/* hqr.f -- translated by f2c (version 19961017).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Subroutine */ int hqr_(integer *nm, integer *n, integer *low, integer *igh,
	 doublereal *h__, doublereal *wr, doublereal *wi, integer *ierr)
{
    /* System generated locals */
    integer h_dim1, h_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    static doublereal norm;
    static integer i__, j, k, l, m;
    static doublereal p, q, r__, s, t, w, x, y;
    static integer na, en, ll, mm;
    static doublereal zz;
    static logical notlas;
    static integer mp2, itn, its, enm2;
    static doublereal tst1, tst2;



/*     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE HQR, */
/*     NUM. MATH. 14, 219-231(1970) BY MARTIN, PETERS, AND WILKINSON. */
/*     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971). */

/*     THIS SUBROUTINE FINDS THE EIGENVALUES OF A REAL */
/*     UPPER HESSENBERG MATRIX BY THE QR METHOD. */

/*     ON INPUT */

/*        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/*          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/*          DIMENSION STATEMENT. */

/*        N IS THE ORDER OF THE MATRIX. */

/*        LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
/*          SUBROUTINE  BALANC.  IF  BALANC  HAS NOT BEEN USED, */
/*          SET LOW=1, IGH=N. */

/*        H CONTAINS THE UPPER HESSENBERG MATRIX.  INFORMATION ABOUT */
/*          THE TRANSFORMATIONS USED IN THE REDUCTION TO HESSENBERG */
/*          FORM BY  ELMHES  OR  ORTHES, IF PERFORMED, IS STORED */
/*          IN THE REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX. */

/*     ON OUTPUT */

/*        H HAS BEEN DESTROYED.  THEREFORE, IT MUST BE SAVED */
/*          BEFORE CALLING  HQR  IF SUBSEQUENT CALCULATION AND */
/*          BACK TRANSFORMATION OF EIGENVECTORS IS TO BE PERFORMED. */

/*        WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS, */
/*          RESPECTIVELY, OF THE EIGENVALUES.  THE EIGENVALUES */
/*          ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS */
/*          OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE */
/*          HAVING THE POSITIVE IMAGINARY PART FIRST.  IF AN */
/*          ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT */
/*          FOR INDICES IERR+1,...,N. */

/*        IERR IS SET TO */
/*          ZERO       FOR NORMAL RETURN, */
/*          J          IF THE LIMIT OF 30*N ITERATIONS IS EXHAUSTED */
/*                     WHILE THE J-TH EIGENVALUE IS BEING SOUGHT. */

/*     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/*     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 
*/

/*     THIS VERSION DATED AUGUST 1983. */

/*     ------------------------------------------------------------------ 
*/

    /* Parameter adjustments */
    --wi;
    --wr;
    h_dim1 = *nm;
    h_offset = h_dim1 + 1;
    h__ -= h_offset;

    /* Function Body */
    *ierr = 0;
    norm = 0.;
    k = 1;
/*     .......... STORE ROOTS ISOLATED BY BALANC */
/*                AND COMPUTE MATRIX NORM .......... */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {

	i__2 = *n;
	for (j = k; j <= i__2; ++j) {
/* L40: */
	    norm += (d__1 = h__[i__ + j * h_dim1], abs(d__1));
	}

	k = i__;
	if (i__ >= *low && i__ <= *igh) {
	    goto L50;
	}
	wr[i__] = h__[i__ + i__ * h_dim1];
	wi[i__] = 0.;
L50:
	;
    }

    en = *igh;
    t = 0.;
    itn = *n * 30;
/*     .......... SEARCH FOR NEXT EIGENVALUES .......... */
L60:
    if (en < *low) {
	goto L1001;
    }
    its = 0;
    na = en - 1;
    enm2 = na - 1;
/*     .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT */
/*                FOR L=EN STEP -1 UNTIL LOW DO -- .......... */
L70:
    i__1 = en;
    for (ll = *low; ll <= i__1; ++ll) {
	l = en + *low - ll;
	if (l == *low) {
	    goto L100;
	}
	s = (d__1 = h__[l - 1 + (l - 1) * h_dim1], abs(d__1)) + (d__2 = h__[l 
		+ l * h_dim1], abs(d__2));
	if (s == 0.) {
	    s = norm;
	}
	tst1 = s;
	tst2 = tst1 + (d__1 = h__[l + (l - 1) * h_dim1], abs(d__1));
	if (tst2 == tst1) {
	    goto L100;
	}
/* L80: */
    }
/*     .......... FORM SHIFT .......... */
L100:
    x = h__[en + en * h_dim1];
    if (l == en) {
	goto L270;
    }
    y = h__[na + na * h_dim1];
    w = h__[en + na * h_dim1] * h__[na + en * h_dim1];
    if (l == na) {
	goto L280;
    }
    if (itn == 0) {
	goto L1000;
    }
    if (its != 10 && its != 20) {
	goto L130;
    }
/*     .......... FORM EXCEPTIONAL SHIFT .......... */
    t += x;

    i__1 = en;
    for (i__ = *low; i__ <= i__1; ++i__) {
/* L120: */
	h__[i__ + i__ * h_dim1] -= x;
    }

    s = (d__1 = h__[en + na * h_dim1], abs(d__1)) + (d__2 = h__[na + enm2 * 
	    h_dim1], abs(d__2));
    x = s * .75;
    y = x;
    w = s * -.4375 * s;
L130:
    ++its;
    --itn;
/*     .......... LOOK FOR TWO CONSECUTIVE SMALL */
/*                SUB-DIAGONAL ELEMENTS. */
/*                FOR M=EN-2 STEP -1 UNTIL L DO -- .......... */
    i__1 = enm2;
    for (mm = l; mm <= i__1; ++mm) {
	m = enm2 + l - mm;
	zz = h__[m + m * h_dim1];
	r__ = x - zz;
	s = y - zz;
	p = (r__ * s - w) / h__[m + 1 + m * h_dim1] + h__[m + (m + 1) * 
		h_dim1];
	q = h__[m + 1 + (m + 1) * h_dim1] - zz - r__ - s;
	r__ = h__[m + 2 + (m + 1) * h_dim1];
	s = abs(p) + abs(q) + abs(r__);
	p /= s;
	q /= s;
	r__ /= s;
	if (m == l) {
	    goto L150;
	}
	tst1 = abs(p) * ((d__1 = h__[m - 1 + (m - 1) * h_dim1], abs(d__1)) + 
		abs(zz) + (d__2 = h__[m + 1 + (m + 1) * h_dim1], abs(d__2)));
	tst2 = tst1 + (d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(q) 
		+ abs(r__));
	if (tst2 == tst1) {
	    goto L150;
	}
/* L140: */
    }

L150:
    mp2 = m + 2;

    i__1 = en;
    for (i__ = mp2; i__ <= i__1; ++i__) {
	h__[i__ + (i__ - 2) * h_dim1] = 0.;
	if (i__ == mp2) {
	    goto L160;
	}
	h__[i__ + (i__ - 3) * h_dim1] = 0.;
L160:
	;
    }
/*     .......... DOUBLE QR STEP INVOLVING ROWS L TO EN AND */
/*                COLUMNS M TO EN .......... */
    i__1 = na;
    for (k = m; k <= i__1; ++k) {
	notlas = k != na;
	if (k == m) {
	    goto L170;
	}
	p = h__[k + (k - 1) * h_dim1];
	q = h__[k + 1 + (k - 1) * h_dim1];
	r__ = 0.;
	if (notlas) {
	    r__ = h__[k + 2 + (k - 1) * h_dim1];
	}
	x = abs(p) + abs(q) + abs(r__);
	if (x == 0.) {
	    goto L260;
	}
	p /= x;
	q /= x;
	r__ /= x;
L170:
	d__1 = sqrt(p * p + q * q + r__ * r__);
	s = d_sign(&d__1, &p);
	if (k == m) {
	    goto L180;
	}
	h__[k + (k - 1) * h_dim1] = -s * x;
	goto L190;
L180:
	if (l != m) {
	    h__[k + (k - 1) * h_dim1] = -h__[k + (k - 1) * h_dim1];
	}
L190:
	p += s;
	x = p / s;
	y = q / s;
	zz = r__ / s;
	q /= p;
	r__ /= p;
	if (notlas) {
	    goto L225;
	}
/*     .......... ROW MODIFICATION .......... */
	i__2 = *n;
	for (j = k; j <= i__2; ++j) {
	    p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1];
	    h__[k + j * h_dim1] -= p * x;
	    h__[k + 1 + j * h_dim1] -= p * y;
/* L200: */
	}

/* Computing MIN */
	i__2 = en, i__3 = k + 3;
	j = min(i__2,i__3);
/*     .......... COLUMN MODIFICATION .......... */
	i__2 = j;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1];
	    h__[i__ + k * h_dim1] -= p;
	    h__[i__ + (k + 1) * h_dim1] -= p * q;
/* L210: */
	}
	goto L255;
L225:
/*     .......... ROW MODIFICATION .......... */
	i__2 = *n;
	for (j = k; j <= i__2; ++j) {
	    p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1] + r__ * h__[
		    k + 2 + j * h_dim1];
	    h__[k + j * h_dim1] -= p * x;
	    h__[k + 1 + j * h_dim1] -= p * y;
	    h__[k + 2 + j * h_dim1] -= p * zz;
/* L230: */
	}

/* Computing MIN */
	i__2 = en, i__3 = k + 3;
	j = min(i__2,i__3);
/*     .......... COLUMN MODIFICATION .......... */
	i__2 = j;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1] + 
		    zz * h__[i__ + (k + 2) * h_dim1];
	    h__[i__ + k * h_dim1] -= p;
	    h__[i__ + (k + 1) * h_dim1] -= p * q;
	    h__[i__ + (k + 2) * h_dim1] -= p * r__;
/* L240: */
	}
L255:

L260:
	;
    }

    goto L70;
/*     .......... ONE ROOT FOUND .......... */
L270:
    wr[en] = x + t;
    wi[en] = 0.;
    en = na;
    goto L60;
/*     .......... TWO ROOTS FOUND .......... */
L280:
    p = (y - x) / 2.;
    q = p * p + w;
    zz = sqrt((abs(q)));
    x += t;
    if (q < 0.) {
	goto L320;
    }
/*     .......... REAL PAIR .......... */
    zz = p + d_sign(&zz, &p);
    wr[na] = x + zz;
    wr[en] = wr[na];
    if (zz != 0.) {
	wr[en] = x - w / zz;
    }
    wi[na] = 0.;
    wi[en] = 0.;
    goto L330;
/*     .......... COMPLEX PAIR .......... */
L320:
    wr[na] = x + p;
    wr[en] = x + p;
    wi[na] = zz;
    wi[en] = -zz;
L330:
    en = enm2;
    goto L60;
/*     .......... SET ERROR -- ALL EIGENVALUES HAVE NOT */
/*                CONVERGED AFTER 30*N ITERATIONS .......... */
L1000:
    *ierr = en;
L1001:
    return 0;
} /* hqr_ */



syntax highlighted by Code2HTML, v. 0.9.1