H (d( __text__TEXTd __data__DATA__cstring__TEXTo$__literal4__TEXT0(__literal8__TEXTX__const__DATApԉ__picsymbolstub2__TEXT__la_sym_ptr2__DATAkϙ__nl_symbol_ptr__DATA(\F__textcoal_nt__TEXT  @t P 4P<\$,|$4l$8t$0|$Dl$@ ȉt16t'|$Ht |$,$蕕\$,t$0|$4l$8<É<$ĕ tT uŋt&|$HtE4$D$c볉t$,$n륋FtF$몋w t4$댋Ew@?%?9*ȋL$)+L$9T$D$L$D$ GA;t$}< t6;t,|$Ht%L$,$bL$;t$|ċD$ $茔݃ tR ut&|$HtE $D$-밉L$,$8뢋AtA$묋I u$/UWVSLD$dT$`h$?D$,|L$dNj@p? t~$L$9x~$t$觓T$8L$w+9w0GF@n$@݋L$l$}w+9wuGFD$F$ؐUWVS<|$Pt$TED$,<$@Nj@D$$ t|$&T$蔑L$$VA?%?9x|$L$_%u@D$\ L$\D$%D$t$4D$$0$D$` tq$T$ $0$4D$ <$D$|$l D$l @;L$t)> l$\<$l$ux$89ΉL$X}:%&B D$B$;$v;t$X|ȋŁuy /$8;t$X!ȨtKl$h{/+(rD$h7@"[^_]$܃؉|$D$h$Ђ$較vq4$D$`$$L$T$$$8$D$$0t$T$ L$D$$($8t$l9D$p!Ш |$p s8 <$$$#t$0$4B l$$B$s$$$$0D$P$L$D$L<$|D$T$ƋD$P$1Ƌ$k(L$|T$xD$TL$T$ l$D$t$$4s{ŋ+)98aG`9G}9||$|$T<$ ~t$|D$D$xt$ l$$rƋ$,$ED$L(D$4$m}$0$4$L$,$$҉$g$8$Uw9׉T$H0AD$d$l$d$l$r{$$Uw9׉T$D0D$D$l$xtD$$$ {s?$$$Fɉ$t1%E鉬$$$t$D$ $0T$@T$D$$%?J$t$`҉t$7L$<9AG}7D$<D$(D$D$8D$$_u9|ɉ<$_r$8D$,$}҉|$$t$l|$${)׋T$$+9}v"o7D$,G,$$D$n?h' >o4$D$nD$D$$$}s?$$t$`L$@$$4l$,$$0$$D$l$$DŽ$ D$$l$D$ $$D$?wD$ht$$zh$q$q<$D${ȋ$q$D$L$4$ z$}$|y$|Y$T$D$$$imD$@T$p$8D$$t$,D$$$4D$ D$\T$L$D$t$<$t D${D$hL$hƉ{+9%:D$0T$$\x‹D$4.L$4A$%?D$oD$ ‹D$8D$D$4$D$GsL$(T$8L$$T$Nr${[$<$xq$l$4$dx$8r rL$drDL$4$l$y$CrD$ $wy$rrD$$^yD$D$s4$D$mt;|$D|BD$,$rD$D$t$tD$D$r4$D$t;|$H|D$,$rD$D$t$tlL$`$0(L$<$NjD$`D$$0$ Ƌs8wt$<$jD$,$qw r|$ $;xrt$$)x뽉T$$v$D$Pt$$u $y$yi1r$t$,$Xv$rD$$w/$8%DƉ$wu0  ȨtZt$<$wŋ{7~+v8F"oD$h|$$xӋl$\l$4$uvt$\t$D$<$Hv댁_vWw,D$pu{~+r}F"$xŋ%tUDƉ$u t# ȨD$\D$&uҋv͋w륍$<$t$$t\\$Lt$Pt$`|$Tl$X|$d4$v$D$|$x1҉D$,%|$|$<4$l$4D$L$8|$|$0L$l$|$t$D$ D$$2,zD$8}D$((z+wv0uG"D$,FD$(FЋ\$Lt$P|$Tl$X\$lvUWVSL+y|$lt$hD$8D$`$uL$dD$`@hL$?D$HD$`$tD$d MD$dL$< tBt$y$Zm|$<$|$mt$8D$4$sL[^_]ËF%?9D$.tL$dA%?9D$c$T$Ru;T$<}t|$<'t$y$lD$D$8$tD$`t$D$ $L$d $|$D$et$`D$ D$4$몋l$d4$D$l$dm9AT4$dƋUWVS7l$A$h%D׉D$<$OL$(B0$FD$$pW$D$ |pD$4D$0D$<$rSw)Ow+L$9SL$Sw*T$"2,$oD$,Sw|$D$t$D$>)ƋOw+89|$D$0D$D$1 &;|$(5$TmT$E$doD;|$(~˿4$o;|$ ;|$$nD$D$nD$ƋD$n‹BT$D$ F4$D$nD$$m$D$HnT$D%~OD$,$|$@t,$|$t$,t$mGwl$\8zD$,a$ D$T$;mWFt$D$ B$D$zm?tBT$D$ F4$ϋBT$D$ F4$D$NmD$<$lL$$ $D$~l|$D$8<$UlʼnD$D$8$*lIl$8l$8;l$( Kw;|$$0D$0 D$T$ $xkD$4T? BT$D$ A $D$,l$k‹tcBT$D$ F4$D$k;|$$3|$8t$<$kIt$8;l$(t$8D$8l[^_]ËFt$D$ B$D$k뛋tBT$D$ F4$ҋBT$D$ F4$D$wkVAL$D$ B$D$9ktBT$D$ A $ϋBT$D$ A $D$ kL$$iSt T$ $T$ $i/D$D$jD$$jL$%.;|$ ~T$,$$nJ$n%$n$qnD$4T$)ŋp+8l$9|$ L$qD$ D$ T$ B`B;D$ }|$;D$ |싃ql$ 0p~+݉9Qq8F w1;t$[L$(|$<$D$"i‹T$|$,G$h$g‹@;t$~L$t%D$gD$D$$g,$D$hq7ŋp~+vsq8F|$$zD$L<$L$sf$Lft$4$D$#fƉl$<$"ht$$j\[^_]$k|p*%t;|$$D$D$ZjHD$L$ E,$D$g;t$.D$ l$D9D$ jT$0t$pD$T$4$fD$LD$,p8;D$ [$ D$L$?fT$D$, $j$j$j$jUWVS;;t$`|ЉD$l;$K+VD$l/'V+(ΉL$X)9l$XT$T D$TD$X|$T l$lEGD$\D$X9D$\-+VD$@D$lT$\+V 7$L$P(t$LL$HE%D$D  D$HD$E$C;t$D\ |$E$Ct$HD$4$>Nj$t-<$D$ C$$L$AO1t/<$=T$@NjD$L|$E0$C<$=T$\t$T1tD$X9‰T$\|$T|$lnD$l$D$ D$$l$$DD$h+VD$pM)Ƌ'V+9L$puD$puSD$p "$$ t;$#$$ ;$~݉<$1D$ D$l$ Ƌ%Dlj$Cu8  ȨID$l|$$(DƋ$4|$h;$$$;$$;,$ $t0$x $x$x$t0$x $x$x$;$D$)$9$$$F4$tD$h$B$$$$$%wDD$<+VT$<:э)'V+L$89(T$8+VL$<%~L$q$@$$<$_>Ƌ%Dlj$=u, tXƒ Шt|$4$u>Ɖ$$$<$D$s=$l$D$4$C=%u뙋#Vr$$$=$$#V$<$D$<$D$D$lt$$<_W#V,$>$>zV8wn+VT$d$l$p+$t;$t 9㋄$4$t;$t$p$A<$r<낋V8w+VL$drA$F<ߋE D$$77;t$D|L$E,$4D$HEE@D$D$P$9;t$D| D$DL$P $D$|4D$H&E D$$6;t$D|$C=E$$D$$D$3$$$|$T$3V8AV8w D$d=A,$;$<g$<$$V3$$A3;$~GT$xB D$$5;t$t|JL$|$xG,$D3D$|L$x$A@<$D$F8;t$t|#D$t$4$D$2D$|L$xA D$$5;t$t|빋$B D$$4;$|L$B,$2$$$F@<$D$7;$|)$D$$$2$|$A D$$O4;$|뭋$$D$4$5$D$$|$1$$$ $D$_5$D$T$$1W$$L$$1D$D$5D$$$1$I$:$9[$9$9$1\$T$}5DŽ$,E%? @E$9#Vj$d95$S9$B9$19$ 9=$9$8XUWVS蛢$$$$@$$,F$4F$8F$0F$$<G$(o$G $$O$ w $r$@($$H$%$DŽ$HDŽ$%$%l;u)Nj;+9;8E%~DEe$G%5$($ %$տ;09D$$$+$D$4$1*$Qf./)$*$$Z(f(YY*Z(YXYXYf(^Qf.$d$@+\$8$D$@d$8,$$$*X$)$;$E)щ$;+9$E&$ 0E)΋;+9uh$;$;;$~;$$t;$~鋃;0;($)鉬$,)9;1$;"$ );+E9Z;u$1&>DŽ$$$$9$*$$ $$9~֋$$$LL$$'$$`$HDŽ$l$XD$\T$T$$ $$DŽ$%$$$Ջ;09$D$$$O'D$$$-Ɖ$+$*D$;/$l$&$;8 $0t$$-$ DŽ$$9$$1t$$D$ $*Ƌ$,$D$$<D$ $D$$ D$$($%$ $$$D|$4$$*t-$D$,$M.$,t$$?)$$$$$$$A( [ $$T$G$-9 |$$G$-D$$$($$ $$9b;8$;DŽ$$EDŽ$$};w+9uGF@$Vt$$$#$$$$4$8D$x$,L$||$tD$p$;%D$hE+)9D$ht$drD$dt$dED$h &D$lDŽ$Ll$h9l$l;t$l$T$|L$`D$D$,ƉD$D$t$+|$p|$$(Nj;(D$x|$$+4$D$'$(T$X;~;L$`.|$ $,l$lT$d|$hl$l9E$*$(Z(Y$Lf.*\,ɋ$9M)ꉬ$$$4$'ljD$$4$'|$ŋ$$$y',$NjD$dD$*<$Ƌ$D$*t$$&D$$$!Ƌ$$l$\$9$$l$t$D$$|$ !$;8&$$9$~%$T$$,;$;8$%9$Y$9$$$$9;};;}w+9uGF@$Vt$$$2 $(D$$$,D$$t$ l$$;ƃ?<$$D$<$+$;$9(;8$,$<$<$8$4$0T$҉t$(l$$|$ L$$($$$ $ $t$l$|$ L$T$$$$e'$t$&O;8w Ĭ[^_]Ë$$H{'|$D$$)͍$@ $ $$<+%$@ $($$t$.$;$0'$XL$,$'$+$E%DƉ$(u7  Ȩt[$t$$<)ŋ;0;~+v;:F$o$"*ً$4$D$($$l$D$<$'녁QvI;$P$f$҉D$t %D$'%4$D$ $D$$LD$'rl$$DŽ$,$x4$D$S\4$L;$M$+$9$M$$$$$)Nj$;$M$$$(}$($X$P,$%4$%]$B D$$!9|T$A,$W$$A@D$$$S$9|"$ut$$$i$A D$$$!9|빋|$Tt$ $|$BD$$D$$$$$$t4$hD$$$$l$$#$G$$O$$o($>D$$;$;+)9.u$9BE}A$$$D$$D$D9|,$$p$h$x$4$|$`$,$8$0l$$$$($<|$$L$t$ l$$_DŽ$$$(9$.$$ $$9~$T$$!‹$.$A$%?D$D$ ‹$D$$$D$$$L$$T$$$!$$$'D$ L$l$$#$$ L$$4$D$9|$ $T$D$$$$N$$=$$,$S$$%$ $$#g$#&$#d$@ $\$8d$@D$8D$\$8\$8$ D$$4$D$9|BD$ $$D$$zElj$G%? @G$"C;(UWVS菌\L$pt$tV %xAD$H9/l$pDD$D$H$9D$H D$tP ыD$H%(l$L.)‹%+(T$D9l$LD$DD$Lt$D ,;l$LZ9D$tPL$p9X ~ZX$T$0K\$(\$0T$(\fTf.%9 t$t $D$1ҋHt$@t)p1҃ uTD$@مNڋD$D;l$Ll$D|$tl$G$^D$D$H$\[^_]$ 랋D$pD$t@BT$D$ A $D$9~ ,ҋt$Dډb$ LUWVS3l$< (D$@ ET$dBED$DD$@9D$D' D$(l$DD$d >$L$8(|$4L$0E%D$,U 4T$0T$E$t;t$,|$E$Y|$0<$D$NjD$|t*<$D$t$|$t$O1t/<$T$(NjD$4|$E0$<$jL$Dt$<1҅tD$DD$@9D$DT$<1҉T$dj 8T$Hl$d$l$CD$dD$xD$ D$L$dD$`L$$D$l1t$l D$d$gD$dƋ%|Dlj$u8 C Ȩ|$|$d<$mƋD$tL$L4T$pD$t9D$PtD$l$D$lD$TtyT$l%l u)Nj +9 8E%~DExR|$Tl$Tt$\l$4$D$D$\$T$lD$PT$`.7T$$D$`"G%? @G$t] (!D$l$Ƌ%Dlj$Bu, taƒ Шt)|$4$ƋD$tl$LtD$LČ[^_]ËL$x<$L$|$x|$D$4$%u됋 iD$x<$D$l$xt$dl$D$4$[ { W +,$D$E D$${;t$,|L$E,$D$0E@D$D$8$%;t$,| D$,L$8 $D$ D$0E D$$;t$,|$ w + $D$S l$H +(D$t$l$D$$$r|$h |$4$`D$TG%? @G$> (nffactormodpolynomial variable must have highest priority in nffactormodnfrootspolynomial variable must have highest priority in nfrootstest if polynomial is square-free nfissplitnffactorpolynomial variable must have highest priority in nffactornumber of factor(s) found: %ld squarefree test Entering nffactor: nfsqffUsing Trager's method Total Time: %ld =========== splitting mod %Zbound computationfactorroot 1) T_2 bound for %s: %Z 2) Conversion from T_2 --> | |^2 bound : %Z 3) Final bound: %Z Mignotte bound: %Z Beauzamy bound: %Z choice of a prime idealPrime ideal chosen: %Z incorrect variables in rnfcharpolynf_factor_boundfor this exponent, GSmin = %Z Time reduction: %ld exponent: %ld Naive recombinationHensel liftrootsfactors%3ld %s at prime %Z Time: %ld ### K = %d, %Z combinations to find factor %Zremaining modular factor(s): %ld *@|.nf_LLL_cmbf* Time LLL: %ld * Time Check Factor: %ld for this traceLLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld LLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld) ... lifted (avma - bot = %lu) ... mod p^k (avma - bot = %lu) nf_LLL_cmbf: checking factor %ld (avma - bot = %lu) special_pivot output: %Z >??????B???-C6?{y⍀Pgyby⍀PNyIy⍀P5y0y⍀Pyy⍀Pyx}⍀}Pxxh⍀hPxxS⍀SPxx>⍀>Pxx)⍀)Pxx⍀Pmxhx⍀PTxOx⍀P;x6x⍀P"xx⍀P xx⍀Pww⍀Pww⍀Pwwl⍀lPwwW⍀WPwwB⍀BPswnw-⍀-PZwUw⍀PAwk9k⍀P%k k⍀P kk⍀Pjj⍀Pjj⍀Pjj⍀Pjjn⍀nPjjY⍀YPvjqjD⍀DP]jXj/⍀/PDj?j⍀P+j&j⍀Pj j⍀Pii⍀Pii⍀Pii⍀Pii⍀Pi؆ #<Un҇6Oḧ0Ib{Ɖ߉*C\uي $=VoӋ7Pi͌1Jc|Ǎ+D]vڎ %>Wpԏ8Qjΐ2Kd}ȑ,E^w’ے &?XqՓ 9Rkϔ3Le~ɕ-F_$Ë$ÍIxE9Ix*IxIxIxIxIxsO/IxIx~Ix~Ix~~~Ix~s~F~~}}Ix}}}}B}Ix/}Ix}Ix||{|W|9||{Ix{{{y{i{O{?{${zIxzIxzIxjzIxPzIx=zIx3zyIxyIxyyIxpyIx[yIxCy0y yxIxxIxxIxEx 5x$xxwwuwwewuSw(wvvuvuvuv{vsv^vuBvu6vu&vvuuuu uuWuCu3uttqstpqsthqsxtdtTqs;tPqssqssqssms Zse]OssrrrrrwrfrUrDr3r"rrrqqqqqyq`e]YqHq*qqpipoogoe]Roe]LoonnnanEnnmmmmmm mll e]l~le]_lAl,l le]ke]ke]kk{khk e]Tke]>k&kkjjje]je]jjʄe]jie]ie]iie]iji ie]ie] ie]he]he]hVhe]Ihggggggg>gLe]6g`e]ffe]ffffe]fffcfe]ee]ewee]Gee]1ee]ddd^dKd4dccfcJce]=c/ce]!cccbbe]8bae]ae]ae]eae]2ae]*ae]`e]`e]n`e]I`e]<`__He]_De][_H_ _e]^e]^e]n^e]a] P]?].]] ]\\\B\\s\b\Q\@\(\\[[[[[[[6[[ZZZtZRZ'ZZYYYYYYȄBvYBkYƄB\YBQY.Y YXXXXsX_XWXĄBFXB;XB3X+X„BWBWBWWWBaWFW$WBWVBVVVV_VKV:V2VB'VVUBUBUBmU_U:UTBtTSBSSSSBSBvSnSB_SBRSS SRBRBsRB8RPPPPBPBOOOlOTOAO$OONNBNB/NB!NBMMMHMB*M"MMLLLLBKKaBKKB|KBqKB KJJJqJRJIIII9I&IIHHmH,HBHGGBGBGBdGB=GB0GB*G"GGFF@BTF<BFFbEBDBDB}DBEDB)DBDCCB2CBB BA;AtAGA/AA@@@\@C@???@;?(;?}?";`?;B?;6?;>>;>>>e>:>>;==;=;x=8=;=;<x<;e<;F<;(<;;; ;;u;7c;A;(;::::7:7u::99999z97n9b9R909878m8,877_7O77 666466466u6\6645455T5 5444 4|4M4'4444-338-}34-g3_3W3G3%32-20-2n2b2-42(22111-1111|1H11000-0-0-<00-/-/////N/-?/$//-...-.u.a.G..-----X-- -p-_-D--,+x,+[,+<,, ,++++ +++}+_+K+(8+(*+***(**v*h*X*J*6**(*()()))))v)7)()()(((((((m(U(( (!'''''l'\'C'''&&b&&%%%w%5%!%$$$$$c$O$!8$!2$####x#N#4#"!"!""!m"!W"!I"5"&"! !!|!d!P!(!!      I   ~J gI|vn<eM|p9j^%SG6.ocG;."f<m\K:#cD>." o]c}R>zSD3Lr93cA1E 05 g5 U5 25 %5  5 i5 !5 5  5    q Z 5 H 8 5  5  h 5 b H 5 +    5  v <  5    u k c 7  5 5  5  5 g O 5 1    qeU@D@< mm~mX@%m mQ-tmldT5m@mmvmi \%11111kK11}1UA1- #qU  WW  >>  %%      }uo j dߘڕ\ߘڕV Q KۘCۘ= 8 2ט*ט$  ӘӘ   ϘvϘv  ˘]˘]  ǘDǘD  Ø+Ø+    {u p jb\ W QǔIǔC > 80* %   | |  c c  J J  1 1     {  v p h b  ] W ͓O ͓I  D > 6 0  + %        {i {i  wP wP  s7 s7  o o  k k  | v gn gh  c ] cӒU cӒO  J D _< _6  1 + [# [    W W  So So  OV OV  K= K=  G$ G$  C C  | ?t ?n  i c ;ّ[ ;ّU  P J 7B 7<  7 1 3) 3#    / /   +u +u  '\ '\  #C #C  * *     z t  o i ߐa ߐ[  V P ƐH ƐB  = 7 / )  $      { {  b b  I I  0 0     z  u o g a  \ V ̏N ̏H  C = 5 /  * $ ߗ ߗ   ۗ ۗ  חhחh  ӗOӗO  ϗ6ϗ6  ˗˗  ǗǗ { u×m×g b \ҎTҎN I C;5 0 *"     nn  UU  <<  ##      {sm h b؍Z؍T O IA; 6 0("     tt  [[  BB  {){)  ww  syss n hoތ`oތZ U OkŌGkŌA < 6g.g( # cc  _z_z  [a[a  WHWH  S/S/  OO  KKy t nGfG` [ UCˋMCˋG B <?4?. ) #;;  77  3g3g  /N/N  +5+5  ''  ## z tlf a [ъSъM H B:4 / )!     m m  TT  ;;  ""      zrl g a׉Y׉S N H@: 5 /'!    ss  ߖZߖZ  ۖAۖA  ז(ז(  ӖӖ  ϖxϖr m g˖݈_˖݈Y T NǖĈFǖĈ@ ; 5Ö-Ö' "   yy  ``  GG  ..    ~x s me_ Z TʇLʇF A ;3- ( "   ff MM 44  ~ y s{k{e ` ZwІRwІL G As9s3 . (o o  kk |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  |xtplhd`\XTPLHD@<840,($  I9'+u4,-* ?%z.nm026SV!(r=;/aJ`XO#M"LGbY&$K~RtCdhQs>W\_q:yc|xBA@5w^}Z<pl871eT]3[{go)NFvDfI9'+u4,-* ?%z.nm026SV!(r=;/aJ`XO#M"LGbY&$K~RtCdhQs>W\_q:yc|xBA@5w^}Z<pl871eT]3[{go)NFvDfUkjPiHE ;++-:4N6\!o(AhBB\]uhs@xYfT  $O, "(C8$/ds6>%JB?Ww>Bph8/#  VI1#(,CXO2VjrwG1fi^j]r;`V*J( |%z!lx\3desO5 Vlo$_unifpol___i686.get_pc_thunk.bx_nffactormod_nfroots_nfissplit_nfisgalois_nffactor_ZM_get_prec_ZX_get_prec_nfrootsall_and_pr_rnfcharpoly___i686.get_pc_thunk.axdyld_stub_binding_helper_pol_x_diffptr_DEBUGMEM_gen_2_gen_1_cmp_pol_DEBUGLEVEL_gen_0_bot_avma_caract2_RgX_divrem_lift_to_pol_sort_vecpol_FpX_split_Berlekamp_FqX_split_all_gmin_vandermondeinverse_initgaloisborne_Q_remove_denom_simplify_i_polfnf_FqX_split_by_degree_FqX_split_deg1_FqX_is_squarefree_Flx_nbfact_Flx_nbroots_Flx_is_squarefree_ZX_to_Flx_zk_to_ff_init_primedec_apply_kummer_FpX_factor_umodiu_gneg_rootpadicfast_roots_from_deg1_FqX_split_roots_gerepileall_gequal_LLL_check_progress_shallowconcat_vconcat_Q_div_to_int_polsym_gen_normalizepol_RgV_to_RgX_logint_gscalsmat_dbltor_mulsr_dim1proj_FpM_red_Fp_inv_get_proj_modT_hensel_lift_fact_ZM_inv_TIMER_GS_norms_gauss_sqred1_from_QR_lllint_i_lllint_fp_ip_lllintpartial_ip_idealpows_ceil_gaffect_log_mplog_divrs_pr_norm_chk_factors_get_special_pivot_shallowcopy_FpX_center_centermodii_FpXQX_red_centermod_i_binomial_gunclone_gclone_gscalcol_mulmat_pol_dvmdii_FpX_red_modii_FpX_divrem_gsub_ceil_safe_sqrtr_sqrt_mul_content_shifti_gpowgs_rtodbl_dalloc_init_dalloc_ginv_affir_gcmp0_gdivround_cmpii_int2n_gexpo_ZM_zc_mul_diviiround_floor_gadd_poleval_roots_nfgetprec_get_nfpol_logmax_modulus_bound_RgX_is_rational_gmulsg_mppi_powrshalf_gsqr_mulrr_mulir_mulii_gcmp_gnorml2_mulsi_sqri_pari_warn_remake_GM_gmul2n_addrr_sign_addir_sign_addii_sign_gsqrt_QuickNormL2_shallowtrans_gprecision_gmul_vecbinome_nf_get_r1_sort_factor_free_lift_gpmalloc_msgTIMER_factpol_simplify_trivfact_TIMERstart_gerepileupto_gen_sort_RgXQX_divrem_RgXQX_RgXQ_mul_QXQ_inv_gcmp1_nfgcd_derivpol_fprintferr_Q_primpart_lift_intern0_fix_relative_pol_gneg_i_gdiv_nfrootsQ_gerepilecopy_modprX_lift_FqX_factor_modprX_nf_to_ff_init_checknf_basistoalg_gmodulo_algtobasis_gcopy_pari_err_reel4.0_nfsqff_nf_pick_prime_nf_root_bounds_bestlift_init_nf_combine_factors_nf_DDF_roots_nf_Mignotte_bound_nf_Beauzamy_bound_affsr_ZXY_get_prec_nfcmbf_nf_LLL_cmbf_init_trace_get_trace_nf_chk_factors