/* testOptPart.c */ #include "../../SymbFac.h" #include "../../timings.h" /*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ------------------------------------------------------ (1) read in an ETree object. (2) read in an Graph object. (3) find the optimal domain/schur complement partition for a semi-implicit factorization created -- 96oct03, cca ------------------------------------------------------ */ { char *inETreeFileName, *inGraphFileName, *outIVfileName ; double alpha, nA21, nfent1, nfops1, nL11, nL22, nPhi, nV, t1, t2 ; Graph *graph ; int ii, inside, J, K, msglvl, nfind1, nfront, nJ, nleaves1, nnode1, nvtx, rc, sizeJ, totalgain, vsize, v, w ; int *adjJ, *compids, *nodwghts, *vadj, *vtxToFront, *vwghts ; IV *compidsIV ; IVL *symbfacIVL ; ETree *etree ; FILE *msgFile ; Tree *tree ; if ( argc != 7 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile inETreeFile inGraphFile alpha" "\n outIVfile " "\n msglvl -- message level" "\n msgFile -- message file" "\n inETreeFile -- input file, must be *.etreef or *.etreeb" "\n inGraphFile -- input file, must be *.graphf or *.graphb" "\n alpha -- weight parameter" "\n alpha = 0 --> minimize storage" "\n alpha = 1 --> minimize solve ops" "\n outIVfile -- output file for oldToNew vector," "\n must be *.ivf or *.ivb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } inETreeFileName = argv[3] ; inGraphFileName = argv[4] ; alpha = atof(argv[5]) ; outIVfileName = argv[6] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n inETreeFile -- %s" "\n inGraphFile -- %s" "\n alpha -- %f" "\n outIVfile -- %s" "\n", argv[0], msglvl, argv[2], inETreeFileName, inGraphFileName, alpha, outIVfileName) ; fflush(msgFile) ; /* ------------------------ read in the ETree object ------------------------ */ if ( strcmp(inETreeFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } etree = ETree_new() ; MARKTIME(t1) ; rc = ETree_readFromFile(etree, inETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s", t2 - t1, inETreeFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, etree, inETreeFileName) ; exit(-1) ; } ETree_leftJustify(etree) ; fprintf(msgFile, "\n\n after reading ETree object from file %s", inETreeFileName) ; if ( msglvl > 2 ) { ETree_writeForHumanEye(etree, msgFile) ; } else { ETree_writeStats(etree, msgFile) ; } fflush(msgFile) ; nfront = ETree_nfront(etree) ; tree = ETree_tree(etree) ; nodwghts = ETree_nodwghts(etree) ; vtxToFront = ETree_vtxToFront(etree) ; /* ------------------------ read in the Graph object ------------------------ */ if ( strcmp(inGraphFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } graph = Graph_new() ; MARKTIME(t1) ; rc = Graph_readFromFile(graph, inGraphFileName) ; nvtx = graph->nvtx ; vwghts = graph->vwghts ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s", t2 - t1, inGraphFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)", rc, graph, inGraphFileName) ; exit(-1) ; } fprintf(msgFile, "\n\n after reading Graph object from file %s", inGraphFileName) ; if ( msglvl > 2 ) { Graph_writeForHumanEye(graph, msgFile) ; } else { Graph_writeStats(graph, msgFile) ; } fflush(msgFile) ; /* ---------------------- compute the statistics ---------------------- */ nnode1 = etree->tree->n ; nfind1 = ETree_nFactorIndices(etree) ; nfent1 = ETree_nFactorEntries(etree, SPOOLES_SYMMETRIC) ; nfops1 = ETree_nFactorOps(etree, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; nleaves1 = Tree_nleaves(etree->tree) ; fprintf(stdout, "\n root front %d has %d vertices", etree->tree->root, etree->nodwghtsIV->vec[etree->tree->root]) ; /* --------------------------------- create the symbolic factorization --------------------------------- */ symbfacIVL = SymbFac_initFromGraph(etree, graph) ; if ( msglvl > 2 ) { IVL_writeForHumanEye(symbfacIVL, msgFile) ; } else { IVL_writeStats(symbfacIVL, msgFile) ; } fflush(msgFile) ; /* -------------------------- find the optimal partition -------------------------- */ compidsIV = ETree_optPart(etree, graph, symbfacIVL, alpha, &totalgain, msglvl, msgFile) ; if ( msglvl > 2 ) { IV_writeForHumanEye(compidsIV, msgFile) ; } else { IV_writeStats(compidsIV, msgFile) ; } fflush(msgFile) ; compids = IV_entries(compidsIV) ; /* ------------------------------------------------------ compute the number of vertices in the schur complement ------------------------------------------------------ */ for ( J = 0, nPhi = nV = 0. ; J < nfront ; J++ ) { if ( compids[J] == 0 ) { nPhi += nodwghts[J] ; } nV += nodwghts[J] ; } /* -------------------------------------------- compute the number of entries in L11 and L22 -------------------------------------------- */ nL11 = nL22 = 0 ; for ( J = Tree_postOTfirst(tree) ; J != -1 ; J = Tree_postOTnext(tree, J) ) { nJ = nodwghts[J] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ; } IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ; for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) { w = adjJ[ii] ; K = vtxToFront[w] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n w = %d, K = %d", w, K) ; } if ( K > J && compids[K] == compids[J] ) { inside += (vwghts == NULL) ? 1 : vwghts[w] ; if ( msglvl > 3 ) { fprintf(msgFile, ", inside") ; } } } if ( compids[J] != 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L11", inside, nJ*nJ + 2*nJ*inside) ; } nL11 += (nJ*(nJ+1))/2 + nJ*inside ; } else { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L22", inside, (nJ*(nJ+1))/2 + nJ*inside) ; } nL22 += (nJ*(nJ+1))/2 + nJ*inside ; } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f", nfent1, nL11, nL22) ; } /* ------------------------------------ compute the number of entries in A21 ------------------------------------ */ nA21 = 0 ; if ( vwghts != NULL ) { for ( v = 0 ; v < nvtx ; v++ ) { J = vtxToFront[v] ; if ( compids[J] != 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; K = vtxToFront[w] ; if ( compids[K] == 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21 += vwghts[v] * vwghts[w] ; } } } } } else { for ( v = 0 ; v < nvtx ; v++ ) { J = vtxToFront[v] ; if ( compids[J] != 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; K = vtxToFront[w] ; if ( compids[K] == 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21++ ; } } } } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f", nfent1, nL11, nL22, nA21) ; fprintf(msgFile, "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f" "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f", nfent1, nL11 + nA21 + nL22, nfent1/(nL11 + nA21 + nL22), 2*nfent1, 4*nL11 + 2*nA21 + 2*nL22, 2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ; fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f", nPhi/nV, nfent1/(nL11 + nA21 + nL22), 2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ; } /* ---------------- free the objects ---------------- */ ETree_free(etree) ; Graph_free(graph) ; IVL_free(symbfacIVL) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; } /*--------------------------------------------------------------------*/