/* testMT.c */ #include "../BridgeMT.h" void FactorMT ( ) ; void MatMulMT ( ) ; void SolveMT ( ) ; /*--------------------------------------------------------------------*/ void main ( int argc, char *argv[] ) /* ---------------------------------------------------------------- read in Harwell-Boeing matrices, using multithreaded factor, solve, and multiply routines based on spooles, invoke eigensolver created -- 98mar31, jcp modified -- 98dec18, cca ---------------------------------------------------------------- */ { BridgeMT bridge ; char *inFileName_A, *inFileName_B, *parmFileName, *type ; char buffer[20], pbtype[4], which[4] ; double lftend, rhtend, center, shfscl, t1, t2 ; double c__1 = 1.0, c__4 = 4.0, tolact = 2.309970868130169e-11 ; double eigval[1000], sigma[2]; double *evec; int error, fstevl, lfinit, lstevl, msglvl, mxbksz, ncol, ndiscd, neig, neigvl, nfound, nnonzeros, nrhs, nrow, nthreads, prbtyp, rc, retc, rfinit, seed, warnng ; int c__5 = 5, output = 6 ; int *lanczos_wksp; InpMtx *inpmtxA, *inpmtxB ; FILE *msgFile, *parmFile ; /*--------------------------------------------------------------------*/ if ( argc != 8 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile parmFile seed nthread inFileA inFileB" "\n msglvl -- message level" "\n msgFile -- message file" "\n parmFile -- input parameters file" "\n seed -- random number seed, used for ordering" "\n nthreads -- number of threads " "\n inFileA -- stiffness matrix, in Harwell-Boeing format" "\n inFileB -- mass matrix, in Harwell-Boeing format" "\n used for prbtype = 1 or 2" "\n", argv[0]) ; return ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n able to open file %s\n", argv[0], argv[2]) ; exit(-1) ; } parmFileName = argv[3] ; seed = atoi(argv[4]) ; nthreads = atoi(argv[5]) ; inFileName_A = argv[6] ; inFileName_B = argv[7] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n message file -- %s" "\n parameter file -- %s" "\n stiffness matrix file -- %s" "\n mass matrix file -- %s" "\n random number seed -- %d" "\n number of threads -- %d" "\n", argv[0], msglvl, argv[2], parmFileName, inFileName_A, inFileName_B, seed, nthreads) ; fflush(msgFile) ; /* --------------------------------------------- read in the Harwell-Boeing matrix information --------------------------------------------- */ if ( strcmp(inFileName_A, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } MARKTIME(t1) ; readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : read in harwell-boeing header info", t2 - t1) ; fflush(msgFile) ; /*--------------------------------------------------------------------*/ /* --------------------------------------------------------------- read in eigenvalue problem data neigvl -- # of desired eigenvalues which -- which eigenvalues to compute 'l' or 'L' lowest (smallest magnitude) 'h' or 'H' highest (largest magnitude) 'n' or 'N' nearest to central value 'c' or 'C' nearest to central value 'a' or 'A' all eigenvalues in interval pbtype -- type of problem 'v' or 'V' generalized symmetric problem (K,M) with M positive semidefinite (vibration problem) 'b' or 'B' generalized symmetric problem (K,K_s) with K positive semidefinite with K_s posibly indefinite (buckling problem) 'o' or 'O' ordinary symmetric eigenproblem lfinit -- if true, lftend is restriction on lower bound of eigenvalues. if false, no restriction on lower bound lftend -- left endpoint of interval rfinit -- if true, rhtend is restriction on upper bound of eigenvalues. if false, no restriction on upper bound rhtend -- right endpoint of interval center -- center of interval mxbksz -- upper bound on block size for Lanczos recurrence shfscl -- shift scaling parameter, an estimate on the magnitude of the smallest nonzero eigenvalues --------------------------------------------------------------- */ MARKTIME(t1) ; parmFile = fopen(parmFileName, "r"); fscanf(parmFile, "%d %s %s %d %le %d %le %le %d %le", &neigvl, which, pbtype, &lfinit, &lftend, &rfinit, &rhtend, ¢er, &mxbksz, &shfscl) ; fclose(parmFile); MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data", t2 - t1) ; fflush(msgFile) ; /* ---------------------------------------- check and set the problem type parameter ---------------------------------------- */ switch ( pbtype[1] ) { case 'v' : case 'V' : prbtyp = 1 ; break ; case 'b' : case 'B' : prbtyp = 2 ; break ; case 'o' : case 'O' : prbtyp = 3 ; break ; default : fprintf(stderr, "\n invalid problem type %s", pbtype) ; exit(-1) ; } /* ---------------------------- Initialize Lanczos workspace ---------------------------- */ MARKTIME(t1) ; lanczos_init_ ( &lanczos_wksp ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : initialize Lanczos workspace", t2 - t1) ; fflush(msgFile) ; /* ---------------------------------- initialize communication structure ---------------------------------- */ MARKTIME(t1) ; lanczos_set_parm( &lanczos_wksp, "order-of-problem", &nrow, &retc ); lanczos_set_parm( &lanczos_wksp, "accuracy-tolerance", &tolact, &retc); lanczos_set_parm( &lanczos_wksp, "max-block-size", &mxbksz, &retc ); lanczos_set_parm( &lanczos_wksp, "shift-scale", &shfscl, &retc ); lanczos_set_parm( &lanczos_wksp, "message_level", &msglvl, &retc ); lanczos_set_parm( &lanczos_wksp, "number-of-threads", &nthreads, &retc); MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : init lanczos communication structure", t2 - t1) ; /*--------------------------------------------------------------------*/ /* --------------------------------------------- create the InpMtx objects for matrix A and B --------------------------------------------- */ if ( strcmp(inFileName_A, "none") == 0 ) { fprintf(msgFile, "\n no file to read A from") ; exit(-1) ; } MARKTIME(t1) ; inpmtxA = InpMtx_new() ; InpMtx_readFromHBfile ( inpmtxA, inFileName_A ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : read in A", t2 - t1) ; fflush(msgFile) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n InpMtx A object after loading") ; InpMtx_writeForHumanEye(inpmtxA, msgFile) ; fflush(msgFile) ; } lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__1, &retc ); if ( prbtyp != 3 ) { if ( strcmp(inFileName_B, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } MARKTIME(t1) ; inpmtxB = InpMtx_new() ; InpMtx_readFromHBfile ( inpmtxB, inFileName_B ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : read in B", t2 - t1) ; fflush(msgFile) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n InpMtx B object after loading") ; InpMtx_writeForHumanEye(inpmtxB, msgFile) ; fflush(msgFile) ; } } else { inpmtxB = NULL ; lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__4, &retc ); } /* ----------------------------- set up the solver environment ----------------------------- */ MARKTIME(t1) ; rc = SetupMT((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA, inpmtxB, &seed, &nthreads, &msglvl, msgFile) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : set up the solver environment", t2 - t1) ; fflush(msgFile) ; if ( rc != 1 ) { fprintf(stderr, "\n error return %d from SetupMT()", rc) ; exit(-1) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------------- invoke eigensolver nfound -- # of eigenvalues found and kept ndisc -- # of additional eigenvalues discarded ----------------------------------------------- */ MARKTIME(t1) ; lanczos_run ( &neigvl, &which[1] , &pbtype[1], &lfinit, &lftend, &rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound, &ndiscd, &warnng, &error, FactorMT, MatMulMT, SolveMT ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : time for lanczos_run", t2 - t1) ; fflush(msgFile) ; /* ------------------------- get eigenvalues and print ------------------------- */ MARKTIME(t1) ; neig = nfound + ndiscd ; lstevl = nfound ; lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc); fstevl = 1 ; if ( nfound == 0 ) fstevl = -1 ; if ( ndiscd > 0 ) lstevl = -ndiscd ; hdslp5_ ("computed eigenvalues returned by hdserl", &neig, eigval, &output, 39L ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : get and print eigenvalues", t2 - t1) ; fflush(msgFile) ; /* ------------------------- get eigenvectors and print ------------------------- */ /* MARKTIME(t1) ; neig = min ( 50, nrow ); Lncz_ALLOCATE(evec, double, nrow, retc); for (i = 1; i<= nfound; i++) {d lanczos_eigenvector ( &lanczos_wksp, &i, &i, newToOld, evec, &nrow, &retc ) ; hdslp5_ ( "computed eigenvector returned by hdserc", &neig, evec, &output, 39L ) ; } MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : get and print eigenvectors", t2 - t1) ; fflush(msgFile) ; */ /* ------------------------ free the working storage ------------------------ */ MARKTIME(t1) ; lanczos_free( &lanczos_wksp ) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : free lanczos workspace", t2 - t1) ; fflush(msgFile) ; MARKTIME(t1) ; CleanupMT(&bridge) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : free solver workspace", t2 - t1) ; fflush(msgFile) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return ; }