# lamvolt.ode # the four variables: init u=0 v=0 u1=0 v1=0 par lam=1.5 q=0.8 d=1 u0=1 u10=0.95 # 1/sqrt(pi)= number spi=0.56419 # the integral equations; since (0,0,0,0) is a rest point, I # add a small quickly decaying transient u(t)=u0*exp(-5*t)+spi*(int[.5]{exp(-t)#f}+int[.5]{exp(-t-d/(t+.0001))#f1}) v(t)=spi*(int[.5]{exp(-t)#g}+int[.5]{exp(-t-d/(t+.0001))#g1}) u1(t)=u10*exp(-5*t)+spi*(int[.5]{exp(-t)#f1}+int[.5]{exp(-t-d/(t+.0001))#f}) v1(t)=spi*(int[.5]{exp(-t)#g1}+int[.5]{exp(-t-d/(t+.0001))#g}) # the four functions f,g,f1,g1 f=lam*u-v-(u*u+v*v)*(u+q*v) g=lam*v+u-(u*u+v*v)*(v-q*u) f1=lam*u1-v1-(u1*u1+v1*v1)*(u1+q*v1) g1=lam*v1+u1-(u1*u1+v1*v1)*(v1-q*u1) done # This is a model for two oscillators embedded in an infinite # one-dimensional medium a distance d apart. The value lam=sqrt(2) # is where oscillations of the uncoupled system begin. Four coupled integral # equations are solved. For d=2, the model is bistable and the in-phase # and anti-phase solution are stable (q=.8) One should use DELTA_T=.01 # and MaxPoints=1001 to get numerical stability. #