/******************************************************************
* *
* File : dense.h *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the header file for a generic DENSE linear solver *
* package. There are two sets of dense solver routines listed in *
* this file: one set uses type DenseMat defined below and the *
* other set uses the type real ** for dense matrix arguments. *
* The two sets of dense solver routines make it easy to work *
* with two types of dense matrices: *
* *
* (1) The DenseMat type is intended for use with large dense *
* matrices whose elements/columns may be stored in *
* non-contiguous memory locations or even distributed into *
* different processor memories. This type may be modified to *
* include such distribution information. If this is done, *
* then all the routines that use DenseMat must be modified *
* to reflect the new data structure. *
* *
* (2) The set of routines that use real ** (and NOT the DenseMat *
* type) is intended for use with small matrices which can *
* easily be allocated within a contiguous block of memory *
* on a single processor. *
* *
* Routines that work with the type DenseMat begin with "Dense". *
* The DenseAllocMat function allocates a dense matrix for use in *
* the other DenseMat routines listed in this file. Matrix *
* storage details are given in the documentation for the type *
* DenseMat. The DenseAllocPiv function allocates memory for *
* pivot information. The storage allocated by DenseAllocMat and *
* DenseAllocPiv is deallocated by the routines DenseFreeMat and *
* DenseFreePiv, respectively. The DenseFactor and DenseBacksolve *
* routines perform the actual solution of a dense linear system. *
* Note that the DenseBacksolve routine has a parameter b of type *
* N_Vector. The current implementation makes use of a machine *
* environment-specific macro (N_VDATA) which may not exist for *
* other implementations of the type N_Vector. Thus, the *
* implementation of DenseBacksolve may need to change if the *
* type N_Vector is changed. *
* *
* Routines that work with real ** begin with "den" (except for *
* the factor and solve routines which are called gefa and gesl, *
* respectively). The underlying matrix storage is described in *
* the documentation for denalloc. *
* *
******************************************************************/
#ifndef _dense_h
#define _dense_h
#include "llnltyps.h"
#include "vector.h"
/******************************************************************
* *
* Type: DenseMat *
*----------------------------------------------------------------*
* The type DenseMat is defined to be a pointer to a structure *
* with a size and a data field. The size field indicates the *
* number of columns (== number of rows) of a dense matrix, while *
* the data field is a two dimensional array used for component *
* storage. The elements of a dense matrix are stored columnwise *
* (i.e columns are stored one on top of the other in memory). If *
* A is of type DenseMat, then the (i,j)th element of A (with *
* 0 <= i,j <= size-1) is given by the expression (A->data)[j][i] *
* or by the expression (A->data)[0][j*n+i]. The macros below *
* allow a user to access efficiently individual matrix *
* elements without writing out explicit data structure *
* references and without knowing too much about the underlying *
* element storage. The only storage assumption needed is that *
* elements are stored columnwise and that a pointer to the jth *
* column of elements can be obtained via the DENSE_COL macro. *
* Users should use these macros whenever possible. *
* *
******************************************************************/
typedef struct {
integer size;
real **data;
} *DenseMat;
/* DenseMat accessor macros */
/******************************************************************
* *
* Macro : DENSE_ELEM *
* Usage : DENSE_ELEM(A,i,j) = a_ij; OR *
* a_ij = DENSE_ELEM(A,i,j); *
*----------------------------------------------------------------*
* DENSE_ELEM(A,i,j) references the (i,j)th element of the N by N *
* DenseMat A, 0 <= i,j <= N-1. *
* *
******************************************************************/
#define DENSE_ELEM(A,i,j) ((A->data)[j][i])
/******************************************************************
* *
* Macro : DENSE_COL *
* Usage : col_j = DENSE_COL(A,j); *
*----------------------------------------------------------------*
* DENSE_COL(A,j) references the jth column of the N by N *
* DenseMat A, 0 <= j <= N-1. The type of the expression *
* DENSE_COL(A,j) is real *. After the assignment in the usage *
* above, col_j may be treated as an array indexed from 0 to N-1. *
* The (i,j)th element of A is referenced by col_j[i]. *
* *
******************************************************************/
#define DENSE_COL(A,j) ((A->data)[j])
/* Functions that use the DenseMat representation for a dense matrix */
/******************************************************************
* *
* Function : DenseAllocMat *
* Usage : A = DenseAllocMat(N); *
* if (A == NULL) ... memory request failed *
*----------------------------------------------------------------*
* DenseAllocMat allocates memory for an N by N dense matrix and *
* returns the storage allocated (type DenseMat). DenseAllocMat *
* returns NULL if the request for matrix storage cannot be *
* satisfied. See the above documentation for the type DenseMat *
* for matrix storage details. *
* *
******************************************************************/
DenseMat DenseAllocMat(integer N);
/******************************************************************
* *
* Function : DenseAllocPiv *
* Usage : p = DenseAllocPiv(N); *
* if (p == NULL) ... memory request failed *
*----------------------------------------------------------------*
* DenseAllocPiv allocates memory for pivot information to be *
* filled in by the DenseFactor routine during the factorization *
* of an N by N dense matrix. The underlying type for pivot *
* information is an array of N integers and this routine returns *
* the pointer to the memory it allocates. If the request for *
* pivot storage cannot be satisfied, DenseAllocPiv returns NULL. *
* *
******************************************************************/
integer *DenseAllocPiv(integer N);
/******************************************************************
* *
* Function : DenseFactor *
* Usage : ier = DenseFactor(A, p); *
* if (ier != 0) ... A is singular *
*----------------------------------------------------------------*
* DenseFactor performs the LU factorization of the N by N dense *
* matrix A. This is done using standard Gaussian elimination *
* with partial pivoting. *
* *
* A successful LU factorization leaves the matrix A and the *
* pivot array p with the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., N-1. *
* *
* (2) If the unique LU factorization of A is given by PA = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *
* triangular matrix, then the upper triangular part of A *
* (including its diagonal) contains U and the strictly lower *
* triangular part of A contains the multipliers, I-L. *
* *
* DenseFactor returns 0 if successful. Otherwise it encountered *
* a zero diagonal element during the factorization. In this case *
* it returns the column index (numbered from one) at which *
* it encountered the zero. *
* *
******************************************************************/
integer DenseFactor(DenseMat A, integer *p);
/******************************************************************
* *
* Function : DenseBacksolve *
* Usage : DenseBacksolve(A, p, b); *
*----------------------------------------------------------------*
* DenseBacksolve solves the N-dimensional system A x = b using *
* the LU factorization in A and the pivot information in p *
* computed in DenseFactor. The solution x is returned in b. This *
* routine cannot fail if the corresponding call to DenseFactor *
* did not fail. *
* *
******************************************************************/
void DenseBacksolve(DenseMat A, integer *p, N_Vector b);
/******************************************************************
* *
* Function : DenseZero *
* Usage : DenseZero(A); *
*----------------------------------------------------------------*
* DenseZero sets all the elements of the N by N matrix A to 0.0. *
* *
******************************************************************/
void DenseZero(DenseMat A);
/******************************************************************
* *
* Function : DenseCopy *
* Usage : DenseCopy(A, B); *
*----------------------------------------------------------------*
* DenseCopy copies the contents of the N by N matrix A into the *
* N by N matrix B. *
* *
******************************************************************/
void DenseCopy(DenseMat A, DenseMat B);
/******************************************************************
* *
* Function: DenseScale *
* Usage : DenseScale(c, A); *
*----------------------------------------------------------------*
* DenseScale scales the elements of the N by N matrix A by the *
* constant c and stores the result back in A. *
* *
******************************************************************/
void DenseScale(real c, DenseMat A);
/******************************************************************
* *
* Function : DenseAddI *
* Usage : DenseAddI(A); *
*----------------------------------------------------------------*
* DenseAddI adds the identity matrix to A and stores the result *
* back in A. *
* *
******************************************************************/
void DenseAddI(DenseMat A);
/******************************************************************
* *
* Function : DenseFreeMat *
* Usage : DenseFreeMat(A); *
*----------------------------------------------------------------*
* DenseFreeMat frees the memory allocated by DenseAllocMat for *
* the N by N matrix A. *
* *
******************************************************************/
void DenseFreeMat(DenseMat A);
/******************************************************************
* *
* Function : DenseFreePiv *
* Usage : DenseFreePiv(p); *
*----------------------------------------------------------------*
* DenseFreePiv frees the memory allocated by DenseAllocPiv for *
* the pivot information array p. *
* *
******************************************************************/
void DenseFreePiv(integer *p);
/******************************************************************
* *
* Function : DensePrint *
* Usage : DensePrint(A); *
*----------------------------------------------------------------*
* This routine prints the N by N dense matrix A to standard *
* output as it would normally appear on paper. It is intended *
* as a debugging tool with small values of N. The elements are *
* printed using the %g option. A blank line is printed before *
* and after the matrix. *
* *
******************************************************************/
void DensePrint(DenseMat A);
/* Functions that use the real ** representation for a dense matrix */
/******************************************************************
* *
* Function : denalloc *
* Usage : real **a; *
* a = denalloc(n); *
* if (a == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denalloc(n) allocates storage for an n by n dense matrix. It *
* returns a pointer to the newly allocated storage if *
* successful. If the memory request cannot be satisfied, then *
* denalloc returns NULL. The underlying type of the dense matrix *
* returned is real **. If we allocate a dense matrix real **a by *
* a = denalloc(n), then a[j][i] references the (i,j)th element *
* of the matrix a, 0 <= i,j <= n-1, and a[j] is a pointer to the *
* first element in the jth column of a. The location a[0] *
* contains a pointer to n^2 contiguous locations which contain *
* the elements of a. *
* *
******************************************************************/
real **denalloc(integer n);
/******************************************************************
* *
* Function : denallocpiv *
* Usage : integer *pivot; *
* pivot = denallocpiv(n); *
* if (pivot == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denallocpiv(n) allocates an array of n integers. It returns a *
* pointer to the first element in the array if successful. It *
* returns NULL if the memory request could not be satisfied. *
* *
******************************************************************/
integer *denallocpiv(integer n);
/******************************************************************
* *
* Function : gefa *
* Usage : integer ier; *
* ier = gefa(a,n,p); *
* if (ier > 0) ... zero element encountered during *
* the factorization *
*----------------------------------------------------------------*
* gefa(a,n,p) factors the n by n dense matrix a. It overwrites *
* the elements of a with its LU factors and keeps track of the *
* pivot rows chosen in the pivot array p. *
* *
* A successful LU factorization leaves the matrix a and the *
* pivot array p with the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., n-1. *
* *
* (2) If the unique LU factorization of a is given by Pa = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *
* triangular matrix, then the upper triangular part of a *
* (including its diagonal) contains U and the strictly lower *
* triangular part of a contains the multipliers, I-L. *
* *
* gefa returns 0 if successful. Otherwise it encountered a zero *
* diagonal element during the factorization. In this case it *
* returns the column index (numbered from one) at which it *
* encountered the zero. *
* *
******************************************************************/
integer gefa(real **a, integer n, integer *p);
/******************************************************************
* *
* Function : gesl *
* Usage : real *b; *
* ier = gefa(a,n,p); *
* if (ier == 0) gesl(a,n,p,b); *
*----------------------------------------------------------------*
* gesl(a,n,p,b) solves the n by n linear system ax = b. It *
* assumes that a has been LU factored and the pivot array p has *
* been set by a successful call to gefa(a,n,p). The solution x *
* is written into the b array. *
* *
******************************************************************/
void gesl(real **a, integer n, integer *p, real *b);
/******************************************************************
* *
* Function : denzero *
* Usage : denzero(a,n); *
*----------------------------------------------------------------*
* denzero(a,n) sets all the elements of the n by n dense matrix *
* a to be 0.0. *
* *
******************************************************************/
void denzero(real **a, integer n);
/******************************************************************
* *
* Function : dencopy *
* Usage : dencopy(a,b,n); *
*----------------------------------------------------------------*
* dencopy(a,b,n) copies the n by n dense matrix a into the *
* n by n dense matrix b. *
* *
******************************************************************/
void dencopy(real **a, real **b, integer n);
/******************************************************************
* *
* Function : denscale *
* Usage : denscale(c,a,n); *
*----------------------------------------------------------------*
* denscale(c,a,n) scales every element in the n by n dense *
* matrix a by c. *
* *
******************************************************************/
void denscale(real c, real **a, integer n);
/******************************************************************
* *
* Function : denaddI *
* Usage : denaddI(a,n); *
*----------------------------------------------------------------*
* denaddI(a,n) increments the n by n dense matrix a by the *
* identity matrix. *
* *
******************************************************************/
void denaddI(real **a, integer n);
/******************************************************************
* *
* Function : denfreepiv *
* Usage : denfreepiv(p); *
*----------------------------------------------------------------*
* denfreepiv(p) frees the pivot array p allocated by *
* denallocpiv. *
* *
******************************************************************/
void denfreepiv(integer *p);
/******************************************************************
* *
* Function : denfree *
* Usage : denfree(a); *
*----------------------------------------------------------------*
* denfree(a) frees the dense matrix a allocated by denalloc. *
* *
******************************************************************/
void denfree(real **a);
/******************************************************************
* *
* Function : denprint *
* Usage : denprint(a,n); *
*----------------------------------------------------------------*
* denprint(a,n) prints the n by n dense matrix a to standard *
* output as it would normally appear on paper. It is intended as *
* a debugging tool with small values of n. The elements are *
* printed using the %g option. A blank line is printed before *
* and after the matrix. *
* *
******************************************************************/
void denprint(real **a, integer n);
#endif
syntax highlighted by Code2HTML, v. 0.9.1