/* zpcgl.c */ #include "../Iter.h" /*--------------------------------------------------------------------*/ /* --------------------------------------------------------------------- purpose -- to solve a symmetric nonnegative matrix equation Ax=b using right preconditioned conjugate gradient method x -- Initial guess A -- Input matrix M -- Front Matrix as the preconditioner b -- Right-hand side tol -- Convergence tolerance type -- type of entries SPOOLES_REAL or SPOOLES_COMPLEX symmetryflag -- symmetry of the matrix SPOOLES_SYMMETRIC, SPOOLES_HERMITIAN or SPOOLES_NONSYMMETRIC nrhs -- number of right hand sides msglvl -- message level msgFile -- message file return value -- error flag created -- Oct. 27, 1998 Wei-Pai Tang --------------------------------------------------------------------- */ int zpcgl ( int n_matrixSize, int type, int symmetryflag, InpMtx *mtxA, FrontMtx *Precond, DenseMtx *mtxX, DenseMtx *mtxB, int itermax, double convergetol, int msglvl, FILE *msgFile ) { Chv *chv, *rootchv ; ChvManager *chvmanager ; DenseMtx *mtxZ ; DenseMtx *vecP, *vecR, *vecQ ; DenseMtx *vecX, *vecZ ; double Alpha[2], Beta[2], Rho[2], Rho0[2], Rtmp[2]; double Init_norm, ratio, Res_norm ; double t1, t2, cpus[9] ; double one[2] = {1.0, 0.0}, zero[2] = {0.0, 0.0} ; double Tiny[2] = {0.1e-28, 0.0}; int Iter, neqns; int stats[6] ; if (symmetryflag != SPOOLES_HERMITIAN){ fprintf(msgFile, "\n\n Fatal Error, \n" " Matrix is not Hermitian in ZPCGL !!") ; exit(-1); }; neqns = n_matrixSize; /* -------------------- init the vectors in ZPCGL -------------------- */ vecP = DenseMtx_new() ; DenseMtx_init(vecP, type, 0, 0, neqns, 1, 1, neqns) ; vecR = DenseMtx_new() ; DenseMtx_init(vecR, type, 0, 0, neqns, 1, 1, neqns) ; vecX = DenseMtx_new() ; DenseMtx_init(vecX, type, 0, 0, neqns, 1, 1, neqns) ; vecQ = DenseMtx_new() ; DenseMtx_init(vecQ, type, 0, 0, neqns, 1, 1, neqns) ; vecZ = DenseMtx_new() ; DenseMtx_init(vecZ, type, 0, 0, neqns, 1, 1, neqns) ; /* -------------------------- Initialize the iterations -------------------------- */ FrontMtx_solve(Precond, vecR, mtxB, Precond->manager, cpus, msglvl, msgFile) ; Init_norm = DenseMtx_twoNormOfColumn (vecR, 0); if ( Init_norm == 0.0 ){ Init_norm = 1.0; }; ratio = 1.0; DenseMtx_zero(vecX) ; MARKTIME(t1) ; Iter = 0; /* ------------------------------ Main Loop of the iterations ------------------------------ */ while ( ratio > convergetol && Iter <= itermax ) { Iter++; /* */ DenseMtx_colDotProduct(vecR, 0, vecR, 0, Rho); if ( Rho[0] == 0.0 & Rho[1] == 0.0){ fprintf(stderr, "\n breakdown in ZPCGL !! " "\n Fatal error \n"); exit(-1) ; } /* */ if ( Iter == 1 ) { DenseMtx_colCopy (vecP, 0, vecR, 0); } else { zdiv(Rho, Rho0, Beta); DenseMtx_colGenAxpy (Beta, vecP, 0, one, vecR, 0); }; InpMtx_herm_gmmm(mtxA, zero, vecZ, one, vecP) ; FrontMtx_solve(Precond, vecQ, vecZ, Precond->manager, cpus, msglvl, msgFile) ; DenseMtx_colDotProduct (vecP, 0, vecQ,0, Rtmp); zdiv(Rho, Rtmp, Alpha); DenseMtx_colGenAxpy (one, vecX, 0, Alpha, vecP, 0); Rtmp[0] = -Alpha[0]; Rtmp[1] = -Alpha[1]; DenseMtx_colGenAxpy (one, vecR, 0, Rtmp, vecQ, 0); Rho0[0] = Rho[0]; Rho0[1] = Rho[1]; /* */ Res_norm = DenseMtx_twoNormOfColumn (vecR, 0); ratio = Res_norm/Init_norm; fprintf(msgFile, "\n\n At iteration %d" " the convergence ratio is %12.4e", Iter, ratio) ; } /* End of while loop */ MARKTIME(t2) ; fprintf(msgFile, "\n CPU : Converges in time: %8.3f ", t2 - t1) ; fprintf(msgFile, "\n # iterations = %d", Iter) ; fprintf(msgFile, "\n\n after ZPCGL") ; DenseMtx_colCopy (mtxX, 0, vecX, 0); /* ------------------------ free the working storage ------------------------ */ DenseMtx_free(vecP) ; DenseMtx_free(vecR) ; DenseMtx_free(vecX) ; DenseMtx_free(vecQ) ; DenseMtx_free(vecZ) ; fprintf(msgFile, "\n") ; return(1) ; } /*--------------------------------------------------------------------*/