# neural network tabular wgt % 25 -12 12 1/25 f(u)=1/(1+exp(-beta*u)) special k=conv(even,51,12,wgt,u0) u[0..50]'=-u[j]+f(a*k([j])-thr) par c=2,a=4,beta=10,thr=1 aux junk[5..10]=k([j]) done