`9$h7$`8$)<$(0n,$9.:$(( 9~tH|$p$$P4$+$l$t$D$ $$P9.|$l$D$D<$D$ս;$P~֍4$辽$$P9.|$h$D$D<$D$臽;$P~s$$),$t /$+()9$$v"$0$)$dF ; .$$(<2,$;~ҋ$)@$D$B $D$4`$);zf>n? Oʉt)ʉЅ$)PՋ+o$$$)$F %$$O$FFD$F$n M$L$融$~ Ł9%$$~$)D$G $ODŽ$$9$$)$E,Uǁ+$)9Ɖ$=$"$1DŽ$;~j$,$螷$)D$A $o$$9$#$0$)$D$U$$<|$E$;$|($$;$~@D$<$·D$D$蜶;$|$襹$蔹$謶9|T$$2輶BK4$輶Nj(Ft$D$ G<$؉D$?Pt%%?($$L;$P#<$D$\uy;$P~݋$t$PDŽH$\|$$$\$L$$t,D$|4H;$P~뀋$\81"NQt%ށ?}͉nE? Oх$tE%)$F$Hʁ? Oɍt$%)‹$9$)ED$ED$$$Z4$D$軴;}~X$)$GD$G,$D$:]-$跶y$覶SL$X$xL$D$4$@f$aWD$L$,2u! $,0D$L7Y$эO$L$A]V|$$/t$ D$(D$,4$D$D$(4$蠱pD$D$4$耱tKD$D$4$dt#D$D$4$CP^D$D$4$tD$D$4$D$D$4$ް.tD$D$4$輰YD$D$4$蜰t%D$D$4$耰8D$D$4$[.D$D$4$5D$D$(4$(.D$D$4$D$&D$,4$˯tND$D$&4$误&.iD$D$4$良 PAD$#D$,4$a,.D$D$#4$;uD$D$#4$t%D$D$4$ uD$D$#4$ޮtPD$D$4$®.|D$D$4$蜮RD$D$#4$rtD$D$4$VD$D$#4$7#D$.D$/4$ t*D$D$.4$. D$#D$/4$ǭ/aV|$$-t$ D$ D$'4$萭D$D$ 4$pD$ D$4$PtlD$D$ 4$4uDD$D$ 4$u#D$D$ 4$ P^D$ D$4$Ȭ.tD$D$ 4$覬.uD$D$ 4$脬.uD$D$ 4$bkD$ D$ 4$=t(D$D$ 4$!Ƀ Q*D$ D$ 4$ .4$D$D$ ӫVD$D$'4$諫ID$D$4$苫D$D$4$ktKD$ D$4$O.ZD$D$ 4$)2D$D$4$t>D$ D$4$uD$ D$4$̪D$D$4$說.D$ D$4$脪;D$ D$4$dD$D$'4$B'.MD$D$4$t(D$D$4$Ƀ Q D$ D$4$ةD$ D$4$踩D$*D$-4$薩D$"D$*4$vtJD$D$"4$ZD$D$"4$:"AD$!D$*4$*.D$D$!4$FD$ D$!4$ʨ!D$)D$-4$蠨-.D$"D$)4$zD$!D$)4$ZPD$D$)4$:D$D$)4$)UWVS,(<+00 8Dž<1$D$D$ D$D$$CGD$ D$D$$BGD$D$$BG D$ D$D$$BGD$ D$D$$BGD$D$D$ D$D$$TBGD$D$D$ D$D$$BGD$D$D$ D$D$$AG D$D$ D$D$$AG$D$D$ D$D$$AG(D$D$ D$D$$YAG,D$D$D$ D$D$$"AG0D$D$ D$D$$@G4D$D$ D$D$$@G8D$D$D$D$ D$D$$@GG\D$D$D$ D$ D$D$$>G`D$ D$D$$_>GdD$ D$D$ D$ D$D$ D$D$$>GhD$ D$D$ D$D$D$ D$D$$=GlD$D$D$ D$ D$ D$D$$z=GpD$D$ D$ D$D$$C=GtD$D$ D$ D$D$ D$D$$<GxD$D$ D$D$D$ D$D$$<G|D$D$D$ D$ D$D$$v<D$D$D$ D$ D$D$$4<D$D$ D$ D$D$$;D$(D$$D$ D$ D$ D$D$D$ D$D$$ ;D$D$D$ D$D$$^;D$D$D$ D$D$$$;D$,D$(D$$D$ D$ D$ D$D$D$ D$D$$ :D$D$D$ D$ D$ D$D$$p:D$(D$$D$ D$ D$ D$ D$D$ D$D$$ :D$D$D$ D$ D$ D$D$$9D$ D$D$ D$D$D$ D$D$$r9D$ D$D$D$D$ D$ D$D$$ 9D$8D$4D$0D$,D$( D$$ D$ D$ D$ D$D$D$ D$D$$8D$$D$ D$ D$ D$D$D$ D$D$$D8D$(D$$D$ D$ D$ D$D$D$ D$D$$ 7D$@D$<D$8D$4D$0 D$, D$( D$$ D$ D$D$D$D$D$ D$D$$P7D$ D$D$D$ D$ D$ D$D$$6T$PT$ D$P3$D|$t$D$$@$.81҅)t/׍W2,[^_]$!VSt$ D$D$"4$ǚ"teD$D$4$覚tDD$D$4$腚u#D$D$4$dɃQ[^D$ D$!4$9t%D$D$ 4$ɃQD$D$!4$!.tD$D$4$֙.o4$D$ D$谙V GVt$ D$D$4$tlD$D$4$ctDD$ D$4$Bt#D$D$ 4$!P^D$D$4$tiD$D$4$ۘ.tD$ D$4$蹘.tD$D$ 4$藘 qD$D$4$r.ND$D$4$LsD$D$4$,D$D$4$ .D$ D$4$/D$ D$4$ƗD$D$4$覗.D$D$4$耗ZVt$ D$D$4$SD$D$4$3t?D$D$4$t*D$D$4$P^D$D$4$̖.tD$D$4$誖PD$D$4$腖.tD$D$4$c1D$ D$4$CtkD$D$ 4$'D$D$ 4$ .D$D$4$D$ D$4$輕.D$D$ 4$薕D$D$ 4$v .}D$D$4$PUWVS;O(G|+0 O8Dž|!$ D$ D$ D$$[0GD$ D$$<0GD$D$ D$D$$ 0G D$D$ D$D$$/GD$ D$D$$/GD$D$ D$ D$$/GD$ D$ D$$a/GD$D$ D$ D$D$$*/G D$D$ D$D$$.G$D$D$D$ D$ D$D$$.G(D$D$ D$ D$D$$.G,D$D$ D$ D$D$$N.G0D$D$ D$ D$D$$.G4D$D$ D$D$$-G8D$D$D$ D$D$$-GRD$D$(4$D$ D$4$t%D$D$ 4$5D$ D$4$轆.D$D$ 4$藆tKD$D$4${.D$D$4$UD$D$ 4$0 D$ D$(4$D$ D$(4$(D$D$)4$̅|D$D$4$謅D$D$4$茅t*D$ D$4$piD$D$4$FD$D$4$&.{D$ D$4$D$ D$4$)D$D$4$.D$D$4$蚄.D$D$4$tD$ D$4$RD$D$)4$0).D$ D$4$ D$ D$4$D$D$4$ʃD$!D$+4$訃+.D$D$!4$肃!UWVSg\{(sL+0,{8DžL-$ D$*D$ D$D$$GD$ D$D$$XGD$*D$D$ D$D$$!G D$D$ D$D$$GD$*D$D$D$D$ D$D$$GD$*D$D$ D$D$$tGD$D$ D$D$$EGD$D$ D$D$$G D$*D$D$D$ D$D$$G$D$D$D$ D$D$$G(D$*D$!D$D$ D$ D$D$$YG,D$!D$D$D$ D$ D$D$$G0D$"D$D$D$D$ D$D$$G4D$ *D$D$D$D$D$ D$D$$|G8D$D$D$D$ D$D$$=GtCcՍUl[^_]D$D$ $y GD$ D$D$$R G D$D$D$D$ D$D$$ GD$,D$(D$$D$ D$D$D$D$D$ D$D$$ G$q$sqUWVS^\fr|$xi_  |$p6|$pv|$pV $dpHHHdpd$_D$D$tD$D$p$e|$|u#$D$pGD$tG\[^_]Ë^r1>_уS $ohNjD$tl$D$D$pL$ D$hl$<$D$xoD$<$Oofr8t$@<$nt$D$,$n4$nljt$D$,$n4$nHσ $o9TT9~8$$t$ |$l$ $xph|$4$enDh|$$T$'oV $nHHHdHD$( D$$D$ D$D$ D$D$D$ D$D$$G|$pL6 $m@ D~AAdAD$, D$( D$$ D$ D$D$D$D$D$ D$D$A$>V $DmHHHdpD$(D$$D$ D$ D$ D$ D$D$ |$p/|$t.!Ȩu|$p,|$t(!Ȩt1D$tt$p|$D$4$@V |$p-|$p,|$p+h|$p*|$t!Ȩ|$p)|$p(|$p'|$p&|$p%W|$p$-|$p"|$t!ȨZ|$p!|$t!Ȩ@|$p|$p|$t!Ȩ|$p{|$p|$t!Ȩ|$p|$t!Ȩ|$p!|$p|$p|$p|$t!Ȩ|$p|$t!Ȩ1Ƀ|$p1҃|$t…ʉT$iD$ D$p$D$_D$hfeVS蠃;Vt$L$ȃ2;V~[^ÐUWVSgl$0{iƉ1)׍O)֋si+9w3{iL$490.̓E9~[^_]$g뿐UWVShl$0})Ƌh+9wNh0u0,L$49>σ9~[^_]$kg$]g뤐WVSPtUtUD$phL$9qhphȃ:9~[^_UWVS,hD$D$#U 5 'UD$h hh+l$ D$t$L.9}D$L9|L$G<'ȃD$L$D$D$D$D$eu~1҃,[^_]Ëh h>w+9h0GF@L$Nt$D$@$]eL$P2,99}T|$9|D$t$HD$4$d.IT$P|$LD$$|$V)D$|$$)e6D$|$t$$"eT$$dUD$%'U҃T$ 'U҃ ݃'UD$UWVSуS $fanZNj$L$ D$$l$D$YT$<$D$aD$<$`D$\KKc8%<$`|$T$\D$|$$[`t$F< Ɖt$\|$ʍ|$pD$L$`4$$`D$\|$D$$ `<$_NjD$`ǃ$j`9ōDDt$`9D~}9DL$`9~l$lD$PD$TD$X|$PL$XD$Ptt$LD$PF< wgƉL$Lt$TD$`t$T9~D$XD$T9|$X~l$\,$^Kc8wD$lČ[^_]ÍIZ<$*_Vw7뎍Nw=끍UZ$T$_f$D$\D$L$$^D$PNw7O<$D$KO~ƒ'ƒ!ШuL&ƒ!Шu:%ƒ!Шu($ƒ!Шu"ƒ!Ш8D$t$|$`D$D$NL$D L$~ыD$4D$D$($gNŋD$0D$D$,$QN,$D$^NƋD$$D$4$eND$D$4D$D$0$ND$D$,$$ND$( $D$+NT$D$$MD$D$4D$D$0$MŋD$,D$,$MD$D$$MD$D$4D$D$0$MD$D$$M$N 'ƒ!Шu~&ƒ !Шul$ƒ !ШuZƒ!ШuHƒ!Шu6ƒ!Шu$ƒ!Шuƒ!Шtyl$`ED$D$L$|$`DD$D$$LD$|$D$~ԋt$`~D$T$l$`D<$D$LD$|$~&ƒ!Шƒ!Ш ƒ!Ш ƒ!Шuƒ !Шpl$`ED$E$Kt$`D$F$KL$`NjAD$A$K<$D$KT$`ŋBD$,$K|$`ŋGD$G$Kt$`D$F $KL$`NjAD$A${K<$D$KT$`NjB D$<$sKD$,$5Kt$`ŋFD$F$6KT$`D$B$DŋD$0D$D$,$(Dl$$5DD$Njt$~l$~\D T$D$D $C<$D$C~ƒƒ!Шu$ ƒ!Шu ƒ!ШtD$0D$D$$$>D$D$,D$D$($>|$D$<$>'l$`ED$E$>t$`D$F$>L$`NjAD$A$p><$D$}>T$`ŋBD$,$h>|$`ŋGD$G$>t$`D$F $$>L$`NjAD$A$ ><$D$>T$`NjB D$<$>D$,$=t$`ŋFD$F$=T$`D$B$=L$`NjAD$<$=D$,$z=D$$t$`FD$F $`=L$`D$A$f=T$`ŋBD$B $N=,$D$[=|$`ŋGD$,$F=t$`ŋFD$F $<L$`D$A$=T$`NjB D$B$<<$D$<t$`NjFD$<$<D$,$<T$`ŋBD$B$<L$`D$A$<t$`NjFD$<$<D$,$X<t$`D$(FD$F$;<D$F$E<ŋFD$F$1<,$D$><ŋFD$,$-<ŋFD$F$;D$F $;NjFD$F$;<$D$;F D$ $;D$,$;ŋFD$F$;D$F$;‹FD$$;D$,$[;D$,FD$F $E;D$F$O;ŋFD$F $;;,$D$H;ŋFD$,$7;ŋFD$F $:D$F$:NjF D$F$:<$D$:FD$ $:D$,$:ŋFD$F$:D$F$:‹FD$$:D$,$e:D$0D$,D$D$$$:D$D$0D$D$($g:D$D$$l$`ED$E$:t$`D$F$:L$`NjAD$A$9<$D$ :T$`ŋBD$,$9|$`ŋGD$G$9t$`D$F $9L$`NjAD$A$9<$D$9T$`NjB D$<$9D$,$S9t$`ŋFD$F$T9T$`D$B$Z9L$`NjAD$<$E9D$,$9D$$t$`FD$F $8L$`D$A$8T$`ŋBD$B $8,$D$8|$`ŋGD$,$8t$`ŋFD$F $8L$`D$A$8T$`NjB D$B$w8<$D$8t$`NjFD$<$o8D$,$18T$`ŋBD$B$28L$`D$A$88t$`NjFD$<$#8D$,$7t$`D$(FD$F$7D$F$7ŋFD$F$7,$D$7ŋFD$,$7ŋFD$F$t7D$F $~7NjFD$F$j7<$D$w7‹F D$$f7D$,$(7ŋFD$F$-7D$F$77FD$ $&7D$,$6D$,FD$F $6D$F$6ŋFD$F $6,$D$6ŋFD$,$6ŋFD$F $~6D$F$6NjF D$F$t6<$D$6‹FD$$p6D$,$26ŋFD$F$76D$F$A6FD$ $06D$,$5D$0D$,D$D$$$ 6D$D$0D$D$($5D$D$$5D$D$`xD$T$t$`<$D$5D$|$~ۃ|$ .#t$l$`D<$D$o5D$Ӌl$`ED$E$75t$`D$F$=5L$`NjAD$A$%5<$D$25T$`ŋBD$,$5|$`ŋGD$G$4t$`D$F $4L$`NjAD$A$4<$D$4T$`NjB D$<$4D$,${4t$`ŋFD$F$|4T$`D$B$4L$`NjAD$<$m4D$,$/4D$$t$`FD$F $4L$`D$A$4T$`ŋBD$B $4,$D$4|$`ŋGD$,$3t$`ŋFD$F $3L$`D$A$3T$`NjB D$B$3<$D$3t$`NjFD$<$3D$,$Y3T$`ŋBD$B$Z3L$`D$A$`3t$`NjFD$<$K3D$,$ 3t$`D$(FD$F$2D$F$2ŋFD$F$2,$D$2ŋFD$,$2ŋFD$F$2D$F $2NjFD$F$2<$D$2‹F D$$2D$,$P2ŋFD$F$U2D$F$_2FD$ $N2D$,$2D$,FD$F $1D$F$2ŋFD$F $1,$D$1ŋFD$,$1ŋFD$F $1D$F$1NjF D$F$1<$D$1‹FD$$1D$,$Z1ŋFD$F$_1D$F$i1FD$ $X1D$,$1D$0D$D$,$1D$D$$$(1D$D$0D$D$,$0%l$`ED$E$0D$D$t$l$~t$`F(D$F$$0D$Njt$ ~l$~T$|$$ L$`T$D$$Q0<$D$^0 ~뵋|$`L$D$$0D$D$$(0D$~C!ȨD$`@D$D$L$t$`D$D$$/D$|$D$~ՋD$`xD$T$l$`D<$D$m/D$|$~ڋ|$D$<$/D$D$`xD$L$t$`<$D$%/D$|$ ~t$`F D$F$/D$T$`D$B$.D$D$$.D$~D$t$~Wl$~l$`E$D$E $.NjT$`D$B$.<$D$. ~|$`T$D$$P.D$D$$Y.D$~n/D$.!ȨT$t$`։D$D$-|$D |$~ыL$`AD$A$-D$D$|$l$`DD$D$-D$D$$-D$|$D$~ċD$0D$D$,$s-D$Njt$~l$~D L$D$D $2-<$D$?-~‹L$`AD$A $-D$D$t$l$~D$t$~pl$~t$`~D$T$l$`D<$D$,D$|$~D$l$t$`<$D$m,D$|$~|$`T$D$$=,D$D$$F,D$~U|$`L$D$$,D$D$$ ,D$~UWVSHwW D  D { ;MtGU $*pHph\$D$D$D$D$D$ D$ U $(pHpHD$D$D$D$D$ D$D$ƒ!ШL6 $'@ D~Tl6,$K'@ D~AAAD$ D$D$D$  k $&@D~,E~AD$ D$D$D$D$D$ D$D$A$*D$ D$D$D$D$D$ D$D$@ k$%@D~,E~AD$ D$D$D$D$D$ D$D$A$BD$ D$D$D$D$D$ D$  U $%pHppD$D$D$D$D$ D$D$ L6 $$@ D~=  Tk"$I$@D~,E~AD$ D$D$D$D$D$ D$D$A$詻D$ D$D$D$D$D$ D$D$@ $\D$ D$D$D$D$D$ D$D$@$D$ D$D$D$D$D$ D$D$@$ºD$ D$D$D$D$D$ D$D$@Wk",$z"@D~,E~AD$ D$D$D$D$D$ D$D$A$ڹD$ D$D$D$D$D$ D$D$@ $荹D$ D$D$D$D$D$ D$D$@$@D$ D$D$D$D$D$ D$D$@$D$ D$D$D$D$D$ D$D$@$覸D$D$D$D$D$ c}U $u pHppD$D$D$D$D$ D$kƒ!ШL6 $@ D~iT6$@ D~pU $pHppD$D$D$D$5k $*@D~,E~AD$ D$D$D$D$D$ D$D$A$芶D$ D$D$D$D$D$ CiVT6$M@ D~ tkU $pHppD$D$D$D$D$ D$U $pHppD$D$D$D$D$ D$tKFU $>pHphD$D$)k $@D~,E~AD$ D$D$D$D$D$ D$D$A$YD$ D$D$D$D$D$ D$D$@ $  L6 $@ D~l6,$@ D~y.r"U $pHppD$D$D$D$i׃)L6 $ @ D~#0L6 $@ D~LD$P\$<<6|$Dt$@l$HT$T|$X,>56otG` U $pHpp\$ 11too large precision in preci()Galoisbig: reduced polynomial #1 = %Z discriminant = %Z ODDEVEN%s group %ld^%ld %2ld: %Z $$$$$ New prec = %ld $$$$$ Tschirnhaus transformation of degree %ld: $$$$$ tschirn all integer roots are double roots Working with polynomial #%ld: # rational integer roots = %ld: more than %ld rational integer roots ----> Group # %ld/%ld: RES%s/galdata/%s%ld_%ld_%ldopening %sgalois files not available [missing %s] *** Entering isin_%ld_G_H_(%ld,%ld) read_objectincorrect value in bin()COS_%ldindefinite invariant polynomial in gpoly() 008@@@@@@``` P@@@N $$6666HHHQlDD (2<Pddxxx@@@h  @8@8p_79B.6@s ⍀P_ Z w⍀wPF A b⍀bP- ( M⍀MP  8⍀8P#⍀#P⍀P⍀P⍀P⍀P~y⍀Pe`⍀PLG⍀P3.{⍀{Pf⍀fPQ⍀QP<⍀<P'⍀'P⍀P⍀P⍀Pkf⍀PRM⍀P94⍀P ⍀P⍀Pj⍀jPU⍀UP@⍀@P+⍀+P⍀Pql⍀PXS⍀P?:⍀P&!⍀P ⍀P⍀P⍀Pn⍀nPY⍀YPD⍀DPwr/⍀/P^Y⍀PE@⍀P,'⍀P⍀P⍀P⍀P⍀P⍀Pr⍀rP}x]⍀]Pd_H⍀HPKF3⍀3P2-⍀P ⍀ P⍀P+D]v %>Wp8Qj2Kd},E^w $Ë$' '8'II(/ {(YU/ |$|z$5)$$$h|$|vk$2|$$d|MB$$|vj$I|$||$|oxgt_plWhd`\'XTPLHD@@<840`,($ @@ R/ {|J>$$|{o$+|$w&|$$J| $$N|$||rg$\3XeTePeLeHeDe@e<e8e4e0e,(e$e edee eee`/ $F:$|$$dX$D|m_$?|($|$m|VK$ $v|<.$|$$j^$|$]v&|$AW|$ٿͿ$||eZ$|v$&ֽ|$L|$ּ$x|aV$»|$z1|$ݺѺ$|WK$7|$||nc$XxTaPpLhH,Da@a<840M,a(a$a a ;# aFaaa¿OܸzظaԸи̸Kȸaĸaƺ@a\/ hW4,G *  / Զi<ϵc?/ݴ]Q6ƳnPDz7߱DZwcWF:&ҰðmaPD0! ܯͯ|dXC7 ߮ӮmZB6!ҭg5 ˬnbN?+իɫxlXI5$ت̪k_G4Щj^I=%٨pXL;, ̧ۧxbVE6"֦¦eYD1 ԥp]C7"֤ʤrfN; أǣ{gXD3'Ѣ¢qbN=1Сx`M5 ϠàwbV>+ڟǟ@yiX[1Ӝo_I=%כ_ݚ̚l]I8, ֙ǙvgSB6"՘˜}eR:%ԗȗ|g[C0ߖ̖9>6&ԔĔxlV.WK5}q0 ՑJ:vj\P@&׏t\B2َɎrfNލ΍QŌL.~$yu/ dS@يNJc%lj~ / e/P<1%׆ƆjQ3)f#+مzG#τɄ݃ŃraN>,f+/ rPH2,/ }A$}$}y/ ^(~M(~,(~;~~ ~~~~W~ ~Q~~;~(~~$~~~}/ } }} }} }}$}}$}}/ }}K}}<} }"}}}/ }||| ||||/ |$`|e|$`|\|/ K|F|=|$s(|s|yw9w|s"wwv|syv]vu|suuusuusuXuEu=u'uu utstttfstbstt$s~tsKt3t$s$t|st|sts$ssss/ sxsdsrrrir(oWroQr rqrq;qqppp(opp oooo(oo/ oooao5oonnn(nn/ nkn(]]n]WnnWmBlkkjiihgg0gf_f feReedmddchccbkb$baaOaa`z`3`__v_G__^^k^4^ ^]]]] ]]]]/ y]S]1]]\\\\a\;\\[[[[o[O[/[ [ZZZZdZ>ZZYYYY{Y[Y;YYXXXX_X?XXWWWWaWEWWWVVV}VSV7VVUUUvULU+UUTT(KTKTrT+TSSR?RRQjQQP}P6POOQOONNuN>NNMMbM+MMLLLPL1L LKKK KKKK/ KKeK?KKJJJJvJQJ/JJIII{IUI5IIHHHHdHBH HHGGG|GKG%GGFFFvFUF4FF( FF/ EE(8E8EE|>->>==Q==<<<><<;;j;3;;::o:8::999m9?9'98 9 8988/ 8888[81887777e7C7#76666w6Q6/665555p5P5(55444w4U434 43333k343 32222_29221111r1L1011000{0_0?00////{/[/;/..1...z.F1a.1V.E.2..-,1,\1,1,~,@1s,\1N,,1++1++++1{+h+W+@+-++$1***1*p*_*$1,*1)$1) 1)1))V)D)(1(1T(($1'$1' 1'1j'$1Q'C' ''1&&&1&\1T&)&1%\1%1b%@51%@1%@1$ 1$1$1$$l$<$0$(#1#1#" 1"1"\1"1"""1"z"1k"J"1;""1 "\1!y!m!1]!U!`1J!:!X1/!#! 1  $1   s \ C 3 $1 $1n1Q 1 $1$1?$141@51@1 11\1o11 @1\1Q-1% 1$1_51$11s$1V 1H1Z1-1$1O$1 1$1m1*1$1@1@1 11@1L$1$191-/ ,= ==g,=9/ +&)) )()))jYH7&) $)thH()0a9()p()e9q()^()T4  ()   z )a )[ )Q + ) ) )  ) )   )s )g )_ # ) )  $) ) ) ) ()x )R )- )' ) $)q $)*     ) $)  $)' ) $) ))$)zg)]$)M)E|)?$)8()2 $))p=)78)1l)%/ f  ug[U93/ $dZI?7+$`  $$tnA/ H4 (  q`R+   ,   {G !,     ZP ? /  q y. tq nf`. [q UMG. Bq <4.. )q #. q . q oo. q VV. q ==. q $$. q   . zq tlf. aq [SM. Hq B:4. /q )!. q . q uu. q \\. q CC. q **. q . q zrl. gq aYS. Nq H@:. 5q /'!. q . q {{. q bb. q II. q 00. q . q }x}r. mq gy_yY. Tq NuFu@. ;q 5q-q'. "q mm. q ii. q eheh. q aOaO. q ]6]6. q YY. q U~Ux. sq mQeQ_. Zq TMLMF. Aq ;I3I-. (q "EE. q AA. q =n=n. q 9U9U. q 5<5<. q 1#1#. q - - ~. yq s)k)e. `q Z%R%L. Gq A!9!3. .q ( . q . |xtplhd`\XTPLHD@<840,($  RED:8BVJ[oLdamG 7954kWUlP?Q`FK]XHO_Y>=<^;TZf@hNcgn\b6pMejRED:8BVJ[oLdamG 7954kWUlP?Q`FK]XHO_Y>=<^;TZf@hNcgn\b6pMejiI3CSAp|,4 @ @5(\1@:EOsZ(f$i(o8~/D3nTUF`GIo]K$-7BtIpP|U}^}doy}~T|tPC   8 %wlKZJ8, n?}T^D'dtt2 [_partitions___i686.get_pc_thunk.bx_polgaloisnamesbig_galoisbig___i686.get_pc_thunk.axdyld_stub_binding_helper_pari_datadir_diffptr_DEBUGLEVEL_bot_gen_0_avma_gcmp_cget1_cauchy_bound_Z_issquarerem_ZX_disc_bcopy_gerepilecopy_fclose_gp_read_stream_strtoGENstr_fopen_nffactor_initalg_i_shallowcopy_compositum_ZX_caract_sqf_ZX_is_squarefree_Flx_to_ZX_Flx_renormalize_pari_rand31_gerepileupto_gequal_pari_warn_gaddsg_appendL_gclone_gunclone_cleanroots_flusherr_ground_gexpo_const_vecsmall_gadd_gsub_gmul_addrr_sign_addir_sign_addii_sign_gsqr_absr_cmp_gen_sort_gneg_os_close_atol_os_read_free_msgtimer_os_open_sprintf_gpmalloc_isinvector_FpX_degfact_umodiu_fprintferr_numbpart_pari_err_ID_data_ID_par_vec_do_par_x.0_numi.1_numj.2_lastnum.3_multi.4_norac.5_lastnor.6_isin_G_H_init_isin_check_isin_N_EVEN_galoismodulo8_galoisimpodd8_galoisimpeven8_closure11_galoisimpeven10_galoisimpodd10_galoisprim9_galoisimpodd9_galoisimpeven9_galoismodulo11_galoismodulo10_galoismodulo9_reel4.7_Monomial_sortroots_preci_gpoly__gr_galmodp__typ_lirecoset_read_obj__cr__aff_data8_data10_data9_rayergroup_rayergroup11_cmp_re#1/20 1200774177 0 0 100644 18364 ` groupid.o X66__text__TEXT9__data__DATAl"__const__TEXT(|"__cstring__TEXT2_5__picsymbolstub2__TEXT?4 7>~__la_sym_ptr2__DATAL6T(9B__nl_symbol_ptr__DATA6 |9*__textcoal_nt__TEXT69 @4D!E P C-U1WV|$ %9| ^_]Ë$5ŋ%9|ڐU1WV|$ %9| ^_]Ë$5ŋ%9|ڐUWVSj,6D$L$@D$%9t$6+)9/,u;t$~(,$4,$4D$D$$o4,[^_]ËL$@$4;D$Dt ;|$~D$L$@${4D$4n$4O|$@$Z4;D$DыL$@T$%9|ы6UWVS#,$@$4$D$D$,$$4#3pH%:$PD$t$ $24$Pt%19x yuፓ $ D$$t$*2$D<$1$$$$@$1$$$$ 4i$'$ υ$ t[$ $ L$TL$X4L$PL$HL$DL$TT$LT$ L$$L$9t>uuፓ/'$PD$8$t$41$D$ <$D$&D$ $V0i$ '<4$Ptr$ 4T$uuፔ$g+D$$T$4$A0$D$0<$D$&D$ $c/Ƌ$D$ $zewNj$ 鋄$ $  )i)$ 4iW'i$ @Bх<$$t1$0$@L$tT$p9t&t>uu1Ɂ,[^_]ËFt9.t߃u`t1$T$>0뜁#uދl$tD$pDŽ$0%$DŽ$4(DŽ$8DŽ$@"DŽ$D)DŽ$HD$|$%9}64D$x$<<$/t$%9|ԹaD$x0<$D$-$@ $D$-$@$|$-D$$.$NjD$x0t9`.uT$|.Z9.fuC#1|$ $-Ft9.4u@t1$T$.LC# LCc7c7(L&u$W32'AS'Aw$P$HDŽ$P $$DŽ$TDŽ$HDŽ$L$%9}7T$h$$<<$-t$%9|Թ$0<$D$+D$$@$+$@|$$+$D$,Nj$0$t9.u鋔$.Q9.]u:$>4$8$DŽ$8$DŽ$<DŽ$0 DŽ$4DŽ$8.$0$$%9},$<<$ ,t$%9|Թ,}40<$D$Z*$@ $D$.*$@$|$*D$$i+Nj40$t9. u鋔$.S9._u<KYzl$0T$4DŽ$0$DŽ$4DŽ$8DŽ$ DŽ$ DŽ$ DŽ$ DŽ$ !DŽ$ $$%9}7|$\$$<<$g*t$%9|ԹD$0<$D$($@ $D$($@$T$[(D$$)$Nj$0t9?.bu鋔$.Q9.]u:$XD$lDŽ$ $DŽ$ DŽ$ DŽ$XDŽ$\$$%9}94$$<<$)t$%9|Թ$0<$D$b'$@ $D$6'$@$|$ 'D$$q($Nj$0t9 .u鋔$.Q9.]u:D$D$D$0$t>t\$t$ |$$l$(,Í$T$Ґ $V$>$$l$$$D$l$#<$tx4$:t%Ћ$$$$ Ë$<$D$D$x9tx yy1랋뙍V$T$m-c}qeaUCWIi$ syo(7#7;89I-1_e<1QQuEF5 K?OT/ S5K;X%uI = aZ{c[g'h__[' 3 inq Q~E  A Y9 dF uwuous, ## 7h3KSKv+vuKKV4+uuus#LsK CÐ vsv#MsL#xw 0LL'vvvܮvvv|v\<:{<{\ 5l5L5[vvvۮL,xwwwL52||{ w)P\!!6(fO (4(x)uU545P-+$H=`5;w'xw* z |)57Ǡvxyxby*x6j6J *7|"7*yzZzBWZt s j(J*(t+)Bx|6~<9P*#ʮ‘¯w xjwRwzwwJw>po@#ʞ j bwxRwx2"±z2yyRyBNqp"B#(b"U\cQ Of;O 68Vr.Q $dv |j(wE~, x5P)+h*X+x |X@lXw( 7P yDH6xwLz89 qt-%.WQ 28zty~;}~T}u 9(X(+(x580w 8=xiTpax(yHxH8xXxxx(h-(-:h.HHHX|zzzOhe4-(-(0HwYox8A# 8x+xx6wzzhzz{zxy x7 8}x8؟ B# xqȠ yx{8zxMCLC+z,7,R+X8xzXҟ XtyP@`x|ybmenTF|Gk`OJ{&uEpUfyz:LgF̭;uEkc7II@IGihle j`#Ye&WVTY]`_ERc7k>V9 5DT?q:Eq6Yy=?{fY=']*I*  O[=[2-R//o; jBWAJr~BiR*D;22|Nٗٗ]*zziuQukij崧يn9hEh 98 %ǒWGe nl5U>o BIK_ȑ&ǑAvG$G( 4q4Jc§c،6{6WcSOu(( r{;]>B]@Z˃\7~oKϩ/}C6׍,d+,ͩE]xnxjnJBcdԴզ"f\@ld 4P*()"ҊKRJRA 7w!j "Ae;UkF'P 9u9G4Pi #4 BF=q;BTVxKE.4%Lc!F K@9# cV`^D$*|bM(M(B2F:\-5(74O74.84EV 99#  !$1 $9t6 6I6| )l9lkmh0nmph0,FO:$ўn:-57U]1k$y( O2%l  y((b6 Mk\g0<LC84 6(Ï,Ӷ,$+U;UMv- )o%sg9/\o.~7s/'0)/bȭ#+:&A(%v&|2#J l)/?5LI yx #M,{7 LG XOF`$y q&^2 p)/V@5S<': :#-ޡ%% %YP3x7. %XLp1Xiov1c/2c-0v3 $ Np3ԝGk|(vF8 V B6:3ӫ 993#FTſ^9[+~(+6.\"T67H<^1%0C-g*$->] *d8 Q&: Z'38:GB@I }  ( ;~)Sm&R$[*k [.%4H7B<,ryS s#=>I+_;  A,B$i NP\pO_$H$ښ'/+vA5B(e2& H&88$)7!##"$F :Vz"3-F; U$"a(bw$֏1         Not a group in group_identGaloisIndex: Using hash value w=%ld GaloisIndex: Using hash value u=%ld GaloisIndex: Using hash value s=%ld galoisindex for groups of order >127Classification of transitive groups of order > 30 is not known⍀P⍀P⍀Pvq⍀P]X⍀PD?⍀P+&⍀P u⍀uP`⍀`PK⍀KP6⍀6P!⍀!P ⍀ P|w⍀Pc^⍀PJE⍀P1,⍀P⍀P⍀Py⍀yPd⍀dPL4e4~4444445-5F5_5x5555556'6@6$Ë$Çw4B0 38\B684 3k."@3V\0o_L96p] }23'3V]M:'s c P =   6"      6{ k X E 3 6 2YM3o62C6 D-566 )o6)6 p"2}6w\+ 6~iA*66 s/  686686  6666  6666  6565  6565  65~65x s m65e65_ Z T65L65F A ;|6p53|6p5- ( "x6W5x6W5  t6>5t6>5 p6%5p6%5 l6 5l6 5 h64h64 d64d64 `64`64~ y s\64k\64e ` ZX64RX64L G AT6v49T6v43 . (P6]4 P6]4  L6D4L6D4 PLHD@<840,($       6<6c,Tp*D@j4XsG"_groupelts_sumorders_vecgroup_sumorders_vecgroup_idxlist___i686.get_pc_thunk.bx_group_ident_i_group_ident_group_ident_trans___i686.get_pc_thunk.axdyld_stub_binding_helper_DEBUGLEVEL_bot_avma_uisprime_vecsmall_pack_quotient_group_group_quotient_cyclicgroup_group_subgroups_groupelts_center_fprintferr_bcopy_group_isabelian_group_abelianSNF_factoru_group_elts_group_domain_gerepileupto_vecsmall_uniq_vecsmall_sort_group_order_perm_order_pari_err_reel4.0#1/12 1200774180 0 0 100644 62740 ` kummer.o| HH__text__TEXTy$__data__DATA|__cstring__TEXT8__picsymbolstub2__TEXTI H__la_sym_ptr2__DATA0@__nl_symbol_ptr__DATA(__textcoal_nt__TEXT@ؙ @@ P UWVSLT$hBD$4t1%rщ <t$4݅Ol$4l$4D$dD$D$`$聒x|$(7t$8@D$<D$09t$݉w+9wD$0GFn$s$en$T,\$|$$t$ l$(|$0T  R tЋ\$t$ |$$l$(,Ëw uفAʅxF뿋wվ9}$Y9|냉վ9n$-9|T\$t$0D$,D$ D$(D$D$$D$D$ $4$D$荃\$t$UWVS/l_X0$$݅$pV$B$@%?$/F $@@t$D$$$$\Ƌ/F$$V $@/$.kg}w+.uGF@$F$`$`t $!ۏ$`ADŽ$\t:%q .$\݅O$\$\$\-$\$-$\$L$$P-$F@@$_8-$\$$$X,$D$QD$$$%xoED$%?$PG$-D$ƋG $$TG,$D$$諂‹@$j4$l$wc$;+$Tl$<$O$XFED$E$$XA_!++*$$\$\%$$$@<$%$$$D$D$<e$\$<T$$L$.$$\D$$DD$$$$$\E$>$)$D$D$D$ $$蓀$)$<$u$$$P$A @$p$Ձ9$$\l$T$\1)ŋ$kL$T2$\L$T$$‡k0$4(Nƅ($с9|$g$8~ k.$ׁ+( )9$4;($4$4"U;$8c$4D;$8~9},$`$D$$m$4Ѝ$l$$萆$ŋ$8A @p$T$D$$Cljt$,$蠉$D$4$ $|$聉$_8'$$8$$D$$$Nj$D$$$}|$$.D$$ $@~$$0$NjEk$,()щ$(g+9A&$(ꋌ$(&9%$($0E}_8%$8kg$$Nj+)9$$$ 8%$ .$$ %$$$  ")g+$9$$$$$$$$ &EDŽ$$89$;g$$$$0,l$F$My$|$kŋ$8$l$$g$`L$Ɓ@$躅V$$ʼn$9U#u$$*# $$ku0$~+9"k8F"o$G$$,G$ D$8$9k$$Eg+E)9$$$M"$k$$"$$$ "$8DŽ$$89$!l$4k2~+M9!k8F&$$<$8$9~k$D+E)9$D$ !$ k($D $D$  "$8$ ~FDŽ$$D9$L$`T DŽ$t$`$ 9$$N$<D$8$D$ +$D$D$8$\$$`L$$x$$kʼnƋ$)$g+9$y$k $(u;$}n$$<$00<$t$~w$?t$讀$;$|DŽ$$8$9$$$$ktg$.0~+9k8F&9}$Bh9||$$$D$r~$$$8$9;$$<D$`L$89$DŽ$$89$_8o$kō )͉$g+E9&$&$7DŽ$$9$$$$,E|$08,$~|$Oq$?t$y~Ƌ$`$8$D$$t$D$$l$L$ $I$$$$9.$$؉t$$3u$`T$${$dklj$)ω$g+9$$$$ "EDŽ$$9$$$$d$$7$$~(+9t$8F&9}$B9|ዔ$$<$$9W_>$$sD$$؉$s$`L$$,z>$m$D$$x$$$|$l$'s$$t$wD$$r$0$4$$D$0$$8D$$$<$r$Nj@D$B$~$$L$$t$5rD$$$zG|$$,$q$kŋGH>$$\ $T$D$z>$ ɉ_?$`$0$@D$$L$t$ D$D$,$#$tn$tGkgu~+r}F"l[^_]$,~ٍD$$t$~띋$H%$$DD$$@$|$l0$LD$$HV$$}|$h%?$8kg<+E)9Ɖ$$k"g)+)9Ɖ$$k))g+$9m$k&87DŽ$$9$R$DD$<$$l$$}4$D$wƋ$`D$F$yV$$ʼn$9Ku$$  $$kgu0~+9k8F"o$G$$,w,$$\nk$7g(+~9\k:F&9}$B9|ዴ$<$t$u$$$Dkgu~+9}F&DŽ$$D$9$4L$<L$HD$@D$@$\D$$T$$hnkg>w+9k0GF@n$D$<$u$D$,$t$D$H9$}\$[O$0$)$vl$}o$?l$u$$$Dl$@9$$$$D$$9_> $$ $D$x$t$D$$$w>$p> $$\<$D$zk$D1ҋ$$D$\k$ )͉$g+E9 $ "$uDŽ$DŽ$|$9$$\$\$$L$D1Ɖ|$,)Ɖt$0t$($$h1ɋD$P Bt'%zщ  ߅Nωș$@$$\9$$w $$$ $l$D$qD$$$q$$t0$$BxD$|%9D$|}dD$,D$\l$(t$|kL$\2$\L$T$$rk0$4(NƅuD$|%9D$||k$>)ŋg+8l$x9$YD$xL$x$ &;$}nD$|D$L$$t$D$$D$wp0ǁD$L t$L7;$L$x<;$|l$x$|l$$o$$$|9$$9$$|'_8$`$|l$<$[o$x_8$xk0EǍ V)ω$|$hg+9m|$h,g}7u~+1}F"_$$DŽ$$9$}'$D$h$$9|ً$t$hD$h$xD$<$"n$`$l$qʼn$m}$9$89Ek%7D$dg+~9Yk8F&;t$d}TB;t$d|<$l$`T$ŋ@$lE,$D$$D$q$$`4$D$|$_}v$\$$0D$$L$ |$t$$E$}$|$$k$҉$D$4$n.K|$$<$Qq$$tEl$hDD;$\}B;$.t$h;$|$D$h$AD$$$TnY$D$t$$fc;0E D$,$pD$ $osT$$p$Jl<$D$%l$Xq$`$l$D$$j$j.9|%D$j.9|$$c/$T$,$}e$p$pJ $n+S4$n$k$F,D$l)g+E9k}up&k70gn+v=kc(F$F;D$l ,;D$l~$|*$o$o$o` $b$L$$nD$t$k$D$pE)g+9$$kg &.E+)9w|k$2>;$c;$~;D$p t;D$p~D$t,$D$wm$|D$<$h$|$xns$gn/$|$$sh9$$g+w9w#k0G&n$F1$jϋ$0$D$$D9|n$jD$$0D$F$ j$yjc$[jXT$$$e<$D$d$!j$j$i$4D$D$d$`T$$d‹@u 9|pT$$$rdD$$$Fd$$wi$fi@$Uiy<$g$gg$l$4$[$0ŋ$L$ D$$,$D$2D$D$,$]$\1)Ѝ 4$g<$f&T$$$Tc<$D$/c$bh{$Qh$`T$F$e$l$D$F$ZfEk$ljƋ)щ$$+9$k 09|a}kg$}w+9w%uG&$n$F$Pg͋$0$D$$y $9|l$g݉w+vk0GFn$aԋ$t$,$U$B@$W$܍T$L$<$UFo$l$`$$`WUWVSLD$`$W`ŋD$`$0`Njb8|D$d<$D$_L$L$`A $1_L$hL$$:_T$4 RD$0T$t$$L$ D$l$ <$D$D$dD$z\u8D$$l-u<$l$*\‹t$ l$$ t$'\։D$D$0$ ^l$ D$D$d$[t89|Ob8w,D$hl$dD$D$ D$`l$$GL[^_]Ë|$d#R|$$ ]뼋DD$\u 9|9}luu\ ul$D$h$]ƋD$`$%^L$`ŋA @l$t$$y\,$D$D$dD$L\D$d$^떋D$dCRD$$Q\F@$D[t$<$[D$h<$L$D$ZD$D$d<$D$Z<$D$9]T$8D$(T$D$($F[D$(D$8u t$(t$d$ [ƋD$hD$F$ZFD$4$ZD$8D$D$($\D$(멉$ZL$hL$Ƌ@$ZFD$4$hZD$$X|$Oi$?l$pX\$,t$0|$4l$8<Ët$@^^VT$ljƋE+)9^ (u9|X^D$@@9D$^+wv ^0G&n|$~H$[ҋD$DT$D$$D9|$b[ZD$@L$DD$A$ZUWVS[L$0]]ljƋE+)9wG] (u9| [^_]ËD$4T$0D$$ D9|$Z뫐UWVS$ $BDŽ$t:%zщ $څO$$$A%xN$V$)D$$,$V$D$$$bV$AD$$$AV$ED$$$V$G D$$$U$FDŽ$$9$$$,}$U BDŽ$t:%rщ r $څO$$$$BDŽ$t:%rщ  $څO$$$ D$$$T$$$$$DŽ$%9$$}h$$4F$N~$U$ED$$$0T$$9$|l$$E$}S$$9$#$ $D$ $.S$(DŽ$9$$$$,$D$$l$$R$$$V T$Pt^D$L%9D$LD$H}ED$LL$P4NL$DF~D$@ED$M0$ (NuD$d%9D$d|MD$h>)ŋM+8l$`9|$hD$`L$`D$h &;l$h}dD$dD$DD$l$$D$$D$<0ǁD$Dw t$D7QD$`<;l$h|l$`$l$<$<$$$9$$MM%$D$\E$+)9$$}M &EL$H+)9D$HfuD$HDL$H$D$H;$M;$~;D$\ 4;D$\~$<$L$?$$D$:$$X$D$4$:M$0F<$E)M+9bM,M/u7~+%M:F"$$DŽ$$9$}$$D$$9|܋$DMl$D$X$$9$X|$$K=D$T$p9;D$T$891$:9}<$X$D$D$TD$$8$99|ċ$D$T $D$>$88"8$$t$Z;D$T0Mt$P0M~+9:M8F&;t$P}D$TB;t$P|<$7$XT$Nj@$7G<$D$$D$<$X$t$D$<$ƋM8U$t$$C7$謫D$Nj$D$M$6|$$6Ƌ$\t$t$X4$6D$$$g<$$t>DD;$}B;$.mD;$|T$D$$\$M$Pt$ $5$TT$$=9.M|$X82H;t$ $;T$$$d7<$D$?7$r<Mt$X0L$T$ 6.uۃ9|$0<$<$<$;$;D|$$5$;x$;$ $$+ $4$ʍyD$$T$5D$$$5D$|$l$|L$xExD$t%9D$t}dD$0D$)ŋM+8l$p9|$xD$pL$pD$x &;l$x}\D$tD$LD$|$$D$$D$40ǁD$LuI t$L7|*D$p<;l$x|D$p$$X|$$4$9$97$9$9$9$t$$O6$q$p9$_9^$D$D$E4$XT$$4‹@u 9|T$$$3D$$$3$$8$8$8$8y$8$8UWVS藣D$h<$D$<$l$$ED$<D$(9D$<pD$4D$D$h$D$,7~ |$8/+()9T$D$"0;T$8l$D;T$8~D$<D$(D$9D$ ⍀> P!xx) ⍀) Pxx ⍀ Pww ⍀ Pww ⍀ Pww ⍀ Pww ⍀ Pww ⍀ Prwmw ⍀ PYwTw ⍀ P@w;wl ⍀l P'w"wW ⍀W Pw wB ⍀B Pvv- ⍀- Pvv ⍀ Pvv ⍀ Pvv ⍀ Pvv ⍀ Pxvsv ⍀ P_vZv ⍀ PFvAv ⍀ P-v(v ⍀ Pvvp ⍀p Puu[ ⍀[ PuuF ⍀F Puu1 ⍀1 Puu ⍀ Puu ⍀ P~uyu ⍀ Peu`u ⍀ PLuGu ⍀ P3u.u ⍀ Puu ⍀ Put ⍀ Pttt ⍀t Ptt_ ⍀_ PttJ ⍀J Ptt5 ⍀5 Ptt ⍀ Pktft ⍀ PRtMt ⍀ P9t4t ⍀ P tt ⍀ Ptt ⍀ Pss ⍀ Pss ⍀ Pssx ⍀x Pssc ⍀c PssN ⍀N Pqsls9 ⍀9 PXsSs$ ⍀$ P?s:s ⍀ P&s!s⍀P ss⍀Prr⍀Prr⍀Prr⍀Prr⍀Prr|⍀|Pwrrrg⍀gP^rYrR⍀RPEr@r=⍀=P,r'r(⍀(Prr⍀Pqq⍀Pqq⍀Pqq⍀Pqq⍀Pqq⍀P}qxq⍀Pdq_q⍀PKqFqk⍀kP2q-qV⍀VPqqA⍀APqp,⍀,Ppp⍀Ppp⍀Ppp⍀Ppp⍀Pp~p⍀Pjpep⍀PQpLp⍀P8p3p⍀Pppo⍀oPppZ⍀ZPooE⍀EPoo0⍀0Poo⍀Poo⍀Poo⍀Ppoko⍀PWoRo⍀P>o9o⍀P%o o⍀P oo⍀Pnns⍀sPnn^⍀^PnnI⍀IPnn4⍀4Pnn⍀Pvnqn ⍀ P]nXn⍀PDn?n⍀P+n&n⍀Pn n⍀Pmm⍀Pmm⍀Pmmw⍀wPmmb⍀bPmmM⍀MP|mwm8⍀8Pcm^m#⍀#PJmEm⍀P1m,m⍀Pmm⍀Pll⍀Pll⍀Pll⍀Pll⍀Pll{⍀{Pl}lf⍀fPildlQ⍀QPPlKl<⍀<P7l2l'⍀'Pll⍀Pll⍀Pkk⍀Pkk⍀Pkk⍀Pkk⍀Pkk⍀Pokjk⍀PVkQkj⍀jP=k8kU⍀UP$kk@⍀@P kVoӇ7Pi͈1Jc|lj+D]vڊ %>Wpԋ8QjΌ2Kd}ȍ,E^wŽێ &?XqՏ 9Rkϐ3Le~ɑ-F_xÒܒ'@Yr֓!:SlД$Ë$pX"<u8u~<uq \F1 ς`@ށ́_S }A-0}րE4}<}8}raQ<}~8}~<}~~~<}}~8}g~<}}}}} }|}k}Z}I}.} }||< g|< g2|< g$|| | g|{{{{{/{< g{< gz< gzzzzQz< g4zz< gy< gyyyycyUyy< gyx< gx< gxxpxbxTxCxw8 gwwwwQw8 g:w< g/w!wwvv< gv8 gv< gvwvivXvv< gu8 gu< guuuuuuxu gru^uVu gKu:u#utttNt, g t8 gs< gss0 gs0 gsUs@ss srrrrvrUr rqqqq< ghq8 gbq< g q< gp8 gp< gmp0p8 g*p< go8 gogon4 gn8 gxn< grnYn4nm4 g~m8 gTm< g)mllT8IT<I TSSS4IES8IR8IR<IRyRR8IR<IQ<IQQ<IgQTQP8IO<IOOOOwOO<IN<INN[N8IM8IM8IM<IlM2M4IL8IL<ILLLL_LLLIL<I LK<IKiK7KKJʄIJJ8IJ<IJI IIhIWIFI+I IHH<=:H8=:H<=:H<=:eH8=:;H<=:%HGGGGhGUG?GGFiFNF'FFE<=:E8=:E<=:E<=:pE8=:=E<=:'EDDDDWDDD.DC CCBBB<=:rB8=:bB<=:CB<=:!B8=:A<=:AAAsABAA@@@@@h@>@<=:$@8=:@<=:?<=:?8=:?<=:?r?b?C??>>>>Y>==Z=$=<p;O;,; ;:9: -::9<99899<99 9v9]9D99<@8 98@88<@88<@888@88<@88a8<8 8 8Æ]47777777t7S7;7/777666]46666s656#66]4650]4555u5W5+5f]4!5540]4444~40]4v4h4Y4 J464&4@44%3333<38{3<p3_3B3(73'3322222<p28h2<G2<282< 21ޅ11օ1111111o1\1Q1/11000~00000x0J07000///8///o/E/4//.<.<...y.8...v.-----8-82-<-<,<,,,v,c,W,<,4,n),!,f,++++S++J+r+a+L+9+ +******}*j*4_*N*,**))<)8)<~)<A)8;)<))!)A))-)(((((I('8'<'<'a'<'&&&&q&`&H&5&%4%<%8%<%8u%<d%Q%D%6%(%$4$<$8$<$<$8z$<h$`$$U$M$B$1$ $ $$4####m#a#F#:#/###ڄ#4 #"["=""!!!0!!p!X!!!< !8 <    088<|0oL028<<<s`-8 <v0r<Q8K<;8<U<08!<<8<xZ<8<8<\8V</ʄs8m<Q 0<oT v^0Q8,< wX8<0 <8<B#<8<n[<_<*< < <| 8l < < <  q _ 1 8 8a 8[ <E 0 8 <   s 8 0+       h 4 <8<<uW0}4w\;&0p8<Z0 <| _3 4 se< 8 <  , \4 8 < c ! ! Ȕ Ȕ{ v p h b ] W O I D > }6 }0 + % d d  K K 2 2   Γ Γ | v n h c ] U O J D < 6 1 + j# j   Q Q ݖ8 ݖ8 ٖ ٖ Ֆ Ֆ і і ͖Ԓ ͖Ԓ | ɖt ɖn i c Ŗ[ ŖU P J B < 7 1 p) p#   W W  > > % % ڑ ڑ z t o i a [ V P H B = 7 v/ v) $  ] ]  D D + +   } } yǐ yǐz u o ug ua \ V qN qH C = m|5 m|/ * $ ic ic  eJ eJ  a1a1  ]]  YY  UU  Q͏Q͏ { uMmMg b \ITIN I CE;E5 0 *Ai"Ai  =P =P  9797  55  11  --  )ӎ)ӎ  {%s%m h b!Z!T O IA; 6 0o(o"  VV   ==   $ $        ٍٍ  ys n h`Z U OGA < 6u.u( # \\  CC  **    ݕݕ  ٕߌٕߌ  ՕƌՕƌy t nѕfѕ` [ U͕M͕G B <ɕ{4ɕ{. ) #ŕbŕb  II  00        ̋̋ z tlf a [SM H B:4 / )h!h  OO  66        ҊҊ  zrl g a}Y}S N Hy@y: 5 /un'un!  qUqU  m<m<  i#i#  e e   aa  ]؉]؉  YxYr m gU_UY T NQFQ@ ; 5Mt-Mt' " I[I[  EBEB  A)A)  ==  99  5ވ5ވ  1ň~1ňx s m-e-_ Z T)L)F A ;%z3%z- ( "!a!a  HH //   ˇ ˇ~ y ske ` ZRL G A93 . (g g  NN ,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  Xb-lN Md+U}57962hR8J#W]L>$Ik:jvmo{^i!ywE;Yf~4.HP%ar\FG|'1<0t)gxuVA/zZ=@sQCBqpn?DK&O"ec`[_(3Xb-lN Md+U}57962hR8J#W]L>$Ik:jvmo{^i!ywE;Yf~4.HP%ar\FG|'1<0t)gxuVA/zZ=@sQCBqpn?DK&O"ec`[_(3TS,*|`\4:T4g$8^9I }1lB@ D%7t>#wdH *c4|seEvRtZ=HmzF6O6]G@,7#_RDSP.Zq +s^gXaUq6 ; _/.Z_idealsqrtn___i686.get_pc_thunk.bx_lift_if_rational_rnfkummer___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_x_gen_1_DEBUGLEVEL_gen_0_bot_avma_gerepilecopy_Fl_inv_gneg_buchrayinitgen_prime_to_ideal_RgX_RgXQ_compo_ideal_two_elt_gauss_RgX_powers_shallowtrans_gaddsg_FpM_red_gpowgs_bnfinit0_Fl_pow_gener_Fl_modreverse_i_poleval_polredabs0_compositum2_cyclo_umodiu_uisprime_det_msgTIMER_conductor_checkbnrgen_gtopoly_gdivgs_delete_var_flusherr_TIMER_gerepileall_polcoeff_i_ginv_RgXQX_red_gadd_normalizepol_i_mul_content_shallowcopy_Q_remove_denom_powgi_sum_Q_primitive_part_element_inv_TIMERstart_fetch_var_hnfmodid_diagonal_i_hnfall_i_isprincipalray_idealdiv_idealhermite_prodid_nfhermite_RgXV_to_RgM_RgX_divrem_matid_gmodulo_gtopolyrev_RgX_to_RgV_roots_to_pol_lift_intern0_isunit_famat_inv_diviiexact_rnfnormgroup_gerepileupto_gsub_monomial_coltoalg_centermod_famat_reduce_F2V_red_ip_FpM_FpC_mul_gcmp0_ZM_zc_mul_FpM_ker_vconcat_gmulsg_zideallog_zidealstarinitgen_idealpows_zsigns_gexpo_famat_mul_famat_pow_modii_mulii_quick_isprincipalgen_Fp_inv_algtobasis_vecslice_check_units_divis_rem_check_and_build_cycgen_idealval_primedec_appendL_gsubst_lift_int_elt_val_gequal_equalii_cget1_lllintern_nfnewprec_pari_warn_get_arch_real_element_div_element_pow_idealred_elt_gcmp1_factorback_FpC_red_factor_primitive_part_idealpow_idealmulpowprime_idealfactor_element_mul_factorbackelt_fprintferr_addsi_sign_gcmp_T2_from_embed_norm_vecmul_shallowconcat_vecinv_gprec_w_gnorm_gmul2n_gexp_real_i_gmul_algtobasis_i_nf_get_r1_checknf_nfgetprec_pari_err__rnfkummer_reel4.0_isvirtualunit_build_list_Hecke_reducebeta_compute_polrel_tauofelt_invimsubgroup_tauofvec_rnfkummersimple_reducebetanaive_logarch2arch#1/12 1200774184 0 0 100644 60668 ` mpqs.oH d __text__TEXTxd__data__DATAxD|@__bss__DATA __cstring__TEXT%__literal4__TEXT0 __literal8__TEXTؚ0<__picsymbolstub2__TEXTYlH__la_sym_ptr2__DATAaŤxAA__nl_symbol_ptr__DATAh$̥__textcoal_nt__TEXT @ftx PKWV$VD$Ɖ$D$ F84$NjFu{FujFuYF uHu8u$u4$ß^_É$賟$詟҉$蟟뾉$蕟뮉$苟띉$聟댉$wxUWVS3,$@كۙp8DŽ$ݜ$DŽ$$ŋ8DŽ$DŽ$DŽ$DŽ$F4$D$џǹ1򮋓щ*A$@k?$@$8jt$$@$$@F<4$,$@$@$@h$$@$V $@t$Ox8$$@$|$$>$$>wh$(+( $v-$2@F@~,[^_]$gōD$,$넋$@P h$t4$W$@LOA$@7$@=F <M4T5$$@E4$}HE<$E|$$苙uH )ϋ+9?87$@z@rH+,)9817$@FH~D9}$$@$Vp$+)928 7$<$@AH9|$@ nh!MFpO9Lȉ$n|V<$|$蓖<$褖$@ݐx$蹛$@Zߙ\$(D$(*~ Y<$腛\$($@كt$(Xݜ$\ $^$*bh\$0$$ $@\$(T$0$@L$(Y\Y$,ʀɈJ5xB5$ L$8W$@P($@p$эF9};ZLY$,D $@p$F9|ҋ$@W($@GHLB\*\ ȋW_P^܋<f(˅t%Zlf.r <t Ztf.sV9ny$@y0K$@F`:t-24$($lj1щL$$L$$ $^$$l$ 8$|$$l$ $M1$>щL$$L$$ $$$$T$D$$l$ $1$򮍫CщL$$L$$ $蜗$$l$ $$|$D$,$葕1$򮍫HщL$$L$$ $>$$$l$ D$$L$$31$򮍫NщL$$L$$ $$$$T$$l$ D$<$Ք$1򮍫TщL$$L$$ $肖$$$l$ $Yt$ $D$q$$l$$$ߕ$$t$$$轕$t$<$ܕ$$t$,$•[$L$PD$L$D$H$$@ELU`9VJ$@J`$@<$,GXr $@$}D$<$x$@$@r,t$ 1t$tyd$ AD$ l$ Ml$ EuD$|UT$xT$t)9Չl$$x9T$$y9xD$x9D$|t?T$t)T$x9Չl$$x9T$$y9xD$ t$ Q$@2$@11E D$$M5m 8 26 ;T$$}T~D$>v(]^E荋`|$l$ $ *$Z$@Y*Gd^,;$vR q1ZD$ $VP,$\$(|$(^|$$_藎$$$ $?$$l$4$$ŋD$P<$D$pD$ْNjD$pD$$$$$L$Ɖ$褒l$D$ D$$<$D$lN4$F$<$$|$$覍 > ,$$D$$$DŽ$$D$l~m$D$p$,$D$$|$ ʼnL$D$$@$b9,$$~$-D$l$$ $U$<$l$p$l$4$aNjD$pD$$$H$$T$Ɖ,$,D$D$ D$$S<$D$hҐ4$ʐ$$舌$L$,$*4t$L>D$hZك*艄$$@l$`$Y*@dL$`ݜ$^Y$,$t$*$^$$*$+$$d$X$*Y!^ܨ,tT$Zۙ*$$*$X$$$^$DŽ$G3Z$f.61ɋD$H*QZP,$\$(T$(Y$Xf.Wټ$)**$ ^$f$Xl$(D$(٬$߼$٬$$$>~t}$t$p$t$苎ƋD$hD$$@t$$A?4$$-$ }&$$D$<$$$~$$׍$$蕉$,$膉$<$w$$h$ $Y$$1$4$$(1脉ɈD$$虎,$葎3~R$u}$ $$$跈$$計$<$虈$$芈$,${$4$S$<$&$$D$4$蝈D$<$踍$VUUUj։)փtoet$ $j9. D$T9]Mʉ$L$ BD$D$T$9~AD$AD$$L$D$hӉD$ $ό蘇]D$D$l$Nt$蚌*S^04$t$x8t$ht$$S$݄$\$4$,Z1Yd$`$^d$Xd$`D$`\$*ݍ3^] $s\$ы$VP,$\$(,$|$(^:|$蠋$D$ $肋8WL$H$9M$c~;G $$!Ȩ7DŽ$'$ 8$뺋$$$L$|$,$ϊ$l$D$ T$$>w}$<$.$4$$,$݄$$΄$$迄$ $谄$<$衄$<$y(3D$$$4$D$N$$T$L$<$ʼnU$|$ D$T$$1틄$ZUPs,$\$(\$(^\$$$$@D$ E|$$D$)$$$,8$$葇$$肇$$@$4$1$<$"$$$ $$,$܂$$诇$4$URE`E\ތ<$2y1틄$UZZP,$\$($<$|$(f(^^|$T$\$LJ$@Op5,$t$襇$s׉T$4$߉|$w$$D$^$@Gd3 $D$<$@FH<$D$&$@w0$t$sD$4$w,$t$<$D$φ$@AhD$4$賆3l$$衆EsD$$ 薆ӏ$j$n$蜆$苆$zI$i$$X$G $'SL$@ $D$躅rӐD$,$装=lt$$臅(UWVSs<l$PMl$0$D= |[^_]*$t$\$Hl$`L$HY}L$HA8,$D$)D$XNj@%DD$lD$@0D$,D$4D$8T$l<D$4D$ll$XD$,$o|$l$|$Ft.|$@~l$Hf.l$PD$HD$D\$PD$du1D$@D$lWP,$$\1\$D$l1L$QP,$D$`\$t$ld$^tXXL$HL$Hn4@84$l~ǃ1t<u+)ʉ8VD$TT$h@@@]T$DT$hD$X<ot$Xȃʋl$DU|$XD$`$;x((D$drL$<`D$0D$`$>D$T<(1D(WQ,$$~D$T\(D( D$`$|$`;x(|t$0t$4|$49|$`|$XT$h=<t$Xȃʋl$DU|$XL$h;L$\w 1ҋD$\tL$$G<$2}NjD$hD$<$}.utz8wWt$`D$hT$T1ɉ2D2D$hQP,$$%}D$T\0<$D$hD$`D$'|l$TD5D$hrD$$|둋8wD$h$D$T|[^_]ËD$hrD$4$|ϸ$4$D$lxË$Bl$$D$[nۋT$D$'lu($$lD$p$ED$p$rhFl$$ D$m벋$|$HA|$$D$m$B$D$D$HD$mi$T$`$D$kx D$l"$t$HAt$$D$amϋ$<$D$Vkx D$p$F$D$D$HD$mҋ$.D$tD$p$<$D$j$1t$@D$Ll$<$D$4$D$kt>$4$D$jxË$Bl$$D$llۋD$L$8ju0$$jt$pD7|$t$EƉD$p$rhEt$$ D$k몋$|$PE|$$D$k$l$PAl$$D$kD$ltG$<$D$ix D$t6$B$D$D$XD$ikҋ$T$|$D$Zix D$l뒋$A$D$D$XD$kҋ$|$`<$D$i|$pD$p$D$tE$t$8|$p1D$Tl$4$D$4$D$it>$4$D$hxË$Bl$$D$jjۋT$T $l$XAl$$D$=j=D$p$<$D$%hM$A$D$D$XD$i&UWVS$$$h$l$|pt$x$xk|$tD$p$@@D$dADD$`BD$\F`1D$Tu|$TD$TtD$|$\$UfD$TD$lD$TD$|9D$Tw-<t$x`FD$TD$| @9D$TvL$lt$`AL$D$ F4$D$eD$lD$`9D$lt1L$lq%9<t|$lT$`닃kL$pD$dD$$e$NjD$`u<$Oe9Ɖ@T$؉D$ F4$D$Ue|$$dD$lD$X1ҋ$;PHk8$khDuׁ)Njk+9k8E%~DUxQ|$$W]AD@+D$ A@D$A`,$D$gkt$p0Č[^_]ËG%? @G$g^|$Xt$\T$xD<D$l|$$AfL$`Ɖ|$ $/f|$$/dL$xʼn$l$\P 1|$XDT|$Xt$xDT|$X$;xHctk=$[fVL$t.+99ЍLVGFЋL$t+9L9GFD$TD$|9D$Tw)<t$x`FtOD$TD$| @9D$Tvl$l9l$`t#|$lT$`G|$؉D$ B$kFL$t.999 ȉ)FEщV‹L$t999 ȉ)EщVb4$/uD$|+F04$/D$lD$X1ҋ$;QH}Kl$\t$X|$xD,D$lT$l,$T$vbD$XD$l$l$X;oH|T$d9T$lt6D$lL$dp%9[tl$l|$dDꋃkt$pD$h0D$X1ҋ$;PHD$\D$@T$@l$xB|D$d|$$aD$l|$$wc|$$wat$lt$$aD$T$@l$xBD${a|$d|$D$lD$$aNjD$@9׉t'w%9E0D$@L$hЅt$Bt$hT$D$ F4$D$`D$XD$hD$@T$X$;UHD$`9D$ht2L$hq%9t|$hl$`DꋃkT$pt$`F%DD$dD$$_D$TD$lD$|9D$T./D$HD$D`T$DL$xDtD$Tl$|D$D D$H@9l$Tv$,1ҋG l$T$LT$l$al$$_l$D$PD$`$a)|$xDȋD$DL$,DT$,)‰D$<;T$,tG։d$PD$L499֋T$D )ED$xt|$,|$<9;|$, ȉ)Ed$PD$L<99) ȋL$xD$DE|D$X$FH9D$X.|$H1T$XL$\l$щ$`T$X)9G 2d$PD$tD$X$AH9D$X|o|$d|$G%D$q`l$`HD$L$ E,$D$]9.l$`pE%9|.T$`$`$v`LD$Y`u|$@$=`kk8w+9w k0GF@n$_ҐUWVS藾DŽ$$$@$$$$NL$|h$l$t@@D$pwDt$lB $D$xD$da9$$S$D$LT$[$D$S$T$ L$$W$D$@T$t4 D$HD$D$`t$$W$tl$ |$l$X|$D,$|$vT$HD$`t$T$$iW$t뼋T$TL$|,4$D$,T$TD$ZD$,?@UL$DL$$D$ D$$W1$򮋄$|$`эTT$XW7a(l$PE%? @Ez$Y3UWVS胸쌀 [$ED$h$q$D$Pt$`D$$D$$`D$L$W1҅EZL$`+)9D$`t$Ht$HuD$ D$L$UƋL$L~ $V<$$p D$ XUƍ$t |$~T$D$W<$D$ )U|$$t0|$@<$V$p T$lD$TD$\ZT$(D$TD$l‹@%$F8$D$S$D$D$D$L$)Vu [t$h01ҁČ[^_]ËT$8D$HD$ t$L4$SƋ|$L<$,U~<$$p D$ SƉ|$D$D~$wUD$ <$S|$L$@ $TU$p T$\D$lD$D$h$R$E:zD$D$p $p$RL$HD$X [ MMD$dt$$L$ T$l$|$$D$D$D$L$TKD$TT$$D$ ׉T$4D$TljD$0D$L$RƋL$Ln $S,$D$ gRƉl$ol$,,$n!TD$ ,$6R<$l$T|$0

$)ǃ$$DŽ$$Ӥ$}QDŽ$w+uG"$DŽ$$$uDŽ$DŽ$$`A$<<$M$9$$AQ37\DD$@l$L[^_]$C^$CD$pQ$C$E|$4$%C$_C$NCQ$1O$$ B;$h|$$A9|$BH$BC~$B[E$l$iB Q$$U$ $$D$ $>$ ‹@%$$D$$ $:>tQ$ 8Q8[$l$h9$~ɋ$U9Nщlj$w)Q+$9$E"$u;$|$;$};$qQL$TQQ|$h$$$$Q<9!$;8wT$hD$,)+T$,9Ɖ$T$h$$~$싄$$$$<$$ꉔ$9@$;81wT$hD$,)+T$,9Ɖ$T$h$$~$싄$$$;$y$$$$$|$$$8,D$h$ 0L$T$$,$m<$$8@$L$h1$$$ DLD$PL$$$D$D$$ D$L<$ʉD$$$TT$$D$L9Ɖ$9$t1$pE%9|)t$D닃Q$($>$=<$="[Qt$h6$=($=$F $D$9=z/R$0$|$9$ ŋ@%Z$0D$$ $A9tQ$ Q?v8$~8}8$SFD $t$D$<$ $0t$$9$Brы$DŽ$,L$DŽ$ut$B$D$$$l$D$$ $$$.$.?NF<$;;}$,$8Ƌ$($89Ɖ@T$؉D$ F4$D$8$0D$$t$8@LFFF $;$D$,$:|$$ : Q닍G$L$:n$:SG$T$:rrG$l$:q$$$4t$HD$D$$Z5$4D$4$D$8$D$:$D$H$6@Ƌl$H,$ 6$(<$D$5$0D$$L$<7|$DVʼn|$$5tD$7t6|$$u5$z7$4|$$S5u$l$$5$(G$t$f9G$l$K9$:9@Q8$`1}$9$|l$1$7;$h|2$$7$$7Q$0$$7;$h|뮋$$z79|vG$ T$<8CH6H4$ 8,$1틴$<7;$h$ht$XD$d37D$\1;|$X}KO$Oϋ4)‰ЋT$\9H=HDу$7;|$X|O$Oϋ4)׋T$\AHCHD<$<7;l$dtEH4$(7;$hKBnD $7,$6HH6H $6$`r$<$n$16;$$h37t$`D$\|$d1;|$d}KO$Oϋ4)‰ЋT$\9H=HDփ$O6;|$d|O$Oϋ4)׋T$\AHCHD<$ 6;l$`tEH $5;$KBnD4$5,$5t$|$l$D$ l$ D$E|$$$/D$ D$Ƌ$/9|~Ћt$|$l$ËD$E$3ِUWVS7;$HV+^+Ns++|$ $I0l$$0D$,[^_]Í3+|$ $L$[0|$sUWVSl1{1D$XD$\$$L$\O$1$D$T$T$T)D$\)ЉL$P9$$|$P>)NjD$P)Љ|$L9$D$L1$9D$X}L$L;$|1;$t$8t$<1;$}>T$LxW$O׋ )ʼnl$'t/D$L$H--8v%$+뤍T$D$l$T$4$&D$D$t$H-(-u+v^-0EF@D$F7-8%|$%t%|$%E׉T$%G$K+딋-1UWVS D$ 8("?:-:(:-::(-(?:-: (:-?:2:?GL$ D$ 8W1J91ȉ9tDt:t,99!ШtL5D9t$  [^_]D8>D$ G뇍GҍG ͍GuGG뻍GcG뮍W1J91ȉ9t.t!.t99!Ш.j>D$ UWVSCD$8L$ Q?PhB Q?PPFl Q?P N4% Q?Pa% Q?Plk % (?P0u ) ?PT ) ff?P@ + ?PP + 33?P` / ?Pp/ ?P85 ?P_05 @P\5 33@P; ff@P;  @P=  @P"= @PIC @Pq,C 33@PXC  @PG z@PG @P I @P I ff@P0!O= @P`"O@P@ (# OQ@P "$ Sq=@PP4% Sp@P`[& Sף @Pp' Y #@P) Y%@P+ Yff&@P0 YQ(@P6 a)@PE< a{.@PhB aG1@PDH ez4@P 0 N e5@P@~S g= 7@PY gQ8@P_ k9@P@e kq=:@Plk mH:@P Hq m;@P` $w q(<@Pп } qfff@Z ql@Z ql@ZL l@Z%& 33s@Z%&ȯ 33s@Z%& l@Z-8 33s@Z- 33s@Zg58 33s@Zg5 33s@Zg5 y@Z =H y@Z = y@Z =p y@Z =$ y@Z =8 @ @ @ @ 8k MPQS: found factor = %ld whilst creating factor base MPQS: sizing out of tune, FB size or tolerance too largeMPQSLPTMP%s/%sFRELFNEWLPRELLPNEWCOMBwrsMPQS: found %lu candidate%s MPQS: passing the %3.1f%% sort point, time = %ld ms MPQS: no factors found. MPQS: time in Gauss and gcds = %ld ms MPQS: restarting sieving ... MPQS: giving up. MPQS: found %ld factors = %Z%s ,MPQS: found factors = %Z and %Z MPQS: found factor = %Z MPQS: starting Gauss over F_2 on %ld relations and combiningMPQS: done sorting%s, time = %ld ms MPQS: found %3.1f%% of the required relations MPQS: found %ld full relations MPQS: Net yield: %4.3g full relations per 100 candidates MPQS: %4.3g full relations per 100 polynomials MPQS: %4.1f%% of the polynomials yielded no candidates MPQS: next sort point at %3.1f%% MPQS: (%ld of these from partial relations) MPQS: renamed file %s to %s cannot rename file %s to %s MPQS: split N whilst combining, time = %ld ms MPQS: passing the %3.1f%% sort point MPQS: Ran out of primes for A, giving up. MPQS: starting main loop MPQS: first sorting at %ld%%, then every %3.1f%% / %3.1f%% MPQS: sieve threshold = %u MPQS: sieving interval = [%ld, %ld] MPQS: size of factor base = %ld MPQS: striving for %ld relations MPQS: coefficients A will be built from %ld primes each MPQS: primes for A to be chosen near FB[%ld] = %ld MPQS: smallest prime used for sieving FB[%ld] = %ld MPQS: largest prime in FB = %ld MPQS: bound for `large primes' = %ld MPQS: sizing out of tune, FB too small or way too few primes in AMPQS: computing logarithm approximations for p_i in FB MPQS: creating factor base and allocating arrays... MPQS: number too big to be factored with MPQS, giving upMPQS: found multiplier %ld for N MPQS: factoring number of %ld decimal digits MPQS: number to factor N = %Z manyseveralMPQS: factoring this number will take %s hours: N = %ZMPQS: Gauss elimination will require more than 128MBy of memory (estimated memory needed: %4.1fMBy) MPQS: kN = %Z MPQS: kN has %ld decimal digits ,<%lu>,%lu,%lu...] Wait a second -- ] MPQS: FB [-1,2MPQS: precomputing auxiliary primes up to %ld error whilst writing to file %sMPQS: done sorting one file. MQPS: short of space -- another buffer for sorting MPQS: relations file truncated?! MQPS: line wrap -- another buffer for sorting error whilst flushing file %sMPQS: chose Q_%ld(x) = %Z x^2 %c %Z x + C %lu %lu%s @ %s :%s %s :%s %ld %ld : 0 MPQS: combining {%ld @ %s : %s} * {%ld @ %s : %s} == {%s} 1 1MPQS: combined %ld full relation%s MPQS: Gauss done: kernel has rank %ld, taking gcds... , looking for more...MPQS: got %ld factors%s comp.unknown packaging %ld: %Z ^%ld (%s) MPQS: wrapping up vector of %ld factors [3]: mpqs_solve_linear_systemMPQS: resplitting a factor after %ld kernel vectors MPQS: splitting N after %ld kernel vector%s MPQS: got two factors, looking for more... MPQS: X^2 - Y^2 != 0 mod N index i = %ld MPQS: wrong relation found after Gauss[2]: mpqs_solve_linear_systemMPQS (relation is a nonsquare)[1]: mpqs_solve_linear_systemFREL file truncated?!cannot seek FREL fileMPQS: no solutions found from linear system solver\\ KERNEL COMPUTED BY MPQS KERNEL= [1, 0, 01; \\ MATRIX READ BY MPQS FREL=MPQS: chose primes for A FB[%ld]=%ld%sMPQS: new bit pattern for primes for A: 0x%lX MPQS: wrapping, more primes for A now chosen near FB[%ld] = %ld ftell error on full relations fileshorterlongerMPQS: full relations file %s than expectedMPQS panickingMPQS: decomposed a square cube5th power7th powerMPQS: decomposed a %s ?hCA AzDB?xD4Cz333333?$@?ffffffuYLl>.? 0*?dT⍀TPdd?⍀?Pdd*⍀*Pdd⍀Pdd⍀P{dvd⍀Pbd]d⍀PIdDd⍀P0d+d⍀Pdd⍀Pcc⍀Pccm⍀mPccX⍀XPccC⍀CPcc.⍀.Pc|c⍀Phccc⍀POcJc⍀P6c1c⍀Pcc⍀Pcb⍀Pbb⍀Pbb⍀Pbbq⍀qPbb\⍀\PbbG⍀GPnbib2⍀2PUbPb⍀P⍀>P^^)⍀)P^^⍀P^.G`yěݛ(AZsל ";Tmѝ5Ng˞/Hazşޟ)B[tؠ #<U$Ë$lxpxwhx~xwdxxw`xxw\xxwXxxwTxxwPxxwExPxww vvvv]wvvXwvvPwvvXwvv]wvvKwvvXwvvFwvv>wvvXwvvKwvvXwvv]wv|v9wvxvFwvtvKwvpvFwvlvXwvhv4wvdvXwv`v/wv\vKwvXvXwvTvFwvPv9wvLvXwvHvKwvDvXwv@v]wv8v@vvv vxtuututuztuututut~u|tvutZu`|P`hP`|P`P_|P@_P,_P"_^^P^^P^v^^^I^&^^P]]]]`P]]tP]w]`]-]]4P\,P\&P\xP\Pv\xPK\P \P\hP[|P[xP[Ps[Pe[hPM[|PZPZ|PZPrZcZTZ8ZYYPRYPXPXPoX|PIX|PCXhPW|PWlPWP]WMW P=W*P0WPWPVxPdV!VPVUUPUqU^UUPUPTlPhTPbT|PUTTSlPSP9S|P1SP+SRtPR PRPRhPR1R|PQ|PQPQQPQPQEQP8QQPPP PP|P*}GkP}GePUP}GIP+}G9P}G,Px}G!PPb}G POOOOX}GOC}GO_O.}GLODO}GGxiA GFFJFFEiAEEEiAEuEFEDDCCCcCiA,CiACBB|iAnBJBAiAeA YA3Ai7A|i7Ai7A@@@z@V@? ?>>l>;>i7=t=X=:=*===<i7]< <;;xi7::xi7r:f:T:):9i799i79i79|i7`9i7J9i7&99888i7w887i7e7 U7+77666A6&65555b5>5'5,44444^4*43333k3G303, 32222M2,2 21111Z1000,////,//,/{/q/F/-//,....i.J..---,--k-C-,-,-,,,,q,,\,, , '+++++` '+++ 'T++** '*r*j* '_*H* '<**)) ') '))) 'z)V)?) '!))(& '((p '(((S(-(( ''| '' '' ''_'I'&'( ' '' '' & & &&&~& s&g&` \&T&K L&>&)& &% %| % %w%o%H $ $$$ $~$ g$| X$ 7$+$- $ ##( ### u#c#"y" s"! " ! ! ! ! ! !! P! B! 5! -! #!    mx j U m1  mm6&|mmmlmxmԚmrmi YMA5* `Кy̚j:{!  xrf`VJ?-` |l@^XLF:*@n@ZTD2sdUF7( |@t^F̌4$ |mT<̌*wkY6(@ `o e_N@*:ъ4*`T*M~2A5/% |th`TNH3-n_B!}ȚWĚlUF    w d U M A )        x `e [ !   - + * o   (        &d J !6  zJ0 YQK5ؚ!ؚl[6'`M9| ||wfT, |rV)lZ ~n. Ue OaMGaMA <e 6]4.]4( #e YY e UU e QQ e MРMР e II e EE e AAy te n=lf=l` [e U9SM9SG Be <5:45:. )e #1!1! e -- e )) e %֟%֟ e !! e  e  ze trlrf ae [YSYM He B @: @4 /e ) '! ' e  e  e ܞܞ e ÞÞ e  e  e zxrxl ge a_Y_S Ne HF@F: 5e /-'-! e ݡݡ e ١١ e աա e ѡɝѡɝ e ͡͡ e ɡɡ e š~xš~r me ge_eY Te NLFL@ ;e 53-3' "e  e  e  e ϜϜ e  e  e ~x se mkek_ Ze TRLRF Ae ;939- (e "   e  e  e ՛՛ e }} e yy e uu~ ye sqqkqqe `e ZmXRmXL Ge Ai?9i?3 .e (e& e& e a a  |xtplhd`\XTPLHD@<840,($  `S0TPO7Ua<5A F6Z!GH_&^=-8@['1+W)XV",*Jd#.\3R]M/NY?4D>CcKIE2QBL`S0TPO7Ua<5A F6Z!GH_&^=-8@['1+W)XV",*Jd#.\3R]M/NY?4D>CcKIE2QBLb;:9%($x{"8G`PXdez `7',tGP`A k"n2p?tF8kZvjw  Ue> t^y~E"z/mf_mn 'HO8L)X60eVP7_mpqs___i686.get_pc_thunk.bx___i686.get_pc_thunk.axdyld_stub_binding_helper_top_DEBUGMEM_gen_2_gen_1_gen_0_bot_diffptr_DEBUGLEVEL_avma_strtol_rename_flusherr_rmdir_pari_unlink_pari_unique_dir_gaffect_rtodbl_timer2_gerepileupto_Fp_powu_fseek_is_357_power_Z_issquarerem_miller_ftell_strcat_absi_cmp_modii_mulii_strtok_bzero_strtoi_gerepileuptoint_equalii_gcdii_invmod_strchr_cmpsi_fprintf_divis_rem_sprintf_diviiexact_sqri_shifti_addii_sign_dvmdii_Fl_inv_divis_mului_vals_atol_fflush_strcmp_fputs_qsort_strcpy_pari_fclose_fgets_pari_fopen_stackmalloc_Fl_sqrt_initprimes_free_log_gpmalloc_krouu_umodiu_nextprime_mulsi_log2_fprintferr_pari_warn_itostr_pari_err_cand_multipliers_mpqs_parameters_mpqs_diffptr_mpqs_prime_count_mpqs_use_our_diffptr_mpqs_mask_bit_reel4.0_mpqs_i_mpqs_find_k_mpqs_set_parameters_mpqs_create_FB_mpqs_self_init_mpqs_sort_lp_file_mpqs_mergesort_lp_file0_mpqs_combine_large_primes_mpqs_solve_linear_system_mpqs_eval_cand_mpqs_si_choose_primes_F2_read_matrix_mpqs_kernel_split_mpqs_relations_cmp_mpqs_increment_F2_add_rows #1/20 1200774189 0 0 100644 65740 ` nffactor.oH (d( __text__TEXTd __data__DATA__cstring__TEXTo$__literal4__TEXT0(__literal8__TEXTX__const__DATApԉ__picsymbolstub2__TEXT__la_sym_ptr2__DATAkϙ__nl_symbol_ptr__DATA(\F__textcoal_nt__TEXT  @t P 4P<\$,|$4l$8t$0|$Dl$@ ȉt16t'|$Ht |$,$蕕\$,t$0|$4l$8<É<$ĕ tT uŋt&|$HtE4$D$c볉t$,$n륋FtF$몋w t4$댋Ew@?%?9*ȋL$)+L$9T$D$L$D$ GA;t$}< t6;t,|$Ht%L$,$bL$;t$|ċD$ $茔݃ tR ut&|$HtE $D$-밉L$,$8뢋AtA$묋I u$/UWVSLD$dT$`h$?D$,|L$dNj@p? t~$L$9x~$t$觓T$8L$w+9w0GF@n$@݋L$l$}w+9wuGFD$F$ؐUWVS<|$Pt$TED$,<$@Nj@D$$ t|$&T$蔑L$$VA?%?9x|$L$_%u@D$\ L$\D$%D$t$4D$$0$D$` tq$T$ $0$4D$ <$D$|$l D$l @;L$t)> l$\<$l$ux$89ΉL$X}:%&B D$B$;$v;t$X|ȋŁuy /$8;t$X!ȨtKl$h{/+(rD$h7@"[^_]$܃؉|$D$h$Ђ$較vq4$D$`$$L$T$$$8$D$$0t$T$ L$D$$($8t$l9D$p!Ш |$p s8 <$$$#t$0$4B l$$B$s$$$$0D$P$L$D$L<$|D$T$ƋD$P$1Ƌ$k(L$|T$xD$TL$T$ l$D$t$$4s{ŋ+)98aG`9G}9||$|$T<$ ~t$|D$D$xt$ l$$rƋ$,$ED$L(D$4$m}$0$4$L$,$$҉$g$8$Uw9׉T$H0AD$d$l$d$l$r{$$Uw9׉T$D0D$D$l$xtD$$$ {s?$$$Fɉ$t1%E鉬$$$t$D$ $0T$@T$D$$%?J$t$`҉t$7L$<9AG}7D$<D$(D$D$8D$$_u9|ɉ<$_r$8D$,$}҉|$$t$l|$${)׋T$$+9}v"o7D$,G,$$D$n?h' >o4$D$nD$D$$$}s?$$t$`L$@$$4l$,$$0$$D$l$$DŽ$ D$$l$D$ $$D$?wD$ht$$zh$q$q<$D${ȋ$q$D$L$4$ z$}$|y$|Y$T$D$$$imD$@T$p$8D$$t$,D$$$4D$ D$\T$L$D$t$<$t D${D$hL$hƉ{+9%:D$0T$$\x‹D$4.L$4A$%?D$oD$ ‹D$8D$D$4$D$GsL$(T$8L$$T$Nr${[$<$xq$l$4$dx$8r rL$drDL$4$l$y$CrD$ $wy$rrD$$^yD$D$s4$D$mt;|$D|BD$,$rD$D$t$tD$D$r4$D$t;|$H|D$,$rD$D$t$tlL$`$0(L$<$NjD$`D$$0$ Ƌs8wt$<$jD$,$qw r|$ $;xrt$$)x뽉T$$v$D$Pt$$u $y$yi1r$t$,$Xv$rD$$w/$8%DƉ$wu0  ȨtZt$<$wŋ{7~+v8F"oD$h|$$xӋl$\l$4$uvt$\t$D$<$Hv댁_vWw,D$pu{~+r}F"$xŋ%tUDƉ$u t# ȨD$\D$&uҋv͋w륍$<$t$$t\\$Lt$Pt$`|$Tl$X|$d4$v$D$|$x1҉D$,%|$|$<4$l$4D$L$8|$|$0L$l$|$t$D$ D$$2,zD$8}D$((z+wv0uG"D$,FD$(FЋ\$Lt$P|$Tl$X\$lvUWVSL+y|$lt$hD$8D$`$uL$dD$`@hL$?D$HD$`$tD$d MD$dL$< tBt$y$Zm|$<$|$mt$8D$4$sL[^_]ËF%?9D$.tL$dA%?9D$c$T$Ru;T$<}t|$<'t$y$lD$D$8$tD$`t$D$ $L$d $|$D$et$`D$ D$4$몋l$d4$D$l$dm9AT4$dƋUWVS7l$A$h%D׉D$<$OL$(B0$FD$$pW$D$ |pD$4D$0D$<$rSw)Ow+L$9SL$Sw*T$"2,$oD$,Sw|$D$t$D$>)ƋOw+89|$D$0D$D$1 &;|$(5$TmT$E$doD;|$(~˿4$o;|$ ;|$$nD$D$nD$ƋD$n‹BT$D$ F4$D$nD$$m$D$HnT$D%~OD$,$|$@t,$|$t$,t$mGwl$\8zD$,a$ D$T$;mWFt$D$ B$D$zm?tBT$D$ F4$ϋBT$D$ F4$D$NmD$<$lL$$ $D$~l|$D$8<$UlʼnD$D$8$*lIl$8l$8;l$( Kw;|$$0D$0 D$T$ $xkD$4T? BT$D$ A $D$,l$k‹tcBT$D$ F4$D$k;|$$3|$8t$<$kIt$8;l$(t$8D$8l[^_]ËFt$D$ B$D$k뛋tBT$D$ F4$ҋBT$D$ F4$D$wkVAL$D$ B$D$9ktBT$D$ A $ϋBT$D$ A $D$ kL$$iSt T$ $T$ $i/D$D$jD$$jL$%.;|$ ~T$,$$nJ$n%$n$qnD$4T$)ŋp+8l$9|$ L$qD$ D$ T$ B`B;D$ }|$;D$ |싃ql$ 0p~+݉9Qq8F w1;t$[L$(|$<$D$"i‹T$|$,G$h$g‹@;t$~L$t%D$gD$D$$g,$D$hq7ŋp~+vsq8F|$$zD$L<$L$sf$Lft$4$D$#fƉl$<$"ht$$j\[^_]$k|p*%t;|$$D$D$ZjHD$L$ E,$D$g;t$.D$ l$D9D$ jT$0t$pD$T$4$fD$LD$,p8;D$ [$ D$L$?fT$D$, $j$j$j$jUWVS;;t$`|ЉD$l;$K+VD$l/'V+(ΉL$X)9l$XT$T D$TD$X|$T l$lEGD$\D$X9D$\-+VD$@D$lT$\+V 7$L$P(t$LL$HE%D$D  D$HD$E$C;t$D\ |$E$Ct$HD$4$>Nj$t-<$D$ C$$L$AO1t/<$=T$@NjD$L|$E0$C<$=T$\t$T1tD$X9‰T$\|$T|$lnD$l$D$ D$$l$$DD$h+VD$pM)Ƌ'V+9L$puD$puSD$p "$$ t;$#$$ ;$~݉<$1D$ D$l$ Ƌ%Dlj$Cu8  ȨID$l|$$(DƋ$4|$h;$$$;$$;,$ $t0$x $x$x$t0$x $x$x$;$D$)$9$$$F4$tD$h$B$$$$$%wDD$<+VT$<:э)'V+L$89(T$8+VL$<%~L$q$@$$<$_>Ƌ%Dlj$=u, tXƒ Шt|$4$u>Ɖ$$$<$D$s=$l$D$4$C=%u뙋#Vr$$$=$$#V$<$D$<$D$D$lt$$<_W#V,$>$>zV8wn+VT$d$l$p+$t;$t 9㋄$4$t;$t$p$A<$r<낋V8w+VL$drA$F<ߋE D$$77;t$D|L$E,$4D$HEE@D$D$P$9;t$D| D$DL$P $D$|4D$H&E D$$6;t$D|$C=E$$D$$D$3$$$|$T$3V8AV8w D$d=A,$;$<g$<$$V3$$A3;$~GT$xB D$$5;t$t|JL$|$xG,$D3D$|L$x$A@<$D$F8;t$t|#D$t$4$D$2D$|L$xA D$$5;t$t|빋$B D$$4;$|L$B,$2$$$F@<$D$7;$|)$D$$$2$|$A D$$O4;$|뭋$$D$4$5$D$$|$1$$$ $D$_5$D$T$$1W$$L$$1D$D$5D$$$1$I$:$9[$9$9$1\$T$}5DŽ$,E%? @E$9#Vj$d95$S9$B9$19$ 9=$9$8XUWVS蛢$$$$@$$,F$4F$8F$0F$$<G$(o$G $$O$ w $r$@($$H$%$DŽ$HDŽ$%$%l;u)Nj;+9;8E%~DEe$G%5$($ %$տ;09D$$$+$D$4$1*$Qf./)$*$$Z(f(YY*Z(YXYXYf(^Qf.$d$@+\$8$D$@d$8,$$$*X$)$;$E)щ$;+9$E&$ 0E)΋;+9uh$;$;;$~;$$t;$~鋃;0;($)鉬$,)9;1$;"$ );+E9Z;u$1&>DŽ$$$$9$*$$ $$9~֋$$$LL$$'$$`$HDŽ$l$XD$\T$T$$ $$DŽ$%$$$Ջ;09$D$$$O'D$$$-Ɖ$+$*D$;/$l$&$;8 $0t$$-$ DŽ$$9$$1t$$D$ $*Ƌ$,$D$$<D$ $D$$ D$$($%$ $$$D|$4$$*t-$D$,$M.$,t$$?)$$$$$$$A( [ $$T$G$-9 |$$G$-D$$$($$ $$9b;8$;DŽ$$EDŽ$$};w+9uGF@$Vt$$$#$$$$4$8D$x$,L$||$tD$p$;%D$hE+)9D$ht$drD$dt$dED$h &D$lDŽ$Ll$h9l$l;t$l$T$|L$`D$D$,ƉD$D$t$+|$p|$$(Nj;(D$x|$$+4$D$'$(T$X;~;L$`.|$ $,l$lT$d|$hl$l9E$*$(Z(Y$Lf.*\,ɋ$9M)ꉬ$$$4$'ljD$$4$'|$ŋ$$$y',$NjD$dD$*<$Ƌ$D$*t$$&D$$$!Ƌ$$l$\$9$$l$t$D$$|$ !$;8&$$9$~%$T$$,;$;8$%9$Y$9$$$$9;};;}w+9uGF@$Vt$$$2 $(D$$$,D$$t$ l$$;ƃ?<$$D$<$+$;$9(;8$,$<$<$8$4$0T$҉t$(l$$|$ L$$($$$ $ $t$l$|$ L$T$$$$e'$t$&O;8w Ĭ[^_]Ë$$H{'|$D$$)͍$@ $ $$<+%$@ $($$t$.$;$0'$XL$,$'$+$E%DƉ$(u7  Ȩt[$t$$<)ŋ;0;~+v;:F$o$"*ً$4$D$($$l$D$<$'녁QvI;$P$f$҉D$t %D$'%4$D$ $D$$LD$'rl$$DŽ$,$x4$D$S\4$L;$M$+$9$M$$$$$)Nj$;$M$$$(}$($X$P,$%4$%]$B D$$!9|T$A,$W$$A@D$$$S$9|"$ut$$$i$A D$$$!9|빋|$Tt$ $|$BD$$D$$$$$$t4$hD$$$$l$$#$G$$O$$o($>D$$;$;+)9.u$9BE}A$$$D$$D$D9|,$$p$h$x$4$|$`$,$8$0l$$$$($<|$$L$t$ l$$_DŽ$$$(9$.$$ $$9~$T$$!‹$.$A$%?D$D$ ‹$D$$$D$$$L$$T$$$!$$$'D$ L$l$$#$$ L$$4$D$9|$ $T$D$$$$N$$=$$,$S$$%$ $$#g$#&$#d$@ $\$8d$@D$8D$\$8\$8$ D$$4$D$9|BD$ $$D$$zElj$G%? @G$"C;(UWVS菌\L$pt$tV %xAD$H9/l$pDD$D$H$9D$H D$tP ыD$H%(l$L.)‹%+(T$D9l$LD$DD$Lt$D ,;l$LZ9D$tPL$p9X ~ZX$T$0K\$(\$0T$(\fTf.%9 t$t $D$1ҋHt$@t)p1҃ uTD$@مNڋD$D;l$Ll$D|$tl$G$^D$D$H$\[^_]$ 랋D$pD$t@BT$D$ A $D$9~ ,ҋt$Dډb$ LUWVS3l$< (D$@ ET$dBED$DD$@9D$D' D$(l$DD$d >$L$8(|$4L$0E%D$,U 4T$0T$E$t;t$,|$E$Y|$0<$D$NjD$|t*<$D$t$|$t$O1t/<$T$(NjD$4|$E0$<$jL$Dt$<1҅tD$DD$@9D$DT$<1҉T$dj 8T$Hl$d$l$CD$dD$xD$ D$L$dD$`L$$D$l1t$l D$d$gD$dƋ%|Dlj$u8 C Ȩ|$|$d<$mƋD$tL$L4T$pD$t9D$PtD$l$D$lD$TtyT$l%l u)Nj +9 8E%~DExR|$Tl$Tt$\l$4$D$D$\$T$lD$PT$`.7T$$D$`"G%? @G$t] (!D$l$Ƌ%Dlj$Bu, taƒ Шt)|$4$ƋD$tl$LtD$LČ[^_]ËL$x<$L$|$x|$D$4$%u됋 iD$x<$D$l$xt$dl$D$4$[ { W +,$D$E D$${;t$,|L$E,$D$0E@D$D$8$%;t$,| D$,L$8 $D$ D$0E D$$;t$,|$ w + $D$S l$H +(D$t$l$D$$$r|$h |$4$`D$TG%? @G$> (nffactormodpolynomial variable must have highest priority in nffactormodnfrootspolynomial variable must have highest priority in nfrootstest if polynomial is square-free nfissplitnffactorpolynomial variable must have highest priority in nffactornumber of factor(s) found: %ld squarefree test Entering nffactor: nfsqffUsing Trager's method Total Time: %ld =========== splitting mod %Zbound computationfactorroot 1) T_2 bound for %s: %Z 2) Conversion from T_2 --> | |^2 bound : %Z 3) Final bound: %Z Mignotte bound: %Z Beauzamy bound: %Z choice of a prime idealPrime ideal chosen: %Z incorrect variables in rnfcharpolynf_factor_boundfor this exponent, GSmin = %Z Time reduction: %ld exponent: %ld Naive recombinationHensel liftrootsfactors%3ld %s at prime %Z Time: %ld ### K = %d, %Z combinations to find factor %Zremaining modular factor(s): %ld *@|.nf_LLL_cmbf* Time LLL: %ld * Time Check Factor: %ld for this traceLLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld LLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld) ... lifted (avma - bot = %lu) ... mod p^k (avma - bot = %lu) nf_LLL_cmbf: checking factor %ld (avma - bot = %lu) special_pivot output: %Z >??????B???-C6?{y⍀Pgyby⍀PNyIy⍀P5y0y⍀Pyy⍀Pyx}⍀}Pxxh⍀hPxxS⍀SPxx>⍀>Pxx)⍀)Pxx⍀Pmxhx⍀PTxOx⍀P;x6x⍀P"xx⍀P xx⍀Pww⍀Pww⍀Pwwl⍀lPwwW⍀WPwwB⍀BPswnw-⍀-PZwUw⍀PAwk9k⍀P%k k⍀P kk⍀Pjj⍀Pjj⍀Pjj⍀Pjjn⍀nPjjY⍀YPvjqjD⍀DP]jXj/⍀/PDj?j⍀P+j&j⍀Pj j⍀Pii⍀Pii⍀Pii⍀Pii⍀Pi؆ #<Un҇6Oḧ0Ib{Ɖ߉*C\uي $=VoӋ7Pi͌1Jc|Ǎ+D]vڎ %>Wpԏ8Qjΐ2Kd}ȑ,E^w’ے &?XqՓ 9Rkϔ3Le~ɕ-F_$Ë$ÍIxE9Ix*IxIxIxIxIxsO/IxIx~Ix~Ix~~~Ix~s~F~~}}Ix}}}}B}Ix/}Ix}Ix||{|W|9||{Ix{{{y{i{O{?{${zIxzIxzIxjzIxPzIx=zIx3zyIxyIxyyIxpyIx[yIxCy0y yxIxxIxxIxEx 5x$xxwwuwwewuSw(wvvuvuvuv{vsv^vuBvu6vu&vvuuuu uuWuCu3uttqstpqsthqsxtdtTqs;tPqssqssqssms Zse]OssrrrrrwrfrUrDr3r"rrrqqqqqyq`e]YqHq*qqpipoogoe]Roe]LoonnnanEnnmmmmmm mll e]l~le]_lAl,l le]ke]ke]kk{khk e]Tke]>k&kkjjje]je]jjʄe]jie]ie]iie]iji ie]ie] ie]he]he]hVhe]Ihggggggg>gLe]6g`e]ffe]ffffe]fffcfe]ee]ewee]Gee]1ee]ddd^dKd4dccfcJce]=c/ce]!cccbbe]8bae]ae]ae]eae]2ae]*ae]`e]`e]n`e]I`e]<`__He]_De][_H_ _e]^e]^e]n^e]a] P]?].]] ]\\\B\\s\b\Q\@\(\\[[[[[[[6[[ZZZtZRZ'ZZYYYYYYȄBvYBkYƄB\YBQY.Y YXXXXsX_XWXĄBFXB;XB3X+X„BWBWBWWWBaWFW$WBWVBVVVV_VKV:V2VB'VVUBUBUBmU_U:UTBtTSBSSSSBSBvSnSB_SBRSS SRBRBsRB8RPPPPBPBOOOlOTOAO$OONNBNB/NB!NBMMMHMB*M"MMLLLLBKKaBKKB|KBqKB KJJJqJRJIIII9I&IIHHmH,HBHGGBGBGBdGB=GB0GB*G"GGFF@BTF<BFFbEBDBDB}DBEDB)DBDCCB2CBB BA;AtAGA/AA@@@\@C@???@;?(;?}?";`?;B?;6?;>>;>>>e>:>>;==;=;x=8=;=;<x<;e<;F<;(<;;; ;;u;7c;A;(;::::7:7u::99999z97n9b9R909878m8,877_7O77 666466466u6\6645455T5 5444 4|4M4'4444-338-}34-g3_3W3G3%32-20-2n2b2-42(22111-1111|1H11000-0-0-<00-/-/////N/-?/$//-...-.u.a.G..-----X-- -p-_-D--,+x,+[,+<,, ,++++ +++}+_+K+(8+(*+***(**v*h*X*J*6**(*()()))))v)7)()()(((((((m(U(( (!'''''l'\'C'''&&b&&%%%w%5%!%$$$$$c$O$!8$!2$####x#N#4#"!"!""!m"!W"!I"5"&"! !!|!d!P!(!!      I   ~J gI|vn<eM|p9j^%SG6.ocG;."f<m\K:#cD>." o]c}R>zSD3Lr93cA1E 05 g5 U5 25 %5  5 i5 !5 5  5    q Z 5 H 8 5  5  h 5 b H 5 +    5  v <  5    u k c 7  5 5  5  5 g O 5 1    qeU@D@< mm~mX@%m mQ-tmldT5m@mmvmi \%11111kK11}1UA1- #qU  WW  >>  %%      }uo j dߘڕ\ߘڕV Q KۘCۘ= 8 2ט*ט$  ӘӘ   ϘvϘv  ˘]˘]  ǘDǘD  Ø+Ø+    {u p jb\ W QǔIǔC > 80* %   | |  c c  J J  1 1     {  v p h b  ] W ͓O ͓I  D > 6 0  + %        {i {i  wP wP  s7 s7  o o  k k  | v gn gh  c ] cӒU cӒO  J D _< _6  1 + [# [    W W  So So  OV OV  K= K=  G$ G$  C C  | ?t ?n  i c ;ّ[ ;ّU  P J 7B 7<  7 1 3) 3#    / /   +u +u  '\ '\  #C #C  * *     z t  o i ߐa ߐ[  V P ƐH ƐB  = 7 / )  $      { {  b b  I I  0 0     z  u o g a  \ V ̏N ̏H  C = 5 /  * $ ߗ ߗ   ۗ ۗ  חhחh  ӗOӗO  ϗ6ϗ6  ˗˗  ǗǗ { u×m×g b \ҎTҎN I C;5 0 *"     nn  UU  <<  ##      {sm h b؍Z؍T O IA; 6 0("     tt  [[  BB  {){)  ww  syss n hoތ`oތZ U OkŌGkŌA < 6g.g( # cc  _z_z  [a[a  WHWH  S/S/  OO  KKy t nGfG` [ UCˋMCˋG B <?4?. ) #;;  77  3g3g  /N/N  +5+5  ''  ## z tlf a [ъSъM H B:4 / )!     m m  TT  ;;  ""      zrl g a׉Y׉S N H@: 5 /'!    ss  ߖZߖZ  ۖAۖA  ז(ז(  ӖӖ  ϖxϖr m g˖݈_˖݈Y T NǖĈFǖĈ@ ; 5Ö-Ö' "   yy  ``  GG  ..    ~x s me_ Z TʇLʇF A ;3- ( "   ff MM 44  ~ y s{k{e ` ZwІRwІL G As9s3 . (o o  kk |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  I9'+u4,-* ?%z.nm026SV!(r=;/aJ`XO#M"LGbY&$K~RtCdhQs>W\_q:yc|xBA@5w^}Z<pl871eT]3[{go)NFvDfI9'+u4,-* ?%z.nm026SV!(r=;/aJ`XO#M"LGbY&$K~RtCdhQs>W\_q:yc|xBA@5w^}Z<pl871eT]3[{go)NFvDfUkjPiHE ;++-:4N6\!o(AhBB\]uhs@xYfT  $O, "(C8$/ds6>%JB?Ww>Bph8/#  VI1#(,CXO2VjrwG1fi^j]r;`V*J( |%z!lx\3desO5 Vlo$_unifpol___i686.get_pc_thunk.bx_nffactormod_nfroots_nfissplit_nfisgalois_nffactor_ZM_get_prec_ZX_get_prec_nfrootsall_and_pr_rnfcharpoly___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_x_diffptr_DEBUGMEM_gen_2_gen_1_cmp_pol_DEBUGLEVEL_gen_0_bot_avma_caract2_RgX_divrem_lift_to_pol_sort_vecpol_FpX_split_Berlekamp_FqX_split_all_gmin_vandermondeinverse_initgaloisborne_Q_remove_denom_simplify_i_polfnf_FqX_split_by_degree_FqX_split_deg1_FqX_is_squarefree_Flx_nbfact_Flx_nbroots_Flx_is_squarefree_ZX_to_Flx_zk_to_ff_init_primedec_apply_kummer_FpX_factor_umodiu_gneg_rootpadicfast_roots_from_deg1_FqX_split_roots_gerepileall_gequal_LLL_check_progress_shallowconcat_vconcat_Q_div_to_int_polsym_gen_normalizepol_RgV_to_RgX_logint_gscalsmat_dbltor_mulsr_dim1proj_FpM_red_Fp_inv_get_proj_modT_hensel_lift_fact_ZM_inv_TIMER_GS_norms_gauss_sqred1_from_QR_lllint_i_lllint_fp_ip_lllintpartial_ip_idealpows_ceil_gaffect_log_mplog_divrs_pr_norm_chk_factors_get_special_pivot_shallowcopy_FpX_center_centermodii_FpXQX_red_centermod_i_binomial_gunclone_gclone_gscalcol_mulmat_pol_dvmdii_FpX_red_modii_FpX_divrem_gsub_ceil_safe_sqrtr_sqrt_mul_content_shifti_gpowgs_rtodbl_dalloc_init_dalloc_ginv_affir_gcmp0_gdivround_cmpii_int2n_gexpo_ZM_zc_mul_diviiround_floor_gadd_poleval_roots_nfgetprec_get_nfpol_logmax_modulus_bound_RgX_is_rational_gmulsg_mppi_powrshalf_gsqr_mulrr_mulir_mulii_gcmp_gnorml2_mulsi_sqri_pari_warn_remake_GM_gmul2n_addrr_sign_addir_sign_addii_sign_gsqrt_QuickNormL2_shallowtrans_gprecision_gmul_vecbinome_nf_get_r1_sort_factor_free_lift_gpmalloc_msgTIMER_factpol_simplify_trivfact_TIMERstart_gerepileupto_gen_sort_RgXQX_divrem_RgXQX_RgXQ_mul_QXQ_inv_gcmp1_nfgcd_derivpol_fprintferr_Q_primpart_lift_intern0_fix_relative_pol_gneg_i_gdiv_nfrootsQ_gerepilecopy_modprX_lift_FqX_factor_modprX_nf_to_ff_init_checknf_basistoalg_gmodulo_algtobasis_gcopy_pari_err_reel4.0_nfsqff_nf_pick_prime_nf_root_bounds_bestlift_init_nf_combine_factors_nf_DDF_roots_nf_Mignotte_bound_nf_Beauzamy_bound_affsr_ZXY_get_prec_nfcmbf_nf_LLL_cmbf_init_trace_get_trace_nf_chk_factors #1/12 1200774192 0 0 100644 16652 ` part.o 0% 0% __text__TEXT* P(a__data__DATA, L#__cstring__TEXT@ a`#__literal8__TEXT #__literal4__TEXT #__picsymbolstub2__TEXT #X3__la_sym_ptr2__DATA~$'x:&&__nl_symbol_ptr__DATA%8(L__textcoal_nt__TEXT(%H( @<2@? P+;PUWVS%$$t7 $T$ $$F<$$L$N"؅D$Ƥ$~"D$$$!xW $|$#%7$$!$,$$D$f!ŋ%0%~+`%8F|$,$!<$D$ $ $$D$ $x Nj@%?D$|%7%E+)9%*%E~DD$|UE% D$|E,$$|$Nj%0%n+%*Fl$$S,$<$D$L$+D$$$$# $|$4$z <$Z Z \$Z ټ$D$$ ^ f$$XD$$YXT$D$٬$߼$٬$$$ pD$$t$ $%D$tl$p%+)9$v%0$%D$lG$ D$ht$l$t,$n4$D$ED$x$ D$d<$xD$`%%++t$p9$%7T$lD$ht$$O4$D$$l$`D$,$%Nj%++t$p9$&%2D$lD$ht$$4$>L$`D$ $T$dT$ʼn<$D$\D$dD$D$x$,$D$$(%D$X%++L$p9$L$TVl$T%/D$l-D$Tt$h0$# $|$$<$\$D$Qf.Y Z ټ$X$ l$f$D$٬$߼$٬$$$%D$$D$\$D$P$D$L$D$HT$LL$H|$Ht$LG|$D$ F4$D$/zL$Lt$Ht$H|$LFt$D$ G<$D$Nj@%?D$@%7U)ŋ%+9G%(%E~DD$@E% D$@El$DD$L[T$Hl$Ht$LEl$؉D$ F4$D$L$L|$H o 4 L$Ht$LAL$؉D$ F4$D$Nj@%?D$< %7U)ŋ%+9 %(%E~DD$<M E% D$w+v0GFD$$֋9D$D$6<$)T$]L$QL$T$ H$L$D$tt$D)9C9rD$D$$D$ыD$D|-D$$pD$$t$HD$<$ىL$1҉D$Et$D$XD$$MD$D}D$$hD$<$݉l$61҉D$t$D$ D$ 믍uMt$ $8듍UT$U$$partition functionarg to partition function must be < 10^15overflow in real shift9B.?Q?A=@@3⍀P⍀P⍀Pr⍀rP]⍀]PH⍀HP3⍀3P⍀Ppk ⍀ PWR⍀P>9⍀P% ⍀P ⍀P⍀P⍀Pv⍀vPa⍀aPL⍀LPvq7⍀7P]X"⍀"PD? ⍀ P+&⍀P ⍀P⍀P⍀P⍀P⍀Pz⍀zP|we⍀ePc^P⍀PPJE;⍀;P1,&⍀&P⍀P⍀P⍀P⍀P⍀P⍀P ! !9!R!k!!!!!!""3"L"e"~""""""#-#F#_#x######$'$@$Y$r$$Ë$$  x^D$%D %D %Dr%Dl %D`9 %D"%D %D$%DS$%D@ )%Y %Y %Yy%Y\ %YQ@.n@( %Y %Y %Y%Y %YpU $% % }l[J: /uf"~n%y l$% a$% `/$% o@/ $% n]u, s$% h$% g6&$% vG6% $% uN % 6&      % k % e %  % % % #  % ~ % b % @    ~ _ O G '        > % & %  % y% ] % ;M % :%  % RF: %   , Q % )%  %  % % w % qaYI% % %  %  % u% g % W=    , taYME, % %  %  % %  % _WD<, % % %  % ` jA1@  %  1 %j$%j$ 1 %Q$%Q$ 1 z %8$r %8$l g1 a%$Y%$S N1 H%$@%$: 51 /$#'$#! 1 $#$# 1 $#$# 1 $#$# 1 $#$# 1 $p#$p# 1 $W#$W# 1 $>#x$>#r m1 g$%#_$%#Y T1 N$ #F$ #@ ;1 5$"-$"' "1 $"$" 1 $"$" 1 $"$" 1 $"$" 1 $v"$v" 1 $]"$]" 1 $D"~$D"x s1 m$+"e$+"_ Z1 T$"L$"F A1 ;$!3$!- (1 "$!$! 1 $!$! 1 $!$! 1 $!$! 1 $|!$|! 1 $c!$c! 1 $J!$J!~ y1 s$1!k$1!e `1 Z$!R$!L G1 A$ 9$ 3 .1 ($ $  1 ~$ ~$  |xtplhd`\XTPLHD@<840,($  " -+%$'. ,&/ #  !0( )*" -+%$'. ,&/ #  !0( )*, P0# (%  ,%uo1`[G?(8fT^"Mm{V;_numbpart___i686.get_pc_thunk.bx___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_1_bot_avma_gen_0_ground_absr_cmp_affrr_addir_sign_sqrt_ginv_rtodbl_gerepileupto_mplog_divrr_divri_mpexp_mulrr_sqrtr_divrs_affir_shifti_mppi_cmpii_u2toi_cmpui_addrr_sign_mpcos_gmul_gaffect_addsr_gcmp0_gaddsg_cgcd_gprec_w_umodiu_gerepileuptoint_addii_sign_mulsi_addsi_sign_gdivgs_mulss_pari_err_reel4.0_affsr_L_g#1/12 1200774196 0 0 100644 106420 ` stark.o @  @  __text__TEXT `R __data__DATAX__cstring__TEXT __literal4__TEXT__literal8__TEXT __picsymbolstub2__TEXT$Y__la_sym_ptr2__DATA }__nl_symbol_ptr__DATA 4$__textcoal_nt__TEXT8 X @4 P""(UWVS|$+ D$P $$$A@D$HAhD$H$$T$T1]D$H+ 8' +)9."ulL$HA9D$D# E"+ ' 1V+8T$@D$@+ ' F"L$DhH+ $t$L0F+/D$<L$<+ + F"D$@x$|$88Eō4)' +9)+ "(U$F9E|$l,$|$ƋD$l^L$@AD$lD$O$ T$UWVS$$$$>$|$tnM$~$o$Hh 9$t$L$$=$t$4$$|$D$,$$$ى$L$%$$8+4)9W "(U* $@9D$pE 7V+T$l D$lF"T$phP$$+EL$x)9D$xt$h: D$hl$hD$x "ED$||$x9|$|$L$0~+|$d l$d(F "|$|L$h,$D1p$@;t$|$ $A$T$t$$M$D$$Tl$dE$$wD$\t$`0$n+ 19(F,t$`@9~U)щM|$\t} 9Mut$dn$GF<$$l$R$F u~+8F"t$d~$|$dG1n+8l$H98l$H(F"T$l$zʼn|$D+94)9"(M$F9ED$,$D$Ƌ$ l$lE$D$Hp$$t$&T$HB$B |$dWG )D$<$l$8T$)‹Ul$D+8T$@9|$HL$@YD$H ";l$HYt$x|$LD$<@D$G$>;t$D=L$t<$D$t$|~$|$T$tƋD$4$gD$D$<$'|$@;l$Hg;t$d;t$dt]L$pD$h9L$d$l$`uD$lu t$lD$`0D$`Ĝ[^_]$3ً|$@$|$$|ŋ@$wD$lYD$8UD$l>w+9Y0G"D$@nFl$`L$8t|$dT$TY|$dl$tD$4Qu(9t$0t$4l$4$$D$D$dl$@D$dD$,YU}+)9."u9}[MD$(D$ D$$D$@BtRL$t 9щL$t;؉T$T$D$ B$D$SD9||$,D$T,T$(݋T$$$e`D$tL$@4D$4$‹@%t*4$T$1ƃ,$t$;|$0|zu$#l$TDD$D$@$%.?;t$d|1L$|D$A$T$LD$$L$x‹$D$HD$L$ G<$D$;t$D|R$HF;.E $)+8$9$ꋼ$,9#$pE$1ҋHt'x1҃ ߅N$x$Ճr$l$,D$4t$0D$,$|}$D$$$T$ L$$VH$8E|$4+)9D$4$$ED$4%$t$4$"1$x$t@%.$$|$D$ $$$t$|$l$L$$3rDŽ$$9$E$py$WBDŽ$t:%jщ  ꉬ$څO$$ow $,$$(ED$%$ $$$$Ǎ )ω$+9< $ $"1$$$e$$9}\$ $ t $$PP$(;Pv $$$$;$|+)9 > "/;$ $|$$$x$$E$L$0$+)9D$0l$|7 D$|D$0 D$0|$| "DŽ$$9$ $l$($$D$x$DŽ$9$$D$(D$8$$h$D$E$)D$t}|$p1U Bt$lt-%r  D$lمNL$8T$t0L$|$$0$ u:9 D$pL$$$$D$$`$ƋE Ht,x1҃  ߅Nσt4$D$Ɖt$t$x4$$$D$x9$$D$D$x$$L$|$$9X$x…!Ш)DŽ$$9$$|)Ƌ+9$|q$|7M$|F`F ;$|};$||D$|D$ D$D$4$KNjt3$x퍳Dȉ4$L$$xv$|$$tt$ T$|$$h]T8!DŽ$$9$$|/)Ƌ+(9$|u$|7Q$|F`F ;$|};$||D$|D$ D$D$4$Njt4$g$$||$D$$tL$ $D\0$$<$[<$hS)ʼn$ƒN$||$|D$$t$ $$tl$hD$dh @$|8tt$P4$$|$D$Lu+)98E%~DEL$L<$L$*$|$hD$`D$T%9D$TD$XL$hD$T,E$'|$P|$$aD$D$`$kEE @t$dpUT$\r $t$9L$\A} |$\w $t$t_t$\FD$TT$X9T$TID$h$$t$$l$ L$D$<$Y9D$P$$D$Ft$$!l$P$l$ |$L$$$l$<$}t$@w+9wuG D$@FD$wTD$(D$$$i$D$(D$D$ $D$$$$AD$<$똋$#(+<)9#"90t$}gD$$L$4$D$ D$$D$$$L$$49|l$$,$觺D$$9TU<$ѽ$$$et$D$4$0a $莽D$#|$8$iUWVSLt$dD$4D$`$賹D$`$$D$,P%B?D$,$=|$`G@$D$0t4$QD$0(D$`t$D$$HljL$`A@$(D$0w 4$$/tl$4(L[^_]Ë|$`G@@$JEm|$s+8)L$\9|$`T$XD$XL$XD$` "D$4;l$`D$<|$lt$hT$T@D$F$;t$\$<$D$|$dw$t$$NjD$<$8D$D$T$t$X;l$`t$<cwl$Xs}+)9M."u9}fkD$PD$8D$LD$XB $ 9щL$,؉T$T$,D$ B$D$腹D9|$;$sP$D$X$<$D$wD$Hs}w+9uG"T$XVD$HFD$x$4$t$t l$xu$ $|$x$D$$|$$$$$5Nj$$$L$ D$|$t$l$$L$D$ $|$D$$!$$$wƋ )͋s+9/"uDŽ$$9$$t$t<$$$D$$D$$D$ $D$D$$7$D$$9$q$$$$DŽ$$9$$T$|$sD$Dw||$@8w+9w[w0G"|$D~D$@F$t$$9~l$$,$[^_]$뗋$$$t$$D$9$DߋD$X$D$裾$蒾$t$w$f$UߋL$pl$t$l$T$x@$hu;$~bYT$P*T$L$L$dD$A$ϼT$hD$$L$l‹$D$˵HD$L$ G<$D$4;t$\|$b$$QZ$@U$$,$F;.OF,,F;,t6$ۼ$ʼ$蹼$証Xű$t$荼 4$踻|$Ɖ$gE$D$D$$@$$ L$"X$T$/UWVSODŽ$DŽ$DŽ$$$$h$HL$|y|$xG%$F@@DŽ$D$D$tF@$θNjD$t$觸L$xD$A $躺|$$o‹@D$T%tz))D$T$OF@ @D$X0V$)щL$PK+9 D$P,0DŽ$$9$ G$4$D$荷O7D$pKV+T$L T$LF"BD$pBDŽ$2$$E%?D8$R $޶$|$xD$<$讶$D$l跶O$$$9?8O$$D$l,l$hEDŽ$%9$$$t$hD$D$tD$D$x$|$LGDŽ$$9$$Ct$p+$D$µD$LD$D$|$QD$D$dD$$G$脵GT$pDE$$9$^$ty$$9$$$9$u$$Ѥ$$1!Ȩ[^_]Ë?8wG$$D$GD$G$訵$Ft$$,$e롋$BD$B@@<$D$ȴ뎋OL$dD$HA@$胶$D$DF$m|$dD$|$48D$<,$D$4:讵$L$D$$D$%)Ƌ$t$$賲$|$D$$l$D$,$ʳ$$$ D$D$4$%L$H $D$OD$`*$l$0訲t$dF@$D$(D$D$`$躱|$D$$ID$,$$zD$D$`$輴O1D$$;(K+~O8F"o|$|$,<$(ǁ9t$ױl$0|$,$贰D$\DŽ$%9$$.3D$\$$$D$ 3D$X$$t$$D$4$Xl$$4$,$$$$L$D$ |$D$4$ۧl$4$$D$諧$@@$}8 $ KE@ @D$L0Ǎ n)ϋG+9 $K987?9~K0Gn+ K*F&D$L}E$$T$$蘦$l$s$D$ $G$$$t$|$ D$D$,$蓦,$Ƌ$D$t$a$$$t$T$,$迥D$$$ ,$$$D$yK@x$@ $8Ew$$)щL$HG+9( D$HE "D$H0DŽ$$9$gG,D$DT$@t$t$\D$hG;t$d|t$tT$pFBL$dz D$hD$D$Y;t$d|$輟$讟X$蝟$茟C${$jGUWVSwLD$`|$d0% D$8)͉l$4+E9\D$4"0D$<D$89D$<l$(t$ $螝UWVS賕LD$`L$dh l$$x|$,7t$8@ D$(ߠT$0D$4T$89T$4AL$ޅNT$D$)T$|$$_(L$<uD=9D$L$$LT$hƅt]D$ $ؓ4$D$L$D$$術D$D$0$蓛D$4D$0D$89D$4D$0L[^_]É$mt%|$ <$ol$ll$$-t$d뜉t$ߠ)|$L$<$蔔$G;1)֍ 1$rUWVS臓LT$dD$hD$<L$$L$ L$|$dƋ,uH l$d|tT$<'T$`9T$8t)$D$ԓD$8D$d9D$pGkT$xL$tB)yA1틼$44$蛍D$h;$Z$<$q‹D$h  Ѓ;$};$|;$~$144$D$d;$Z$<$‹D$d  Ѓ;$};$|;$~D$\$$职l$xD$X1ɋU Bt'%zщ ߅ND$ $LD$`$D$T9|$`|$PD$P$|$`t$XD$$D$E$臋T$TT$$^t$XD$`< A1҉t'%qщ mޅN։;$};$|D$`$9D$`,L$\$z|$|/DŽ$9$$D$0$D$|$$$ED$$$ϓ$t$$+$T$0$D$w+v10G"nl$$nt$D$$7<[^_]$$~K>w+v 0GF@nc$Ճҋ݋>w+v0GF$萃ڋL$ ${L$XL$$zD$D$$$߂9D$$~UWVSk{\D$t0D$,FD$$D$ F9D$,;ŋL$tD$,44$t4$x1)ǃ!qD$,9l$,~NjD$$|$t<$D$$D$(tt$pD$tT$$FD$,%9T$,D$LD$xD$Dl$0l$D$,5D$,D$,l$(ŋ0~+9:FG@D$$G<$l$st$$)$t$s?T$tD$u|$D$4D$|t$8D$D$p|$$@1҅tAt$tDD$,l$$9l$,|$tL$$D|$D$ $s}ƒ\[^_]ÍnD$l$ $~`$AD$,؉UWVSCy $,w0F$$E)׋s+$9 $"E8$$$sE++$9Ɖ$ $u>$(0DŽ$$9$$4$4$4s$t$4T$0l$,$$$7$n+9 /F D$4$$++$9$4 7T$0҉$ D$,u$++$9$4[ 7$9 D$,u$$,7$n+9 /F $++t$49$4 7D$0 $wu$++$9$4M w$42# $u$$,$$9^w$$,($s+$<)$9$,29$0s7wn+$,)9Ɖ$$$"s+)9Ɖ$o$,0DŽ$$19$$4o'h*L$x$$0D$,$@P$|$$p<$7nm$\$T$YmYU$YT$x,ʉ 9L$9ʼn$Um9Dg8$t$D$tD$$ $'$44$>s$ZmD$$$xywDŽ$$$9$$t$Tt$($$$D$pD$lD$l$Gs$l$D$h$0$|$TT$d%D$`$,uǍ)׉|$Xs+9D$XT$T"D$X0g8uk$4T$lD$t$$kL$h9D$\D$XHfw9$6|$L$X$doL$X$T$4k$9~DŽ$|$`9$fT$(T$8$D$d<$|$L $,L$HkB@D$<D$D$$g8Y|$tt$Hl$|$t$ $=9D$@WD$pD$$$y$ $D$y$t$L<$|$Om$$lD$$$xt$L$<1$|$m9|$@9~T$@$Co$t$8$D$`9$g8w[$$$9$>gu$ [^_]Íl4$.iw֍l,$uw돉$n>D$HL$@T$DD$$D$tiL$X4$D$wD$$$PqT$\$4$D$vwD$$$#qD$<|$<$t9g $$$T$ t$D$$pD$<빋$|$LL$`lD$L$ |$4$t$,oD$ht$XD$D$h9~s~KD$Ts8w+9wD$T0GF@n$vԋD$Ts8މt$Pw+9wD$T0GF|$P~$vՋ$$ml$ T$|$4$s^$Jv2$9v ,mt$<$sCmt$$T$v$-$u$u5$,@@ $Hg1ɋPljtO$ 9|$|u$nud$]u$Lu$;u[$*u<$u$u$t$tV$t0$t$t.$tUWVSl<$\0F$$P$r$w ww,+)9Ɖ$ $w"8$T$)ꋫw+E$9} $w)}$X(;$ϋ$d$d$dw$t$ T$L$t$lL$pD$h7$V+$9 $F L$ $L$|+)9$d 7D$D$xb L$$p$++t$|9$d 7D$x T$$p$7$FD$t+9 D$tF $++t$ 9$ds 7D$T D$pD$tpwT$h++t$l9$d w$d0 L$pD$tp$;$fw$$\($w+$<)T$d9b T$d,29$`$$1|$l$F,$$$Jhww+)9ƉL$`uD$`L$`")ꋫw+ET$\92D$\,0DŽ$$d$D$$$t$`;$}a9$E$t$ D$$L$$(`t?$$$$PT$l$Xl$$$4$g$"a$w$E )ϋw+9}j"w7w$F;$$$wwT$TE+)9}%D$Pw"T$L$E++|$T9Z}t$P:l$L/$;$($$;$~؋$DŽ$$$w9$$w$D$l$,t$$$`$|$\T$H%>D$D$D$@,$l$`|$HD$\$G|$,Hi$A$q <$$$9ʼn$Mʼn$$D$;t$@$$`;t$@~싃wDŽ$T$D09$$.D$D$(T$H$l$dD$<|$\|$8wTB@D$0D$4$$w8t$8D$Xt$ t$@D$t$$9qT$<$D$$$U`$$_t$<$<1$|$*`;t$@D;t$@~,$_b$l$DD$($9$t$$>$$($9$un$$;$u&;$~틃w$<[^_]É$ZgD$NgD뵍`4$[낍L`<$hw>$baL$8T$4L$D$D$tD$,|$$?$4$D$\jD$$$ d$$4$D$,jD$$$cD$0|$0$t;|$@R$$$T$ t$D$$kcD$0뷋$|$$eD$eDxD$ $$w`L$D$4$>gw$i$i$qiS$`i.$|$D$!Z;$~$$i$ie$`$D$l$h$`$\L$`@@t$$XT$\9$M$;$$~($h$phz$\@@ $Y1ɋPljtOD$d 9|$h$h$g$g$g$g|$g=$g$g$g$ogj$^g"$Mgr$#^8~ T$p1ɉ|$\T$TF D$PP Bt'%z ߅Nσ^ $D$D$HPŋ3^8/^w+?3^2GnD$HFt$LD$P1P Bt'%z ߅N3^/^+)9+^>t$Lw9]t$PT$TF*zB1틼$  $O9D$DZ$<$uO‹D$D  Ѓ;$};$|;$~3^D$dl$h9l$dD$`~P1;$l$DDu/;$~D$D$N3^L$lČ[^_]É$NNjT$dD$X<<$OPD$@t1h1 l$@څOT$@T$@D$\|$$VD$D$x$^W|$p|$$Qt$t/^$3^D$8D$<+)9$l$0nT$0$|$@9lj51ҋ$D$D;$4 };$|9~ˋl$@t$84$QD$4u|L$8 TL$81ҋAt'%qщ ޅN֋D$0;$}D$0;$||$0|$4;$~{|$@,$|$Lh@%;$1!ȨEtT$D$$G$T$$HC$AG DŽ$$9$$<$D$>$D$,$8IƋ$9$E$Q$$,$$D$@$$$ $D$D$=$D$$l$4$l=$T$$A$$ʼn$t$A$$D$D$Q$<$L$D$R$<$t$$A$$$$T$dT$$eA+$$$t$<$DAt$,$$1ADŽ$$$$9$&t$LD$DD$@D$<l$<$|$;$D$$N)TR;bt$\$D$9Rt$`V))T;t$X$D$h9Ru)T;t$T$D$.9Rt$V)T;st$P$D$8;$$$L$$XBT$D$$$|$8l$d$l$=D$$$=$$$D$߉<$v8t$Lt$$a=D$$$5=$L$<$$98|$L|$$$=$D$$<D$<$$l$@l$D$$9$$x$p#R$([^_]ËD$PrD$TI!D$XD$\R}$$$$Q $D$m<D$$$4$$D$I7$$$T$D$$ 7$$W7HD$$L$$7$t$t$6$D$$9~$bB $QB$D$$$)7$tډT$$6$D$$9~9$A$A$A$A$A$Ab$A$pA$_Am$NAF$=Av$,AF$A$ AUWVS9l$$$G@D$Pڋ~틄$L$DLl$@p$AD$D$P$2<$D$<08SDuD$8OD~+}F"t$8w<$L$$D$0$@L$0D$(D$G$6$@%?- ;BD$,D$0ց9t$,l$(9l$,$D$,L$0WSDT$$U<Ջ7)ŋOD+92SD(%E~DGT$$  EtR|$$l$<$&0.>L$0փD$,9t$,#D$4$D$,$M0EEul$$Uډ뢋|$$Gt싃SD΋D$OD|$)׋T$+9w@SD87,$|$0D$SDt$$Et$<$K/v$/=벋MT$$BuUډEtSD΋D$ OD|$ )׋T$ +9w?SD:7|$D$$$0t$ SD0l$<$.z$t<볉l$$.DE%? @E$@<$/<U1WVSA4u?$$$@$$H At'%qщ ޅNփxQ?($D$2$u?8q?w+#u?0G$nV$$1P Bt'%r ޅNu?q?+)9{m?>9$G2$$Fz*B$$i<$<$0$;$]$<$0‹$  Ѓ;$};$|;$~u?$$$E01҉$$H At'%q ޅND$$ 0DŽ$$D$|9$L$xD$x$/$$m?D$$D$$:/|$||$$/$$|  A1҉t'%iщ  ݅NՉ;$};$|탄$$9$u?$$:$DŽ$%9$$}h$$L;$3$1;$};$|;$~̓$$9$|$y $7DŽ$9$$$$$$* $$$ED$$$6$|$$1$$$$$;$C;$ $1;$};$|;$~$,$D$,x@%;$1!ȨEt$h$$0u?$ՉT$d)ŋq?+9$ .$ " $1ҋGt.%$rщ ޅN։U;$}D;$|t$h$9I;$$$l$L$ D$$$&t$h;$~u?l$d($D$hT$${+x@%;$1!ȨEt&$$D$4$g4$u?$$($9$$N$9DŽ$9$$$@$8DŽ$9$$$$$$$$B4$t$$$G$\+ŋ$t$$I3$L$$-$l$D$@$$3$t$$q-$L$@D $D$|$4)Njq?L$4|$0+9$D$0$ 2$1ҋAt'%qщ ޅN֋D$0;$}D$0;$|;$K;$$$$D$ D$0T$D$$;$~u?|$48$,$T$T(h@%;$1!ȨEtKD$T$(HD$L$ B$D$D$(VT$t$$HD$L$ E,$D$a|$(D$ T$G<$D$<D$(D$ T$E,$D$L$4,$L$b|$4$|$hD$(0L$(D$ T$A $D$D$(D$ T$E,$D$D$`x,L$4,$L$D$4$D$D$(T$L$$L$(‹t]t-BL$(T$D$ A $D$ D$(t$(Ft$D$ B$D$ыt BT$T$(΋BT$D$ A $D$똉T$L$$‹EtSt'BT$D$ E,$D$[5El$D$ B$D$M׋tBT$D$ E,$ҋBT$D$ E,$D$K땋T$|$nD$Vl$$KL$;t$~Q$L#$;#U1WVSM<;D$\}t$P u;D$\|<[^_]Ë&t$\}&/+( )9T$,D$,19}_t$(D$ 1196T$ +D$\D$T$T;t$\};t$~ L$PŃ9~ދD$,,D$ ;|$(|1;|$\.Pt$\t$$1T$,;t$\,}#L$$L$,D$X;t$\|L$P,;|$\|$!%UWVS$$$@$D$\O$L$Xn$l$TߋBD$HD$P $ DŽ$$$DŽ$$LljF$ ؃ND$G%uD$hC%~+}F|$T$hl$|$ED$T؉<$D$Bt$T$t$D$D$X$l$$D$`D$|iL$`AL$$D$D$`@%ti))P$$|-$9M|$D|$L$Dt$\D$dL$4$D$lD$TT$TD$0$T$,D$4l$`D$H,$D$tD$h$D$D$t$|$dD$p$C%G@D$xG%l$,+)9D$,L$@/D$@D$, D$,L$@ &D$LT$09T$Lal$⍀>P)⍀)P⍀P⍀Pwr⍀P^Y⍀PE@⍀P,'⍀P⍀P⍀Pl⍀lPW⍀WPB⍀BP-⍀-P}x⍀Pd_⍀PKF⍀P2-⍀P⍀P⍀P⍀P⍀Pp⍀pP[⍀[P~F⍀FPje1⍀1PQL⍀P83⍀P⍀P⍀P⍀P⍀P⍀P⍀Pt⍀tPpk_⍀_PWRJ⍀JP>95⍀5P% ⍀ P (AZs ";Tm5Ng/Haz)B[t #<Un6Oh0Ib{*C\u $=Vo7Pi1Jc|+D]v %>Wp8Qj2Kd},E^w &?Xq 9Rk$Ë$4 ,4 ,x0 ,h4 ,(# u 4 a0 a4 a]# @4 TD)$ t`^M5$ {( :*0 X4 F0 1!h:. 0 4 cS# 0 4 # j^EW*sL5v^6!4 z?/B0 4 # ,  kOA{)4 4 r0 m4 _5"&4 b4 A14 0 4 wXE$4 4 ~0 4 x9j4 , T4 g, 0 4 4 d0 \4 O; 4 # qcPB4 84 0 4 4 xb4 G0 ,4 _4 L0 )4 znA4 m0 `4 ZN# xgVE4#uD- v( 4 n^6#( Y( S( ( o\I(xeRj<)   ƾhE "ڽҽ( x4 e0 K4 E0߼( 0 xb= 74 Ż0 0 {4 P4 J0 4 0 ͹4 4 x0 I4  # ڸOݷǷS>-4 ɶ4 2( #0 0 4 b0 Y4 L2ݴĴy` F4 }# ogOXJ, 9 . زDz4 W&4 0  k4 e4 Юf, F0 @4 4 έ0 ƭ4  9$  4 # Ĭ4 {4 {0 {4 {w# d(  \PB *$  "4   6 ު$  ԪʪzW94  /# өuiaUK;ɨ4 )0 )4 ){0 )u4 )jI80 )4 )rI, )64 ),צ4 )0 )4 )l.4 )%# ץĥk4  X0  )4  4  0  {gDУƣ|T+(  P0  14  + # šM,  4 # yhWF5$ϟgV֞IĞwfUD3$ I(IɝIA.Ҝ4 II2IocG4 Iuf; $ Iߚ( I4 IY$ Ig4 IƘ0 I0 I4 II, I!0 I4 Iߗwc0 Iі0 Iɖ4 IÖ80 I4 Iٕ4 I4 IK0 I4 I0 IƓ4 I0 I4 I$ IsE# 5$ϒzi[ԑ|hR 0 0 }iJʏzp4 jbZ4 TL,$ $ Ў{lR?$ ō( gQ,4 ( ֌$ 0 KC7ۋ4 Ջ|$ n2 X0 4 0 0 4 84  4 0 70 0 ̆4 # urcE, ߅$ مDž4 4 }0 ل4 # {k[G)4 0  4 ܃4 Ń0 4 |4 e0 _4 W( ނ4 # }nb6( . 4 0 ݁4 4 0 4 nTH8* ܀q_L<4 # nA)~~0 q|}4 q|}4 q|}4 q|i}0 q|%}4 q| }0 q||4 q||0 q||4 q||4 q||0 q|z|4 q|m|# \|K|:|)||myx{{{{={,{{{z4 yxwzLz$ yxz4 yxy4 yxy0 yxyyy4 yxy0 yxty4 yxIyyx;yyx)yx yxxux# exWx, -oFx -o;x*xxwwwAw0w"wvmv.v$vv4 -ouuuEu4 -o6utIts0 -osss4 -orsrPr, -oBrrqq4 -o^q4qppep, -oEp0 -o?p4 -oo4 -oo0 -oo4 -ooo -o5o4 -o)o# o( yl onnn0 ylun+n0 yln( ylnm0 ylmm4 ylgm0 ylYm4 yl2m&mm( ylll4 ylul# elCl;l%l, MjllkkkkkkJk4 MjDk*k4 Mjjj{j, MjIj# 9j(jj@hiiki4 h@i4 hi$ hih0 hh4 hh# sh0 Wmh\hKh:h)hhhg4 Wg4 Wff4 Wf0 Wf4 WfgfTf(f, Wf feeeeeWeyeFe5e$eeddwdWYdIdccc WcbbrbbbWWb%b Wb4 Waaaaaq`^`______, Wv_0 W`_4 W_0 W^4 W^^?^0 W2^4 W]]]0 W\0 Wo\4 Wi\O\<\\[[[[[4 Wh[0 W`[4 WN[( W@[4 W"[0 WZ4 WZZZ~ZkZ@Z W2ZZZYYYY, WXX, WX0 WX0 W*X0 WW4 WW# WWpW_WWWKLW@WK.WWWVVVVVDV VVUUUKUU@KU$ K~UvU0U U$ KTTT4 KT0 KT4 KTcTTT?T4 K T4 KT0 KTS4 KS0 KS4 KzS"SSRR4 KR0 KR KR4 KRR{RgRSRAR+R4 K%RRRQQQQzQJQ4 K2Q4 KP0 KP4 KPPP4 KPPKqPTP)P$ KkO, KeOWO;O'O O( KNlN4 K]N$ K8N4 K2N"N NM$ KM0 K{M4 KuM`M, K M0 KL4 KLLLLK4 KK# KK?KK?KeKWKJK:K?/KK KJJJJJuJ\JI;>>>>>a>F>>>=4 I;=0 I;=4 I;===RI;t=d=@=*=$ I;=<<<4 I;<0 I;<4 I;<u<$ I;g<F< I;:<4 I;0<(<<<;;;x;p;d;N;4 I;E;# 6;,;; 6 ;4 6;::r6::::f6::b::, 6:4 690 694 699R69q9/9$ 6)98884 680 684 68|8`8K8, 6A88 8777B67n737$ 6-7 7666@6m6F606$ 6$64 6 6# 55555{56Ip5_5N5=5,5 5 I5544444_4(44 4333]3M373 327210 I|10 Ib14 I\1-1$ I1 10E00 I70/h/W/F//.....n.f.O.<.0.I!..I------Ih-`-I2-"--,,,I,,I,,I,,$ Iy,i,IP,<,cI*,,+4 I+4 I+0 I++u+X++4 I+0 I****T* IJ*'* I*)))))P)4 I')0 I!)4 I) )(($ Iw(l(D(((QI'$ I't'0 I^'4 I0'$ I '&&FI&<I&3I&$ I&%&0 I&4 I%$ I%_%M%%$$$4 I$$4 I1$#( I@#4 I6#0 I#"0 I"4 I"D""0 I!4 I!!.!4 I !F 0 I3 $ I& 4 I90 I4 IE# 5$vV;(r=( 0 4 X, <4  4 0 4 h 4 4 ^0 >4 ( t4 ]0 ?4 9 4 0 4 4 ^0 X4 K# , ] {jY<4 ] 0 ] 4 ] f<24 ] 0 ] 4 ] ub?(, ] bXC 0 ] 4 ] wc) ] g4 ] +0 ] 4 ] 0 ] 4 ] u\34 ] 0 ] 4 ] , ] 4 ] 0 ] 4 ] t04 ] $ ]   4 ] x 0 ] Y 4 ] 2 0 ] ) 4 ]  4 ] 0 ] 4 ] [ 4 ] 4 0 ] ( 4 ]     4 ] i 0 ] a 4 ] 0 ]  0 ] 4 ] , ] l 4 ] B 0 ] . 4 ] (       4 ] } n Y # J : %   ,  z^4* 0  4  vfD$  4  Y4  J0  D4  0  4  g4  D0  >4  +,  0  4  fO,  9 mG4  .0  4  z4  c0  [4  E  74  0  4  |4  N4  50  /4  0  4  ,  0  4  s 34  #      "    "    "    "   | |"   c c"   J| Jv" q k 1c 1]" X R J D" ? 9 1 +" &   "    "    "    "    "   i i"   P P|" w q 7i 7c" ^ X P J" E ? 7 1" , &  "    "    "    "    "   o o"   V V" } w =o =i" d ^ $V $P" K E  =  7" 2 , $ "     "    "  | | "  x x "  t ut u"  p \p \"  }l Cul Co" j dh *\h *V" Q Kd Cd =" 8 2` *` $"  \ \  "  X X "  T T "  P P "  L {L {"  H bH b"  D I{D Iu" p j@ 0b@ 0\" W Q< I< C" > 88 08 *" % 4 4 "  0  0  " ,  ,  " (  (  " $  $  " h h "  O  O{ " v p  6h  6b " ] W  O  I " D >  6  0 " + %   "      "     "   "   " n n " U U " | v <n <h " c ] #U #O " J D  <  6 " 1 + #  "     "   "   "   " t t " [ [ " | Bt Bn " i c )[ )U " P J B < " 7 1 ) # "     "    "   "   " z z " a a " Hz Ht " o i /a /[ " V P H B " = 7 / ) " $    "    "   "   "   " | g | g " x N x Nz " u o t 5g t 5a " \ V p N p H " C = l 5 l / " * $ h  h  "  d  d "  ` ` "  \ \ "  X X "  T mT m"  P TP T" { uL ;mL ;g" b \H "TH "N" I CD  ;D  5" 0 *@ "@ "  <  < "  8 8 "  4 4 "  0 0 "  , s, s"  ( Z( Z"  {$ As$ Am" h b (Z (T" O I A ;" 6 0 ( ""     "    "    "    "   y y"   ` `"  GyGs" n h.`.Z" U OGA" < 6.(" # "  "  "  "  "  ff"  MMy" t n4f4`" [ UMG" B <4." ) #"  "  "  "  "  ll"  SS" z t:l:f" a [!S!M" H B:4" / )!"  "  "  "  "  rr"  YY"  z@r@l" g a|'Y|'S" N Hx@x:" 5 /t't!"  pp"  ll"  hh"  dd"  `x`x"  \_\_"  XFxXFr" m gT-_T-Y" T NPFP@" ; 5L-L'" " HH"  DD"  @@"  <<"  8~8~"  4e4e"  0L~0Lx" s m,3e,3_" Z T(L(F" A ;$3$-" ( "  "  " " " " k k" RR~" y s9k9e" ` Z R L" G A93" . ( "  " |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  sHi&h?jq+c-,r12u|N_]65:b>KJMk9ypo7azD;ESmT4\F^U/AG8{ne*f3RdOx`.g<LvPZQVl0wIt[WX@CsHi&h?jq+c-,r12u|N_]65:b>KJMk9ypo7azD;ESmT4\F^U/AG8{ne*f3RdOx`.g<LvPZQVl0wIt[WX@CY)(}~B=`WmT w@h|h@px$oDj pl  K) 5 @ M  W e pr } x        X J 8  < C?9@;(6~ptuiKv0+!*95  >ExP 11'iv @*]a|` Yo hNUgRn_K_`?{J':&L@W8gTVirI}&P56#Ena?UE8Rb_bnrrootnumber___i686.get_pc_thunk.bx_quadhilbertreal_bnrstark_bnrL1___i686.get_pc_thunk.axdyld_stub_binding_helper_gsub_ghalf_diffptr_pol_x_gi_DEBUGMEM_gen_m1_gen_2_DEBUGLEVEL_gen_0_gen_1_bot_avma_hnfdivide_nf_get_r2_galoissubcyclo_checkbnrgen_err_leave_err_catch_setjmp_bnfinit0_quadpoly0_fetch_user_var_quadclassunit0_galoisfixedfield_perm_order_FpX_eval_dvmdii_FpX_red_FpX_quad_root_galoisinit_RgX_divrem_RgX_mul_lift_intern0_roots_to_pol_intern_gch_inverseimage_gdivgs_vecmax_polredabs0_compositum_divisors_divis_zeta_get_i0_zeta_get_N0_zeta_get_limx_timer2_addrr_sign_addir_sign_logr_abs_msgtimer_affrr_mulrr_veceint1_mpexp_divsr_sqrtr_maxprime_rtodbl_phi_shifti_binomial_shallowcopy_gprecision_cmprr_cmpii_lindep2_row_coltoalg_fincke_pohst_mulsi_gsqr_sqri_gprec_w_nfnewprec_grndtoi_gmin_sqrtnr_affir_powuu_gconj_real_i_powrshalf_gaffect_gaddsg_gpow_gopsg2_gsubst_mulir_addsi_sign_int2n_mplog2_gexp_divrs_szeta_mpeuler_gcopy_gerepilemany_cgcd_krois_primedec_appendL_cget1_log_content_gmodulo_monomial_free_muluu_gpmalloc_cyclo_modii_addii_sign_vecsmall_to_col_sqrtr_abs_divir_mppi_nf_get_sign_checkbnf_glog_pr_norm_gneg_divis_rem_numer_denom_Q_primitive_part_mulii_gequal_bnrconductorofchar_checkbnr_vecpermute_addsr_gnorm_gdiv_gpowgs_gneg_i_gerepileall_gadd_element_mul_FpC_red_element_muli_Rg_to_Fp_const_vecsmall_gtovecsmall_umodiu_zidealstarinitgen_element_div_idealapprfact_concat_factor_idealfactor_gcmp1_idealdivexact_set_sign_mod_idele_idealappr_zarchstar_gsincos_divri_Pi2n_equalui_gsqrt_idealnorm_arch_to_perm_cmpui_gclone_gunclone_gerepilecopy_subgrouplist_ginv_hnf_gauss_gerepileupto_rowslice_vecslice_hnfall_i_conductor_idealmul_ideallist_disable_dbg_const_vec_powgi_det_gmul2n_fprintferr_pari_warn_QuickNormL2_gcmp0_gexpo_checknf_gerepileuptoint_lcmii_gcdii_isprincipalray_mattodiagonal_i_smithall_diviiexact_dethnf_i_hnf_shallowconcat_diagonal_i_gmul_bnrGetSurj_buchrayinitgen_idealdivpowprime_idealval_pari_err_ArtinNumber_InitChar_get_listCR_reel4.0_AllStark_sortChars_ComputeAllArtinNumbers_GetST_RecCoeff_GetValue_QuadGetST_InitPrimes_ComputeCoeff_ComputeAChi_EvalCoeff_makescind_FindModulus_GenusField_GetValue1_CplxModulus_GetIndex_CorrectCoeff_AddMulCoeff_RecCoeff2_InitPrimesQuad_computean_ppgamma_get_cS_cT_RecCoeff3_MulCoeff_chk_reccoeff_init_chk_reccoeff_TestOne_cmpir #1/20 1200774198 0 0 100644 41500 ` subfield.o| ____text__TEXT:Qbn__data__DATAW}L__la_sym_ptr2__DATA8^`Xbb__nl_symbol_ptr__DATA_(Xb__textcoal_nt__TEXT_b @}| P khUWVS<_t$PD$,FtD$T$]t4$]<[^_]É4$]D$$Nj%h_0D$,) 0D$TL$($6]D$ 9l$ S_D$+t$ 9||L$(D$9s(_8wAD$$t$,D$4$\ljD$$D$ 9l$ ~D$$l$,D$,$n\7|$ WQl$ |$T$$`\뛋DD$$d\9|bD$T$[D$ 9l$ .z_D$+t$ 9|hL$(D$9s(_8w-D$$t$,D$4$[ljD$$D$ 9l$ ~"|$ nQl$ |$T$$[믋DD$$;[9|vD$ 9l$ ._D$+t$ 9|hL$(D$9s(_8w-D$$t$,D$4$ [ljD$$D$ 9l$ ~q|$ Ql$ |$T$$Z믋DD$D$T$pZD$$Z9|fUWVS#|$]\>D$PT$l]|$l! ]t$lMP)ȉT$L9l$L](D$l)ŋD$L)ȉl$H9D$ll$H]<(D$H))ȉl$D9CD$D]E)D$@D$D)9l$@](D$@))ȉl$<9D$<]E)D$8D$<)9D$8]"(]+)9ƉL$4Q1D$4]*L$4)D$d1|$l9|$d}0t$d$T$H%ŃD$lt$d9|Ћ$]%щƉD$X)]+L$09D$0k"|$07;|$X}$t$0;|$X|拃]0苬$};|$l}l$HDu ;|$l|;|$ll$8D$X|$0,]8]t$Hnw+g]0GF@n4$!WD$TD$d9T$dT$hNL$ |$dt$TD$Hh1Bt'%rщ څN$xD$(|$,;|$l}XD$ D$$D$H șu7D$(|$(XD$$ND$,$RN|$ $RUWVSw$$$$$$>[Uu|$|N@ L$pD$xWU+ D$pEF,OU8i |$xE|$l)WU+L$h9* T$lD$hE$D$PQt$|D$tE<)L$dWU)9 D$dE)D$`D$d)9 D$`E)D$\D$`)9^ D$\E: "|$\7DŽ$DŽ$l$|9$$$ 1҉L$XDŽ$%9$D$T3$L$X|$h%ƒD$T$9~͉Ћ$[U~D$Pƃ )͋WU+9N // "uDŽ$D$P9$!$|$p|T$P$9~DŽ$L$T9${t$X$$1D$LD$h;<=L$L;t$POD$D$!OD$D$h;<~Ã$|$T9$~t$tT$tMǁt9}D9|l$tEƍ|9 D$t0|$T|$P!Ȩ[UD$T/)ƋWU+(9l$TD$T7xD$T "DŽ$D$T9$$$L$XDD$T$9~܃$D$T|$d$D$PT$`D$\4$t$|9$4OU8$tt$\>$A D$\[U8L$<T$)WU+l$H9D$Ht$DŽ$$9$|$$D$dt$ +)9$L$Hu4DŽ$T$d;4/$t$H$$D$d; ~у$$9$\T$t$l+)9D$ll$Dl$D$DEl$lL$lD$D,L$@L$+)9D$lT$<kD$<|$HT$@t$<[UD$D$$$|$DŽ$D$x9$L$8 $D$<l$x$9~DŽ$$9$.D$D$DŽ$$|$d; l$l$l$0$T$H$t$\D$|$D<$D$WUŋD$<0D$ωL$4)lj+9 D$098}0DL$<9|9}l$;t$,DT$TL$$;t$,~ ZG|$|$<D$ G<$D$dBD$TD$(B+8 )9T$<D$<"t$<>D$@9|CT$<2D$@uD$< t$@0D$l$`,$=$c>ӋD$D44$5;D$Ht 9|럋D$\D$D$ FD$D$T$5D$$_5t$@L$<t$@$="$$҉t$8D׍|$l$|$5$q=$Ɓ`D$l@$4|$l$G$G$:BD$4D$lx 7)щL$0B+9L$0B%~T$0G/D$4D$D$0$:|$8GD$8$l$|D$pD$XL$t$l$p $|$X$$D$$D$l$(B BED$$|$(D$x<$uB+~9>}F"D$ |$D$t@ D$D$($ BƋD$x@|$$}2D$`Eto4$;4$D$T3t$T.D$\t>9}5|$\D$T QB% BQB% 9B|ҋD$TBƺ+9wD$`u@"$1;݉$W31$4t$D$$9$:$4D$4$9_t$0F%? @F$:o4$|$h1L$d|$4$L$ D$D$D$w1T$h$D$dT$,$BB2+)9wVBL$,8%~T$,D$,@x t$8~G%? @G$9뜋At$\BuD$LB+nv`B)F"D$L}E1B~+v"B:F"oD$`|$$$<9$.9뒋AB2D$PBn+vB)F"}D$PEa$8$8D$$T$ tD$$MÃaUWVSsLL$dl$`u%D$D$h|$T$89} T9|D$8:W:8S:|$4)׋L$4|$0+9 L$0W:T$dJ;T$}|$dDD;T$|GD9}D|$09|D$<t$89t$<uW:S:ωL$,)lj+9wrW:98},L$0D9|9}D9|D$,W:D$<|$89|$<sL$4W: L[^_]$6$6UWVS$$$PD$T$l%$4$D$d$}$|$h4$D$p8$D$`D$F$T4D$P$P$$T$\@D$TD$XD$L%9D$LD$H $|$L$ET$\D$ ED$D$$3$D$Dl$LA(t$DD$@9|$<F?%hD$Dt$@D$0FT$0D$B$#39SD$<4$D$2‹L$L|$X$D$4T$T҉D$DtD$D$T$}4D$TD$LD$H9D$L$D$D$T$2$D$ l$P9l$$|$42$T$ʼn$3$L$$1D$x$|$lD$ D$p|$l$$1$|$$t$1D$t$$$L1‰$88|$tt$lD$t$T$ t$D$ $0$ $D$0Nj$${0|$$2D$ Ƌ$D$D$l4$D$1D$$$v2,$D$2$D$|$$D$D$/D$D$|$42$L$$0l$x$$l$/ul$h$l$$e/~I$4$r2$hD$l$D$$D$.$2T$h$T$$/$$D$`$$|$|L$ T$t$l$|$$D$f.$$Q/T$dt$lljD$ D$|T$t$$.D$t$D$D$t$-L$l$t$pL$l$ 4$D$.ŋ$$|.l$$0t$lŋ$D$ ,$D$t$/8)$l$V-$ $D$;.D$$$N0D$ ŋ$t$,$D$.D$$$0D$$$0$$$l$|D$x$8u 1Ĝ[^_]Í+<$/㋄$p4$0t$$|$$J,볋$t$$I$ȉ$t$,D$l$T$ D$l$<$-N$$D$'-+D$$$D$.$L$@T$0D$$-HD$L$ F4$D$W-9|e8h|$@GD$D$D$Z-L$[W[p[[[[[[\\8\Q\j\\\\\\]]2]K]d]}]]]]]]^,^$Ë$Ü1Q QQPPPPPPcPFPO_mMO_mMO_mMO_mMaO_mM[O_mM O_mMN_mMN_mMN_mMjN_mMPN_mMN_mMM_mMMMM_mMiM SM_RKHM_RK:MMMLLLLsL_RKOL_RK4L_RK*LLK_RKKK_RKKKwKNK KKKJJJJJ_EJoJ1JJIITEII)I_EI_E IwH_H;HH HGG_EGaG_EXG_ERG_EAGG_EF_EvF_E1F_E+F_EFFeTEFEE {E)E_=E_=D_=DDDDrDfD@T=WDFD5D$DDR= DCCR=CCCCC_=C=C_=2CC_=B_=BTBCB5B-B%T=AA_=AA_=tA_=[A_=DA_=5A_=/A_=A_=@_=@_=@_=@_=@_=@_=@d@_=E@_=@_= @?_=?_=?_=?m?F?>???>>>_=>_=y>_=s>c>D>>=_== == Tq5====_q5j=_q5S=_q5K=_q5@=/= =<<<<`<O<><-<!<Sq5<<;Sq5;;Sq5;Sq5;;r;_q5e;M;=;5;);;:::::_q5h:_q5b:_q5U:2::9_q5z9_q5q9_q5C9988888D8_q518_q588777_q57_q57_q56_q56_q566_q5d6_q5B6_q5<665_q55_q55_q5m5 ]5S544S904444`S90`4_90)4_903_903_903_9033DS9033{3m32_902_90s2_90k2_90a2R2$2_90 2_902_901_901_901I1_90C1)1_900_900_900_90|0_90f0_90>0_9050 %0 0///k//_I'._I'._I'.}._I'l.L.#. . SI'.-----l-d-RI'K-_I'--,,,,,_I',r,f,U,2,,+++w+o+E+2+++*****s*g*V*A* *_I')))))v)Q)!))((N(''_I'''E' 6'(''_%&_%&_%&_%&_%&_%%_%%_%% %s%S%E%!%_ %_%_$_$$$_$_$_t$_`$_V$_N$#_#_#_##o#E#9#R'###R"""_U"I"6""_ "!_!!_!_!/! _ _ _  _ W +  0_"___?_ _HpN_HD 2!RoR_cW^ROGBR8_-2R"R___v_p_R!____Ru_kL_____w_F_2_ Q o\_ VC_ =, Q aP;*l_ f_ _ h_ _ _ =_ _ _ #_ _ j  _ _ w _ T ( _  _ _ _  u i Qc W QA 0 Q  _  _  _  _    n ] C _=  _Q_x_p____?__ ____u_I_"____ Q `G_ '_ wQ _ v_ U:% `Q _ _ c_ J:._  | _$^ _$^z u | o _ ^g _ ^a \ | V _]N _]H C | = _]5 _]/ * | $ _] _]  | _] _] | _]_] | _u]_u] | _\]_\] | _C]_C] | _*]_*] {| u_]m_]g b| \_\T_\N I| C_\;_\5 0| *_\"_\ | _\ _\ | |_\|_\ | x_{\x_{\ | t_b\t_b\ | p_I\p_I\ | l_0\l_0\ | {h_\sh_\m h| bd_[Zd_[T O| I`_[A`_[; 6| 0\_[(\_[" | X_[X_[  | T_[T_[ | P_[P_[ | L_h[L_h[ | H_O[H_O[ | D_6[D_6[ | @_[y@_[s n| h<_[`<_[Z U| O8_ZG8_ZA <| 64_Z.4_Z( #| 0_Z0_Z | ,_Z,_Z | (_Z(_Z | $_nZ$_nZ |  _UZ _UZ | _f/+gI_KHZ#'1cLla^sdrhu\37`MxFi;!Aw$& )*"meDR.X,-<WC]S0v82jk(%?6z:9BE[bPYoGOtQNn=y{J>f/+gI_KHZ#'1cLla^sdrhu\37`MxFi;!Aw$& )*"meDR.X,-<WC]S0v82jk(%?6z:9BE[bPYoGOtQNnV@pqUT54 %h5@''<300A=OՋl$hD$,$蛉|[^_]Ít$$cG($D$$$lj4$%9?u)Nj;+9?8E%~DExZ<$ŋ?8;w+v#?0G"$nN$ϋG%? @G$U$,$D$ŋ%9|w$'L$虏$T$~$A$5$D$lB$&UWVS'$$ɉ$F$p!$1ҋE%$p$$$l$|$$$'$$($N$x#%$,F $tF$n$lV$hnE$d$0+)9 '$8%~$싌$AD $d<$D$#$d}$`E $u$PE$<E$$,$$,$lM<$$$,$8$$D$襄$,'$$u#~+Z}F"$:$E#$+)9$$u$ t$$,$藅F$,4$D$zD$$P$謊$P$d$`<$D$趇W $>l$$d$$$\D$dl$$$XM$,t$$D$$P$-'$L$(#+$ )9$ $ 7i$  $;$(/;$(~$hD$,$誉t$$lǁ$;$h$Xl$$,$ $TD$/$,$|$ć$LD$4$$H8$x $m$'NjU)#+$9$E"$u;$<_$$T$$@D$^$D$6$,t$$ˆD$$H$'$D#$ +)9$ $$$ b$ $ $DŽ$4$9$4 $$+$,$t$Pl$@D$$$$$$x$|$$ D$,'0/#+( )9$$$2;$~t;$S$$$$t$Ll$,DD;$~ۋ$$tbL$,$$D;$~a$1$$ D$l$$4$tDŽ$0$$$%9$0PT$D$|$$$d$xD$$D$T$L$ |$$*[^_]ËD$|$xy$x<$%D$~v$l$$Wq+('0FD$x#+90D$x'F"xh$ut$t.9'0#n+9'*F"L$xMl$$$irT$H7T$\ )͋L$DL$X+9 D$\(%E~DGu%? ƉuD$||$\L$X0+)9T$\L$|:%~T$|T$|GJ%? ȉG<$w8$x,$%D$t$|$$ho+8'0FD$h#+9D$h'F"hx$/}9|_'#u~+9w-}F"t$hw|$$$pO$wŋDD$D$h$zp.$9|x$w3$x|$$spl$$Cv$t$$"p'0#V+T$d9L$d'F"iy$/}9|E'#u~+9w}F"t$d$vߋDD$D$d$bo. 9|$~vP$mvK$\v$Kv_T$tD$D$x$n.l9| $vD$|D$$x$n|$$t$l$$n'#uV+T$p9D$pEF"xL$|H$ut$l.9|k'0#n+9w:'(F"L$pMl$$$m$EQ$t븋L$lD$D$p$m.#9|i$t!$D$$$!m$ $8wh$$p$x|$ D$l$$$ Nj$$$D$t$ T$L$<$L$$ |$l$rr$$n$lD$Ƌ@$j<$D$rt$$lNj@$jD$$$q;$($~ ;$($ ~V'#8w+9w''0GF@$ V$sˋ'$>w+9w'0GFT$L$r֋$T$`$D$$$<$T$D$ L$t$,$pA.$D$|$p$Dl$$ p~ ,$;$|h$$D$ol$,$n|$ $nt$$n$ql$$o~,;$|$4$$D$$oD$$$$0|$4$%D$/n6$%q$q$t$$D$oƉ$ou1t4$to;$|$49|ADŽ$?$L$p $|p$kp$Zp$D$$4 $D$$m|$,$m"t$$m$o:l$$m~,;$|$~X'(#}+9w''8EG@$W/$ooˋD$@؉$'(#}+9w'8EG$$o$oU$n1$n$nb$t<$D$m$;$~$n`$~n9$L.8|$4$Sk$H,$D$@k$TBD$ $'kl$$k~,;$|$m$mb%? @FS$m$m$mG%? @G$zmQ$$L$d$F@$m6$pB @@$l$E%t_$ |$k}uUWVS{Lnt$`l$d4$D$4 EtC]$T$lFD$0%nNn7L$,~+n8F"|$$|$hƋn84$j1ҋHt#p1҃ uEޅN֋D$8l$ T$D$D$0D$D$<$$l$4D$,$~cL[^_]$j뭍N^t$ $ghn#G%? @G$j$j9L$8D$h|$<4$|$L$ D$l$!D$4nL$4Ƌn+rD$4n2@" $j؍g^$T$iAUWVStL$ukD$ B%9D$ Ok9$g봋D$D$`DD$$`k<[^_]@k9t l9Ћk|(D<lkt*kD$,D$(B%9D$,| D$(kl$P\Dt$,tL$$ukD$,B%9D$,Ok$$e봐L\$FD$H4$D$B$?ŋD$HD$,$xA$$L$E>+H$8'Ht$D0#HN+L$@vL$@'HF"iy$T$<:9'H0#H~+'H:F"D$@G|$t$D$h=|$D'Hu)Nj#H+9o'H8E%~DEO%? O<$D$HD$@$l$$<$'H+Ht$8uD$4#H+n'H(F"}|$4}$D$089X'H#H2~+$'H8F"ot$8|$$<l$8E$'H0M#H+)9}7|$T$EG$$9lj|$LD$Lu!D$L$9D$L~拄$l[^_]ËD$L'H#H}w+9uGF@D$LF$l$T%||$%x1D$TP;$$G|$؉D$ B$D$4;t$TF4$:D$Pс9}=D$L؉D$+HD$ t$P,l$(Eу9|׋'H|$X9}H8wy$T$\D$$9$$0EǍ )ϋ#H+9w!}7|$T$EG6$Aэh9$t$?lT$L$҉L$$D$ ('H#H0V+T$9T$'HF"t$(jrD$$D$(9|k'H0#Hn+9w:'H(F"D$El$T$$$8t$$l$PUd$@븋L$T$$D$8u 9|nD$P$$?l$L~S'H#H.u+9w$'H0EF@T$LV$p?΋'H#H(u+9w'H0EFT$$%?֋+H $4$D$9l$TDt$t$L4$:$>5'H#Ht$L}މt$,w+9wuGFD$,$t>$f>=$U>L$0,$D$7.9|$>6$ >$=L$<D$D$@$6. 9|$=y%? @F$=9$:'H8#HvUWVSl$$#$D$\ D$T$t$\B'(9([(D;g(~L$[(g($$g(뮋C(l$@D$$@u?(B%9|'(8UWVS跏|$$4$#7&%E )ϋ%+9}uy,%7ǃ;&Ep+vCu3&~D$T;7&D$T;7&D$T~|[^_]$C#$5#v$$#Z4$$D$dHL$`9ǃ;&wt$\%E ,@@&%D$X)L$P%)9 D$P)D$LD$P)9D$TD$\T$L9D$Tǃ7&t$@L$Tt$`$<$D$1ɉD$hŋ%D$HEPBt'%r JޅN΃;l$H!Ȩtit$h1ɋPBt$Dt+%rщ D$DޅNΉL$<$;l$H!ȨuD$Tl$L|tBt$dl$TT$lF D$@(T$|$ $qD$@(T$lQ"T$TD$Pl$h,t$HD$\T$T7&9‰7&%NE)Ջ%T$ :)|$9%N&/+l$)9N%N8/&+|$)9%N#&/+l$)9%N+&}+|$)9i%('&+l$)L$<9)L$<%M"D$<0$t$X%7&nT$ )ϋ )ȉL$9p%N&8+|$)94%&7D$Tt$\19t$TbT$dL$TBBD$,t+%rщ څO։T$,D$Tt$PL$L@DwD$3+70GF@D$F4$ L$XNjA D$A$E$D$Hl$$zD$|$$ Ƌ/8wD$(L$PD$\0<[^_]Í ( <$w D$(D$,$g 2 t$$U $Nt$XF$ ƋD$($ HD$L$ F4$D$b thueinitprec = %d invalid polynomial in thue (need deg>2)thue c6 = %Z c8 = %Z c11 = %Z c15 = %Z - norm sol. no %ld/%ld get_emb* real root no %ld/%ld c10 = %Z c13 = %Z x1 -> %Z x2 -> %Z c14 = %Z Non trivial conditional class group. *** May miss solutions of the norm equationAll solutions are <= %Z not a tnf in thueexpected an integer in bnfisintnorm%Z eliminated because of sign bnfisintnormlooking for a fundamental unit of norm -1 invalid polynomial in thue (need n>2)inithueepsilon_3 -> %Z c1 = %Z c2 = %Z Indice <= %Z non-monic polynomial in thueNot enough precision in thueChecking (\pm %Z, \pm %Z) overflow in real shiftSmallSols* Checking for small solutions Semirat. reduction: B0 -> %Z thue (totally rational case)CF failed. Increasing kappa B0 -> %Z Entering CF... errdelta = %Z LLL failed. Increasing kappa Semirat. reduction: B0 -> %Z x <= %Z Entering LLL... sol = %Z Partial = %Z gcd f_P does not divide n_p B0 = %Z Baker = %Z C (bitsize) : %d LLL_First_Pass successful !! B0 -> %Z x <= %Z ?@@@@@ ARQ@@= ףp=?{Gz??Gz?Ů,??II @@H}8?;v ⍀ P'v"v ⍀ Pv v ⍀ Puuz ⍀z Puue ⍀e PuuP ⍀P Puu; ⍀; Puu& ⍀& Pxusu ⍀ P_uZu ⍀ PFuAu ⍀ P-u(u ⍀ Puu ⍀ Ptt ⍀ Ptt ⍀ Ptt~ ⍀~ Ptti ⍀i PttT ⍀T P~tyt? ⍀? Pet`t* ⍀* PLtGt ⍀ P3t.t ⍀ Ptt⍀Pts⍀Pss⍀Pss⍀Pss⍀Pss⍀Pssm⍀mPksfsX⍀XPRsMsC⍀CP9s4s.⍀.P ss⍀Pss⍀Prr⍀Prr⍀Prr⍀Prr⍀Prr⍀Pqrlr⍀PXrSrq⍀qP?r:r\⍀\P&r!rG⍀GP rr2⍀2Pqq⍀Pqq⍀Pqq⍀Pqq⍀Pqq⍀Pwqrq⍀P^qYq⍀PEq@q⍀P,q'qu⍀uPqq`⍀`PppK⍀KPpp6⍀6Ppp!⍀!Ppp ⍀ Ppp⍀P}pxp⍀Pdp_p⍀PKpFp⍀P2p-p⍀Ppp⍀Ppoy⍀yPood⍀dPooO⍀OPoo:⍀:Poo%⍀%Po~o⍀Pjoeo⍀PQoLo⍀P8o3o⍀Poo⍀Poo⍀Pnn⍀Pnn}⍀}Pnnh⍀hPnnS⍀SPnn>⍀>Ppnkn)⍀)PWnRn⍀P>n9n⍀P%n n⍀P nn⍀Pmm⍀Pmm⍀Pmm⍀Pmm⍀Pmml⍀lPvmqmW⍀WP]mXmB⍀BPDm?m-⍀-P+m&m⍀Pm m⍀Pll⍀Pll⍀Pll⍀Pll⍀Pll⍀P|lwl⍀Pcl^lp⍀pPJlEl[⍀[P1l,lF⍀FPll1⍀1Pkk⍀Pkk⍀Pkk⍀Pkk⍀Pkk⍀Pk͉1Jc|NJ+D]vڋ %>WpԌ8Qj΍2Kd}Ȏ,E^wۏ &?XqՐ 9Rkϑ3Le~ɒ-F_xÓܓ'@Yr$Ë$U5'Cۃ9Ճ@s[<H&D H؂̂rhX8 ݁сɁph`N>, ܀Ԁ @sZB   {{@{}q]G;/{'~~~~~~~~q~a~S~P{M~&~H{ ~D{~H{}}}}}}}}}{}h}N}>}#}}}||P{||||||m|P|D|/|||{{{{{{{o{P{ {P{{ zDIpzzzIpzzzz}zшIpnz@Ip_zIpSz>zIp1zzIpzyIpyyIpyyyy\Ipy`Ip~yIpqy`yOy>y*y\Ip$yy`IpxIpxIpxx\IpxDIpxDIpxxyxDIpfxXxGx5xpIp-xtIp$xlIpx|IpxHIpwIpwHIpw`IpwIpw`IpwHIpwHIprwDIp;wHIpwHIpwDIpvIpv`IpvIpv`Ipzv`IpmvpIpdvlIpuhIp,u\Ip&uHIpu`IptHIptIptHIptHIpltpIp_tHIp>>>P 5^>E>@ 5=>1>#>P 5>=H 5=D 5=H 5=====h=`=T=D=2=*===<J<D 5:<.<< <;;;; ;D 5:D 5:H 5::@ 5::s:e:P 5_::D 5:H 59999P 59\9D 5L9H 5F939888 58@ 5t8h8O8C858P 5/8 8P 56H 56D 5 6H 55D 55H 55y5b55P 5 5 44d333`3 =3,3$3033_0222280d2@0^21222@0 211a1@01D0000H00 0w0d0<0-0.'00|.0.0P././/.//H.x/D.\/H.T/P.J/@//H..D..H..L...... .s.Hu*T.`u*.`u*.--xu*-\u*-pu*~-Hu*t-`u*k-xu*M-hu*:-u**-pu*$--pu* -,,,Hu*,`u*j,`u*d,D,9,xu*),\u*+Hu*+`u*+xu*+hu*+lu*+tu*+tu*+lu*+u*~+Hu*x+l+[+Hu*U+\u*F+xu*<+`u*/+tu*#+hu*+tu*++tu**pu**`u**xu**pu**xu**`u**pu*~*tu*q* b*R*'J*.*H'*D'*H'))))L')z)Ӆ'r)^)N)((@'(((h(H'?(D'5(H'/((H''D''H'''Ȅ'''H'' f'V'!4''&&&&&|&k&G&3&'&c!&&%Y!%O!%%%%%n%]%O%*%H!%D! %H!$$H!$D!$H!y$e$T$H$C!B$6$$7!$!$####!#y#o#M#<#+##!""""}"!w"k"!e"]"ل!S"@"̈́!""!!}!H![!H!S!&!H! !D!!H!    u ^ J Ȅ!8  @!{bG"H! D!H!D!H!{oS2xD!rH!BH!D!H!FD!@H!H!D!H!L!H!fD!YH!!H!D!H!L!}meYD$P!P!oR? D!L!bD!\H!7/v@! mX8 !P!D!H!9 !]@!D!H!oȄ!]5nD!dH!Z@!}P!w5P!H!~D!gH!s D!m H!W @!H %     P!  H! D! H!} L 2  L! P! D!| H! D! H!    k a ! D! H!  @!    L @  P!D!H!~gMA5x!- D!HD!1H!$CH!D!H!)H!   a8H !D H H D H fP [O A/H  @ p m` [L SK P \ UDh L \ X P T cS 2H  2j 2j  .Q .Q  *8z *8t  o i &a &[  V P "H "B  = 7 / )  $  ԓ ԓ            p p  W W  > >z  u o %g %a  \ V N H  C = 5 /  * $ ڒ ڒ          vv  ޕ]ޕ]  ڕDڕD { u֕+m֕+g b \ҕTҕN I CΕ;Ε5 0 *ʕ"ʕ  ƕǑ ƕǑ  ••    ||  cc  JJ  {1s1m h bZT O IA; 6 0("  ͐͐         ii  PP  7y7s n h`Z U O~G~A < 6z.z( # vӏvӏ  rr  nn  jj  fofo  bVbV  ^=^=y t nZ$fZ$` [ UV MV G B <R4R. ) #NَNَ  JJ  FF  BB  >u>u  :\:\  6C6C z t2*l2*f a [.S.M H B*:*4 / )&ߍ!&ߍ  "ƍ"ƍ      {{  bb  II  z 0r 0l g aYS N H@: 5 /'!  ̌̌        hh  OO  6x6r m gޔ_ޔY T NڔFڔ@ ; 5֔-֔' " ҔҋҔҋ  ΔΔ  ʔʔ  ƔƔ  ”n”n  UU  <~<x s m#e#_ Z T L F A ;3- ( "؊؊     tt [[ BB~ y s)k)e ` ZRL G A93 . (މ މ  ~ʼn~ʼn |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  1)l0k:/@Bp?VIq>{h[7+G'XnAS}R#"($5F4W=`me_%f;dva9!6&xs<wurytT^oH]CigcEbMjJ8NY\ZDK|3Uz.,L2~1)l0k:/@Bp?VIq>{h[7+G'XnAS}R#"($5F4W=`me_%f;dva9!6&xs<wurytT^oH]CigcEbMjJ8NY\ZDK|3Uz.,L2~Q -*OPY`bH3l5uVhDXcNl*tp`xh\ln@p |z'd0H T  X:0).#|'x)":>"RpK2:It-&b3y [EArYzkje~] bDiwOT(-6UKD7`_thueinit___i686.get_pc_thunk.bx_thue_bnfisintnormabs_bnfisintnorm___i686.get_pc_thunk.axdyld_stub_binding_helper_gen_m1_DEBUGMEM_DEBUGLEVEL_bot_avma_gen_0_gen_1_check_units_sum_signunits_subresall_appendL_isprincipalfact_vecsmall_to_col_cget1_isprincipal_divis_rem_cgcd_primedec_factor_flusherr_modii_equalii_powgi_gfrac_gceil_mpexp_divsr_mulss_gtolong_gmin_denom_bestappr_garg_addsr_gisirreducible_log_floor_gerepilecopy_nfrootsQ_shallowconcat_gequal_absi_equal_RgX_rescale_affir_addii_sign_contfrac0_gaffect_rtodbl_cmprr_ginv_sqrtr_divrs_gnorml2_lllint_ground_gneg_addir_sign_gsqr_divri_grndtoi_mulii_gpow_divir_Pi2n_dbltor_addrr_sign_mulrr_mplog_divrr_mulir_mppi_mpfact_powiu_mulsi_mplog2_gexpo_gmulsg_vecmax_matid_gauss_rowslice_vecslice_gmul2n_fprintferr_sqrtnr_imag_i_gsub_gprec_w_gadd_gpowgs_gdiv_int2n_gcmp_derivpol_pari_warn_gdivgs_glog_gmul_gmax_gabs_precision_gcmp0_poleval_real_i_roots_nf_get_sign_checknf_gfloor_mulsr_certifybuchall_bnfinit0_gcmp1_checkbnf_sturmpart_pari_err_reel4.0_checktnf_inithue_LargeSols_get_B0_MiddleSols_get_Bx_LLL_SmallSols_isintnorm_loop_S_inext_Partial_u_f_Relations_Nprimes_n_test_sol_get_sol_abs_sindex_normsol_Baker_LLL_1stPass_gen_ord_smax #1/12 1200774201 0 0 100644 380 ` darwin.o( D__text__TEXTD__data__DATADT` P_reel4.0