/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: hermite.c,v 1.9.32.1 2004/07/09 02:01:17 hubbe Exp $ * * Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved. * * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks. You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL. Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL") in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your version of * this file only under the terms of the GPL, and not to allow others * to use your version of this file under the terms of either the RPSL * or RCSL, indicate your decision by deleting the provisions above * and replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient may * use your version of this file under the terms of any one of the * RPSL, the RCSL or the GPL. * * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. * * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. * * Technology Compatibility Kit Test Suite(s) Location: * http://www.helixcommunity.org/content/tck * * Contributor(s): * * ***** END LICENSE BLOCK ***** */ /* * Sampling rate conversion, by polynomial interpolation. * Ken Cooke (kenc@real.com) */ #include "hlxclib/stdlib.h" #include "hxtypes.h" #include "allresamplers.h" #include "math64.h" #define MAXRATE ((1<<23) - 1) /* sampling rates cannot exceed MAXRATE */ #define MAXSAMPS ((1<<23) - 1) /* max outsamps for GetMinInput() */ #define MAXCHANS 2 /* interpolator state */ typedef struct { int inrate; int outrate; int nchans; int time_i; UINT time_f; UINT step_i; UINT step_f; short hist[3*MAXCHANS]; /* input history */ } STATE; /* Initialize Hermite resampler * * Parameters * ---------- * int inrate sample rate of input (Hz) * int outrate desired sample rate of output (Hz) * int nchans number of channels * * return value instance pointer which will be passed in all future RAXXXHermite() function calls, 0 if error * * Notes * ----- * - inrate, outrate, nchans must be within valid ranges (see below) * - inrate < outrate (i.e. upsampling only!) */ void * RAInitResamplerHermite(int inrate, int outrate, int nchans) { STATE *s; UINT step_i, step_f, ratio, rem; int i; /* validate params */ if ((inrate <= 0) || (inrate > MAXRATE) || (outrate <= 0) || (outrate > MAXRATE)) return 0; /* only allow downsampling on certain platforms * until we have a fixed point resampler that can * downsample properly. */ #ifndef _SYMBIAN /* XXXgfw remove this when the new resampler is available. */ if( inrate > outrate ) { return 0; } #endif if ((nchans < 1) || (nchans > MAXCHANS)) return 0; /* create interpolator state */ s = (STATE *) malloc(sizeof(STATE)); if (!s) return 0; /* Compute 64-bit timestep, as a signed integer and 32-bit fraction */ step_i = inrate / outrate; /* integer part */ rem = inrate; step_f = 0 ; for (i = 0; i < 4; i++) { rem <<= 8; ratio = rem / outrate; rem -= ratio * outrate; step_f = (step_f << 8) | (ratio & 0xff); /* 8 more fraction bits */ } ASSERT(step_i == (UINT)((double)inrate/outrate)); ASSERT(step_f == (UINT)(65536.*65536.*((double)inrate/outrate - step_i))); s->inrate = inrate; s->outrate = outrate; s->nchans = nchans; s->time_i = 0; s->time_f = 0; s->step_i = step_i; s->step_f = step_f; for (i = 0; i < (3*MAXCHANS); i++) s->hist[i] = 0; return (void *)s; } /* Initialize Hermite resampler from a copy, using its parameters. * * Parameters * ---------- * inst instance pointer to a resampler to be used as template * * return value instance pointer which will be passed in all future RAXXXHermite() function calls, 0 if error */ void * RAInitResamplerCopyHermite(int nchans, const void *inst) { STATE *s_in = (STATE *)inst; STATE *s_out = (STATE *)malloc(sizeof(STATE)); if (s_in == 0 || s_out == 0) return 0; *s_out = *s_in ; s_out->nchans = nchans; return s_out; } /* Free memory associated with Hermite resampler * * Parameters * ---------- * void *inst instance pointer * * return value none * * Notes * ----- */ void RAFreeResamplerHermite(void *inst) { STATE *s = (STATE *)inst; free(s); } /* Get max possible outsamps given insamps input * * Parameters * ---------- * int insamps number of input samples * void *inst instance pointer * * return value maximum number of output samples generated by resampling insamps samples, -1 if error * * Notes * ----- * - some alternate implementations are included as comments * these might be useful, depending on the target platform * - insamps must be even for stereo, function will exit with error if not */ int RAGetMaxOutputHermite(int insamps, void *inst) { /* do an empty (null) resample of insamps samples */ int inframes, outframes; UINT i, f; STATE *s = (STATE *)inst; if (s->nchans == 2 && insamps & 0x01) return -1; inframes = (s->nchans == 2 ? insamps >> 1 : insamps); for (i = f = outframes = 0; i < (UINT)inframes; outframes++) { f += s->step_f; i += s->step_i + (f < s->step_f); /* add with carry */ } return (int)(outframes * s->nchans); /* equivalent method using __int64 * * inframes = (s->nchans == 2 ? insamps >> 1 : insamps); * step64 = ((__int64)s->step_i << 32) + (__int64)s->step_f; * outframes = ( ((__int64)inframes << 32) + step64 - 1) / step64; COMMENT: ceiling * return (int)(outframes * s->nchans); */ /* equivalent method using double-precision floats * * double step; * inframes = (s->nchans == 2 ? insamps >> 1 : insamps); * step = s->step_i + (s->step_f / 4294967296.0); * outframes = (int) ceil((double)inframes / step); * return (outframes * s->nchans); */ } /* Get minimum number of input samples required to generate outsamps output samples * * Parameters * ---------- * int outsamps number of desired output samples * void *inst instance pointer * * return value minimum number of input samples required to generate outsamps output samples, -1 if error * * Notes * ----- * - some alternate implementations are included as comments * these might be useful, depending on the target platform * - outsamps must be even for stereo, function will exit with error if not */ int RAGetMinInputHermite(int outsamps, void *inst) { UINT outframes; STATE *s = (STATE *)inst; UINT inframes, f, i; /* to ensure no overflow in multiply */ if (outsamps > MAXSAMPS) return -1; if (s->nchans == 2 && outsamps & 0x01) return -1; outframes = (UINT)(s->nchans == 2 ? outsamps >> 1 : outsamps); inframes = 0; /* fractional part */ f = s->step_f; for (i = 0; i < 4; i++) { inframes += outframes * (f & 0xff); /* add 24x8 partial product */ inframes = (inframes + 0xff) >> 8; /* shift, rounding up */ f >>= 8; } /* integer part */ inframes += outframes * s->step_i; return (int)(inframes * s->nchans); /* equivalent method using __int64 * * step64 = ((__int64)s->step_i << 32) + (__int64)s->step_f; * inframes = ( (__int64)outframes * step64); * inframes += (__int64)(0x00000000ffffffff); COMMENT: (add 1.0 - 2^-32 to 32.32 number) * return (int)((inframes >> 32) * s->nchans); */ /* equivalent method using double-precision floats * * double step; * outframes = (s->nchans == 2 ? outsamps >> 1 : outsamps); * step = s->step_i + (s->step_f / 4294967296.0); * inframes = (int) ceil((double)outframes * step); * return (inframes * s->nchans); */ /* equivalent method using an empty (null) resample * * outframes = (s->nchans == 2 ? outsamps >> 1 : outsamps); * for (i = f = currOut = 0; currOut < outframes; currOut++) { * f += s->step_f; * i += s->step_i + (f < s->step_f); COMMENT: add with carry * } * if (f) COMMENT: ceiling (if any fractional part, round up) * i++; * return (int)(i * s->nchans); */ } /* Get number of frames of delay in the Hermite resampler * * Parameters * ---------- * void *inst instance pointer * * return value frames of delay * * Notes * ----- * - always two frames of delay (2 samples per channel) */ int RAGetDelayHermite(void *inst) { return 2; } /* Cubic Hermite interpolation - one channel * * Parameters * ---------- * void *inbuf pointer to buffer of input data (16-bit PCM) * int insamps number of samples in inbuf * cvtFunctionType cvt conversion function pointer, ignored * short *outbuf output buffer, must be large enough to hold RAGetMaxOutputHermite(insamps) samples * void *inst instance pointer * * return value number of output samples generated and placed in outbuf, -1 if error * * Notes * ----- * - no restrictions on number of insamps * - inbuf MUST contain 16-bit PCM data, the cvt function is ignored */ int RAResampleMonoHermite(void *inbuf, int insamps, tConverter *pCvt, short *outbuf, int outstride, void *inst) { STATE *s = (STATE *)inst; UINT f, step_i, step_f; int outsamps, i, acc0; int x0, x1, x2, x3, frac; short *inptr; /* restore state */ i = s->time_i; f = s->time_f; step_i = s->step_i; step_f = s->step_f; outsamps = 0; inptr = (short *)inbuf; if (s->nchans != 1 || outstride != 1) return -1; /* mono */ while (i < insamps) { if (i < 3) { x3 = (i < 3 ? s->hist[i+0] : inptr[i-3]) << 12; x2 = (i < 2 ? s->hist[i+1] : inptr[i-2]) << 12; x1 = (i < 1 ? s->hist[i+2] : inptr[i-1]) << 12; } else { x3 = inptr[i-3] << 12; x2 = inptr[i-2] << 12; x1 = inptr[i-1] << 12; } x0 = inptr[i] << 12; frac = f >> 1; /* 4-tap Hermite, using Farrow structure */ acc0 = (3 * (x2 - x1) + x0 - x3) >> 1; acc0 = MulShift31(acc0, frac); acc0 += 2 * x1 + x3 - ((5 * x2 + x0) >> 1); acc0 = MulShift31(acc0, frac); acc0 += (x1 - x3) >> 1; acc0 = MulShift31(acc0, frac); acc0 += x2; f += step_f; i += step_i + (f < step_f); /* add with carry */ acc0 = (acc0 + (1<<11)) >> 12; if (acc0 > +32767) acc0 = +32767; if (acc0 < -32768) acc0 = -32768; outbuf[outsamps++] = (short)acc0; } /* save delay samples for next time (hist[0] = oldest, hist[2] = newest) */ s->hist[0] = (insamps < 3 ? s->hist[insamps+0] : inptr[insamps-3]); s->hist[1] = (insamps < 2 ? s->hist[insamps+1] : inptr[insamps-2]); s->hist[2] = (insamps < 1 ? s->hist[insamps+2] : inptr[insamps-1]); /* save state */ s->time_f = f; s->time_i = i - insamps; return outsamps; } /* Cubic Hermite interpolation - two channels * * Parameters * ---------- * void *inbuf pointer to buffer of input data (16-bit PCM, interleaved LRLRLR...) * int insamps number of samples in inbuf * cvtFunctionType cvt conversion function pointer, ignored * short *outbuf output buffer, must be large enough to hold RAGetMaxOutputHermite(insamps) samples * void *inst instance pointer * * return value number of output samples generated and placed in outbuf, -1 if error * * Notes * ----- * - no restrictions on number of insamps * - inbuf MUST contain 16-bit PCM data, the cvt function is ignored * - insamps must be even, function will exit with error if not */ int RAResampleStereoHermite(void *inbuf, int insamps, tConverter *pCvt, short *outbuf, int outstride, void *inst) { STATE *s = (STATE *)inst; UINT f, step_i, step_f; int outsamps, i, acc0, acc1, j; int x0, x1, x2, x3, frac; short *inptr; /* restore state */ i = s->time_i; f = s->time_f; step_i = s->step_i; step_f = s->step_f; outsamps = 0; inptr = (short *)inbuf; /* fail if odd number of input samples */ if (s->nchans != 2 || insamps & 0x01 || outstride != 2) return -1; /* stereo - assume insamps is even */ insamps /= 2; /* number of stereo frames - consume samples two at a time */ while (i < insamps) { frac = f >> 1; j = 2*i; /* left */ if (i < 3) { x3 = (i < 3 ? s->hist[j+0] : inptr[j-6]) << 12; x2 = (i < 2 ? s->hist[j+2] : inptr[j-4]) << 12; x1 = (i < 1 ? s->hist[j+4] : inptr[j-2]) << 12; } else { x3 = inptr[j-6] << 12; x2 = inptr[j-4] << 12; x1 = inptr[j-2] << 12; } x0 = inptr[j] << 12; /* 4-tap Hermite, using Farrow structure */ acc0 = (3 * (x2 - x1) + x0 - x3) >> 1; acc0 = MulShift31(acc0, frac); acc0 += 2 * x1 + x3 - ((5 * x2 + x0) >> 1); acc0 = MulShift31(acc0, frac); acc0 += (x1 - x3) >> 1; acc0 = MulShift31(acc0, frac); acc0 += x2; /* right */ if (i < 3) { x3 = (i < 3 ? s->hist[j+1] : inptr[j-5]) << 12; x2 = (i < 2 ? s->hist[j+3] : inptr[j-3]) << 12; x1 = (i < 1 ? s->hist[j+5] : inptr[j-1]) << 12; } else { x3 = inptr[j-5] << 12; x2 = inptr[j-3] << 12; x1 = inptr[j-1] << 12; } x0 = inptr[j+1] << 12; /* 4-tap Hermite, using Farrow structure */ acc1 = (3 * (x2 - x1) + x0 - x3) >> 1; acc1 = MulShift31(acc1, frac); acc1 += 2 * x1 + x3 - ((5 * x2 + x0) >> 1); acc1 = MulShift31(acc1, frac); acc1 += (x1 - x3) >> 1; acc1 = MulShift31(acc1, frac); acc1 += x2; f += step_f; i += step_i + (f < step_f); /* add with carry */ acc0 = (acc0 + (1<<11)) >> 12; if (acc0 > +32767) acc0 = +32767; if (acc0 < -32768) acc0 = -32768; outbuf[outsamps++] = (short)acc0; acc1 = (acc1 + (1<<11)) >> 12; if (acc1 > +32767) acc1 = +32767; if (acc1 < -32768) acc1 = -32768; outbuf[outsamps++] = (short)acc1; } /* save delay samples for next time (hist[0] = oldest left, hist[1] = oldest right, ...) */ s->hist[0] = (insamps < 3 ? s->hist[2*(insamps+0) + 0] : inptr[2*(insamps-3) + 0]); s->hist[2] = (insamps < 2 ? s->hist[2*(insamps+1) + 0] : inptr[2*(insamps-2) + 0]); s->hist[4] = (insamps < 1 ? s->hist[2*(insamps+2) + 0] : inptr[2*(insamps-1) + 0]); s->hist[1] = (insamps < 3 ? s->hist[2*(insamps+0) + 1] : inptr[2*(insamps-3) + 1]); s->hist[3] = (insamps < 2 ? s->hist[2*(insamps+1) + 1] : inptr[2*(insamps-2) + 1]); s->hist[5] = (insamps < 1 ? s->hist[2*(insamps+2) + 1] : inptr[2*(insamps-1) + 1]); /* save state */ s->time_f = f; s->time_i = i - insamps; return outsamps; }