/* cortb.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int cortb_(integer *nm, integer *low, integer *igh,
doublereal *ar, doublereal *ai, doublereal *ortr, doublereal *orti,
integer *m, doublereal *zr, doublereal *zi)
{
/* System generated locals */
integer ar_dim1, ar_offset, ai_dim1, ai_offset, zr_dim1, zr_offset,
zi_dim1, zi_offset, i__1, i__2, i__3;
/* Local variables */
static doublereal h__;
static integer i__, j, la;
static doublereal gi, gr;
static integer mm, mp, kp1, mp1;
/* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
/* THE ALGOL PROCEDURE ORTBAK, NUM. MATH. 12, 349-368(1968) */
/* BY MARTIN AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */
/* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX GENERAL */
/* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */
/* UPPER HESSENBERG MATRIX DETERMINED BY CORTH. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
/* SUBROUTINE CBAL. IF CBAL HAS NOT BEEN USED, */
/* SET LOW=1 AND IGH EQUAL TO THE ORDER OF THE MATRIX. */
/* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY */
/* TRANSFORMATIONS USED IN THE REDUCTION BY CORTH */
/* IN THEIR STRICT LOWER TRIANGLES. */
/* ORTR AND ORTI CONTAIN FURTHER INFORMATION ABOUT THE */
/* TRANSFORMATIONS USED IN THE REDUCTION BY CORTH. */
/* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */
/* M IS THE NUMBER OF COLUMNS OF ZR AND ZI TO BE BACK TRANSFORMED.
*/
/* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE EIGENVECTORS TO BE */
/* BACK TRANSFORMED IN THEIR FIRST M COLUMNS. */
/* ON OUTPUT */
/* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */
/* IN THEIR FIRST M COLUMNS. */
/* ORTR AND ORTI HAVE BEEN ALTERED. */
/* NOTE THAT CORTB PRESERVES VECTOR EUCLIDEAN NORMS. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
--orti;
--ortr;
ai_dim1 = *nm;
ai_offset = ai_dim1 + 1;
ai -= ai_offset;
ar_dim1 = *nm;
ar_offset = ar_dim1 + 1;
ar -= ar_offset;
zi_dim1 = *nm;
zi_offset = zi_dim1 + 1;
zi -= zi_offset;
zr_dim1 = *nm;
zr_offset = zr_dim1 + 1;
zr -= zr_offset;
/* Function Body */
if (*m == 0) {
goto L200;
}
la = *igh - 1;
kp1 = *low + 1;
if (la < kp1) {
goto L200;
}
/* .......... FOR MP=IGH-1 STEP -1 UNTIL LOW+1 DO -- .......... */
i__1 = la;
for (mm = kp1; mm <= i__1; ++mm) {
mp = *low + *igh - mm;
if (ar[mp + (mp - 1) * ar_dim1] == 0. && ai[mp + (mp - 1) * ai_dim1]
== 0.) {
goto L140;
}
/* .......... H BELOW IS NEGATIVE OF H FORMED IN CORTH ..........
*/
h__ = ar[mp + (mp - 1) * ar_dim1] * ortr[mp] + ai[mp + (mp - 1) *
ai_dim1] * orti[mp];
mp1 = mp + 1;
i__2 = *igh;
for (i__ = mp1; i__ <= i__2; ++i__) {
ortr[i__] = ar[i__ + (mp - 1) * ar_dim1];
orti[i__] = ai[i__ + (mp - 1) * ai_dim1];
/* L100: */
}
i__2 = *m;
for (j = 1; j <= i__2; ++j) {
gr = 0.;
gi = 0.;
i__3 = *igh;
for (i__ = mp; i__ <= i__3; ++i__) {
gr = gr + ortr[i__] * zr[i__ + j * zr_dim1] + orti[i__] * zi[
i__ + j * zi_dim1];
gi = gi + ortr[i__] * zi[i__ + j * zi_dim1] - orti[i__] * zr[
i__ + j * zr_dim1];
/* L110: */
}
gr /= h__;
gi /= h__;
i__3 = *igh;
for (i__ = mp; i__ <= i__3; ++i__) {
zr[i__ + j * zr_dim1] = zr[i__ + j * zr_dim1] + gr * ortr[i__]
- gi * orti[i__];
zi[i__ + j * zi_dim1] = zi[i__ + j * zi_dim1] + gr * orti[i__]
+ gi * ortr[i__];
/* L120: */
}
/* L130: */
}
L140:
;
}
L200:
return 0;
} /* cortb_ */
syntax highlighted by Code2HTML, v. 0.9.1