/* corth.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int corth_(integer *nm, integer *n, integer *low, integer *
igh, doublereal *ar, doublereal *ai, doublereal *ortr, doublereal *
orti)
{
/* System generated locals */
integer ar_dim1, ar_offset, ai_dim1, ai_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static doublereal f, g, h__;
static integer i__, j, m;
static doublereal scale;
static integer la;
static doublereal fi;
static integer ii, jj;
static doublereal fr;
static integer mp;
extern doublereal pythag_(doublereal *, doublereal *);
static integer kp1;
/* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
/* THE ALGOL PROCEDURE ORTHES, NUM. MATH. 12, 349-368(1968) */
/* BY MARTIN AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */
/* GIVEN A COMPLEX GENERAL MATRIX, THIS SUBROUTINE */
/* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */
/* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */
/* UNITARY SIMILARITY TRANSFORMATIONS. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRIX. */
/* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
/* SUBROUTINE CBAL. IF CBAL HAS NOT BEEN USED, */
/* SET LOW=1, IGH=N. */
/* AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE COMPLEX INPUT MATRIX. */
/* ON OUTPUT */
/* AR AND AI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE HESSENBERG MATRIX. INFORMATION */
/* ABOUT THE UNITARY TRANSFORMATIONS USED IN THE REDUCTION */
/* IS STORED IN THE REMAINING TRIANGLES UNDER THE */
/* HESSENBERG MATRIX. */
/* ORTR AND ORTI CONTAIN FURTHER INFORMATION ABOUT THE */
/* TRANSFORMATIONS. ONLY ELEMENTS LOW THROUGH IGH ARE USED. */
/* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
ai_dim1 = *nm;
ai_offset = ai_dim1 + 1;
ai -= ai_offset;
ar_dim1 = *nm;
ar_offset = ar_dim1 + 1;
ar -= ar_offset;
--orti;
--ortr;
/* Function Body */
la = *igh - 1;
kp1 = *low + 1;
if (la < kp1) {
goto L200;
}
i__1 = la;
for (m = kp1; m <= i__1; ++m) {
h__ = 0.;
ortr[m] = 0.;
orti[m] = 0.;
scale = 0.;
/* .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
*/
i__2 = *igh;
for (i__ = m; i__ <= i__2; ++i__) {
/* L90: */
scale = scale + (d__1 = ar[i__ + (m - 1) * ar_dim1], abs(d__1)) +
(d__2 = ai[i__ + (m - 1) * ai_dim1], abs(d__2));
}
if (scale == 0.) {
goto L180;
}
mp = m + *igh;
/* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */
i__2 = *igh;
for (ii = m; ii <= i__2; ++ii) {
i__ = mp - ii;
ortr[i__] = ar[i__ + (m - 1) * ar_dim1] / scale;
orti[i__] = ai[i__ + (m - 1) * ai_dim1] / scale;
h__ = h__ + ortr[i__] * ortr[i__] + orti[i__] * orti[i__];
/* L100: */
}
g = sqrt(h__);
f = pythag_(&ortr[m], &orti[m]);
if (f == 0.) {
goto L103;
}
h__ += f * g;
g /= f;
ortr[m] = (g + 1.) * ortr[m];
orti[m] = (g + 1.) * orti[m];
goto L105;
L103:
ortr[m] = g;
ar[m + (m - 1) * ar_dim1] = scale;
/* .......... FORM (I-(U*UT)/H) * A .......... */
L105:
i__2 = *n;
for (j = m; j <= i__2; ++j) {
fr = 0.;
fi = 0.;
/* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */
i__3 = *igh;
for (ii = m; ii <= i__3; ++ii) {
i__ = mp - ii;
fr = fr + ortr[i__] * ar[i__ + j * ar_dim1] + orti[i__] * ai[
i__ + j * ai_dim1];
fi = fi + ortr[i__] * ai[i__ + j * ai_dim1] - orti[i__] * ar[
i__ + j * ar_dim1];
/* L110: */
}
fr /= h__;
fi /= h__;
i__3 = *igh;
for (i__ = m; i__ <= i__3; ++i__) {
ar[i__ + j * ar_dim1] = ar[i__ + j * ar_dim1] - fr * ortr[i__]
+ fi * orti[i__];
ai[i__ + j * ai_dim1] = ai[i__ + j * ai_dim1] - fr * orti[i__]
- fi * ortr[i__];
/* L120: */
}
/* L130: */
}
/* .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) .......... */
i__2 = *igh;
for (i__ = 1; i__ <= i__2; ++i__) {
fr = 0.;
fi = 0.;
/* .......... FOR J=IGH STEP -1 UNTIL M DO -- .......... */
i__3 = *igh;
for (jj = m; jj <= i__3; ++jj) {
j = mp - jj;
fr = fr + ortr[j] * ar[i__ + j * ar_dim1] - orti[j] * ai[i__
+ j * ai_dim1];
fi = fi + ortr[j] * ai[i__ + j * ai_dim1] + orti[j] * ar[i__
+ j * ar_dim1];
/* L140: */
}
fr /= h__;
fi /= h__;
i__3 = *igh;
for (j = m; j <= i__3; ++j) {
ar[i__ + j * ar_dim1] = ar[i__ + j * ar_dim1] - fr * ortr[j]
- fi * orti[j];
ai[i__ + j * ai_dim1] = ai[i__ + j * ai_dim1] + fr * orti[j]
- fi * ortr[j];
/* L150: */
}
/* L160: */
}
ortr[m] = scale * ortr[m];
orti[m] = scale * orti[m];
ar[m + (m - 1) * ar_dim1] = -g * ar[m + (m - 1) * ar_dim1];
ai[m + (m - 1) * ai_dim1] = -g * ai[m + (m - 1) * ai_dim1];
L180:
;
}
L200:
return 0;
} /* corth_ */
syntax highlighted by Code2HTML, v. 0.9.1