# cuplamdif.ode # the functions F(u,v), G(u1,v1) par lam=1.5 q=0.8 d=1 u0=1 u10=0.95 # 1/sqrt(pi)= par spi=0.56419 # the integral equations; since (0,0,0,0) is a rest point, I # add a small quickly decaying transient volt u=u0*exp(-5*t)+spi*(int[.5]{exp(-t)#f}+int[.5]{exp(-t-d/(t+.0001))#f1}) volt v=spi*(int[.5]{exp(-t)#g}+int[.5]{exp(-t-d/(t+.0001))#g1}) volt u1=u10*exp(-5*t)+spi*(int[.5]{exp(-t)#f1}+int[.5]{exp(-t-d/(t+.0001))#f}) volt v1=spi*(int[.5]{exp(-t)#g1}+int[.5]{exp(-t-d/(t+.0001))#g}) # the four functions f,g,f1,g1 f=lam*u-v-(u*u+v*v)*(u+q*v) g=lam*v+u-(u*u+v*v)*(v-q*u) f1=lam*u1-v1-(u1*u1+v1*v1)*(u1+q*v1) g1=lam*v1+u1-(u1*u1+v1*v1)*(v1-q*u1) done