/* bicgstabl.c */
#include "../Iter.h"
/*--------------------------------------------------------------------*/
/*
---------------------------------------------------------------------
purpose -- to solve a unsymmetric real matrix equation
Ax=b
using left preconditioned BiCGSTAB
x -- Initial guess
A -- Input matrix
M -- Front Matrix as the preconditioner
b -- Right-hand side
tol -- Convergence tolerance
type -- type of entries
SPOOLES_REAL or SPOOLES_COMPLEX
symmetryflag -- symmetry of the matrix
SPOOLES_SYMMETRIC, SPOOLES_HERMITIAN or SPOOLES_NONSYMMETRIC
nrhs -- number of right hand sides
msglvl -- message level
msgFile -- message file
return value -- error flag
created -- 98spe10 wpt
---------------------------------------------------------------------
*/
int
bicgstabl (
int n_matrixSize,
int type,
int symmetryflag,
InpMtx *mtxA,
FrontMtx *Precond,
DenseMtx *mtxX,
DenseMtx *mtxB,
int itermax,
double convergetol,
int msglvl,
FILE *msgFile
)
{
Chv *chv, *rootchv ;
ChvManager *chvmanager ;
DenseMtx *mtxZ ;
DenseMtx *vecP, *vecR, *vecR0, *vecT, *vecV, *vecW;
DenseMtx *vecX, *vecY, *vecZ ;
double Alpha, Beta, Init_norm, Omega, ratio, Res_norm, Rho, Rho_new, Rtmp, Rtmp2;
double t1, t2, cpus[9] ;
double one[2] = {1.0, 0.0}, zero[2]={0.0, 0.0} ;
double Tiny = 0.1e-28;
int Iter, Imv, neqns;
int stats[6] ;
neqns = n_matrixSize;
/*
--------------------
init the vectors in bicgstab
--------------------
*/
vecP = DenseMtx_new() ;
DenseMtx_init(vecP, type, 0, 0, neqns, 1, 1, neqns) ;
vecR = DenseMtx_new() ;
DenseMtx_init(vecR, type, 0, 0, neqns, 1, 1, neqns) ;
vecR0 = DenseMtx_new() ;
DenseMtx_init(vecR0, type, 0, 0, neqns, 1, 1, neqns) ;
vecT = DenseMtx_new() ;
DenseMtx_init(vecT, type, 0, 0, neqns, 1, 1, neqns) ;
vecV = DenseMtx_new() ;
DenseMtx_init(vecV, type, 0, 0, neqns, 1, 1, neqns) ;
vecW = DenseMtx_new() ;
DenseMtx_init(vecW, type, 0, 0, neqns, 1, 1, neqns) ;
vecX = DenseMtx_new() ;
DenseMtx_init(vecX, type, 0, 0, neqns, 1, 1, neqns) ;
vecY = DenseMtx_new() ;
DenseMtx_init(vecY, type, 0, 0, neqns, 1, 1, neqns) ;
vecZ = DenseMtx_new() ;
DenseMtx_init(vecZ, type, 0, 0, neqns, 1, 1, neqns) ;
/*
--------------------------
Initialize the iterations
--------------------------
*/
/* ---- Set initial guess as zero ---- */
DenseMtx_zero(vecX) ;
DenseMtx_colCopy(vecT, 0, mtxB, 0);
/* */
FrontMtx_solve(Precond, vecR, vecT, Precond->manager,
cpus, msglvl, msgFile) ;
/* */
Init_norm = DenseMtx_twoNormOfColumn(vecR,0);
if ( Init_norm == 0.0 ){
Init_norm = 1.0;
};
ratio = 1.0;
DenseMtx_colCopy(vecR0, 0, vecR, 0);
fprintf(msgFile, "\n BiCGSTAB Initial norm: %6.2e ", Init_norm ) ;
fprintf(msgFile, "\n BiCGSTAB Conveg. Control: %6.2e ", convergetol ) ;
/*
*/
Rho = 1.0;
Alpha = 1.0;
Omega = 1.0;
DenseMtx_zero(vecV) ;
DenseMtx_zero(vecP) ;
/*
------------------------------
------------------------------
*/
MARKTIME(t1) ;
Iter = 0;
Imv = 0;
/*
-----------------
factor the matrix
-----------------
*/
while ( ratio > convergetol && Iter <= itermax )
{
Iter++;
DenseMtx_colDotProduct(vecR0, 0, vecR, 0, &Rho_new);
Beta = (Rho_new / (Rho+Tiny)) * (Alpha / (Omega+Tiny));
Rho = Rho_new;
/* DenseMtx_axpy(vecP, vecV, -Omega); */
Rtmp=-Omega;
DenseMtx_colGenAxpy(one, vecP, 0, &Rtmp, vecV, 0);
/* DenseMtx_aypx(vecP, vecR, Beta); */
DenseMtx_colGenAxpy(&Beta, vecP, 0, one, vecR, 0);
/*
DenseMtx_zero(vecY) ;
InpMtx_nonsym_mmm(mtxA, vecY, one, vecP) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecY, one, vecP) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n BiCGSTABL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecY, one, vecP) ;
break ;
default :
fprintf(msgFile, "\n BiCGSTABL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
/* */
FrontMtx_solve(Precond, vecV, vecY, Precond->manager,
cpus, msglvl, msgFile) ;
Imv++;
/* */
DenseMtx_colDotProduct(vecR0, 0, vecV, 0, &Rtmp);
Alpha = Rho / (Rtmp+Tiny);
/* */
Rtmp=-Alpha;
DenseMtx_colGenAxpy(one, vecR, 0, &Rtmp, vecV, 0);
/*
DenseMtx_zero(vecZ) ;
InpMtx_nonsym_mmm(mtxA, vecZ, one, vecR) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecZ, one, vecR) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n BiCGSTABL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecZ, one, vecR) ;
break ;
default :
fprintf(msgFile, "\n BiCGSTABL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
/* */
FrontMtx_solve(Precond, vecT, vecZ, Precond->manager,
cpus, msglvl, msgFile) ;
Imv++;
/* */
DenseMtx_colDotProduct(vecT, 0, vecR, 0, &Rtmp);
DenseMtx_colDotProduct(vecT, 0, vecT, 0, &Rtmp2);
Omega = Rtmp/(Rtmp2+Tiny);
DenseMtx_colGenAxpy(one, vecX, 0, &Alpha, vecP, 0);
DenseMtx_colGenAxpy(one, vecX, 0, &Omega, vecR, 0);
/* */
Rtmp=-Omega;
DenseMtx_colGenAxpy(one, vecR, 0, &Rtmp, vecT, 0);
Res_norm = DenseMtx_twoNormOfColumn(vecR,0);
ratio = Res_norm/Init_norm;
fprintf(msgFile, "\n\n At iteration %d"
" the convergence ratio is %12.4e"
"\n Residual norm is %6.2e",
Imv, ratio, Res_norm) ;
}
/* End of while loop */
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU : Converges in time: %8.3f ", t2 - t1) ;
fprintf(msgFile, "\n # iterations = %d", Imv) ;
fprintf(msgFile, "\n\n after BICGSTABL") ;
DenseMtx_colCopy(mtxX, 0, vecX, 0);
/*
------------------------
free the working storage
------------------------
*/
end:
DenseMtx_free(vecP) ;
DenseMtx_free(vecR) ;
DenseMtx_free(vecR0) ;
DenseMtx_free(vecT) ;
DenseMtx_free(vecV) ;
DenseMtx_free(vecW) ;
DenseMtx_free(vecX) ;
DenseMtx_free(vecY) ;
DenseMtx_free(vecZ) ;
fprintf(msgFile, "\n") ;
return(1) ; }
/*--------------------------------------------------------------------*/
syntax highlighted by Code2HTML, v. 0.9.1