#include "xlisp.h" #include "xlstat.h" /* natural cubic spline interpolation based on Numerical Recipes in C */ /* calculate second derivatives; assumes strictly increasing x values */ static VOID find_spline_derivs P5C(double *, x, double *, y, int, n, double *, y2, double *, u) { int i, k; double p, sig; y2[0] = u[0] = 0.0; /* lower boundary condition for natural spline */ /* decomposition loop for the tridiagonal algorithm */ for (i = 1; i < n - 1; i++) { y2[i] = u[i] = 0.0; /* set in case a zero test is failed */ if (x[i - 1] < x[i] && x[i] < x[i + 1]) { sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]); p = sig * y2[i - 1] + 2.0; if (p != 0.0) { y2[i] = (sig - 1.0) / p; u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]); u[i] = (6.0 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p; } } } /* upper boundary condition for natural spline */ y2[n - 1] = 0.0; /* backsubstitution loop of the tridiagonal algorithm */ for (k = n - 2; k >= 0; k--) y2[k] = y2[k] * y2[k + 1] + u[k]; } /* interpolate or extrapolate value at x using results of find_spline_derivs */ static VOID spline_interp P6C(double *, xa, double *, ya, double *, y2a, int, n, double, x, double *, y) { int klo, khi, k; double h, b, a; if (x <= xa[0]) { h = xa[1] - xa[0]; b = (h > 0.0) ? (ya[1] - ya[0]) / h - h * y2a[1] / 6.0 : 0.0; *y = ya[0] + b * (x - xa[0]); } else if (x >= xa[n - 1]) { h = xa[n - 1] - xa[n - 2]; b = (h > 0.0) ? (ya[n - 1] - ya[n - 2]) / h + h * y2a[n - 2] / 6.0 : 0.0; *y = ya[n - 1] + b * (x - xa[n - 1]); } else { /* try a linear interpolation for equally spaced x values */ k = (n - 1) * (x - xa[0]) / (xa[n - 1] - xa[0]); /* make sure the range is right */ if (k < 0) k = 0; if (k > n - 2) k = n - 2; /* bisect if necessary until the bracketing interval is found */ klo = (x >= xa[k]) ? k : 0; khi = (x < xa[k + 1]) ? k + 1 : n - 1; while (khi - klo > 1) { k = (khi + klo) / 2; if (xa[k] > x) khi = k; else klo = k; } /* interpolate */ h = xa[khi] - xa[klo]; if (h > 0.0) { a = (xa[khi] - x) / h; b = (x - xa[klo]) / h; *y = a * ya[klo] + b * ya[khi] + ((a * a * a - a) * y2a[klo] + (b * b * b - b) * y2a[khi]) * (h * h) / 6.0; } else *y = (ya[klo] + ya[khi]) / 2.0; /* should not be needed */ } } int fit_spline P7C(int, n, double *, x, double *, y, int, ns, double *, xs, double *, ys, double *, work) { int i; double *y2, *u; y2 = work; u = work + n; if (n < 2 || ns < 1) return (1); /* signal an error */ for (i = 1; i < n; i++) if (x[i - 1] >= x[i]) return(1); /* signal an error */ find_spline_derivs(x, y, n, y2, u); for (i = 0; i < ns; i++) spline_interp(x, y, y2, n, xs[i], &ys[i]); return(0); }