/******************************************************************
* *
* File : dense.c *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the implementation file for a generic DENSE linear *
* solver package. *
* *
******************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "dense.h"
#include "llnltyps.h"
#include "vector.h"
#include "llnlmath.h"
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
/* Implementation */
DenseMat DenseAllocMat(integer N)
{
DenseMat A;
if (N <= 0) return(NULL);
A = (DenseMat) malloc(sizeof *A);
if (A==NULL) return (NULL);
A->data = denalloc(N);
if (A->data == NULL) {
free(A);
return(NULL);
}
A->size = N;
return(A);
}
integer *DenseAllocPiv(integer N)
{
if (N <= 0) return(NULL);
return((integer *) malloc(N * sizeof(integer)));
}
integer DenseFactor(DenseMat A, integer *p)
{
return(gefa(A->data, A->size, p));
}
void DenseBacksolve(DenseMat A, integer *p, N_Vector b)
{
gesl(A->data, A->size, p, N_VDATA(b));
}
void DenseZero(DenseMat A)
{
denzero(A->data, A->size);
}
void DenseCopy(DenseMat A, DenseMat B)
{
dencopy(A->data, B->data, A->size);
}
void DenseScale(real c, DenseMat A)
{
denscale(c, A->data, A->size);
}
void DenseAddI(DenseMat A)
{
denaddI(A->data, A->size);
}
void DenseFreeMat(DenseMat A)
{
denfree(A->data);
free(A);
}
void DenseFreePiv(integer *p)
{
free(p);
}
void DensePrint(DenseMat A)
{
denprint(A->data, A->size);
}
real **denalloc(integer n)
{
integer j;
real **a;
if (n <= 0) return(NULL);
a = (real **) malloc(n * sizeof(real *));
if (a == NULL) return(NULL);
a[0] = (real *) malloc(n * n * sizeof(real));
if (a[0] == NULL) {
free(a);
return(NULL);
}
for (j=1; j < n; j++) a[j] = a[0] + j * n;
return(a);
}
integer *denallocpiv(integer n)
{
if (n <= 0) return(NULL);
return((integer *) malloc(n * sizeof(integer)));
}
integer gefa(real **a, integer n, integer *p)
{
integer i, j, k, l;
real *col_j, *col_k, *diag_k;
real temp, mult, a_kj;
bool swap;
/* k = elimination step number */
for (k=0; k < n-1; k++, p++) {
col_k = a[k];
diag_k = col_k + k;
/* find l = pivot row number */
l=k;
for (i=k+1; i < n; i++)
if (ABS(col_k[i]) > ABS(col_k[l])) l=i;
*p = l;
/* check for zero pivot element */
if (col_k[l] == ZERO) return(k+1);
/* swap a(l,k) and a(k,k) if necessary */
if (swap = (l != k)) {
temp = col_k[l];
col_k[l] = *diag_k;
*diag_k = temp;
}
/* Scale the elements below the diagonal in */
/* column k by -1.0 / a(k,k). After the above swap, */
/* a(k,k) holds the pivot element. This scaling */
/* stores the pivot row multipliers -a(i,k)/a(k,k) */
/* in a(i,k), i=k+1, ..., n-1. */
mult = -ONE / (*diag_k);
for(i=k+1; i < n; i++)
col_k[i] *= mult;
/* row_i = row_i - [a(i,k)/a(k,k)] row_k, i=k+1, ..., n-1 */
/* row k is the pivot row after swapping with row l. */
/* The computation is done one column at a time, */
/* column j=k+1, ..., n-1. */
for (j=k+1; j < n; j++) {
col_j = a[j];
a_kj = col_j[l];
/* Swap the elements a(k,j) and a(k,l) if l!=k. */
if (swap) {
col_j[l] = col_j[k];
col_j[k] = a_kj;
}
/* a(i,j) = a(i,j) - [a(i,k)/a(k,k)]*a(k,j) */
/* a_kj = a(k,j), col_k[i] = - a(i,k)/a(k,k) */
if (a_kj != ZERO) {
for (i=k+1; i < n; i++)
col_j[i] += a_kj * col_k[i];
}
}
}
/* set the last pivot row to be n-1 and check for a zero pivot */
*p = n-1;
if (a[n-1][n-1] == ZERO) return(n);
/* return 0 to indicate success */
return(0);
}
void gesl(real **a, integer n, integer *p, real *b)
{
integer k, l, i;
real mult, *col_k;
/* Solve Ly = Pb, store solution y in b */
for (k=0; k < n-1; k++) {
l = p[k];
mult = b[l];
if (l != k) {
b[l] = b[k];
b[k] = mult;
}
col_k = a[k];
for (i=k+1; i < n; i++)
b[i] += mult*col_k[i];
}
/* Solve Ux = y, store solution x in b */
for (k=n-1; k >= 0; k--) {
col_k = a[k];
b[k] /= col_k[k];
mult = -b[k];
for (i=0; i < k; i++)
b[i] += mult*col_k[i];
}
}
void denzero(real **a, integer n)
{
integer i, j;
real *col_j;
for (j=0; j < n; j++) {
col_j = a[j];
for (i=0; i < n; i++)
col_j[i] = ZERO;
}
}
void dencopy(real **a, real **b, integer n)
{
integer i, j;
real *a_col_j, *b_col_j;
for (j=0; j < n; j++) {
a_col_j = a[j];
b_col_j = b[j];
for (i=0; i < n; i++)
b_col_j[i] = a_col_j[i];
}
}
void denscale(real c, real **a, integer n)
{
integer i, j;
real *col_j;
for (j=0; j < n; j++) {
col_j = a[j];
for (i=0; i < n; i++)
col_j[i] *= c;
}
}
void denaddI(real **a, integer n)
{
integer i;
for (i=0; i < n; i++) a[i][i] += ONE;
}
void denfreepiv(integer *p)
{
free(p);
}
void denfree(real **a)
{
free(a[0]);
free(a);
}
void denprint(real **a, integer n)
{
integer i, j;
printf("\n");
for (i=0; i < n; i++) {
for (j=0; j < n; j++) {
printf("%10g", a[j][i]);
}
printf("\n");
}
printf("\n");
}
syntax highlighted by Code2HTML, v. 0.9.1