/*****************************************************************************
Major portions of this software are copyrighted by the Medical College
of Wisconsin, 1994-2000, and are released under the Gnu General Public
License, Version 2. See the file README.Copyright for details.
******************************************************************************/
#include "mrilib.h"
/*--------------------------------------------------------------------------*/
int equal_bitvector_piece( MRI_IMAGE * b , MRI_IMAGE * c , int aa , int bb )
{
int ii ; byte * bv=MRI_BYTE_PTR(b) , * cv=MRI_BYTE_PTR(c) ;
if( aa < 0 ) aa = 0 ;
if( bb >= b->nx ) bb = b->nx - 1 ;
for( ii=aa ; ii <= bb ; ii++ ) if( bv[ii] != cv[ii] ) return 0 ;
return 1;
}
int equal_bitvector( MRI_IMAGE * b , MRI_IMAGE * c )
{
return equal_bitvector_piece( b , c , 0 , b->nx - 1 ) ;
}
/*--------------------------------------------------------------------------*/
void randomize_bitvector_piece( MRI_IMAGE * b , int aa , int bb )
{
int ii ; byte * bv=MRI_BYTE_PTR(b) ;
if( aa < 0 ) aa = 0 ;
if( bb >= b->nx ) bb = b->nx - 1 ;
for( ii=aa ; ii <= bb ; ii++ ) bv[ii] = ( drand48() > 0.5 ) ;
return ;
}
void randomize_bitvector( MRI_IMAGE * b )
{
randomize_bitvector_piece( b , 0 , b->nx - 1 ) ;
return ;
}
/*--------------------------------------------------------------------------*/
void zero_bitvector_piece( MRI_IMAGE * b , int aa , int bb )
{
int ii ; byte * bv=MRI_BYTE_PTR(b) ;
if( aa < 0 ) aa = 0 ;
if( bb >= b->nx ) bb = b->nx - 1 ;
for( ii=aa ; ii <= bb ; ii++ ) bv[ii] = 0 ;
return ;
}
void zero_bitvector( MRI_IMAGE * b )
{
zero_bitvector_piece( b , 0 , b->nx - 1 ) ;
return ;
}
/*--------------------------------------------------------------------------*/
void one_bitvector_piece( MRI_IMAGE * b , int aa , int bb )
{
int ii ; byte * bv=MRI_BYTE_PTR(b) ;
if( aa < 0 ) aa = 0 ;
if( bb >= b->nx ) bb = b->nx - 1 ;
for( ii=aa ; ii <= bb ; ii++ ) bv[ii] = 1 ;
return ;
}
void one_bitvector( MRI_IMAGE * b )
{
one_bitvector_piece( b , 0 , b->nx - 1 ) ;
return ;
}
/*--------------------------------------------------------------------------*/
void invert_bitvector_piece( MRI_IMAGE * b , int aa , int bb )
{
int ii ; byte * bv=MRI_BYTE_PTR(b) ;
if( aa < 0 ) aa = 0 ;
if( bb >= b->nx ) bb = b->nx - 1 ;
for( ii=aa ; ii <= bb ; ii++ ) bv[ii] = 1 - bv[ii] ;
return ;
}
void invert_bitvector( MRI_IMAGE * b )
{
invert_bitvector_piece( b , 0 , b->nx - 1 ) ;
return ;
}
/*--------------------------------------------------------------------------*/
MRI_IMAGE * new_bitvector( int n )
{
MRI_IMAGE * b ;
b = mri_new( n , 1 , MRI_byte ) ;
return b ;
}
MRI_IMAGE * copy_bitvector( MRI_IMAGE * b )
{
int ii ;
MRI_IMAGE * c = mri_new( b->nx , 1 , MRI_byte ) ;
memcpy( MRI_BYTE_PTR(c) , MRI_BYTE_PTR(b) , b->nx ) ;
return c ;
}
/*--------------------------------------------------------------------------*/
int count_bitvector( MRI_IMAGE * b )
{
int ii,ss , n=b->nx ;
byte * bv = MRI_BYTE_PTR(b) ;
for( ii=ss=0 ; ii < n ; ii++ ) if( bv[ii] ) ss++ ;
return ss ;
}
/*--------------------------------------------------------------------------*/
void normalize_floatvector( MRI_IMAGE * fim )
{
int ii , n=fim->nx ;
float ff,gg , * far=MRI_FLOAT_PTR(fim) ;
for( ff=0.0,ii=0 ; ii < n ; ii++ ) ff += far[ii] ;
ff /= n ;
for( gg=0.0,ii=0 ; ii < n ; ii++ ) gg += SQR( (far[ii]-ff) ) ;
if( gg <= 0.0 ) return ;
gg = 1.0 / sqrt(gg) ;
for( ii=0 ; ii < n ; ii++ ) far[ii] = (far[ii]-ff)*gg ;
return ;
}
/*--------------------------------------------------------------------------*/
float corr_floatbit( MRI_IMAGE * fim , MRI_IMAGE * bim )
{
int ii , n=fim->nx , ns ;
float * far=MRI_FLOAT_PTR(fim) , ss ;
byte * bar=MRI_BYTE_PTR(bim) ;
for( ss=0.0,ns=ii=0 ; ii < n ; ii++ )
if( bar[ii] ){ ns++ ; ss += far[ii] ; }
if( ns == 0 || ns == n ) return 0.0 ;
ss *= sqrt( ((float) n) / (float)(ns*(n-ns)) ) ;
return ss ;
}
/*--------------------------------------------------------------------------*/
MRI_IMARR * init_bitvector_array( int nbv , MRI_IMAGE * fim )
{
MRI_IMARR * imar ;
MRI_IMAGE * bim ;
int ii , n=fim->nx ;
byte * bar ; float * far=MRI_FLOAT_PTR(fim) ;
INIT_IMARR(imar) ;
normalize_floatvector( fim ) ;
for( ii=0 ; ii < nbv ; ii++ ){
bim = new_bitvector( n ) ;
randomize_bitvector( bim ) ;
bim->dx = corr_floatbit( fim , bim ) ;
if( bim->dx < 0.0 ){ bim->dx = -bim->dx; invert_bitvector( bim ); }
ADDTO_IMARR(imar,bim) ;
}
return imar ;
}
/*--------------------------------------------------------------------------*/
#define IRAN(j) (lrand48() % (j))
void evolve_bitvector_array( MRI_IMARR * bvar , MRI_IMAGE * fim )
{
static int nrvec=-1 ;
static float * rvec=NULL ;
int ii,nn=fim->nx , nbv=IMARR_COUNT(bvar) , aa,bb , qbv ;
MRI_IMAGE * bim , * qim ;
/* create mutants */
for( ii=0 ; ii < nbv ; ii++ ){
bim = IMARR_SUBIMAGE(bvar,ii) ;
aa = IRAN(nn) ; bb = aa + IRAN(5) ; if( bb >= nn ) bb = nn-1 ;
qim = copy_bitvector(bim) ;
zero_bitvector_piece( qim , aa , bb ) ;
if( equal_bitvector_piece(bim,qim,aa,bb) ){
mri_free(qim) ;
} else {
qim->dx = corr_floatbit( fim , qim ) ;
if( qim->dx < 0.0 ){ qim->dx = -qim->dx; invert_bitvector( qim ); }
ADDTO_IMARR(bvar,qim) ;
}
qim = copy_bitvector(bim) ;
one_bitvector_piece( qim , aa , bb ) ;
if( equal_bitvector_piece(bim,qim,aa,bb) ){
mri_free(qim) ;
} else {
qim->dx = corr_floatbit( fim , qim ) ;
if( qim->dx < 0.0 ){ qim->dx = -qim->dx; invert_bitvector( qim ); }
ADDTO_IMARR(bvar,qim) ;
}
qim = copy_bitvector(bim) ;
randomize_bitvector_piece( qim , aa , bb ) ;
if( equal_bitvector_piece(bim,qim,aa,bb) ){
mri_free(qim) ;
} else {
qim->dx = corr_floatbit( fim , qim ) ;
if( qim->dx < 0.0 ){ qim->dx = -qim->dx; invert_bitvector( qim ); }
ADDTO_IMARR(bvar,qim) ;
}
qim = copy_bitvector(bim) ;
invert_bitvector_piece( qim , aa , bb ) ;
if( equal_bitvector_piece(bim,qim,aa,bb) ){
mri_free(qim) ;
} else {
qim->dx = corr_floatbit( fim , qim ) ;
if( qim->dx < 0.0 ){ qim->dx = -qim->dx; invert_bitvector( qim ); }
ADDTO_IMARR(bvar,qim) ;
}
}
/* sort everybody */
qbv = IMARR_COUNT(bvar) ;
if( nrvec < qbv ){
if( rvec != NULL ) free(rvec) ;
rvec = (float *) malloc(sizeof(float)*qbv) ;
nrvec = qbv ;
}
for( ii=0 ; ii < qbv ; ii++ ) rvec[ii] = -fabs(IMARR_SUBIM(bvar,ii)->dx) ;
qsort_floatstuff( qbv , rvec , (void **) bvar->imarr ) ;
TRUNCATE_IMARR( bvar , nbv ) ;
return ;
}
/*--------------------------------------------------------------------------*/
int main( int argc , char * argv[] )
{
MRI_IMAGE * fim , * bim ;
MRI_IMARR * bvar ;
int ii , nv , nite=0 , neq=0 ;
float fold , fnew ;
if( argc < 2 ){printf("Usage: bitvec fname.1D > bname.1D\n");exit(0);}
fim = mri_read_1D( argv[1] ) ;
if( fim == NULL ){fprintf(stderr,"Can't read %s\n",argv[1]);exit(1);}
fprintf(stderr,"vector length = %d\n",fim->nx) ;
srand48((long)time(NULL)) ;
bvar = init_bitvector_array( 256 , fim ) ;
fold = fabs(IMARR_SUBIM(bvar,0)->dx) ;
fprintf(stderr,"fold = %7.4f\n",fold) ;
while(1){
evolve_bitvector_array( bvar , fim ) ;
nv = IMARR_COUNT(bvar) ;
nite++ ;
#if 0
fprintf(stderr,"nite=%d\n",nite) ;
for( ii=0 ; ii < nv ; ii++ )
fprintf(stderr," %7.4f",IMARR_SUBIM(bvar,ii)->dx) ;
fprintf(stderr,"\n\n") ;
#endif
fnew = fabs(IMARR_SUBIM(bvar,0)->dx) ;
if( fnew <= fold ){
neq++ ; if( neq == 10 ) break ;
} else {
neq = 0 ;
fold = fnew ;
fprintf(stderr,"%d: %7.4f\n",nite,fold) ;
}
}
bim = IMARR_SUBIM(bvar,0) ;
for( ii=0 ; ii < fim->nx ; ii++ )
printf(" %d\n",(int)MRI_BYTE_PTR(bim)[ii]) ;
exit(0) ;
}
syntax highlighted by Code2HTML, v. 0.9.1