/* TFQMRL.c */
#include "../Iter.h"
/*--------------------------------------------------------------------*/
/*
---------------------------------------------------------------------
purpose -- to solve a unsymmetric real matrix equation
Ax=b
using Left preconditioned TFQMR method without lookahead
x -- Initial guess as zeros
A -- Input matrix
M -- Front Matrix as the preconditioner
b -- Right-hand side
tol -- Convergence tolerance
type -- type of entries
SPOOLES_REAL or SPOOLES_COMPLEX
symmetryflag -- symmetry of the matrix
SPOOLES_SYMMETRIC, SPOOLES_HERMITIAN or SPOOLES_NONSYMMETRIC
nrhs -- number of right hand sides
msglvl -- message level
msgFile -- message file
return value -- error flag
created -- Oct. 28, 1998 Wei-Pai Tang
---------------------------------------------------------------------
*/
int
tfqmrl (
int n_matrixSize,
int type,
int symmetryflag,
InpMtx *mtxA,
FrontMtx *Precond,
DenseMtx *mtxX,
DenseMtx *mtxB,
int itermax,
double convergetol,
int msglvl,
FILE *msgFile
)
{
Chv *chv, *rootchv ;
ChvManager *chvmanager ;
DenseMtx *vecD, *vecR, *vecT, *vecU1, *vecU2, *vecV, *vecW;
DenseMtx *vecX, *vecY1, *vecY2 ;
double Alpha, Beta, Cee, Eta, Rho, Rho_new ;
double Sigma, Tau, Theta;
double Init_norm, ratio, Res_norm;
double error_trol, m, Rtmp;
double t1, t2, cpus[9] ;
double one[2] = {1.0, 0.0}, zero[2] ={0.0, 0.0} ;
double Tiny = 0.1e-28;
int Iter, Imv, neqns;
int stats[6] ;
neqns = n_matrixSize;
/*
--------------------
init the vectors in TFQMRL
--------------------
*/
vecD = DenseMtx_new() ;
DenseMtx_init(vecD, type, 0, 0, neqns, 1, 1, neqns) ;
vecR = DenseMtx_new() ;
DenseMtx_init(vecR, type, 0, 0, neqns, 1, 1, neqns) ;
vecT = DenseMtx_new() ;
DenseMtx_init(vecT, type, 0, 0, neqns, 1, 1, neqns) ;
vecU1 = DenseMtx_new() ;
DenseMtx_init(vecU1, type, 0, 0, neqns, 1, 1, neqns) ;
vecU2 = DenseMtx_new() ;
DenseMtx_init(vecU2, type, 0, 0, neqns, 1, 1, neqns) ;
vecV = DenseMtx_new() ;
DenseMtx_init(vecV, type, 0, 0, neqns, 1, 1, neqns) ;
vecW = DenseMtx_new() ;
DenseMtx_init(vecW, type, 0, 0, neqns, 1, 1, neqns) ;
vecX = DenseMtx_new() ;
DenseMtx_init(vecX, type, 0, 0, neqns, 1, 1, neqns) ;
vecY1 = DenseMtx_new() ;
DenseMtx_init(vecY1, type, 0, 0, neqns, 1, 1, neqns) ;
vecY2 = DenseMtx_new() ;
DenseMtx_init(vecY2, type, 0, 0, neqns, 1, 1, neqns) ;
/*
--------------------------
Initialize the iterations
--------------------------
*/
/* ---- Set initial guess as zero ---- */
DenseMtx_zero(vecX) ;
DenseMtx_colCopy(vecT, 0, mtxB, 0);
/* */
FrontMtx_solve(Precond, vecR, vecT, Precond->manager,
cpus, msglvl, msgFile) ;
/* */
Init_norm = DenseMtx_twoNormOfColumn(vecR,0);
if ( Init_norm == 0.0 ){
Init_norm = 1.0;
};
error_trol = Init_norm * convergetol ;
fprintf(msgFile, "\n TFQMRL Initial norml: %6.2e ", Init_norm ) ;
fprintf(msgFile, "\n TFQMRL Conveg. Control: %7.3e ", convergetol ) ;
fprintf(msgFile, "\n TFQMRL Convergen Control: %7.3e ",error_trol ) ;
DenseMtx_zero(vecD) ;
DenseMtx_zero(vecU1) ;
DenseMtx_zero(vecU2) ;
DenseMtx_zero(vecY2) ;
/* DenseMtx_copy(vecR, mtxB); */
DenseMtx_colCopy(vecW, 0, vecR, 0);
DenseMtx_colCopy(vecY1, 0, vecR, 0);
Iter = 0;
Imv = 0;
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecT, one, vecY1) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecT, one, vecY1) ;
break ;
default :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
/* */
FrontMtx_solve(Precond, vecV, vecT, Precond->manager,
cpus, msglvl, msgFile) ;
/* */
Imv++;
DenseMtx_colCopy(vecU1, 0, vecV, 0);
/*
*/
Theta = 0.0;
Eta = 0.0;
Tau = Init_norm ;
Rho = Tau * Tau ;
/*
------------------------------
TFQMRL Iteration start
------------------------------
*/
MARKTIME(t1) ;
while ( Iter <= itermax )
{
Iter++;
DenseMtx_colDotProduct(vecV, 0, vecR, 0, &Sigma);
if (Sigma == 0){
fprintf(msgFile, "\n\n Fatal Error, \n"
" TFQMRL Breakdown, Sigma = 0 !!") ;
Imv = -1;
goto end;
};
Alpha = Rho/Sigma;
/*
----------------
Odd step
---------------
*/
m = 2 * Iter - 1;
Rtmp=-Alpha;
DenseMtx_colGenAxpy(one, vecW, 0, &Rtmp, vecU1, 0);
Rtmp = Theta * Theta * Eta / Alpha ;
DenseMtx_colGenAxpy(&Rtmp, vecD, 0, one, vecY1, 0);
Theta = DenseMtx_twoNormOfColumn(vecW,0)/Tau;
Cee = 1.0/sqrt(1.0 + Theta*Theta);
Tau = Tau * Theta * Cee ;
Eta = Cee * Cee * Alpha ;
DenseMtx_colGenAxpy(one, vecX, 0, &Eta, vecD, 0);
fprintf(msgFile, "\n\n Odd step at %d", Imv);
fprintf(msgFile, " \n Tau is : %7.3e", Tau) ;
/*
Debug purpose: Check the convergence history
for the true residual norm
*/
/*
DenseMtx_zero(vecT) ;
InpMtx_nonsym_mmm(mtxA, vecT, one, vecX) ;
DenseMtx_sub(vecT, mtxB) ;
Rtmp = DenseMtx_twoNormOfColumn(vecT,0);
fprintf(msgFile, "\n TFQMRL Residual norm: %6.2e ", Rtmp) ;
*/
/*
----------------
Convergence Test
---------------
*/
if (Tau * sqrt(m + 1) <= error_trol ) {
/* */
DenseMtx_colCopy(mtxX, 0, vecX, 0);
/*
DenseMtx_zero(vecT) ;
InpMtx_nonsym_mmm(mtxA, vecT, one, mtxX) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecT, one, mtxX) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecT, one, mtxX) ;
break ;
default :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
DenseMtx_sub(vecT, mtxB) ;
Rtmp = DenseMtx_twoNormOfColumn(vecT,0);
fprintf(msgFile, "\n TFQMRL Residual norm: %6.2e ", Rtmp) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU : Converges in time: %8.3f ", t2 - t1) ;
fprintf(msgFile, "\n # iterations = %d", Imv) ;
fprintf(msgFile, "\n\n after TFQMRL") ;
goto end;
};
/*
----------------
Even step
---------------
*/
DenseMtx_colCopy(vecY2, 0, vecY1, 0);
Rtmp=-Alpha;
DenseMtx_colGenAxpy(one, vecY2, 0, &Rtmp, vecV, 0);
/*
DenseMtx_zero(vecT) ;
InpMtx_nonsym_mmm(mtxA, vecT, one, vecY2) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecT, one, vecY2) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecT, one, vecY2) ;
break ;
default :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
FrontMtx_solve(Precond, vecU2, vecT, Precond->manager,
cpus, msglvl, msgFile) ;
Imv++;
m = 2 * Iter ;
Rtmp = -Alpha;
DenseMtx_colGenAxpy(one, vecW, 0, &Rtmp, vecU2, 0);
Rtmp = Theta * Theta * Eta / Alpha ;
DenseMtx_colGenAxpy(&Rtmp, vecD, 0, one, vecY2, 0);
Theta = DenseMtx_twoNormOfColumn(vecW,0)/Tau;
Cee = 1.0/sqrt(1.0 + Theta*Theta);
Tau = Tau * Theta * Cee ;
Eta = Cee * Cee * Alpha ;
DenseMtx_colGenAxpy(one, vecX, 0, &Eta, vecD, 0);
fprintf(msgFile, "\n\n Even step at %d", Imv) ;
/*
----------------
Convergence Test for even step
---------------
*/
if (Tau * sqrt(m + 1) <= error_trol ) {
DenseMtx_colCopy(mtxX, 0, vecX, 0);
/*
DenseMtx_zero(vecT) ;
InpMtx_nonsym_mmm(mtxA, vecT, one, mtxX) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecT, one, mtxX) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecT, one, mtxX) ;
break ;
default :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
DenseMtx_sub(vecT, mtxB) ;
Rtmp = DenseMtx_twoNormOfColumn(vecT,0);
fprintf(msgFile, "\n TFQMRL Residual norm: %6.2e ", Rtmp) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU : Converges in time: %8.3f ", t2 - t1) ;
fprintf(msgFile, "\n # iterations = %d", Imv) ;
fprintf(msgFile, "\n\n after TFQMRL") ;
goto end;
};
if (Rho == 0){
fprintf(msgFile, "\n\n Fatal Error, \n"
" TFQMRL Breakdown, Rho = 0 !!") ;
Imv = -1;
goto end;
};
DenseMtx_colDotProduct(vecW, 0, vecR, 0, &Rho_new);
Beta = Rho_new / Rho;
Rho = Rho_new ;
DenseMtx_colCopy(vecY1, 0, vecY2, 0);
DenseMtx_colGenAxpy(&Beta, vecY1, 0, one, vecW, 0);
/*
DenseMtx_zero(vecT) ;
InpMtx_nonsym_mmm(mtxA, vecT, one, vecY1) ;
*/
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_gmmm(mtxA, zero, vecT, one, vecY1) ;
break ;
case SPOOLES_HERMITIAN :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_gmmm(mtxA, zero, vecT, one, vecY1) ;
break ;
default :
fprintf(msgFile, "\n TFQMRL Matrix type wrong");
fprintf(msgFile, "\n Fatal error");
goto end;
}
FrontMtx_solve(Precond, vecU1, vecT, Precond->manager,
cpus, msglvl, msgFile) ;
Imv++;
/* */
DenseMtx_colCopy(vecT, 0, vecU2, 0);
DenseMtx_colGenAxpy(one, vecT, 0, &Beta, vecV, 0);
DenseMtx_colCopy(vecV, 0, vecT, 0);
DenseMtx_colGenAxpy(&Beta, vecV, 0, one, vecU1, 0);
Rtmp = Tau*sqrt(m + 1)/Init_norm ;
fprintf(msgFile, "\n\n At iteration %d"
" the convergence ratio is %12.4e",
Imv, Rtmp) ;
}
/* End of while loop */
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU : Total iteration time is : %8.3f ", t2 - t1) ;
fprintf(msgFile, "\n # iterations = %d", Imv) ;
fprintf(msgFile, "\n\n TFQMRL did not Converge !") ;
fprintf(msgFile, "\n\n after TFQMRL") ;
DenseMtx_colCopy(mtxX, 0, vecX, 0);
/*
------------------------
free the working storage
------------------------
*/
end:
DenseMtx_free(vecD) ;
DenseMtx_free(vecR) ;
DenseMtx_free(vecT) ;
DenseMtx_free(vecU1) ;
DenseMtx_free(vecU2) ;
DenseMtx_free(vecV) ;
DenseMtx_free(vecW) ;
DenseMtx_free(vecX) ;
DenseMtx_free(vecY1) ;
DenseMtx_free(vecY2) ;
fprintf(msgFile, "\n") ;
return(Imv) ; }
syntax highlighted by Code2HTML, v. 0.9.1