/* cortb.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int cortb_(integer *nm, integer *low, integer *igh, doublereal *ar, doublereal *ai, doublereal *ortr, doublereal *orti, integer *m, doublereal *zr, doublereal *zi) { /* System generated locals */ integer ar_dim1, ar_offset, ai_dim1, ai_offset, zr_dim1, zr_offset, zi_dim1, zi_offset, i__1, i__2, i__3; /* Local variables */ static doublereal h__; static integer i__, j, la; static doublereal gi, gr; static integer mm, mp, kp1, mp1; /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */ /* THE ALGOL PROCEDURE ORTBAK, NUM. MATH. 12, 349-368(1968) */ /* BY MARTIN AND WILKINSON. */ /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */ /* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX GENERAL */ /* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */ /* UPPER HESSENBERG MATRIX DETERMINED BY CORTH. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */ /* SUBROUTINE CBAL. IF CBAL HAS NOT BEEN USED, */ /* SET LOW=1 AND IGH EQUAL TO THE ORDER OF THE MATRIX. */ /* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY */ /* TRANSFORMATIONS USED IN THE REDUCTION BY CORTH */ /* IN THEIR STRICT LOWER TRIANGLES. */ /* ORTR AND ORTI CONTAIN FURTHER INFORMATION ABOUT THE */ /* TRANSFORMATIONS USED IN THE REDUCTION BY CORTH. */ /* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */ /* M IS THE NUMBER OF COLUMNS OF ZR AND ZI TO BE BACK TRANSFORMED. */ /* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */ /* RESPECTIVELY, OF THE EIGENVECTORS TO BE */ /* BACK TRANSFORMED IN THEIR FIRST M COLUMNS. */ /* ON OUTPUT */ /* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */ /* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */ /* IN THEIR FIRST M COLUMNS. */ /* ORTR AND ORTI HAVE BEEN ALTERED. */ /* NOTE THAT CORTB PRESERVES VECTOR EUCLIDEAN NORMS. */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ --orti; --ortr; ai_dim1 = *nm; ai_offset = ai_dim1 + 1; ai -= ai_offset; ar_dim1 = *nm; ar_offset = ar_dim1 + 1; ar -= ar_offset; zi_dim1 = *nm; zi_offset = zi_dim1 + 1; zi -= zi_offset; zr_dim1 = *nm; zr_offset = zr_dim1 + 1; zr -= zr_offset; /* Function Body */ if (*m == 0) { goto L200; } la = *igh - 1; kp1 = *low + 1; if (la < kp1) { goto L200; } /* .......... FOR MP=IGH-1 STEP -1 UNTIL LOW+1 DO -- .......... */ i__1 = la; for (mm = kp1; mm <= i__1; ++mm) { mp = *low + *igh - mm; if (ar[mp + (mp - 1) * ar_dim1] == 0. && ai[mp + (mp - 1) * ai_dim1] == 0.) { goto L140; } /* .......... H BELOW IS NEGATIVE OF H FORMED IN CORTH .......... */ h__ = ar[mp + (mp - 1) * ar_dim1] * ortr[mp] + ai[mp + (mp - 1) * ai_dim1] * orti[mp]; mp1 = mp + 1; i__2 = *igh; for (i__ = mp1; i__ <= i__2; ++i__) { ortr[i__] = ar[i__ + (mp - 1) * ar_dim1]; orti[i__] = ai[i__ + (mp - 1) * ai_dim1]; /* L100: */ } i__2 = *m; for (j = 1; j <= i__2; ++j) { gr = 0.; gi = 0.; i__3 = *igh; for (i__ = mp; i__ <= i__3; ++i__) { gr = gr + ortr[i__] * zr[i__ + j * zr_dim1] + orti[i__] * zi[ i__ + j * zi_dim1]; gi = gi + ortr[i__] * zi[i__ + j * zi_dim1] - orti[i__] * zr[ i__ + j * zr_dim1]; /* L110: */ } gr /= h__; gi /= h__; i__3 = *igh; for (i__ = mp; i__ <= i__3; ++i__) { zr[i__ + j * zr_dim1] = zr[i__ + j * zr_dim1] + gr * ortr[i__] - gi * orti[i__]; zi[i__ + j * zi_dim1] = zi[i__ + j * zi_dim1] + gr * orti[i__] + gi * ortr[i__]; /* L120: */ } /* L130: */ } L140: ; } L200: return 0; } /* cortb_ */