/* elmhes.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int elmhes_(integer *nm, integer *n, integer *low, integer * igh, doublereal *a, integer *int__) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ static integer i__, j, m; static doublereal x, y; static integer la, mm1, kp1, mp1; /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMHES, */ /* NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. */ /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */ /* GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE */ /* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */ /* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */ /* STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* N IS THE ORDER OF THE MATRIX. */ /* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */ /* SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED, */ /* SET LOW=1, IGH=N. */ /* A CONTAINS THE INPUT MATRIX. */ /* ON OUTPUT */ /* A CONTAINS THE HESSENBERG MATRIX. THE MULTIPLIERS */ /* WHICH WERE USED IN THE REDUCTION ARE STORED IN THE */ /* REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX. */ /* INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS */ /* INTERCHANGED IN THE REDUCTION. */ /* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ a_dim1 = *nm; a_offset = a_dim1 + 1; a -= a_offset; --int__; /* Function Body */ la = *igh - 1; kp1 = *low + 1; if (la < kp1) { goto L200; } i__1 = la; for (m = kp1; m <= i__1; ++m) { mm1 = m - 1; x = 0.; i__ = m; i__2 = *igh; for (j = m; j <= i__2; ++j) { if ((d__1 = a[j + mm1 * a_dim1], abs(d__1)) <= abs(x)) { goto L100; } x = a[j + mm1 * a_dim1]; i__ = j; L100: ; } int__[m] = i__; if (i__ == m) { goto L130; } /* .......... INTERCHANGE ROWS AND COLUMNS OF A .......... */ i__2 = *n; for (j = mm1; j <= i__2; ++j) { y = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = a[m + j * a_dim1]; a[m + j * a_dim1] = y; /* L110: */ } i__2 = *igh; for (j = 1; j <= i__2; ++j) { y = a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = a[j + m * a_dim1]; a[j + m * a_dim1] = y; /* L120: */ } /* .......... END INTERCHANGE .......... */ L130: if (x == 0.) { goto L180; } mp1 = m + 1; i__2 = *igh; for (i__ = mp1; i__ <= i__2; ++i__) { y = a[i__ + mm1 * a_dim1]; if (y == 0.) { goto L160; } y /= x; a[i__ + mm1 * a_dim1] = y; i__3 = *n; for (j = m; j <= i__3; ++j) { /* L140: */ a[i__ + j * a_dim1] -= y * a[m + j * a_dim1]; } i__3 = *igh; for (j = 1; j <= i__3; ++j) { /* L150: */ a[j + m * a_dim1] += y * a[j + i__ * a_dim1]; } L160: ; } L180: ; } L200: return 0; } /* elmhes_ */