/* testOptPart.c */
#include "../../SymbFac.h"
#include "../../timings.h"
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
------------------------------------------------------
(1) read in an ETree object.
(2) read in an Graph object.
(3) find the optimal domain/schur complement partition
for a semi-implicit factorization
created -- 96oct03, cca
------------------------------------------------------
*/
{
char *inETreeFileName, *inGraphFileName, *outIVfileName ;
double alpha, nA21, nfent1, nfops1, nL11, nL22, nPhi, nV, t1, t2 ;
Graph *graph ;
int ii, inside, J, K, msglvl, nfind1, nfront, nJ, nleaves1,
nnode1, nvtx, rc, sizeJ, totalgain, vsize, v, w ;
int *adjJ, *compids, *nodwghts, *vadj, *vtxToFront, *vwghts ;
IV *compidsIV ;
IVL *symbfacIVL ;
ETree *etree ;
FILE *msgFile ;
Tree *tree ;
if ( argc != 7 ) {
fprintf(stdout,
"\n\n usage : %s msglvl msgFile inETreeFile inGraphFile alpha"
"\n outIVfile "
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n inETreeFile -- input file, must be *.etreef or *.etreeb"
"\n inGraphFile -- input file, must be *.graphf or *.graphb"
"\n alpha -- weight parameter"
"\n alpha = 0 --> minimize storage"
"\n alpha = 1 --> minimize solve ops"
"\n outIVfile -- output file for oldToNew vector,"
"\n must be *.ivf or *.ivb"
"\n", argv[0]) ;
return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;
}
inETreeFileName = argv[3] ;
inGraphFileName = argv[4] ;
alpha = atof(argv[5]) ;
outIVfileName = argv[6] ;
fprintf(msgFile,
"\n %s "
"\n msglvl -- %d"
"\n msgFile -- %s"
"\n inETreeFile -- %s"
"\n inGraphFile -- %s"
"\n alpha -- %f"
"\n outIVfile -- %s"
"\n",
argv[0], msglvl, argv[2],
inETreeFileName, inGraphFileName, alpha, outIVfileName) ;
fflush(msgFile) ;
/*
------------------------
read in the ETree object
------------------------
*/
if ( strcmp(inETreeFileName, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
etree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
t2 - t1, inETreeFileName) ;
if ( rc != 1 ) {
fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
rc, etree, inETreeFileName) ;
exit(-1) ;
}
ETree_leftJustify(etree) ;
fprintf(msgFile, "\n\n after reading ETree object from file %s",
inETreeFileName) ;
if ( msglvl > 2 ) {
ETree_writeForHumanEye(etree, msgFile) ;
} else {
ETree_writeStats(etree, msgFile) ;
}
fflush(msgFile) ;
nfront = ETree_nfront(etree) ;
tree = ETree_tree(etree) ;
nodwghts = ETree_nodwghts(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
/*
------------------------
read in the Graph object
------------------------
*/
if ( strcmp(inGraphFileName, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
graph = Graph_new() ;
MARKTIME(t1) ;
rc = Graph_readFromFile(graph, inGraphFileName) ;
nvtx = graph->nvtx ;
vwghts = graph->vwghts ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s",
t2 - t1, inGraphFileName) ;
if ( rc != 1 ) {
fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)",
rc, graph, inGraphFileName) ;
exit(-1) ;
}
fprintf(msgFile, "\n\n after reading Graph object from file %s",
inGraphFileName) ;
if ( msglvl > 2 ) {
Graph_writeForHumanEye(graph, msgFile) ;
} else {
Graph_writeStats(graph, msgFile) ;
}
fflush(msgFile) ;
/*
----------------------
compute the statistics
----------------------
*/
nnode1 = etree->tree->n ;
nfind1 = ETree_nFactorIndices(etree) ;
nfent1 = ETree_nFactorEntries(etree, SPOOLES_SYMMETRIC) ;
nfops1 = ETree_nFactorOps(etree, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
nleaves1 = Tree_nleaves(etree->tree) ;
fprintf(stdout, "\n root front %d has %d vertices",
etree->tree->root,
etree->nodwghtsIV->vec[etree->tree->root]) ;
/*
---------------------------------
create the symbolic factorization
---------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(etree, graph) ;
if ( msglvl > 2 ) {
IVL_writeForHumanEye(symbfacIVL, msgFile) ;
} else {
IVL_writeStats(symbfacIVL, msgFile) ;
}
fflush(msgFile) ;
/*
--------------------------
find the optimal partition
--------------------------
*/
compidsIV = ETree_optPart(etree, graph, symbfacIVL, alpha,
&totalgain, msglvl, msgFile) ;
if ( msglvl > 2 ) {
IV_writeForHumanEye(compidsIV, msgFile) ;
} else {
IV_writeStats(compidsIV, msgFile) ;
}
fflush(msgFile) ;
compids = IV_entries(compidsIV) ;
/*
------------------------------------------------------
compute the number of vertices in the schur complement
------------------------------------------------------
*/
for ( J = 0, nPhi = nV = 0. ; J < nfront ; J++ ) {
if ( compids[J] == 0 ) {
nPhi += nodwghts[J] ;
}
nV += nodwghts[J] ;
}
/*
--------------------------------------------
compute the number of entries in L11 and L22
--------------------------------------------
*/
nL11 = nL22 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
J != -1 ;
J = Tree_postOTnext(tree, J) ) {
nJ = nodwghts[J] ;
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ;
}
IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ;
for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) {
w = adjJ[ii] ;
K = vtxToFront[w] ;
if ( msglvl > 3 ) {
fprintf(msgFile, "\n w = %d, K = %d", w, K) ;
}
if ( K > J && compids[K] == compids[J] ) {
inside += (vwghts == NULL) ? 1 : vwghts[w] ;
if ( msglvl > 3 ) {
fprintf(msgFile, ", inside") ;
}
}
}
if ( compids[J] != 0 ) {
if ( msglvl > 3 ) {
fprintf(msgFile, "\n inside = %d, adding %d to L11",
inside, nJ*nJ + 2*nJ*inside) ;
}
nL11 += (nJ*(nJ+1))/2 + nJ*inside ;
} else {
if ( msglvl > 3 ) {
fprintf(msgFile, "\n inside = %d, adding %d to L22",
inside, (nJ*(nJ+1))/2 + nJ*inside) ;
}
nL22 += (nJ*(nJ+1))/2 + nJ*inside ;
}
}
if ( msglvl > 0 ) {
fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f",
nfent1, nL11, nL22) ;
}
/*
------------------------------------
compute the number of entries in A21
------------------------------------
*/
nA21 = 0 ;
if ( vwghts != NULL ) {
for ( v = 0 ; v < nvtx ; v++ ) {
J = vtxToFront[v] ;
if ( compids[J] != 0 ) {
Graph_adjAndSize(graph, v, &vsize, &vadj) ;
for ( ii = 0 ; ii < vsize ; ii++ ) {
w = vadj[ii] ;
K = vtxToFront[w] ;
if ( compids[K] == 0 ) {
if ( msglvl > 3 ) {
fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
}
nA21 += vwghts[v] * vwghts[w] ;
}
}
}
}
} else {
for ( v = 0 ; v < nvtx ; v++ ) {
J = vtxToFront[v] ;
if ( compids[J] != 0 ) {
Graph_adjAndSize(graph, v, &vsize, &vadj) ;
for ( ii = 0 ; ii < vsize ; ii++ ) {
w = vadj[ii] ;
K = vtxToFront[w] ;
if ( compids[K] == 0 ) {
if ( msglvl > 3 ) {
fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
}
nA21++ ;
}
}
}
}
}
if ( msglvl > 0 ) {
fprintf(msgFile,
"\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f",
nfent1, nL11, nL22, nA21) ;
fprintf(msgFile,
"\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f"
"\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f",
nfent1, nL11 + nA21 + nL22,
nfent1/(nL11 + nA21 + nL22),
2*nfent1, 4*nL11 + 2*nA21 + 2*nL22,
2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f",
nPhi/nV,
nfent1/(nL11 + nA21 + nL22),
2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
}
/*
----------------
free the objects
----------------
*/
ETree_free(etree) ;
Graph_free(graph) ;
IVL_free(symbfacIVL) ;
fprintf(msgFile, "\n") ;
fclose(msgFile) ;
return(1) ; }
/*--------------------------------------------------------------------*/
syntax highlighted by Code2HTML, v. 0.9.1