# the normal form of a Hopf bifurcation lamomeg.ode # Boundary conditions are periodic and there is # a frequency parameter -- om init x=1 y=0 par q=2 om=3.14159 x'=(x*(1-x^2-y^2)+q*(x^2+y^2)*y)*om y'=(y*(1-x^2-y^2)-q*(x^2+y^2)*x)*om # Periodic boundary conditions bndry x-x' bndry y-y' @ dt=.01,total=4,xhi=4,ylo=-1.5,yhi=1.5 aux xp=(x*(1-x^2-y^2)+q*(x^2+y^2)*y)*om aux yp=(y*(1-x^2-y^2)-q*(x^2+y^2)*x)*om done