/* htribk.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int htribk_(integer *nm, integer *n, doublereal *ar,
doublereal *ai, doublereal *tau, integer *m, doublereal *zr,
doublereal *zi)
{
/* System generated locals */
integer ar_dim1, ar_offset, ai_dim1, ai_offset, zr_dim1, zr_offset,
zi_dim1, zi_offset, i__1, i__2, i__3;
/* Local variables */
static doublereal h__;
static integer i__, j, k, l;
static doublereal s, si;
/* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */
/* THE ALGOL PROCEDURE TRBAK1, NUM. MATH. 11, 181-195(1968) */
/* BY MARTIN, REINSCH, AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
/* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX HERMITIAN */
/* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */
/* REAL SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY HTRIDI. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRIX. */
/* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS- */
/* FORMATIONS USED IN THE REDUCTION BY HTRIDI IN THEIR */
/* FULL LOWER TRIANGLES EXCEPT FOR THE DIAGONAL OF AR. */
/* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
/* M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED. */
/* ZR CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED */
/* IN ITS FIRST M COLUMNS. */
/* ON OUTPUT */
/* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */
/* IN THEIR FIRST M COLUMNS. */
/* NOTE THAT THE LAST COMPONENT OF EACH RETURNED VECTOR */
/* IS REAL AND THAT VECTOR EUCLIDEAN NORMS ARE PRESERVED. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
tau -= 3;
ai_dim1 = *nm;
ai_offset = ai_dim1 + 1;
ai -= ai_offset;
ar_dim1 = *nm;
ar_offset = ar_dim1 + 1;
ar -= ar_offset;
zi_dim1 = *nm;
zi_offset = zi_dim1 + 1;
zi -= zi_offset;
zr_dim1 = *nm;
zr_offset = zr_dim1 + 1;
zr -= zr_offset;
/* Function Body */
if (*m == 0) {
goto L200;
}
/* .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC */
/* TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN */
/* TRIDIAGONAL MATRIX. .......... */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
i__2 = *m;
for (j = 1; j <= i__2; ++j) {
zi[k + j * zi_dim1] = -zr[k + j * zr_dim1] * tau[(k << 1) + 2];
zr[k + j * zr_dim1] *= tau[(k << 1) + 1];
/* L50: */
}
}
if (*n == 1) {
goto L200;
}
/* .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES .......... */
i__2 = *n;
for (i__ = 2; i__ <= i__2; ++i__) {
l = i__ - 1;
h__ = ai[i__ + i__ * ai_dim1];
if (h__ == 0.) {
goto L140;
}
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
s = 0.;
si = 0.;
i__3 = l;
for (k = 1; k <= i__3; ++k) {
s = s + ar[i__ + k * ar_dim1] * zr[k + j * zr_dim1] - ai[i__
+ k * ai_dim1] * zi[k + j * zi_dim1];
si = si + ar[i__ + k * ar_dim1] * zi[k + j * zi_dim1] + ai[
i__ + k * ai_dim1] * zr[k + j * zr_dim1];
/* L110: */
}
/* .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ......
.... */
s = s / h__ / h__;
si = si / h__ / h__;
i__3 = l;
for (k = 1; k <= i__3; ++k) {
zr[k + j * zr_dim1] = zr[k + j * zr_dim1] - s * ar[i__ + k *
ar_dim1] - si * ai[i__ + k * ai_dim1];
zi[k + j * zi_dim1] = zi[k + j * zi_dim1] - si * ar[i__ + k *
ar_dim1] + s * ai[i__ + k * ai_dim1];
/* L120: */
}
/* L130: */
}
L140:
;
}
L200:
return 0;
} /* htribk_ */
syntax highlighted by Code2HTML, v. 0.9.1