# fabry-perot cavity init tau=1,x=1.08 # needed to fool XPP into using the Volterra solver junk=int{0#x} # ode for the delay tau'=v/(c+delay(v,tau)) x0=-xs+a*sin(th)^2/(1-cos(th)^2-2*cos(th)*cos(xs)) x'=v v'=-v/q-x-x0+a*(fr*fr+fi*fi)*sin(th)^2 volt fr=1+cos(th)*(cos(delay(x,tau))*delay(fr,tau)-sin(delay(x,tau))*delay(fi,tau)) volt fi=1+cos(th)*(sin(delay(x,tau))*delay(fr,tau)+cos(delay(x,tau))*delay(fi,tau)) par q=.11,xs=1.07,a=11.459,th=1,r=1.2221,c=120,eps=.1 @ dt=.025,total=200,trans=50,delay=4,vmaxpts=1 done # Functional-differential equations for a pendular Fabry-Perot cavity: x''+x'/Q+x+x0 = A sin^2 th |f|^2, f(t) = 1 + cos th exp(i x(t-tau)) f(t-tau), tau = (r+(x(t)+x(t-tau)-2 xs)/c). f(t) is complex, the parameters are Q, A, th, xs, r, c and we define: x0 + xs = A sin^2 th/(1-cos^2 th-2 cos th cos xs). Initial conditions: x = const. We differentiate tau with respect to t to get an ODE for tau to avoid the ugly implicit definition I use a Volterra declaration to trick XPP into treating fr,fi as integral equations