/* elmhes.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int elmhes_(integer *nm, integer *n, integer *low, integer *
igh, doublereal *a, integer *int__)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
static integer i__, j, m;
static doublereal x, y;
static integer la, mm1, kp1, mp1;
/* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMHES, */
/* NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */
/* GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE */
/* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */
/* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */
/* STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRIX. */
/* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
/* SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED, */
/* SET LOW=1, IGH=N. */
/* A CONTAINS THE INPUT MATRIX. */
/* ON OUTPUT */
/* A CONTAINS THE HESSENBERG MATRIX. THE MULTIPLIERS */
/* WHICH WERE USED IN THE REDUCTION ARE STORED IN THE */
/* REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX. */
/* INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS */
/* INTERCHANGED IN THE REDUCTION. */
/* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
a_dim1 = *nm;
a_offset = a_dim1 + 1;
a -= a_offset;
--int__;
/* Function Body */
la = *igh - 1;
kp1 = *low + 1;
if (la < kp1) {
goto L200;
}
i__1 = la;
for (m = kp1; m <= i__1; ++m) {
mm1 = m - 1;
x = 0.;
i__ = m;
i__2 = *igh;
for (j = m; j <= i__2; ++j) {
if ((d__1 = a[j + mm1 * a_dim1], abs(d__1)) <= abs(x)) {
goto L100;
}
x = a[j + mm1 * a_dim1];
i__ = j;
L100:
;
}
int__[m] = i__;
if (i__ == m) {
goto L130;
}
/* .......... INTERCHANGE ROWS AND COLUMNS OF A .......... */
i__2 = *n;
for (j = mm1; j <= i__2; ++j) {
y = a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = a[m + j * a_dim1];
a[m + j * a_dim1] = y;
/* L110: */
}
i__2 = *igh;
for (j = 1; j <= i__2; ++j) {
y = a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = a[j + m * a_dim1];
a[j + m * a_dim1] = y;
/* L120: */
}
/* .......... END INTERCHANGE .......... */
L130:
if (x == 0.) {
goto L180;
}
mp1 = m + 1;
i__2 = *igh;
for (i__ = mp1; i__ <= i__2; ++i__) {
y = a[i__ + mm1 * a_dim1];
if (y == 0.) {
goto L160;
}
y /= x;
a[i__ + mm1 * a_dim1] = y;
i__3 = *n;
for (j = m; j <= i__3; ++j) {
/* L140: */
a[i__ + j * a_dim1] -= y * a[m + j * a_dim1];
}
i__3 = *igh;
for (j = 1; j <= i__3; ++j) {
/* L150: */
a[j + m * a_dim1] += y * a[j + i__ * a_dim1];
}
L160:
;
}
L180:
;
}
L200:
return 0;
} /* elmhes_ */
syntax highlighted by Code2HTML, v. 0.9.1